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Abstract

The learning rate is a key hyperparameter that affects both the speed of training
and the generalization performance of neural networks. Through a new loss-based
example ranking analysis, we show that networks trained with different learning
rates focus their capacity on different parts of the data distribution, leading to
solutions with different generalization properties. These findings, which hold
across architectures and datasets, provide new insights into how learning rates
affect model performance and example-level dynamics in neural networks.

1 Introduction

The learning rate is a critical hyperparameter in neural network training, with a significant impact on
both convergence speed and generalization performance. It is widely recognized that using a high
initial learning rate improves generalization [4, 15]. A common explanation is that higher learning
rates introduce more noise from the stochastic optimizer, inducing feature sparsity [1–3, 16] and
leading to flatter minima [6, 10, 11] with better generalization properties [5, 8, 9].

In this work, we offer a new perspective by examining how learning rates affect the network’s focus
on different parts of the data distribution. By analyzing loss-based example ranking–the ordering of
examples in the dataset based on their loss values at the end of training–we show that varying the
learning rate shifts the network’s emphasis toward certain examples. We further give evidence that
these shifts in focus directly influence generalization performance.

The key contributions of this work are:

1. We introduce loss-based example ranking to explore how learning rate affects the network’s
focus on different parts of the data distribution (Section 2).

2. We demonstrate that different learning rates lead to distinct example rankings, showing that
the learning rate alters which examples receive more or less emphasis (Section 3.1 and 3.2).

3. Through experiments with reweighting examples during training based on shifts in example
ranking between different learning rates, we illustrate that changes in the network’s focus
induces by the learning rate influence generalization (Section 3.3).

2 Methodology

2.1 Loss-based Example Ranking

Let us first introduce the concept of loss-based example ranking as a way to quantify how
neural networks prioritize learning examples at different learning rates. Given a dataset D =
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{(x1, y1), ..., (xN , yN ))}, a trained network f , and a loss function L(f(x), y), we define the rank of
each example based on its loss value at the end of training. Specifically, for a given example (xi, yi),
its rank ri is defined as the number of examples in the dataset on which network f has lower or equal
loss:

ri =

N∑
j=1

I[L(f(xj), yj) ≤ L(f(xi), yi)] (1)

where I is the indicator function. The example with the lowest loss is assigned a rank of 1, and the
example with the highest loss is assigned a rank of N . This ranking is invariant to the overall scale
of the loss values which can vary for different learning rates, and allows us to focus on the relative
difficulty of examples when comparing networks. Throughout the paper, we refer to examples as
‘easy’ or ‘hard’ for the network based on their ranks, with lower-ranked examples considered easier.

2.2 Normalized Rank Correlation

To compare the ranking of examples across different networks, we use the standard Kendall rank
correlation coefficient, which measures the similarity between two ranked lists. Let fLR1 and fLR2

be two networks trained with different learning rates. The Kendall rank correlation τ between two
rankings can be computed as:

τ(fLR1 , fLR2) =
2

N(N − 1)

∑
i<j

sign(rLR1
i − rLR1

j )sign(rLR2
i − rLR2

j ) (2)

where rLR1
i and rLR2

i are the ranks of example i in networks trained with learning rates LR1 and
LR2, respectively.

In practice, the rankings of two networks trained with the same learning rate do not correlate perfectly
due to the noise introduced by random initialization and stochastic training. Moreover, the magnitude
of the noise may vary for different learning rates, making the comparison based on the Kendall rank
correlation less stable. To account for this noise, we define a normalized rank correlation as:

τnorm(f
LR1 , fLR2) =

τ(fLR1 , fLR2)√
Es1 ̸=s2 [τ(f

LR1
s1 , fLR1

s2 )]Es1 ̸=s2 [τ(f
LR2
s1 , fLR2

s2 )]
(3)

where the expectation is taken over different random seeds s1 and s2. This normalization accounts for
random fluctuations between training runs while focusing on differences caused by the learning rates.

3 Results and Analysis

In this section, we present the results of our experiments, which assess the effect of learning rates on
loss-based example rankings.We report results obtained with ConvNet and ResNet-18 on CIFAR-
10 [12], and ResNet-18 on CIFAR-100 [13] and Tiny-ImageNet [14]. We use a learning rate schedule
in all experiments to ensure convergence to high-quality solutions while varying the maximum
learning rate during training as a parameter, which is either the initial learning rate for ResNet-18 or
the learning rate after the warm-up for ConvNet. Experimental details are given in Appendix A.

3.1 Effect of Learning Rate on Example Ranking

We first examine the rankings of training examples for networks trained with different learning rates.
For each learning rate, we train five networks with different random seeds and compute the loss-based
example rankings at the end of training. Figure 1 shows the normalized rank correlations between
example rankings for different learning rates, averaged over seeds, along with standard deviations.

