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Abstract

Entity matching (EM)—identifying whether two records re-
fer to the same entity—is critical in data integration. Many
EM methods rely heavily on labelled examples, limiting their
applicability in real world settings. We address the challeng-
ing task of zero-shot entity matching, where no labelled ex-
amples are available for an unseen target dataset. Our ap-
proach, ANYMATCH, leverages a fine-tuned GPT-2 model,
enhanced with novel data selection and augmentation tech-
niques within a transfer learning framework. This design en-
ables ANYMATCH to achieve predictive performance com-
petitive with much larger language models while providing
substantial efficiency gains. Extensive evaluations across nine
benchmark datasets and comparisons with thirteen baselines
reveal that ANYMATCH attains the second-highest overall F1
score, outperforming multiple models with hundreds of bil-
lions of parameters. Additionally, ANYMATCH offers signif-
icant cost advantages: its average prediction quality is within
4.4% of the proprietary trillion-parameter MatchGPT model,
yet requires four orders of magnitude fewer parameters and
achieves a 3,899-fold reduction in inference cost (in dollars
per 1,000 tokens).

1 Introduction

Entity matching (EM), often referred to as entity resolution,
is the problem of determining whether two records refer to
the same real-world entity. EM is a well-studied problem (Li
et al. 2020; Doan et al. 2020; Chen, Shen, and Zhang 2021;
Fu et al. 2021; Papadakis et al. 2024; Wang et al. 2022; Mud-
gal et al. 2018) for its high practical importance in data inte-
gration (Abedjan et al. 2016; Stonebraker, Ilyas et al. 2018;
Gao, Huang, and Parameswaran 2018; Zhang and Ives 2020;
Huang and Wu 2024).

A typical restriction in entity matching scenarios is the de-
pendence on labelled examples. A less restrictive yet more
challenging setting is zero-shot entity matching (Wu et al.
2020), where the matcher must handle a completely un-
seen target dataset—without access to labels, schema, or
any meta information. Zero-shot matchers are essential to
improve data integration services in the cloud (e.g., AWS
Glue (Services 2022)), providing automated integration ca-
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Figure 1: The average F1 score of ANYMATCH is only
4.4% lower than the state-of-the-art method MatchGPT
with GPT-4, which incurs a 3,899x higher inference cost
in dollars per 1,000 tokens.

pabilities on enterprise data lakes (Vos, Dohmen, and Schel-
ter 2022). Zero-shot matchers can also be applied for du-
plicate detection (Hynes, Sculley, and Terry 2017) as part of
data cleaning in machine learning pipelines (Abdelaal, Ham-
macher, and Schoening 2023; Li et al. 2021), and are also
valuable as a primitive for entity alignment in tasks such as
table reclamation (Fan, Shraga, and Miller 2024).

Recently, the promising capabilities of large language
models (LLMs) (Fernandez et al. 2023) have led to a resur-
gence of research on EM (Narayan et al. 2022; Peeters
and Bizer 2023; Zhang et al. 2023; Li et al. 2024). Ap-
proaches such as MatchGPT (Peeters and Bizer 2023) or
TableGPT (Li et al. 2024) show promising results for zero-
shot entity matching by prompting LLMs (Narayan et al.
2022). However, these approaches rely on extremely large
proprietary models with hundreds of billions or even tril-
lions of parameters (Wang et al. 2024), which require ex-
pensive accelerator hardware for deployment. As a result,
these approaches incur a hefty cost at a low throughput dur-
ing inference. The latest commercial LLMs often come with
a “throughput of less than 1 KB per second” (Liu et al.
2024) at a high cost imposed by their pay-per-token model,
which results in prices of “5 USD for processing just SMB
of data” (Liu et al. 2024). LLM-based entity matchers in-
herit this high computational cost, which severely limits
their scalability and applicability.

To address these challenges, we propose ANYMATCH, a
cost-efficient approach for zero-shot entity matching on un-
seen target data. ANYMATCH employs a trainable matcher



that frames zero-shot entity matching as a transfer learning
task. The matching process is handled as a sequence clas-
sification problem, as introduced in prior work (Li et al.
2020). In short, ANYMATCH fine-tunes the decoder-only
language model GPT-2 (Radford et al. 2019) on carefully
curated data samples. As part of our approach, we leverage
two novel data selection techniques:

* We employ a boosting technique that leverages an AutoML
filter to identify and prioritise difficult examples. These
challenging instances often represent edge cases where the
model tends to perform poorly. Focusing on these difficult
examples improves overall robustness and accuracy.

* We augment the fine-tuning data with attribute-level sam-
ples to accommodate for the structural mismatch between
text data and relational data without column order.

We conduct an extensive evaluation of the prediction
quality of our approach against thirteen baselines on nine
benchmark datasets. ANYMATCH achieves the second-
highest F1 score overall and outperforms twelve baselines
(including LL.Ms with hundreds of billions of parameters),
often by a large margin of more than ten percent in F1 score.
Moreover, we evaluate the computational performance and
deployment cost of ANYMATCH in comparison to exist-
ing matchers based on large language models, as illustrated
in Figure 1. We find that ANYMATCH exhibits attractive
performance characteristics: its average prediction quality
is within 4.4% of the state-of-the-art method Mat chGPT
based on GPT—4, yet the latter requires four orders of mag-
nitude more parameters and incurs a 3,899 times higher in-
ference cost (in dollars per 1,000 tokens).

2 Problem Statement

The entity matching (EM) problem is to predict whether
the pair of records (r;,r,) with r; € Ry and r,. €
Riigne refers to the same real-world entity or not. Rje; and
Riigne denote two input relations with k aligned attributes
A = {ai,...,ar}. We refer to these relations as target
dataset Diaree. EM is often modelled as a binary classifica-
tion task with a labelled training set Dirain C Riefi X Riighe ¥
{0, 1}. State-of-the-art approaches (Li et al. 2020) featurise
the example pairs based on their aligned attribute names
ai,...,ar and values v, = rifa1), ..., v, = rifag), v, =
relat]s .oy Op = Trlak].

