
Published in Transactions on Machine Learning Research (10/2023)

Distributed Newton-Type Methods with
Communication Compression and Bernoulli Aggregation

Rustem Islamov rustem.islamov@ip-paris.fr
Institut Polytechnique de Paris
Palaiseau, France

Xun Qian
JD Explore Academy
Beijing, China

Slavomír Hanzely
King Abdullah University of Science and Technology
Thuwal, Saudi Arabia

Mher Safaryan
King Abdullah University of Science and Technology
Thuwal, Saudi Arabia

Peter Richtárik
King Abdullah University of Science and Technology
Thuwal, Saudi Arabia

Reviewed on OpenReview: https: // openreview. net/ forum? id= NekBTCKJ1H

Abstract

Despite their high computation and communication costs, Newton-type methods remain an
appealing option for distributed training due to their robustness against ill-conditioned convex
problems. In this work, we study communication compression and aggregation mechanisms for
curvature information in order to reduce these costs while preserving theoretically superior
local convergence guarantees. We show that the recently developed class of three point
compressors (3PC) of (Richtárik et al., 2022) for gradient communication can be generalized
to Hessian communication as well. This result opens up a wide variety of communication
strategies, such as contractive compression and lazy aggregation, available to our disposal to
compress prohibitively costly curvature information. Moreover, we discovered several new
3PC mechanisms, such as adaptive thresholding and Bernoulli aggregation, which require
reduced communication and occasional Hessian computations. Furthermore, we extend
and analyze our approach to bidirectional communication compression and partial device
participation setups to cater to the practical considerations of applications in federated
learning. For all our methods, we derive fast condition-number-independent local linear
and/or superlinear convergence rates. Finally, with extensive numerical evaluations on
convex optimization problems, we illustrate that our designed schemes achieve state-of-
the-art communication complexity compared to several key baselines using second-order
information.

1 Introduction

In this work we consider the distributed optimization problem given by the form of ERM:

min
x∈Rd

{
f(x) := 1

n

n∑
i=1

fi(x)
}

, (1)

1

https://openreview.net/forum?id=NekBTCKJ1H

Published in Transactions on Machine Learning Research (10/2023)

where d is the (potentially large) number of parameters of the model x ∈ Rd we aim to train, n is the
(potentially large) number of devices in the distributed system, fi(x) is the loss/risk associated with the data
stored on machine i ∈ [n] := {1, 2, . . . , n}, and f(x) is the empirical loss/risk.

In order to jointly train a single machine learning model using all devices’ local data, collective efforts are
necessary from all compute nodes. Informally, each entity should invest some “knowledge” from its local
“wisdom” to create the global “wisdom”. The classical approach in distributed training to implement the
collective efforts was to literally collect all the raw data devices acquired and then perform the training
in one place with traditional methods. However, the mere access to the raw data hinders the clients’ data
privacy in federated learning applications (Konečný et al., 2016b;a; McMahan et al., 2017). Besides, even if
we ignore the privacy aspect, accumulating all devices’ data into a single machine is often infeasible due to its
increasingly large size (Bekkerman et al., 2011).

Because of these considerations, there has been a serious stream of works studying distributed training
with decentralized data. This paradigm of training brings its own advantages and limitations. Perhaps the
major advantage is that each remote device’s data can be processed simultaneously using local computational
resources. Thus, from another perspective, we are scaling up the traditional single-device training to a
distributed training of multiple parallel devices with decentralized data and local computation. However, the
cost of scaling the training over multiple devices forces intensive communication between nodes, which is the
key bottleneck in distributed systems.

1.1 Related work: from first-order to second-order distributed optimization

Currently, first-order optimization methods are the default options for large-scale distributed training due
to their cheap per-iteration costs. Tremendous amount of work has been devoted to extend and analyze
gradient-type algorithms to conform to various practical constraints such as efficient communication through
compression mechanisms (Alistarh et al., 2017; 2018b; Wen et al., 2017; Wangni et al., 2018; Sahu et al., 2021;
Tyurin & Richtárik, 2022) and local methods (Gorbunov et al., 2021b; Stich, 2020; Karimireddy et al., 2020;
Nadiradze et al., 2021a; Mishchenko et al., 2022), peer-to-peer communication through graphs (Koloskova
et al., 2019; 2020; Kovalev et al., 2021), asynchronous communication (Feyzmahdavian & Johansson, 2021;
Nadiradze et al., 2021b), partial device participation (Yang et al., 2021), Byzantine or adversarial attacks
(Karimireddy et al., 2021; 2022), faster convergence through acceleration (Allen-Zhu, 2017; Li et al., 2020b;
Qian et al., 2021) and variance reduction techniques (Lee et al., 2017; Mishchenko et al., 2019; Horváth et al.,
2019; Cen et al., 2020; Gorbunov et al., 2021a), data privacy and heterogeneity over the nodes (Kairouz et al,
2019; Li et al., 2020a),

Nevertheless, despite their wide applicability, all first-order methods (including accelerated ones) inevitably
suffer from ill-conditioning of the problem. In the past few years, several algorithmic ideas and mechanisms
to tackle the above-mentioned constraints have been adapted for second-order optimization. The goal in
this direction is to enhance the convergence by increasing the resistance of gradient-type methods against
ill-conditioning using the knowledge of curvature information. The basic motivation that the Hessian
computation will be useful in optimization is the fast condition-number-independent (local) convergence rate
of classic Newton’s method (Beck, 2014), that is beyond the reach of all first-order methods.