Key Observation: Correlations between example rankings for different learning rates are lower than
correlations between networks trained with the same learning rate; the larger the difference between
learning rates, the lower the rank correlation. This result indicates that the choice of learning rate can
significantly impact the example prioritization and lead the network to focus on distinct parts of the
data distribution. Analogous results hold for rankings of examples in the test set (see Figures 5 and
6 in Appendix B). We also discuss how the noise between the training runs affects these results in
Appendix B.
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Figure 1: Normalized rank correlations between rankings of training examples for different pairs of
learning rates for various datasets and network architectures. The x-axis corresponds to the values of
the first learning rate from the pair, while the different colors of the curves correspond to different
values for the second one. For each learning rate, five networks were trained using different random
seeds. The mean and standard deviation values for each pair of learning rates are shown.

Easier for high LR Harder for high LR

Figure 2: Examples with the highest and the lowest rank difference between LR 1 and LR 20.

3.2 Example-Level Analysis

To better understand the effect of learning rate, we perform an example-level analysis of rank changes
between networks trained with different learning rates. To reduce the noise in example rankings
caused by variability across training runs, we analyze logit-ensembles instead of individual networks.
For each learning rate, we train many neural networks and then construct a logit-ensemble by
averaging them in the logit space. This approach enables us to capture the primary effects of the
learning rate while minimizing the influence of training noise. The airbench package [7] we use for
experiments with ConvNets on CIFAR-10 allows us to efficiently train a large number of networks.
For maximally stable results, we use 5000-network logit-ensembles in our analysis.

Figure 2 displays the 20 examples from two CIFAR-10 classes with the largest changes in ranking
between ensembles trained with the lowest (1.0) and the highest (20.0) learning rates in our setup.
Upon close inspection, we find that examples that become easier with a higher learning rate tend to
be more typical of their class, such as front-face views of dogs or side views of horses. In contrast,
examples that become harder are generally less typical or more complex, requiring the network to
focus on finer details. However, we emphasize that this is only a general trend, and ranking changes
for more localized learning rate increases may diverge significantly (see Appendix C for details).

To explore this further, we compare the ranking changes induced by different pairs of learning rates.
Specifically, for each example i, we compute the changes ∆ri := rLRlower

i − r
LRhigher
i for different

pairs (LRlower, LRhigher) of learning rates. Figure 3 presents these comparisons. As shown in the left
plot, the changes in example rankings for different increases of the learning rate from the same low
value are positively correlated: examples that become easier with a moderate increase in learning rate
tend to also become easier with larger increases. However, the degree of correlation decreases as the
gap between learning rates grows. In the right plot, we compare consecutive learning rate increases
and observe that while neighboring learning rate increases influence example rankings very similarly,
more distant learning rate increases show almost no correlation in their example rankings.

Key Finding: Learning rates smoothly affect example rankings, however the effect is not uniform.
Different learning rate changes can cause substantially different shifts in which examples become
easier or harder, indicating that each learning rate causes the network to focus on different aspects of
the data.
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Figure 3: Comparison of the changes in example rankings for different learning rate increases from
the same low learning rate (left) and for consecutive learning rate increases (right). Each point
corresponds to an example and depicts changes in its rank for specified learning rate increases along
the x- and y-axis. The diagonal x = y is indicated with a dashed line. To compare the changes for
different learning rate increases, we measure the Pearson correlation (shown in legends).

Figure 4: Low learning rate training with example reweighting. Colored lines correspond to reweight-
ing examples based on the difference in example rankings between a pair of learning rates (negative α
correspond to upweighting/downweighting examples which become easier/harder for higher learning
rate), while black/gray lines depict baselines of reweighting examples based on their ranking for a
specific learning rate (negative α corresponds to upweighting/downweighting examples which are
easier/harder for this learning rate).

3.3 Link to Generalization

We hypothesize that changes in example ranking caused by the learning rate can partially explain the
generalization benefits of training with higher learning rates. To test this hypothesis, we reweight
examples during low learning rate training based on how their rankings shift compared to networks
trained with higher learning rates. Specifically, we adjust the loss for each training example i by
1 + α · (ri(f)− ri(g)), where ri(f) and ri(g) represent the rankings of the example in two 5000-
network ensembles, f (trained with a high learning rate) and g (trained with a low learning rate).
Negative values of α put more emphasis on examples that become easier at higher learning rates
while downweighting examples that become harder. To ensure that possible improvements from such
reweighting are not merely the result of upweighting/downweighting easy/hard examples for a fixed
learning rate, we also include baselines where examples are reweighted based on the example ranking
for a specific learning rate using 1 + α · (ri(f)−N/2) weights. Negative values of α, in this case,
correspond to upweighting/downweighting examples, which are easier/harder for this learning rate.
Figure 4 shows test accuracies for various values of α.