In contrast to classical entity matching, we address a more

challenging yet practical setting, referred to as zero-shot en-
tity matching (Wu et al. 2020). In particular, we approach the
entity matching problem under the following restrictions:
Restriction 1 - Unseen target data: A zero-shot matcher will
have no access to labelled example pairs for the target rela-
tions Ry and Ryigns, Which means no training set is avail-
able for the unseen target data Diarge; -
Restriction 2 - Lack of type information: There is no col-
umn name or column type information accessible for the tar-
get relations Ry and Ryign. A zero-shot matcher can only
enumerate the attribute values r{a1), ..., rlai] of a record r
from the target relations in a string representation.

Our proposed zero-shot EM setup is essential in scenarios
requiring a high degree of automation, where it is unlikely

or impractical to have a domain expert manually label train-
ing data. Prior work, such as ZeroER (Wu et al. 2020), ad-
dresses zero-shot entity matching under the constraint of no
training data for target relations (Restriction 1). However, it
still relies on column type information to select similarity
functions, thus violating Restriction 2.

3 Approach

Following the approach in (Li et al. 2020), we treat EM as a
sequence classification problem, where input records are se-
rialized into an ordered textual sequence (see Appendix A.1
for an example of this serialization method). A classifica-
tion model then predicts whether the records refer to the
same real-world entity. We introduce the main idea of ANY-
MATCH in the following and refer to Appendix A.2 for fur-
ther details. Figure 2 illustrates the pipeline of using ANY-
MATCH.

Zero-shot EM as a transfer learning problem. We aim
for a matcher which can be applied to unseen target Diyrge;
originating from two relations Rjerp and Ryjgne, for which
no labelled training data Dy, is available. To address this,
we leverage a small language model as a sequence classi-
fier fine-tuned in a transfer learning setup. We select GPT—
2 (Radford et al. 2019) as the base model for its effec-
tive capability of contextual understanding. ANYMATCH as-
sumes that one can access a large set of m labelled datasets

t(ril)lsfer, e ,Dt(rﬁifer from other relations (e.g., all publicly
available academic benchmark datasets) to fine-tune a lan-
guage model as the zero-shot matcher f.

Directly concatenating samples from all available datasets
is prone to overfitting the model, thus special care is required
to create high quality fine-tuning data. We design two data
selection techniques to make sure that Dfpe une CONtains ex-
amples that result in a generalisable matcher.

Boosting the matcher with difficult examples. A general
principle in many EM systems is to categorise candidate
pairs based on the difficulty of distinguishing between the
represented entities. Unlikely matches can easily be pruned
early via blocking functions (Papadakis et al. 2020). More-
over, recent studies (Mudgal et al. 2018; Leone et al. 2022;
Papadakis et al. 2024) indicate that many entity matching
benchmark datasets can already be solved using linear mod-
els.

These observations motivate us to think about EM
datasets as a mix of record pairs that can easily classified
by conventional machine learning models, such as linear
models, and another set of pairs that require non-linearity
to be solved by language models. We prioritise the inclu-
sion of the latter, with more challenging examples be placed
into the fine-tuning data Dipe.rune Via an AutoML filter: we
train an AutoML model on examples from a labelled dataset
Dl(r?nsfer and include samples misclassified by the AutoML
model in Dfpe tune- Such samples often highlight the bound-
aries or edge cases that the model struggles with, and includ-
ing them can lead to more robust performance and higher
transferability.

Augmentation with attribute-level samples. Even
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Figure 2: High-level overview of ANYMATCH — (1) We generate fine-tuning data from the available labelled datasets by
applying several data selection techniques, and (2) fine-tune a language model as zero-shot entity matcher. (3) We use the
resulting matcher for inference on unseen target data at deployment time.

though LLMs show promising potential for data wran-
gling (Narayan et al. 2022), there still remain fundamental
structural mismatches in applying them to relational
data (Badaro, Saeed, and Papotti 2023), e.g., that relational
data has an additional column/attribute structure (which is
not present in text) and that the relational model does not
impose an order over these attributes. We accommodate for
this structural mismatch with an augmentation approach
that is inspired by how humans tackle the entity matching
task: they will not immediately make decisions at the record
level, but will use a combination of comparisons across
different attributes.

In order to account for this observation, we generate ad-
ditional attribute-level examples which only contain pairs
of attribute values (r;[a], r..[a]) for each attribute a from a

labeled record pair (7, 7,-) in Dl(r;)nsfer, and augment the fine-

tuning data Dfperune With these additional samples.

4 Experimental Evaluation

We first assess the predictive quality of ANYMATCH in
comparison to thirteen baselines (details provided in Ap-
pendix A.4) on nine widely used EM datasets (details pro-
vided in Appendix A.3). Ablation results (detailed in Ap-
pendix A.5) further validate the design choices of our
method. Additionally, we highlight the deployment cost ben-
efits of our method compared to other large language model-
based matchers.

4.1 Prediction Quality

We evaluate the zero-shot matching quality using a “leave-
one-dataset-out” methodology: to test on an unseen target
dataset, we use the remaining eight datasets as transfer data
for training or prompting. In line with existing research, we
report the F1 score for the predictions on the entity matching
tasks.

The resulting F1 scores for the nine datasets are shown in
Table 1, with the highest score for each dataset in bold and

the second-highest score underlined. Scores for Jelly—
fish are shown in brackets where it was pretrained on that
dataset, indicating a violation of the zero-shot setting. Re-
sults for GPT-3 (Narayan et al. 2022) and TableGPT (Li
et al. 2024) are taken from their original papers, as these
models have been deprecated or are not publicly available.