Because of the quadratic dependence of Hessian information (d2 floats per each Hessian matrix) from
the dimensionality of the problem, the primary challenge of taming second-order methods was efficient
communication between the participating devices. To alleviate prohibitively costly Hessian communication,
many works such as DiSCO (Zhang & Xiao, 2015; Zhuang et al., 2015; Lin et al., 2014; Roosta et al., 2019),
GIANT (Wang et al., 2018; Shamir et al., 2014; Reddi et al., 2016) and DINGO (Crane & Roosta, 2019;
Ghosh et al., 2020b) impart second-order information by condensing it into Hessian-vector products. Inspired
from compressed first-order methods, an orthogonal line of work, including DAN-LA (Zhang et al., 2020b),
Quantized Newton (Alimisis et al., 2021), NewtonLearn (Islamov et al., 2021), FedNL (Safaryan et al.,
2022), Basis Learn (Qian et al., 2022) and IOS (Fabbro et al., 2022), applies lossy compression strategies
directly to Hessian matrices reducing the number of encoding bits. Other techniques that have been migrated
from first-order optimization literature are local methods (Gupta et al., 2021), partial device participation
(Safaryan et al., 2022; Qian et al., 2022), defenses against Byzantine attacks (Ghosh et al., 2020a;c). The

2

Published in Transactions on Machine Learning Research (10/2023)

theoretical comparison of second order methods is presented in Table 1. We defer more detailed review of a
literature of second-order methods to the Appendix.

Table 1: Theoretical comparison of several second order methods (including ours) in strongly convex setup
with Lipschitz continuous Hessians. Advantages are written in green, while limitations are colored in red.

Method LipC
grad1

Comm.
Cost2 Comp. Cost3 Rate Comments

GIANT4

(Wang et al., 2018) No O(d) Full Hessian Local κ-dependent linear.
Global O(log κ/ϵ), quadratics

Big data regime
(#data ≫ d)

DINGO5,6

(Crane & Roosta, 2019) No O(d) Hessian-vector
products

Global linear,
but no fast local

Also requires
Hessian pseudo-inverse
and vector products.

DAN
(Zhang et al., 2020b) No O(nd2) Full Hessian Global quadratic rate

after O(L/µ2) iterations. -

DAN-LA
(Zhang et al., 2020b) Yes O(nd) Full Hessian Asymptotic and implicit

global superlinear rate.

limk→∞
∥xk+1−x∗∥

∥xk−x∗∥ = 0
Independent of κ ?

Better non-asymptotic
complexity over linear rate ?

NL4

(Islamov et al., 2021) No O(d) Full Hessian
Local linear and superlinear

independent of κ,
but dependent on #data.

global linear
reveals local data to server

Quantized Newton6

(Alimisis et al., 2021) Yes Õ(d2) Full Hessian Local (fixed) linear
without global -

FedNL
(Safaryan et al., 2022) No O(d) Full Hessian

Local (fixed) linear and
superlinear, independent

of κ and #data
Global linear

Supports contractive
Hessian compression,

Bidirectional compression.

BL
(Qian et al., 2022) No O(d) Full Hessian

Local (fixed) linear and
superlinear, independent

of κ and #data
Global linear

Supports contractive
Hessian compression,

Bidirectional compression.
Exploits lower intrinsic
dimensionality of data.

Fib-IOS6

(Fabbro et al., 2022) Yes O(d) Periodic
Full Hessian implicit global linear

Only rank-type compression.
Backtracking line search.

SVD in each round.
FLECS

(Agafonov et al., 2022) Yes O(d) Hessian-vector
products

Implicit global linear,
but no fast local7

Backtracking line search.
SVD in each round.

Newton-3PC
(this work) No O(d)

Periodic
Full Hessian

and/or
Hessian-vector

products

Local (fixed) linear
and superlinear,

independent of κ,
independent of #data.

Global rate8

Supports contractive
Hessian compression,

Bidirectional compression.

1 LipC grad = Lipschitz Continuous gradients.
2 Comm. Cost = Communication Cost per round. 3 Comp. Cost = Computation Cost per round.
4 Only for Generalized Linear Models, e.g. lossj(x; aj) = ϕj(a⊤

j x) + λ∥x∥2.
5 Uses Moral Smoothness: ∥∇2f(x)∇f(x) − ∇2f(y)∇f(y)∥ ≤ L∥x − y∥. 6 Strongly convex local loss functions for all clients.
7 FLECS has a local rate under the condition that all iterates remain within some fixed neighborhood of the optimum.
8 See Section I in the Appendix for globalization strategies.

2 Motivation and Contributions

Handling and taking advantage of the second-order information in distributed setup is rather challenging. As
opposed to gradient-type methods, Hessian matrices are both harder to compute and much more expensive
to communicate. To avoid directly accessing costly Hessian matrices, methods like DiSCO (Zhang & Xiao,
2015), GIANT (Wang et al., 2018) and DINGO (Crane & Roosta, 2019) exploit Hessian-vector products
only, which are as cheap to compute as gradients (Pearlmutter, 1994). However, these methods typically
suffer from data heterogeneity, need strong assumptions on problem structure (e.g., generalized linear models)
and/or do not provide fast local convergence rates.

On the other hand, recent works (Safaryan et al., 2022; Qian et al., 2022) have shown that, with the access of
Hessian matrices, fast local rates can be guaranteed for solving general finite sums (1) under compressed
communication and arbitrary heterogeneous data. In view of these advantages, in this work we adhere to
this approach and study communication mechanisms that can further lighten communication and reduce
computation costs. Below, we summarize our key contributions.

3

Published in Transactions on Machine Learning Research (10/2023)

2.1 Flexible communication strategies for Newton-type methods

We prove that the recently developed class of three point compressors (3PC) of Richtárik et al. (2022) for
gradient communication can be generalized to Hessian communication as well. In particular, we propose a
new method, which we call Newton-3PC (Algorithm 1), extending FedNL (Safaryan et al., 2022) algorithm
for arbitrary 3PC mechanism. This result opens up a wide variety of communication strategies, such as
contractive compression (Stich et al., 2018a; Alistarh et al., 2018a; Karimireddy et al., 2019) and lazy
aggregation (Chen et al., 2018; Sun et al., 2019a; Ghadikolaei et al., 2021), available to our disposal to
compress prohibitively costly curvature information. Besides, Newton-3PC (and its local convergence theory)
recovers FedNL (Safaryan et al., 2022) (when contractive compressors are used as 3PC) and BL (Qian et al.,
2022) (when rotation compression is used as 3PC) in special cases.