Key Finding: This reweighting scheme improves generalization, confirming that the positive effect
of higher learning rates can be at least partially explained through the changes in the network’s focus
over the data distribution. However, we observe that reweighting based on small, localized changes
in learning rates (e.g., from 0.25 to 1.0) yields significantly better results than reweighting based on
large differences (e.g., from 0.25 to 20.0). This nuance highlights the higher importance of specific
ranking changes for each learning rate increase over the broader trend of focusing more on typical
examples.

4 Conclusion

In this paper, we investigated how learning rates impact the functions learned by neural networks
using loss-based example ranking, revealing where the network focuses its capacity within the data
distribution. Our findings indicate that increasing the learning rate smoothly alters example ranking.
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These ranking changes are meaningful and partially responsible for the improved generalization
for higher learning rates. Our qualitative analysis suggests that the change in ranking correlates
with the typicality of examples in the dataset, with more typical examples becoming easier for
networks trained with higher learning rates. However, this is only a general trend; we also found
that generalization properties are connected to more nuanced changed in ranking. Future work will
explore these aspects further.
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Figure 5: Normalized rank correlations between test example rankings for different pairs of learning
rates for various datasets and network architectures. For each learning rate, five networks were trained
using different random seeds. The mean and standard deviations of the normalized rank correlations
for each pair of learning rates on the training data are shown.

Figure 6: Normalized rank correlations between train (left) and test (right) example rankings for
different pairs of learning rates for ResNet-18 on CIFAR-10. For each learning rate, five networks
were trained using different random seeds. The mean and standard deviations of the normalized rank
correlations for each pair of learning rates on the training data are shown.

A Experimental Details

ConvNet experiments We conduct most of the experiments using a simplified version of air-
bench package [7] available at https://github.com/KellerJordan/research-airbench/
tree/master. It allows us to train a ConvNet architecture on CIFAR-10 dataset [12] to 94%
test accuracy in several seconds. We use the original training procedure from clean_airbench and vary
the LR parameter in our experiments. We train 5000 networks with different random seeds for each
LR parameter value from [0.25, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20]. Table 1 presents the mean train and
test accuracy values of the resulting networks. For the reweighting experiments, we additionally train
30 networks for each reweighting scheme and coefficient α.

ResNet experiments We conduct additional experiments with ResNet-18 on CIFAR-10 [12],
CIFAR-100 [13], and Tiny-ImageNet [14]. We train ResNet-18 networks using stochastic
gradient descent with batch size 128, weight decay 0.0005, momentum 0.9, standard crop
and flip data augmentations, and 200-epochs cosine LR schedule with maximal LRs from
[0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2]. For each LR we train 5 networks with different random
seeds. We provide the mean train and test accuracy values of the resulting networks in Table 2.

B Additional Results on Example Rank Correlation for Different LRs

In this section, we provide additional results on the example rank correlation between networks
trained with different learning rates complementary to Figure 1 in the main text. In Figure 5, we
show the normalized rank correlations between test example rankings for ConvNet on CIFAR-10,
ResNet-18 on CIFAR-10, and ResNet-18 on Tiny-ImageNet. Additionally, Figure 6 depicts the same
results for ResNet-18 on train and test sets of CIFAR-100. The learning rate changes the example
ranking for all considered dataset-architecture pairs on both train and test sets.

Interestingly, the results for ConvNet on train and test sets are almost identical, while results for
ResNet-18 are much more noisy on train sets. The noise level in correlation results highly depends
on the variance of training runs with different random seeds. We include values of mean example
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Table 1: Accuracy and non-normalized example rank self-correlation of ConvNet trained with
different learning rates on train and test subsets of CIFAR-10. Results on five individual networks,
five 1000-network ensembles, and a 5000-network ensemble are shown.