MatchGPT (Peeters and Bizer 2023) with the propri-
etary trillion-parameter model GPT—4 achieves the highest
average F1 score of 86.36. We find that ANYMATCH pro-
vides the second-highest overall performance with a mean
F1 score of 81.96. This is remarkable since it outperforms
MatchGPT with all open and commercial models (except
for GPT-4), which have up to three orders of magnitude
more parameters than ANYMATCH. We find that our method
provides the best performance on the three datasets BEER,
FOZA and ITAM from diverse domains and the second-
best performance on ABT and DBGO. However, for other
datasets such as AMGO and WAAM, there is still a gap com-
pared toMatchGPT [GPT-4]. We attribute this to the fact
that these dataset employ very specific language to describe
products, which lacks grammatically consistency. Another
unknown factor in these results is the question whether the
commercial models have already seen the (publicly avail-
able) benchmark datasets at training time. This is impossi-
ble to determine however, since the training data of these
models is not disclosed.

As expected, the StringSim baseline gives the worst
average performance of 40.21. TableGPT (which again ap-
plies models with hundreds of billions of parameters) also
scores high on the datasets for which its authors provide
numbers in (Li et al. 2024). ANYMATCH also outperforms
Jellyfish (Zhang et al. 2023) with a score of 81.96 com-
pared to 77.83, even though the latter has seen data from six
out the nine datasets at training time. The Ditto (Li et al.
2020) baseline (which we trained in a similar manner as our
method and which has a similarly sized base model) also
performs well with a score of 66.05 (and achieves on par
performance with some of the larger models), but is more
than 15 points behind our method. Unicorn (Tu et al. 2023),



Table 1: F1 scores for zero-shot EM. (Best score in bold, second-best score underlined, numbers in brackets indicate the model

has seen data from a dataset at training time).

#params Unseen Target Dataset

(millions) ABT AMGO BEER DBAC DBGO FOzZA ITAM WAAM WDC Mean
StringSim 32.19 36.43 29.55 73.94 60.10 22.00 51.28 2798 28.46 40.21
ZeroER - 54.13 45.79 67.67 93.31 85.15  100.00 70.12 4312 4246 66.86
Ditto 110 53.94 50.28 73.68 95.22 87.79 69.84 7297 39.87 50.86 66.05
Unicorn 145 89.45 55.70 90.32 94.33 94.11 90.91 7222 6357 4728 77.54
MatchGPT [GPT-40-mini] 8,000 89.67 65.24 66.67 92.07 86.59 93.02 7273  83.15 7991 81.01
Jellyfish 13,000 81.13  (59.72) (80.00) (98.40) (92.65) (97.67) (82.61) 6578 4255 (77.83)
MatchGPT [Mixtral-8x7B] 56,000 79.02 31.65 70.91 87.63 66.15 88.23 62.13  50.56 42.04 64.26
MatchGPT [SOLAR] 70,000 85.04 19.01 71.23 88.60 52.05 89.37 61.20 6532 56.52 65.37
MatchGPT [BelugaZ2] 70,000 83.51 42.01 76.34 92.43 72.68 82.17 5436 63.46 5497 69.10
GPT-3 175,000 n/a 54.3 78.6 93.5 64.6 87.2 65.9 60.6 n/a n/a
TableGPT [GPT-3.5-text-davinci-002] 175,000 n/a 65.7 72.7 84.7 86.1 87.2 78.8 69.1 n/a n/a
TableGPT [GPT-3.5-text-chat-davinci-002] 175,000 n/a 56.6 92.3 932 91.1 100.0 86.2 67.8 n/a n/a
MatchGPT [GPT-3.5-Turbo03] 175,000 74.32 57.91 78.78 88.73 79.15 82.35 56.10 64.26 7651 73.12
MatchGPT [GPT-3.5-Turbo06] 175,000 82.30 44.06 70.00 93.28 78.22 93.02 57.57 68.77 60.62 71.98
MatchGPT [GPT-4] 1,760,000 94.40 74.91 69.57 95.60 87.22 97.67 82.35 89.67 85.83 86.36
ANYMATCH [GPT-2] 124 86.05 55.08 96.55 93.61 90.59  100.00 9091 61.51 63.31 81.96

the successor to Ditto, aims to achieve zero-shot functional-
ity using a mixture-of-experts architecture. However, it still
falls short of our method by 4% in performance. The param-
eterless ZeroER (Wu et al. 2020) also scores high (and pro-
vides the best performance on DBAC and FOZA) and even
outperforms Ditto. However, it still lags more than 14
points behind our method.

In summary, we find that ANYMATCH outperforms all
baselines except for one and provides an average matching
performance that is within 4.4% percent of the best observed
performance from MatchGPT [GPT-4] that is four or-
ders of magnitude more parameters than ANYMATCH.

4.2 Deployment Cost for Inference

Next, we assess the deployment cost of ANYMATCH in
comparison to other zero-shot matchers. As previously
demonstrated, matchers that rely on large language mod-
els are the primary competitors among existing methods.
Since the Jellyfish (Zhang et al. 2023) model does not
strictly adhere to the zero-shot restrictions, GPT-3 (Narayan
et al. 2022) is deprecated, and TableGPT (Li et al. 2024)
is not open-sourced, our comparison focuses on the infer-
ence costs associated with Mat chGPT solutions. Given that
MatchGPT utilizes both open-weight and large proprietary
models, different strategies are needed to quantify these
costs.