2.2 New compression and aggregation schemes

Moreover, we discovered several new 3PC mechanisms, which require reduced communication and occasional
Hessian computations. In particular, to reduce communication costs, we design an adaptive thresholding
(Example 3.3) that can be seamlessly combined with an already adaptive lazy aggregation (Example 3.7).
In order to reduce computation costs, we propose Bernoulli aggregation (Example 3.9) mechanism which
allows local workers to skip both computation and communication of local information (e.g., Hessian and
gradient) with some predefined probability. Moreover, sketch-and-project operator (Example 3.5) reduces the
computation costs relying on Hessian-vector products.

2.3 Extensions

Furthermore, we provide several extensions to our approach to cater to the practical considerations of
applications in federated learning. In the main part of the paper, we consider only bidirectional communication
compression (Newton-3PC-BC) setup, where we additionally apply Bernoulli aggregation for gradients (worker
to server direction) and another 3PC mechanism for the global model (server to worker direction). The
extension for partial device participation (Newton-3PC-BC-PP) setup and the discussion for globalization are
deferred to the Appendix.

2.4 Fast local linear/superlinear rates

All our methods are analyzed under the assumption that the global objective is strongly convex and local
Hessians are Lipschitz continuous. In this setting, we derive fast condition-number-independent local linear
and/or superlinear convergence rates.

2.5 Extensive experiments and Numerical Study

Finally, with extensive numerical evaluations on convex optimization problems, we illustrate that our
designed schemes achieve state-of-the-art communication complexity compared to several key baselines using
second-order information.

3 Three Point Compressors for Matrices

To properly incorporate second-order information in distributed training, we need to design an efficient
strategy to synchronize locally evaluated d × d Hessian matrices. Simply transferring d2 entries of the matrix
each time it gets computed would put significant burden on communication links of the system. Recently,
Richtárik et al. (2022) proposed a new class of gradient communication mechanisms under the name three
point compressors (3PC), which unifies contractive compression and lazy aggregation mechanisms into one
class. Here we extend the definition of 3PC for matrices under the Frobenius norm ∥ · ∥F and later apply to
matrices involving Hessians.

4

Published in Transactions on Machine Learning Research (10/2023)

Definition 3.1 (3PC for Matrices). We say that a (possibly randomized) map

CH,Y(X) : Rd×d︸ ︷︷ ︸
H∈

× Rd×d︸ ︷︷ ︸
Y∈

× Rd×d︸ ︷︷ ︸
X∈

→ Rd×d (2)

is a three point compressor (3PC) if there exist constants 0 < A ≤ 1 and B ≥ 0 such that

E
[
∥CH,Y(X) − X∥2

F

]
≤ (1 − A) ∥H − Y∥2

F + B ∥X − Y∥2
F . (3)

holds for all matrices H, Y, X ∈ Rd×d.

The matrices Y and H can be treated as parameters defining the compressor that would be chosen adaptively.
Once they fixed, CH,Y : Rd×d → Rd×d is a map to compress a given matrix X. Let us discuss special cases
with some examples.
Example 3.2 (Contractive compressors (Karimireddy et al., 2019)). The (possibly randomized) map
C : Rd×d → Rd×d is called contractive compressor with contraction parameter α ∈ (0, 1], if the following holds
for any matrix X ∈ Rd×d

E
[
∥C(X) − X∥2

F
]

≤ (1 − α)∥X∥2
F. (4)

Notice that (4) is a special case of (2) when H = 0, Y = X and A = α, B = 0. Therefore, contractive
compressors are already included in the 3PC class. Contractive compressors cover various well known
compression schemes such as greedy sparsification, low-rank approximation and (with a suitable scaling
factor) arbitrary unbiased compression operator (Beznosikov et al., 2020). There have been several recent
works utilizing these compressors for compressing Hessian matrices (Zhang et al., 2020b; Alimisis et al.,
2021; Islamov et al., 2021; Safaryan et al., 2022; Qian et al., 2022; Fabbro et al., 2022). Below, we introduce
yet another contractive compressor based on thresholding idea which shows promising performance in our
experiments.
Example 3.3 (Adaptive Thresholding [NEW]). Following Sahu et al. (2021), we design an adaptive
thresholding operator with parameter λ ∈ (0, 1] defined as follows; for all j, l ∈ [d] and X ∈ Rd×d

[C(X)]jl :=
{

Xjl if |Xjl| ≥ λ∥X∥∞,

0 otherwise,
(5)

In contrast to hard thresholding operator of Sahu et al. (2021), (5) uses adaptive threshold λ∥X∥∞ instead of
fixed threshold λ. With this choice, we ensures that at least the Top-1 is transferred. In terms of computation,
thresholding approach is more efficient than Top-K (Stich et al., 2018b) as only single pass over the values is
already enough instead of partial sorting.
Lemma 3.4. The adaptive thresholding operator (5) is contractive with α = max(1 − (dλ)2, 1/d2).