ConvNet on CIFAR-10

LR 1.0 2.0 3.0 5.0 7.0 10.0 15.0 20.0

Mean train acc., % 98.16 98.70 98.94 99.06 99.11 99.02 98.82 98.58
Mean test acc., % 93.26 93.63 93.68 93.80 93.87 93.80 93.81 93.53

Train ex. rank self-corr. 0.70 0.71 0.71 0.72 0.73 0.74 0.75 0.75
Test ex. rank self-corr. 0.75 0.75 0.75 0.76 0.77 0.77 0.78 0.78

1000-network ensemble of ConvNets on CIFAR-10

LR 1.0 2.0 3.0 5.0 7.0 10.0 15.0 20.0

Mean train acc., % 98.63 99.14 99.31 99.42 99.45 99.41 99.27 99.04
Mean test acc., % 94.12 94.57 94.73 94.80 94.80 94.68 94.62 94.39

Train ex. rank self-corr. 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Test ex. rank self-corr. 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

5000-network ensemble of ConvNets on CIFAR-10

LR 1.0 2.0 3.0 5.0 7.0 10.0 15.0 20.0

Train acc., % 98.63 99.14 99.34 99.43 99.45 99.42 99.27 99.03
Test acc., % 94.13 94.57 94.74 94.81 94.79 94.66 94.62 94.41

Table 2: Accuracy and non-normalized example rank self-correlation of ResNet-18 trained with
different learning rates on train and test subsets of CIFAR-10, CIFAR-100, and Tiny-ImageNet.
Results on five individual networks are shown.

ResNet-18 on CIFAR-10

LR 0.002 0.005 0.01 0.02 0.05 0.1 0.2

Mean train acc., % 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Mean test acc., % 92.53 93.91 94.38 94.88 95.17 95.16 94.90

Train ex. rank self-corr. 0.45 0.35 0.26 0.22 0.26 0.29 0.33
Test ex. rank self-corr. 0.59 0.54 0.47 0.42 0.44 0.45 0.48

ResNet-18 on CIFAR-100

LR 0.002 0.005 0.01 0.02 0.05 0.1 0.2

Mean train acc., % 86.88 88.44 88.58 87.56 83.95 78.01 69.30
Mean test acc., % 71.44 74.37 75.65 76.70 77.85 78.10 77.20

Train ex. rank self-corr. 0.35 0.33 0.21 0.20 0.25 0.29 0.35
Test ex. rank self-corr. 0.64 0.65 0.64 0.65 0.67 0.67 0.66

ResNet-18 on Tiny-ImageNet

LR 0.002 0.005 0.01 0.02 0.05 0.1 0.2

Mean train acc., % 84.87 87.10 86.10 83.76 76.63 67.73 55.42
Mean test acc., % 50.68 52.71 52.88 52.64 52.21 49.58 42.97

Train ex. rank self-corr. 0.35 0.22 0.21 0.24 0.26 0.33 0.43
Test ex.rank self-corr. 0.64 0.63 0.64 0.65 0.65 0.67 0.66
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Figure 7: Normalized rank correlations between example rankings for 1000-network ensembles of
ConvNets trained with different LRs on train and test sets of CIFAR-10. Five ensembles are trained
with each LR, mean and standard deviations of normalized rank correlation for each pair of LRs are
shown (standard deviation is very low in this experiment).

Easier for high LR Harder for high LR Easier for high LR Harder for high LR

Figure 8: Examples with the highest and the lowest rank difference between LR 1 and LR 20.

rank self-correlation for all networks and LRs in Tables 1, 2 (mean non-normalized rank correlation
between networks trained with the same learning rate but different random seeds). The higher values
of this metric correspond to a lower variance of training runs with different random seeds. ResNets
indeed demonstrate lower self-correlation than ConvNets in general, and especially on train sets.

In Figure 7, we additionally demonstrate that normalized rank correlations demonstrate the same
behavior in a low-noise setting, where instead of five ConvNet networks, we compare the example
rankings of five 1000-network ConvNet ensembles. The results are very clean in this case due to the
very low variance of training runs (the example rank self-correlation is > 99%, see Table 1).
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LR 1 vs LR 3 LR 3 vs LR 5 LR 5 vs LR 10 LR 10 vs LR 20
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Figure 9: Examples with the highest and the lowest rank difference between different pairs of low
and high LRs.

C Additional Results on Example-Level Analysis

In this section, we provide additional results and analysis of example groups with the highest and
lowest rank difference between networks trained with different LRs. Complementary to Figure 2
from the main text, in Figure 8, we present images from all other CIFAR-10 classes with the most
significant rank changes between the lowest and highest LRs. For most classes, the example groups
with opposite rank changes look qualitatively different, with more typical examples becoming easier
for networks trained with high LR.

In Figure 9, we compare the example groups with the highest and lowest rank difference for various
changes in LR. For most LR changes, the examples in both groups are similar to the ones character-
izing the general trend between low to high LRs from Figure 2. However, the example groups are
not identical for different LR changes and for some LR changes they divert a lot from the general
trend (e.g., LR 10 vs LR 20 for dogs and LR 1 vs LR 3 for horses). We leave a further analysis of
how exactly different LR changes influence the example ranking and which changes are the most
influential for generalization for future work.
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