For ANYMATCH and the open-weight Mat chGPT mod-
els, including Mixtral, SOLAR, and Beluga2, we use
throughput as a proxy for computational efficiency, mea-
sured in tokens per second (Borzunov et al. 2024), to quan-
tify deployment costs. To ensure a fair comparison, all mod-
els are deployed on the same hardware configuration; we
record the maximum batch size each model can accommo-
date and then interpolate the throughput values in tokens per
second. Using this throughput, we calculate the deployment
cost per 1,000 tokens based on prices from cloud platforms
like Amazon Web Services or Al-specific platforms such as
together.ai. Unfortunately, we are unable to measure
the throughput of commercial models like GPT-4 due to their
deployment behind proprietary APIs. The underlying hard-

ware configurations are unknown, and these models likely
operate in multi-tenant settings. Therefore, we use their re-
spective API costs for comparison.

We focus on the trade-off between the prediction qual-
ity of these approaches and their deployment cost. For that.
we plot the average F1 score achieved versus the estimated
cost for 1,000 tokens from the analysis in Figure 1. Note
that we only include methods whose models are not depre-
cated and which satisfy our zero-shot constraints. More de-
tails about the setup and inference throughput can be found
in Appendix A.7.

MatchGPT [GPT-4] had the highest average F1-score
of 86.36 in the zero-shot setting. Our proposed model ANY-
MATCH reached the second highest F1 score of 81.96, with
only a 4.4% difference, even though it has four orders of
magnitude less parameters (124 million vs 1.76 trillion).
The slight performance benefit of MatchGPT [GPT-4]
comes at a drastic price increase though, as it has a 3,899
times higher inference cost than ANYMATCH. These num-
bers showcase the attractive trade-off between prediction
quality and deployment cost offered by ANYMATCH, which
suggest that ANYMATCH should be preferred in scenarios
where cost, scale and speed have priority over peak predic-
tion quality.

5 Conclusion

We revisited the zero-shot EM problem with ANYMATCH, a
small language model fine-tuned through transfer learning,
introducing several novel data selection techniques to gen-
erate high-quality fine-tuning data. Our method was com-
prehensively compared to thirteen baselines across nine
datasets. ANYMATCH achieves competitive prediction qual-
ity and offers substantial deployment cost advantages over
recent EM approaches that rely on trillion-parameter LLMs.
Besides, we also observe that these data selection strategies,
effective for ANYMATCH, become less impactful as model
size is large enough (see Appendix A.8 for details), which
motivates future investigation.
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A Appendix

A.1 Example of Serialisation

ANYMATCH serializes two records into a prompt format that is in-
dependent of the data domain and does not require any schema in-
formation such as column names or types. For instance, given two
records from the music domain representing two different songs by
the artist "David Guetta” :

[{song_name: "I'm a Machine", musician:
— "David Guetta",

price: "$1.29", release: 2011},

{title: "Night Of Your Life", artist: "David
— Guetta",

price: "$1.29", year: 2011}]

the serialized prompt fed to the language model would appear as
follows:

Record A is <p>COL I'm a Machine, COL David
— Guetta,

COL $1.29, COL 2011</p>. Record B is <p>COL
— Night Of Your

Life, COL David Guetta,
— 2011</p>. Given the
attributes of the two records,
— same?

A.2 Details of Approach
We now detail the concrete algorithms to turn the set of labelled
transfer datasets D" ..,D)into the data Dne-une Which

transfer? * transfer
we use for fine-tuning. The function FINETUNE_ANYMATCH in Al-
gorithm 1 shows the high-level procedure as outlined previously:
we first generate record-level examples (Algorithm 2) which are
then augmented with attribute-level examples (Algorithm 3), which

we finally use to fine-tune our base model GPT-2.

COL $1.29, COL

are they the

Record-level sample generation with AutoML selection. We
generate record-level samples independently from each dataset
Diransfer € Dt(r:uzsfcr, .. 7Dt(r:17r:s)fcr as described in Algorithm 2. On
a high-level, we aim to resample each dataset Diansfer to have a ra-
tio of twice as much non-matching as matching record pairs. Fur-
thermore, we focus on identifying and including difficult matching
pairs in the fine-tuning data generated from Dyansfer-

We generate n, samples from each dataset Diganster as follows.
First, note that n, is a hyperparameter and the we use the full
dataset Dyanster if it has less pairs (Line 19). We detect difficult
matching pairs by training an AutoML classifier fauo on Dyanster
and identify the set Dj{mng of matching record pairs that were mis-
classified by fauwo as false negatives (Lines 4-5). We leverage these

Algorithm 1: Fine-tuning ANYMATCH via transfer learning.

1 function @ (m)
m
MATCH(Dlransfer’ te ’Dtransfeﬂ
2 Dﬁne—tune —
— Generate record-level samples
forie1...mdo @
K2
Stecord = RECORDLEVEL (D, ., 1)
Dﬁne—lune < Dﬁne—lune U Srecord
— Generate attribute-level samples
(€3]
Sattribute <= ATTRIBUTELEVEL (D1 ., -
Dﬁne—tune — Dﬁne—tune U Sattribute
— Fine-tune a small language model for EM
f + fine-tune GPT-2 on Dgpe-tune
9 return f

FINETUNE_ANY-
Mg, M)

[V, I NN

..,D(m) n

~N

oo

misclassified samples to create the set of matching pairs to use for
fine-tuning DT, by sampling %nr difficult matching pairs from
D“frong (and additionally include correctly classified pairs as well
if there are not enough difficult pairs, Lines 6-15). Next, we ran-
domly sample twice as many non-matching pairs from Diyansfer tO
form the set of non-matching pairs D . Finally, we combine D"
and D~ to form the set of pairs DT and turn each retained labelled
record pair (r;, 7, y) from D¥ into two instances based on our
serialisation format (Lines 20-24). We generate a sample based on
the value pairs (V, V;) and a second sample where the order of the
value pairs is flipped: (V,., V}). At this level, all attribute values V
from the left record r; and V. from the right record r,. are included
in the serialisation.