A popular technique to decrease computation cost of Newton-type methods is to rely on Hessian-vector
products. We show that so called sketch-and-project mechanism (Gower & Richtárik, 2017) is a special case
of contractive compressor.
Example 3.5 (Sketch-and-Project (Gower & Richtárik, 2017)). Let S be a sketching matrix sampled
from a fixed distribution D over matrices in Rd×τ (τ ≥ 1 can but does not need to be fixed). We define
sketch-and-project operator as follows

C(X) = S(S⊤S)†S⊤X. (6)

For more details on sketch-and-project operator we refer a reader to the Appendix.
Lemma 3.6. The sketch-and-project operator (6) is a contractive compressor with α = λ+

min(E
[
S(S⊤S)†S⊤])

where the expectation is taken w.r.t. randomness of the sketching S, and λ+
min(M) indicates the smallest

positive eigenvalue of a symmetric matrix M.

The next two examples are 3PC schemes which in addition to contractive compressors utilize aggregation
mechanisms, which is an orthogonal approach to contractive compressors.

5

Published in Transactions on Machine Learning Research (10/2023)

Example 3.7 (Compressed Lazy AGgregation (CLAG) (Richtárik et al., 2022)). Let C : Rd×d → Rd×d

be a contractive compressor with contraction parameter α ∈ (0, 1] and ζ ≥ 0 be a trigger for the aggregation.
Then CLAG mechanism is defined as

CH,Y(X) =
{

H + C(X − H) if ∥X − H∥2
F > ζ∥X − Y∥2

F
H otherwise

(7)

In the special case of identity compressor C = Id (i.e., α = 1), CLAG reduces to lazy aggregation (Chen et al.,
2018). On the other extreme, if the trigger ζ = 0 is trivial, CLAG recovers recent variant of error feedback
for contractive compressors, i.e., EF21 mechanism (Richtárik et al., 2021).
Lemma 3.8 (see Lemma 4.3 in (Richtárik et al., 2022)). CLAG mechanism (7) is a 3PC compressor with
A = 1 − (1 − α)(1 + s) and B = max{(1 − α)(1 + 1/s), ζ}, for any s ∈ (0, α/(1−α)).

From the first glance, the structure of CLAG in (7) may not seem communication efficient as the the matrix
H (appearing in both cases) can potentially by dense. However, as we will see in the next section, CH,Y is
used to compress X when there is no need to communicate H. Thus, with CLAG we either send compressed
matrix C(X − H) if the condition with trigger ζ activates or nothing.
Example 3.9 (Compressed Bernoulli AGgregation (CBAG) [NEW]). Let C : Rd×d → Rd×d be
a contractive compressor with contraction parameter α ∈ (0, 1] and p ∈ (0, 1] be the probability for the
aggregation. We then define CBAG mechanism is defined as

CH,Y(X) =
{

H + C(X − H) with prob. p,

H with prob. 1 − p.
(8)

The advantage of CBAG (8) over CLAG is that there is no condition to evaluate and check. This choice of
probabilistic switching reduces computation costs as with probability 1 − p it is useless to compute X. Note
that CBAG has two independent sources of randomness: Bernoulli aggregation and possibly random operator
C.
Lemma 3.10. CBAG mechanism (8) is a 3PC compressor with A = (1−pα)(1+s) and B = (1−pα)(1+1/s),
for any s ∈ (0, pα/(1−pα)).

Lazy aggregation communication mechanisms empirically outperform vanilla GD (Chen et al., 2018). The
main idea is to communicate local gradients/Hessians only in the case when a certain conidition holds. For
example, in the case of CLAG we update local Hessian estimators only if they are sufficiently far from true
local Hessians. Parameter ζ controls how often we want to skip communication. If it is large, then we reuse
previous Hessian estimators more often. CLAG can be seen as an adaptive mechanism that dynaimcally
updates estimators based on the conditions that change throughout the optimization process. Thus, it is
difficult to estimate/approximate how frequently we skip communications.

In fact, lazy aggregation remains poorly studied field in the literature. It has been analyzed for gradient-type
methods only. However, the theoretical analysis show either explicit convergence guarantees (Sun et al.,
2019b; Chen et al., 2018), or sublinear rates in the strongly convex regime (Shokri Ghadikolaei et al., 2021).
Recently, (Richtárik et al., 2022) have shown that LAG can be properly studied from compression point of
view. They derive optimal convergence guarantees suported by emprirical evaluations. The follow-up work
(Doikov et al., 2023) uses similar idea in one node regime. They compute Hessian deterministically once in
1/d iterations. Their theoretical analysis also show benefits of exploiting rare updates. Nevertheless, the lazy
aggregation in the case of second-order methods remains poorly studied. In our work we make a step towards
better understanding of lazy aggregation for Newton-type algorithms.

For more examples of 3PC compressors see section 3 of Richtárik et al. (2022) and the Appendix.

4 Newton-3PC: Newton’s Method with 3PC

In this section we present our first Newton-type method, called Newton-3PC, employing communication
compression through 3PC compressors discussed in the previous section. The proposed method is an extension

6

Published in Transactions on Machine Learning Research (10/2023)

of FedNL (Safaryan et al., 2022) from contractive compressors to arbitrary 3PC compressors. From this
perspective, our Newton-3PC (see Algorithm 1) is much more flexible, offering a wide variety of communication
strategies beyond contractive compressors.

4.1 General technique for learning the Hessian

The central notion in FedNL is the technique for learning a priori unknown Hessian ∇2f(x∗) at the (unique)
solution x∗ in a communication efficient manner. This is achieved by maintaining and iteratively updating
local Hessian estimates Hk

i of ∇2fi(x∗) for all devices i ∈ [n] and the global Hessian estimate Hk = 1
n

∑n
i=1 Hk

i

of ∇2f(x∗) for the central server. We adopt the same idea of Hessian learning and aim to update local
estimates in such a way that Hk

i → ∇2fi(x∗) for all i ∈ [n], and as a consequence, Hk → ∇2f(x∗), throughout
the training process. However, in contrast to FedNL, we update local Hessian estimates via generic 3PC
mechanism, namely

Hk+1
i = CHk

i
,∇2fi(xk)

(
∇2fi(xk+1)

)
,

which is a particular instantiation of 3PC compressor CH,Y(X) using previous local Hessian Y = ∇2fi(xk)
and previous estimate H = Hk

i to compress current local Hessian X = ∇2fi(xk+1).