Augmentation with attribute-level samples. In addition to the
record-level samples, we also generate attribute-level samples for
fine-tuning. We detail their generation process in Algorithm 3. The
goal of this function is to generate samples' for all attributes A oc-

curring in any of the datasets D .. ,D(m> Therefore, the

N N transfer? * transfer A
data access pattern is different than before. Instead of processing

each dataset Dl(rﬁsfer independently, we now group the data by at-
tribute (Lines 5-11) and process each record group G containing
all labelled pairs of values of a particular attribute A; indepen-
dently. We balance each group G to contain positively and nega-
tively labelled attribute pairs in equal proportions and make sure
that we use at most n, pairs per attribute (Lines 12-19). Note
that the threshold n, is a hyperparameter again. Recall that we
use a ratio of one to two for record-level samples, but we do not
apply the same ratio for attribute-level samples. This is because
attribute-level samples are generated using simple heuristic rules
without ground-truth labels on attribute-level matches. Therefore,
we use a balanced ratio between positive and negative samples to
minimise inductive bias. Finally, we turn each retained labelled at-
tribute value pair into a sample based on our serialisation format,
using only a single attribute value v; from the left record r; and
the corresponding single attribute value v, from the right record r,
(Line 21).

A.3 Datasets

We experiment on nine benchmark datasets detailed in Table 2,
which are commonly used in entity matching research (Li et al.

"Note that this requires us to have access to attribute names at
data generation time, however the actual attribute names are not
part of the generated fine-tuning data and thereby not observed by
our model.

transfer’ '@

)



Algorithm 2: Generating record-level fine-tuning samples.

Algorithm 3: Generating attribute-level fine-tuning samples.

1 function RECORDLEVEL(Dyanster, 1)
2 Srecord — @
3 if ‘,Dtransfer| > Ny then

— AutoML filter to select difficult examples

4 Sauto < train AutoML classifier on Dyansfer
5 D‘jmng <+ matching pairs misclassified by fauto
— Downsampling to control label imbalance
6 n\trong A |throng
7 n, < number of matching pairs in Dyansfer
8 Ny %n,«
9 nt « min(n_z), np)
10 if none > 1 then
11 D ¢« sample n* pairs from D,
12 else
13 DF,. < matching pairs correctly classified by
fauto
14 D < sample (n* —nd ) pairs from D,
15 DT < D{fiong U D
16 D~ <+ sample 2n™ non-matching pairs from
Dtransfer
17 D* «+ D*uUD~
18  else

— No filtering for tiny datasets
19 D * < Dtransfer

— Generation of serialised samples
20 for (r;,r,,y) € D do

21 V) <~ ENUMERATE_ATTRIBUTE_VALUES(7;)
22 V,. <~ ENUMERATE_ATTRIBUTE_VALUES(7}.)
23 Srecord <~ Srecord U SERIALIZE(Vly Vr: y)

— Include “flipped” sample
24 Srecord — Srecord U SERIALIZE(V}, Vvl> y)

25  return Siecord

2020; Narayan et al. 2022; Peeters and Bizer 2023). . These
datasets cover diverse domains and vary in sample sizes.

Our most important baseline (with the highest performance for
zero-shot EM) is MatchGPT (Peeters and Bizer 2023), which
leverages commercial LLM APIs. Due to the high costs of these
APIs, the MatchGPT study down-samples a test set if it exceeds

Acronym Dataset Domain | #Samples
ABT Abt-Buy web products 8,865
AMGO Amazon-Google  software 11,460
BEER Beer food 450
DBAC DBLP-ACM citation 12,363
DBGO DBLP-Google citation 28,707
FOZA Fodors-Zagats food 946
ITAM iTunes-Amazon music 539
WAAM Walmart-Amazon electronics 10,242
WDC WDC web products 6,239

Table 2: Benchmark datasets from (Narayan et al. 2022) and
(Peeters and Bizer 2023) with their corresponding domain.

(1) pim)

1 function ATTRIBUTELEVEL(D, <> Diansters )

transfer? * *
2 Sattribule — @
— Identify all possible attributes

3 A < all attributes appearing in Dt(rir)lsfew e 7Dt(r:rL12fer
— Collect all attribute pairs
4 for attribute a; € A do
5 G+ 0
6 forjel...mdo
7 if a; in attributes of Dt(rjaflsfer then
8 for (Tl’ Try y) € ,Dt(rjazsfer do
9 v < 1ifa;]
10 Up — Trla)
11 G+ G U (v,v,9)
— Balance the pairs per attribute
12 n™ < number of matching pairs in G
13 n~ < number of non-matching pairs in G
14 Tbalance < min(|n+|, |7’L7|)
15 G < Npalance Matching pairs sampled from G
16 G~ < Npaance NON-matching pairs sampled from

17 Gt « pPtuPp
— Down-sample the pairs per attribute

18 if |G*| > n, then

19 G?* « randomly sample n, pairs from P+
— Generate attribute-level samples

20 for (v;,v,,y) € P do

21 Satribute <= Sadribuie U SERIALIZE(vy, Uy, )

22 return Syibute

1,250 samples (and reduces it to at most 250 positive samples and
1,000 negative samples). We adapt their metholodogy and consult
MatchGPT’s code and data repository” to make sure that our test
sets contain exactly the same record pairs.

A.4 Compared Baselines

In this section, we will introduce the baselines we used to compare
with ANYMATCH.

StringSim — a trivial baseline method, which serialises both tu-
ples to compare by casting each column to a string and concatenat-
ing the values with a comma separator. Next, this method computes
the string similarity of the serialised tuples via the Ratcliff/Ober-
shelp algorithm from Python’s diff1ib package and predicts a
match if the corresponding similarity is greater than 0.5.

ZeroER (Wu et al. 2020) is a parameter-less matching method,
explicitly designed for the zero-shot case without any training data
for the target dataset. The approach is built on the observation
that the similarity vectors for matching records are distributed dif-
ferently than the similarity vectors for non-matching records. In
contrast to our approach, there are several drawbacks though: the
method requires information about the types of the columns and
a decision on the similarity functions to use, is only applicable in
a batch setting and cannot match single record pairs in isolation
(which for example makes debugging false predictions difficult),

Zhttps://github.com/wbsg-uni-mannheim/MatchGPT/tree/
main/LLMForEM



and relies on distributional assumptions which may not hold on ev-
ery dataset.

Ditto (Li et al. 2020) is a state-of-the-art entity matching ap-
proach, based on fine-tuning a Bert encoder (Devlin et al. 2018).
Ditto injects domain knowledge into the data during serialisation
and augments the training data to enhance the model’s ability to dif-
ferentiate between challenging entity pairs. This process includes
actions such as dropping columns and editing spans of tokens.
Since Ditto models do not rely on a hard-coded schema during
training, they can also be applied to unseen target datasets with
a different schema in a zero-shot setting. In a similar direction,
(Zhang et al. 2024) recently proposed a vision to leverage a selec-
tion of LoRA-tuned domain-specific models for entity matching.

Similarly, Tu et al. proposed Unicorn (Tu et al. 2023), a unified
multi-tasking model designed to support various matching tasks in
data integration. Unicorn adopts the core principle of multi-task
learning by using a mixture of expert architecture (Ma et al. 2018),
aiming to learn specialised expert models for different tasks. The
primary workflow of Unicorn can be summarised as follows: first,
data samples from different tasks are serialised with their respec-
tive schema and encoded using a pretrained language model. Then,
task-specific expert models transform these representations into
task-specific embeddings. Finally, these embeddings are merged
and fed into a final matching module. Through the use of multi-
task experts, Unicorn enables the model to learn distinct embed-
dings for different tasks, which allows it to generalise and perform
well on unseen datasets and tasks.

Jellyfish (Zhang et al. 2023) is a general LLM-based approach
targeting four data preprocessing tasks (including entity matching).
Jellyfish leverages two LLaMA2-13B models, which are fine-tuned
in an instruction tuning fashion. The corresponding data is specif-
ically created to accommodate multiple data preprocessing tasks.
Essentially, one LLaMA model is tasked with classification, pro-
viding detailed reasoning, while the second model interprets this
output to refine the reasoning process further. Jellyfish is explicitly
designed to tackle zero-shot data preparation scenarios on unseen
datasets.

Narayan et al. (Narayan et al. 2022) showed that prompting large
commercial LLMs with serialised records and carefully chosen
few-shot examples can lead to competitive matching performance,
referred as GPT-3 in our paper.

MatchGPT (Peeters and Bizer 2023) enhances the chosen
prompts and evaluates a wide variety of base models and
prompt formats for both zero-shot and few-shot entity matching.
TableGPT (Li et al. 2024) applies a similar approach, but en-
hances the LLMs with “table fine-tuning” to teach them various
data preparation tasks. This approach is designed for both zero-
shot and few-shot scenarios.

A.5 Ablation

We conduct ablation study on the base model selection and data
generation strategies. We summarise the tested variants together
with the corresponding results for the individual datasets in Ta-
ble 3. In addition, we report the performance delta (the reduction
in average F1 score) for all tested variants, in comparison to the
proposed design of ANYMATCH.

We first evaluate the impact of replacing GPT-2 in ANYMATCH
with different similarly sized alternative models. In particular, we
evaluate Google’s T5 (Raffel et al. 2020) model with an encoder-
decoder architecture and the encoder-only model Bert (Devlin
et al. 2018), which is for example also used by (Li et al. 2020).
As detailed in Table 3, both alternative models result in a decrease
of the overall F1 score: using T5 results in a decrease of 2.38%,
while using Bert leads to the drastic decrease of 9.04% in av-

erage F1 score. We attribute the significant decrease in predictive
quality when using Bert to the following factors: Bert encodes
the input into a vectorised representation, to which a prediction
head is subsequently appended for making predictions. However,
in our approach, we incorporate a task description into the input
sequence, accounting for roughly 5% of the total input, which po-
tentially negatively influences the downstream classification. Note
while using a different serialization method for the Bert model
might improve performance, this is not the focus of this ablation
study.

Next, we aim to validate the choice of the different techniques
used during the generation of training data for ANYMATCH. As
discussed, our main model uses difficult pair selection via Au-
toML (aut oml) for record-level instances, augments the data with
“flipped” record pairs (£11ip) and mixes attribute-level training in-
stances into the training data (att r_mix). In this experiment, we
evaluate the following reduced variants:

e (automl, attr_mix) - This variant does not include
flipped record pairs.

* (attromix) — This variant does not use our AutoML-based
approach to select difficult matching examples and does not in-
clude flipped record pairs.

* (attr_seq) — This variant also does not use our AutoML-
based approach to select difficult matching examples and does
not include flipped record pairs. Additionally, it does not mix the
attribute-level training instances with the record-level training in-
stances. Instead, it uses sequential training to fine-tune the model
on the attribute-level pairs before continuing the fine-tuning on
record-level examples.

* () — This variant neither uses the AutoML-based approach to
select difficult matching examples nor any attribute-level training
examples or flipped record pairs.

The results Table 3 validate the benefits of our training data gen-
eration techniques, as we find that the removal of any of our pro-
posed techniques results in a performance decrease. Removing the
flipped records pairs in (automl, attr.mix) leads to a de-
crease of 0.72%, additionally removing the selection of difficult
examples via AutoML in (attr-mix) further decreases the per-
formance by 1.62%. Removing or not mixing in the attribute level
instances (e.g., the variants (attr_seq) and ()) leads to a per-
formance loss of more than 3%.