Algorithm 1 Newton-3PC (Newton’s method with 3PC)
1: Input: x0 ∈ Rd, H0

1, . . . , H0
n ∈ Rd×d, H0 := 1

n

∑n
i=1 H0

i , l0 = 1
n

∑n
i=1 ∥H0

i − ∇2fi(x0)∥.
2: on server
3: Option 1: xk+1 = xk − [Hk]−1

µ ∇f(xk)
4: Option 2: xk+1 = xk − [Hk + lkI]−1∇f(xk)
5: Broadcast xk+1 to all nodes
6: for each device i = 1, . . . , n in parallel do
7: Get xk+1 and compute local gradient ∇fi(xk+1) and local Hessian ∇2fi(xk+1)
8: Apply 3PC and update local Hessian estimator to Hk+1

i = CHk
i

,∇2fi(xk)
(
∇2fi(xk+1)

)
9: Send ∇fi(xk+1), Hk+1

i to the server ▷ the latter is sent only if Hk+1
i has been updated

10: Send lk+1
i := ∥Hk+1

i − ∇2fi(xk+1)∥F ▷ if Option 2 is used
11: end for
12: on server
13: Hk+1 = 1

n

∑n
i=1 Hk+1

i , lk+1 = 1
n

∑n
i=1 lk+1

i

In the special case, when EF21 scheme CHk
i

,∇2fi(xk)
(
∇2fi(xk+1)

)
= Hk

i + C(∇2fi(xk+1) − Hk
i) is employed

as a 3PC mechanism, we recover the Hessian learning technique of FedNL. Our Newton-3PC method also
recovers recently proposed Basis Learn (BL) (Qian et al., 2022) algorithm if we specialize the 3PC mechanism
to rotation compression (see Appendix).

4.2 Flexible Hessian communication and computation schemes.

The key novelty Newton-3PC brings is the flexibility of options to handle costly local Hessian matrices both
in terms of computation and communication.

Due to the adaptive nature of CLAG mechanism (7), Newton-CLAG method does not send any information
about the local Hessian ∇2fi(xk+1) if it is sufficiently close to previous Hessian estimate Hk

i , namely
∥∇2fi(xk+1) − Hk

i ∥2
F ≤ ζ∥∇2fi(xk+1) − ∇2fi(xk)∥2

F with some positive trigger ζ > 0. In other words, the
server reuses local Hessian estimate Hk

i while there is no essential discrepancy between locally computed
Hessian ∇2fi(xk+1). Once a sufficient change is detected by the device, only the compressed difference
C(∇2fi(xk+1) − Hk

i) is communicated since the server knows Hk
i . By adjusting the trigger ζ, we can control

the frequency of Hessian communication in an adaptive manner. Together with adaptive thresholding operator
(5) as a contractive compressor, CLAG is a doubly adaptive communication strategy that makes Newton-CLAG
highly efficient in terms of communication complexity.

7

Published in Transactions on Machine Learning Research (10/2023)

Interestingly enough, we can design such 3PC compressors that can reduce computational costs too. To
achieve this, we consider CBAG mechanism (8) which replaces the adaptive switching condition of CLAG by
probabilistic switching according to Bernoulli random variable. Due to the probabilistic nature of CBAG
mechanism, Newton-CBAG method requires devices to compute local Hessian ∇2fi(xk+1) and communicate
compressed difference C(∇2fi(xk+1) − Hk

i) only with probability p ∈ (0, 1]. Otherwise, the whole Hessian
computation and communication is skipped.

4.3 Options for updating the global model

We adopt the same two update rules for the global model as was design in FedNL. If the server knows the
strong convexity parameter µ > 0 (see Assumption 4.1), then the global Hessian estimate Hk is projected
onto the set

{
M ∈ Rd×d : M⊤ = M, µI ⪯ M

}
to get the projected estimate [Hk]µ. Alternatively, all devices

additionally compute and send compression errors lk
i := ∥Hk

i − ∇2fi(xk)∥F (extra float from each device in
terms of communication complexity) to the server, which then formulates the regularized estimate Hk + lkI
by adding the average error lk = 1

n

∑n
i=1 lk

i to the global Hessian estimate Hk.

4.4 Local convergence theory

To derive local1 theoretical guarantees, we consider the standard assumption that the global objective is
strongly convex and local Hessians are Lipschitz continuous.
Assumption 4.1. The average loss f is µ-strongly convex, and all local losses fi(x) have Lipschitz continuous
Hessians with respect to three different matrix norms: spectral, Frobenius and infinity norms, respectively.
Formally, we require ∥∇2fi(x)−∇2fi(y)∥ ≤ L∗∥x−y∥, ∥∇2fi(x)−∇2fi(y)∥F ≤ LF∥x−y∥, maxj,l |(∇2fi(x)−
∇2fi(y))jl| ≤ L∞∥x − y∥ to hold for all i ∈ [n] and x, y ∈ Rd.

Define constants C and D depending on which option is used for global model update, namely C = 2, D = L2
∗

if Option 1 is used, and C = 8, D = (L∗ +2LF)2 if Option 2 is used. We prove three local rates for Newton-3PC:
for the squared distance to the solution ∥xk − x∗∥2, and for the Lyapunov function

Φk := Hk + 6(1/A + 3AB)L2
F∥xk − x∗∥2.

where Hk := 1
n

∑n
i=1 ∥Hk

i − ∇2fi(x∗)∥2
F.

We present our theoretical results for local convergence with two stages. For the first stage, we derive
convergence rates using specific locality conditions for model/Hessian estimation error. In the second stage,
we prove that these locality conditions are satisfied for different situations.
Theorem 4.2. Let Assumption 4.1 hold. Assume ∥x0 − x∗∥ ≤ µ√

2D
and Hk ≤ µ2

4C for all k ≥ 0. Then,
Newton-3PC (Algorithm 1) with any 3PC mechanism converges with the following rates:

∥xk − x∗∥2 ≤ 1
2k ∥x0 − x∗∥2, (9)

E
[
Φk
]

≤ (1 − ρ)k Φ0, ρ = min
{

A
2 , 1

3
}

, (10)

E
[

∥xk+1 − x∗∥2

∥xk − x∗∥2

]
≤ (1 − ρ)k

(
C + AD

12(1 + 3AB)L2
F

)
Φ0

µ2 . (11)

Clearly, these rates are independent of the condition number of the problem, and the choice of 3PC can
control the parameter A. Notice that locality conditions here are upper bounds on the initial model error
∥x0 − x∗∥ and the errors Hk for all k ≥ 0. It turns out that the latter condition may not be guaranteed in
general since it depends on the structure of the 3PC mechanism. Below, we show these locality conditions
under some assumptions on 3PC, covering practically all compelling cases. We highlight that the design

1For discussion on global convergence guarantees we refer to the Appendix I.

8

Published in Transactions on Machine Learning Research (10/2023)

of Algorithm 1 allows to keep iterates xk and Hessian approximations Hk
i in a neighbourhood of x∗ and

∇2fi(x∗) that is crucally important do derive local convergence guarantees. Moreover, Newton-3PC provably
works with biased compression operators that are typically harder to analyze.
Lemma 4.3 (Deterministic 3PC). Let the 3PC compressor in Newton-3PC be deterministic. Assume the
following initial conditions hold: ∥x0 − x∗∥ ≤ e1 := min{ Aµ√

8(1+3AB)LF
, µ√

2D
} and ∥H0

i − ∇2fi(x∗)∥F ≤ µ

2
√

C
.

Then ∥xk − x∗∥ ≤ e1 and ∥Hk
i − ∇2fi(x∗)∥F ≤ µ

2
√

C
for all k ≥ 0.

Lemma 4.4 (CBAG). Consider CBAG mechanism with only source of randomness from Bernoulli aggregation.
Assume ∥x0 − x∗∥ ≤ e2 := min{ (1−

√
1−α)µ

4
√

CLF
, µ√

2D
} and ∥H0

i − ∇2fi(x∗)∥F ≤ µ

2
√

C
. Then ∥xk − x∗∥ ≤ e2 and

∥Hk
i − ∇2fi(x∗)∥F ≤ µ

2
√

C
for all k ≥ 0.

5 Extension to Bidirectional Compression (Newton-3PC-BC)

In this section, we consider the setup where both directions of communication between devices and the central
server are bottleneck. For this setup, we propose Newton-3PC-BC (Algorithm 2) which additionally applies
Bernoulli aggregation for gradients (worker to server direction) and another 3PC mechanism for the global
model (server to worker direction) employed the master.

Overall, the method integrates three independent communication schemes: workers’ 3PC (denoted by CW) for
local Hessian matrices ∇2fi(zk+1), master’s 3PC (denoted by CM) for the global model xk+1 and Bernoulli
aggregation with probability p ∈ (0, 1] for local gradients ∇fi(zk+1). Because of these three mechanisms, the
method maintains three sequences of model parameters {xk, wk, zk}k≥0. Parameters xk and wk are server’s
and clients’ models respectively while wk is a copy of zk when local gradients were last computed. Notice
that, Bernoulli aggregation for local gradients is a special case of CBAG (Example 3.9), which allows to skip
the computation of local gradients with probability (1 − p). However, this reduction in gradient computation
necessitates algorithmic modification in order to guarantee convergence. Specifically, we design gradient
estimator gk+1 to be the full gradient ∇f(zk+1) if devices compute local gradients (i.e., ξ = 1). Otherwise,
when gradient computation is skipped (i.e., ξ = 0), we estimate the missing gradient using Hessian estimate
Hk+1 and stale gradient ∇f(wk+1), namely we set gk+1 = [Hk+1]µ(zk+1 − wk+1) + ∇f(wk+1).

Similar to the previous result, we present convergence rates and guarantees for locality separately. Let
AM (AW), BM (BW) be parameters of the master’s (workers’) 3PC mechanisms. Define constants CM := 4

AM
+

1+ 5BM

2 , CW := 4
AW

+1+ 5BW

2 and Lyapunov function Φk
1 := ∥zk −x∗∥2 +CM ∥xk −x∗∥2 + AM (1−p)

4p ∥wk −x∗∥2.

Theorem 5.1. Let Assumption 4.1 holds. Assume ∥zk − x∗∥2 ≤ AM µ2

24CM L2
∗

and Hk ≤ AM µ2

96CM
for all k ≥ 0.

Then, Newton-3PC-BC (Algorithm 2) converges with the following linear rate:

E[Φk
1] ≤

(
1 − min{ AM

4 , 3p
8 }
)k Φ0

1. (12)

Note that the above linear rate for Φk
1 does not depend on the conditioning of the problem and implies linear

rates for all three sequences {xk, wk, zk}. Next we prove locality conditions used in the theorem for two cases:
for non-random 3PC schemes and for schemes that preserve certain convex combination condition. It can be
seen easily that random sparsification fits into the second case.
Lemma 5.2 (Deterministic 3PC). Let Assumption 4.1 holds. Let CM and CW be deterministic. Assume
∥x0 − x∗∥2 ≤ 11AM