A.6 Implementation Details & Hyperparameters

We implement ANYMATCH based on
the existing GPT2Tokenizer and
GPT2ForSequenceClassification classes in Py-
Torch (Paszke et al. 2019) for our chosen base model GPT-2 (Rad-
ford et al. 2019) from the t ransformers library.

We implement the AutoML filter, which selects difficult training
examples, based on the TabularPredictor from Amazon’s
AutoGluon library (Erickson et al. 2020). When filtering individ-
ual datasets, we convert them into a TabularDataset instance
and subsequently construct a TabularPredictor by specify-
ing the name of the label column that indicates matches. We do not
constrain the time budget for the AutoML training (e.g., we do not
setatime_limit argument in the £it () method), but observe
that the fitting procedure can be completed within minutes for the
datasets we are using.

We use a fixed set of hyperparameters across all evaluations.
We set the number of record-level instances to generate per dataset
n, = 1,200 and the number of attribute-level instances to generate
per attribute n, = 600. When we fine-tune ANYMATCH, we use
a learning rate of 0.00002 and always choose the largest batch size
that fits into the memory of the underlying GPU.



Unseen Target Dataset

ABT AMGO BEER DBAC DBGO FOZA ITAM WAAM WDC Mean
AnyMatch (main model) 86.05 55.08 96.55 93.61 90.59 100.00 9091 61.51 63.31 81.96
Choice of base model — main model uses GPT2
(GPT2) — (T5) 8545 56.12 90.32 8749 8476 97.67 9132 6047 62.57 79.57 (—A2.38)
(GPT2) — (BERT) 7382 51.28 8746 89.72 86.54 89.72 72.65 43.58 61.42 72.91 (—A9.04)
Training data generation strategy — main model uses (automl, flip, attr.mix)
(automl, flip, attrmix) — (automl, attrmix) 84.01 4950 96.55 92.54 90.12 100.00 89.79 66.16 62.35 81.24 (—A0.72)
(automl, flip, attrmix) — (attrmix) 82.27 56.64 90.32 9482 8998 97.67 87.72 6450 59.11 80.34 (—A1.62)
(automl, flip, attrmix) — (attr_seq) 84.03 5865 84.85 95.18 90.26 91.67 88.89 57.05 58.77 78.82 (—A3.14)
(automl, flip, attrmix) — () 82.82 5291 87.50 93.79 89.58 97.67 9091 5571 58.05 78.77 (—A3.19)

Table 3: F1 scores from our ablation study for the choice of base model and the training data generation strategies of ANY-
MATCH. Altering any of our design choices leads to a performance decrease of up to 9.04 percent.

A.7 Deployment Cost

We deploy each matcher (in combination with a given model) with
exclusive access to a machine with four A100 GPUs with 40 GB
GPU RAM in a large academic HPC cluster. Note that the A100
GPU is a common choice for ML, is the most powerful hardware
available to us in academic context, and also constitutes a common
choice in cloud instances designed for ML workloads. We leverage
implementations based on PyTorch and the transformers li-
brary. We deploy quantised (16-bit precision) versions of the mod-
els and use model parallelism to distribute a model over multiple
GPUs if it cannot fit into the 40 GB memory of a single A100 GPU.

We leverage the DBGO dataset here, since it is the largest
dataset from our evaluation and proceed as follows. We first
determine the maximum batch size usable per model by test-
ing exponentially growing batch sizes and checking for mem-
ory issues. Next, we measure the inference time for 100
batches (based on the determined maximum batch size) via the
torch.utils.benchmark package from PyTorch and com-
pute the throughput in tokens/s based on the observed inference
times. If a method does not use all four GPUs, we extrapolate its
throughput to the full machine based on the number of GPUs used,
as our inference is embarrassingly parallel.

Model Used by #params | RAM batch Throughput

(millions) (GB) size (tokens/s)
Llama2-13B Jellyfish 13,000 | 24.46 128 26,721
Mixtral-8x7B MatchGPT 56,000 | 73.73 32 2,108
Beluga?2 MatchGPT 70,000 | 128.64 32 1,079
SOLAR MatchGPT 70,000 | 128.64 64 752
GPT-2 ANYMATCH 124 | 026 8,192 693,999

Table 4: Throughput in tokens/s on a machine with 4xA100
(40GB) GPUs for different open-weight LLMs employed
by Jellyfish and MatchGPT and our proposed model
ANYMATCH. Due to the small number of parameters in
ANYMATCH, its throughput is 25x higher than the through-
put of Jellyfish and up to 922x higher than the through-
put for the large models employed by Mat chGPT. Note that
ANYMATCH outperforms these models in terms of predic-
tion quality as well, despite its drastically smaller number of
parameters.