24CM
e2

3 := 11AM

24CM
min{ AM µ2

24CM L2
∗
, AW AM µ2

384CW CM L2
F

} and H0 ≤ AM µ2

96CM
. Then ∥xk − x∗∥2 ≤ 11AM

24CM
e2

3,

∥zk − x∗∥2 ≤ e2
3 and Hk ≤ AM µ2

96CM
for all k ≥ 0

Lemma 5.3 (Random sparsification). Let Assumption 4.1 holds. Assume (zk)j is a convex combination of
{(xt)j}k

t=0, and (Hk
i)jl is a convex combination of {(∇2fi(zk))jl}k

t=0 for all i ∈ [n], j, l ∈ [d], and k ≥ 0. If
∥x0 −x∗∥2 ≤ e2

4 := min{ µ2

d2L2
∗
, AM µ2

24dCM L2
∗
, AM µ2

96d3CM L2
∞

, µ2

4d4L2
∞

}, then ∥zk −x∗∥2 ≤ de2
4 and Hk ≤ min{ AM µ2

96CM
, µ2

4d }
for all k ≥ 0.

9

Published in Transactions on Machine Learning Research (10/2023)

Algorithm 2 Newton-3PC-BC (Newton’s method with 3PC and Bidirectional Compression)
1: Parameters: Workers-side 3PC (CW), Master-side 3PC (CM), gradient probability p ∈ (0, 1]
2: Input: x0 = w0 = z0 ∈ Rd; H0

i ∈ Rd×d, and H0 := 1
n

∑n
i=1 H0

i ; ξ0 = 1; g0 = ∇f(z0)
3: on server
4: Update the global model to xk+1 = zk − [Hk]−1

µ gk

5: Apply Master-side 3PC and send model estimate zk+1 = CM
zk,xk (xk+1) to all devices i ∈ [n]

6: Sample ξk+1 ∼ Bernoulli(p) and send to all i ∈ [n]
7: for each device i = 1, . . . , n in parallel do
8: Get zk+1 = CM

zk,xk (xk+1) and ξk+1 from the server
9: if ξk+1 = 1

10: wk+1 = zk+1, compute local gradient ∇fi(zk+1) and send to the server
11: if ξk+1 = 0
12: wk+1 = wk

13: Apply Worker’s 3PC and update local Hessian estimator to Hk+1
i = CW

Hk
i

,∇2fi(zk)(∇
2fi(zk+1))

14: end for
15: on server
16: ∇f(zk+1) = 1

n

∑n
i=1 ∇fi(zk+1), Hk+1 = 1

n

∑n
i=1 Hk

i

17: if ξk+1 = 1
18: wk+1 = zk+1, gk+1 = ∇f(zk+1)
19: if ξk+1 = 0
20: wk+1 = wk,
21: gk+1 = [Hk+1]µ(zk+1 − wk+1) + ∇f(wk+1)

214 217 220 223

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

NL1
Newton-CBAG
Newton-EF21
DINGO
Fib-IOS

212 216 220 224

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

NL1
Newton-CBAG
Newton-EF21
DINGO
Fib-IOS

216 218 220 222

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

NL1
Newton-CBAG
Newton-EF21
DINGO
Fib-IOS

216 219 222 225

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

NL1
Newton-CBAG
Newton-EF21
DINGO
Fib-IOS

(a) a1a, λ = 10−3 (b) w2a, λ = 10−4 (c) a9a, λ = 10−3 (d) w8a, λ = 10−4

1.0 0.75 0.5 0.294 0.147 0.029 0.015
probability p

8
17
34
51
60
68

136
680co

m
pr

es
sio

n
le

ve
l K

55 63 74 60 79 87 119
39 43 50 43 56 72 97
29 33 37 31 40 58 68
26 29 31 28 35 40 51
26 27 30 27 33 35 55
25 27 28 27 31 32 59
24 24 28 23 27 29 47
35 32 26 32 28 27 24

FedNL

1.0 0.75 0.5 0.407 0.244 0.163 0.081 0.016 0.008
probability p

15
30
61
93

108
123
246

1230co
m

pr
es

sio
n

le
ve

l K

130 150 193 252 327 481 760 2753 4703
91 101 137 145 232 250 446 1486 2392
69 76 89 101 140 182 277 922 2149
62 67 71 85 104 125 216 508 997
60 64 73 81 102 105 158 559 1277
59 62 72 69 100 110 199 487 1342
59 58 61 65 79 84 103 365 419
63 64 51 53 64 69 62 181 197

FedNL

200

1700

3200

4700

1.0 0.75 0.5 0.407 0.244 0.163 0.081 0.016 0.008
probability p

15
30
61
93

108
123
246

1230co
m

pr
es

sio
n

le
ve

l K

99 118 150 181 235 266 482 1091 1592
66 75 95 127 159 238 268 759 1056
47 52 61 69 114 136 225 534 902
42 44 50 60 73 93 140 378 737
40 45 47 55 67 81 116 405 689
39 40 47 55 73 87 139 469 763
39 39 40 38 41 56 101 264 335
52 53 45 42 52 48 45 224 109

FedNL

40

540

1040

1540

1.0 0.75 0.5 0.167 0.1 0.067 0.033
probability p

37
75

150
225
263
300
600

3000co
m

pr
es

sio
n

le
ve

l K

331 410 497 1284 1955 2919 5423
219 266 337 646 1081 1567 2913
163 181 212 355 626 920 1407
145 157 188 338 479 675 1059
140 154 188 363 477 561 891
135 144 152 321 391 568 707
133 131 140 181 247 342 555
154 159 147 150 160 210 239

FedNL

300

2000

3700

5400

(e) phishing, λ = 10−3 (f) a1a, λ = 10−4 (g) a9a, λ = 10−3 (h) w2a, λ = 10−4

1.0 0.75 0.5 0.294 0.147 0.029 0.015
probability p

8
17
34
51
60
68

136
680co

m
pr

es
sio

n
le

ve
l K

188 166 134 63 43 10 7
120 103 83 41 29 8 6
77 69 56 26 19 6 4
60 57 42 21 15 4 3
54 49 40 19 14 4 3
50 46 37 19 13 3 4
33 30 33 12 9 3 3
14 12 11 5 3 1 1