We list the required memory per model, the corresponding max-
imum usable batch size and the achieved throughput in Table 4.
Both GPT-2 used by ANYMATCH and Llama2-13B used by
Jellyfish fit into the 40 GB memory of a single A100 GPU.
Mixtral-8x7B requires model parallelism with two such GPUs,

while SOLAR and Beluga?2 need to be distributed over all four
A100 GPUs. The differences in size and the required model paral-
lelism result in vast differences in the maximum achievable batch
size and throughput. We observe that ANYMATCH has an up
to 922x times higher throughput than Mat chGPT with its large
models and a 25x times higher throughput than Jellyfish.
We attribute the low throughput numbers for MatchGPT to the
high memory requirements, which force the use of model paral-
lelism over multiple GPUs. The latter is detrimental for throughput
since the model activation must be copied over to the memory of
other GPUs. MatchGPT can only use small batch sizes (16-32)
and achieves a low throughput in the range of 752 to 2,108 to-
kens per second only. In contrast, the Llama2-13B model used by
Jellyfish fits into the memory of a single GPU, works with a
higher batch size of 128, and achieves a throughput of over 26 thou-
sand tokens/s. Our proposed method ANYMATCH can use a very
large batch size of 8,192, since its base model GPT-2 has a com-
parably small parameter size of 124M, which only requires about
260M of GPU RAM for the model weights. This is two orders of
magnitude less memory than Jellyfish and MatchGPT. As
a result, ANYMATCH achieves a throughput of over 690 thou-
sand tokens/s in this experiment, which is 25x higher than the
throughput of ANYMATCH and between 329x to 922x higher than
the throughput of Mat chGPT with the large open-weight models.
These throughput differences of up to two orders of magnitude are
a clear indication of the performance benefits of leveraging a small
language model for zero-shot entity matching.

We lookup the costs for the commercial models from OpenAl at
https://openai.com/api/pricing/. As of November 2024, batch infer-
ence with the GPT-4 model costs $0.015 per 1,000 tokens and in-
ference with GPT-3.5-turbo-0613 costs $0.00075 per 1,000
tokens. Note that these models have different costs for input and
output tokens; we use the cheaper input token cost, since entity
matching is modelled as sequence classification task, which only
generates a single output.

We estimate the cost for ANYMATCH and the open-weight mod-
els as follows. We assume that such a model is deployed on a
cloud instance that is constantly used for inference (e.g., as part
of the use cases described in Section 2). We use the cost for a
p4d.24xlarge instance’ from the Amazon Web Services cloud
as a reference. This machine is designed for ML workloads and
comes with eight A100 (40GB) GPUs (exactly twice the amount of
GPUs which we used for our throughput experiment). As of June
2024, such a machine has an hourly cost of $19.22 in a scenario
where the instance is reserved for a year (which would be com-
mon in a corporate setup). Since the cloud instance has the exact

*https://aws.amazon.com/ec2/instance-types/p4/



same type of GPU (only twice the amount), we can extrapolate our
throughput numbers from ?? to this machine by simply doubling
them, as inference in entity matching is an embarrassingly paral-
lel workload. We therefore estimate the cost per 1,000 tokens for
models deployed on this machine as (p/(2 - t,, - 3600)) - 1000
where p is the hourly instance price, ., is the throughput in token-
s/s observed for model m and 2 is the extrapolation factor from our
previous experiments (as the cloud instance has twice the amount
of GPUs).

For the open-weight models, we additionally lookup the host-
ing price on the cloud platform together.ai* and choose this
option if the resulting price per 1,000 tokens would be lower than
our self-hosting setup (e.g., because a more favourable GPU can be
chosen).

Cost for

Method & model 1K tokens | Deployment scenario
MatchGPT [GPT-4] $0.015 OpenAl Batch API
MatchGPT [SOLAR] $0.0009 Hosting on Together.ai
MatchGPT [Beluga2] $0.0009 Hosting on Together.ai
MatchGPT [GPT-3.5-turbo-06] $0.00075 OpenAl Batch API
MatchGPT [Mixtral-8x7B] $0.00063 4x on p4d.24xlarge
MatchGPT [GPT-4o-mini] $0.000075 | OpenAl Batch API

Jellyfish
ANYMATCH

$0.000025 8x onpdd.24xlarge
$0.0000038 ‘ 8xonp4d.24xlarge

Table 5: Cost per 1K tokens for EM with proprietary models,
compared to a deployment scenario with open-weight mod-
elsonap4d.24xlarge instance in the AWS cloud or via
the together.ai platform. ANYMATCH offers the lowest cost
and three orders of magnitude cheaper than Mat chGPT with
the commercial GPT-4 model.

We list the resulting costs per method and model in descending
order in Table 5 . For each entry, we also mention the chosen cheap-
est deployment scenario, e.g. whether we assume that the OpenAl
API is used, whether we assume that the model is hosted on to-
gether.ai, or whether we assume that the model is deployed x-times
onapdd.24xlarge instance in AWS. We encounter the highest
costs for Mat chGPT with GPT—-4 (which gave the highest predic-
tion quality). These costs are an order of magnitude higher than the
cost for hosting Mat chGPT with the SOLAR or Beluga2 models
or even using the older commercial model GPT-3.5-turbo-06.
Using the smaller Mixtral-8x7B model is 23x cheaper than
GPT-4, while Jellyfish (with a 13 billion parameter model)
is already several orders of magnitude cheaper than GPT—4. ANY-
MATCH is by far the cheapest model in this comparison, which is
expected due to its low memory footprint and high throughout. It
outperforms GPT—4 by a factor of 3,899x in price.

Model #Params | Mean F1 Cost for

(millions) 1K tokens
GPT-2 w. DS 124 81.96 0.0000038
GPT-2 w/o DS 124 78.77 0.0000038
Llama3.2-1B w. DS 1,300 86.64 0.0001
Llama3.2-1B w/o DS 1,300 87.06 0.0001

Table 6: The mean F1 score for fine-tuning a larger language
model, both with and without the data selection (DS) strate-
gies used by ANYMATCH (referred to as “GPT-2 w. DS”).

4 Available at https://www.together.ai/pricing, accessed in
November 2024

A.8 Fine-tune a Larger Language Model

We also applied the same fine-tuning approach to a larger lan-
guage model, Llama3.2-1B, with 1.3 billion parameters—ten times
larger than the GPT-2 model used in ANYMATCH. However, when
fine-tuning Llama3.2-1B, the data selection strategies were no
longer beneficial, as evidenced in table 6. This finding suggests that
smaller models benefit more from carefully designed data selection
strategies.