FedNL

5

65

125

185

1.0 0.75 0.5 0.407 0.244 0.163 0.081 0.016 0.008
probability p

15
30
61
93

108
123
246

1230co
m

pr
es

sio
n

le
ve

l K

245 216 191 206 162 161 128 94 80
155 133 130 113 113 82 75 51 41
99 89 75 72 65 58 46 31 37
76 68 52 57 45 38 35 17 17
69 62 55 53 44 31 25 19 22
64 56 53 41 43 32 32 17 23
43 42 35 34 31 22 15 13 7
14 12 10 10 9 11 5 6 4

FedNL

5

85

165

245

1.0 0.75 0.5 0.407 0.244 0.163 0.081 0.016 0.008
probability p

15
30
61
93

108
123
246

1230co
m

pr
es

sio
n

le
ve

l K

186 169 148 147 116 88 80 36 26
112 99 88 100 76 78 44 25 17
67 60 50 48 52 42 37 17 15
51 45 37 40 31 28 22 12 12
46 44 33 34 28 23 18 13 11
42 38 33 34 30 25 22 15 12
28 24 20 16 12 14 15 8 5
11 9 7 8 5 8 4 7 1

FedNL

1

61

121

181

1.0 0.75 0.5 0.167 0.1 0.067 0.033
probability p

37
75

150
225
263
300
600

3000co
m

pr
es

sio
n

le
ve

l K

254 242 200 180 165 165 154
152 145 130 89 91 88 83
95 85 73 46 52 51 40
73 66 60 44 39 37 30
66 63 59 47 39 31 25
60 52 43 41 31 31 20
40 34 32 19 18 18 15
14 13 9 10 7 9 6

FedNL

85

165

245

(i) phishing, λ = 10−3 (j) a1a, λ = 10−4 (k) a9a, λ = 10−30 (l) w2a, λ = 10−4

Figure 1: Comparison of Newton-CBAG with Top-d compressor and probability p = 0.75, Newton-EF21 with
Rank-1 compressor, NL1 with Rand-1 compressor, and DINGO (first row). The performance of Newton-CBAG
with Top-d in terms of communication complexity (second row, in Mbytes) and the number of local Hessian
computations (third row).

10

Published in Transactions on Machine Learning Research (10/2023)

211 213 215 217

communicated bits per node

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

CBAG with Threshold
EF21 with Threshold
CLAG with Threshold
CBAG with Top-d

214 215 216 217 218 219

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

CBAG with Threshold
EF21 with Threshold
CLAG with Threshold
CBAG with Top-d

211 213 215 217 219

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

CBAG with Threshold
EF21 with Threshold
CLAG with Threshold
CBAG with Top-d

214 215 216 217 218 219

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

CBAG with Threshold
EF21 with Threshold
CLAG with Threshold
CBAG with Top-d

(a) a9a, λ = 10−3 (b) a1a, λ = 10−4 (c) w8a, λ = 10−3 (d) w2a, λ = 10−4

24 28 212 216 220

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

Newton-3PC-BC
FedNL-BC

24 28 212 216 220

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15
f(
x
k
)
¡
f(
x
¤
)

Newton-3PC-BC
FedNL-BC

24 28 212 216 220

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

Newton-3PC-BC
FedNL-BC

24 28 212 216 220

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

Newton-3PC-BC
FedNL-BC

(e) a9a, λ = 10−3 (f) w2a, λ = 10−4 (g) w8a, λ = 10−3 (h) a1a, λ = 10−4

214 217 220 223

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

Newton-CBAG
Newton-EF21
DINGO
Fib-IOS

214 217 220 223

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

Newton-CBAG
Newton-EF21
DINGO
Fib-IOS

214 217 220 223

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

Newton-CBAG
Newton-EF21
DINGO
Fib-IOS

214 217 220 223

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

Newton-CBAG
Newton-EF21
DINGO
Fib-IOS

(a) a1a (b) a1a (c) phishing (d) phishing
σ = 0.5, λ = 10−3 σ = 0.1, λ = 10−4 σ = 0.1, λ = 10−3 σ = 0.5, λ = 10−3

Figure 2: Comparison of Newton-CBAG with thresholding and Top-d compressors and Newton-EF21 with
thresholding compressor in terms of communication complexity (first row). Comparison of Newton-3PC-BC
against FedNL-BC in terms of communication complexity (second row). The performance of Newton-CBAG
combined with Top-d compressor and probability p = 0.75, Newton-EF21 with Rank-1 compressor, DINGO,
and Fib-ISO in terms of communication complexity on Softmax problem (third row).

6 Experiments

In this part, we study the empirical performance of Newton-3PC comparing its performance against other
second-order methods on logistic regression problems of the form

min
x∈Rd

{
f(x) := 1

n

n∑
i=1

fi(x) + λ
2 ∥x∥2

}
, (13)

where fi(x) = 1
m

∑m
j=1 log

(
1 + exp(−bija⊤

ijx)
)

and {aij , bij}j∈[m] are data points belonging to i-th client.
We use datasets from LibSVM library (Chang & Lin, 2011). Each dataset was shuffled and split into n equal
parts. Detailed description of datasets and hyperparameters choice is given in the Appendix.

6.1 Comparison between Newton-3PC and other second-order methods

According to Safaryan et al. (2022), FedNL with Rank-1 compressor outperforms other second-order methods
in all cases in terms of communication complexity. Thus, we compare in Figure 1 (first row) Newton-CBAG
(based on Top-d compressor and probability p = 0.75), Newton-EF21 with Rank-1, NL1 with Rand-1, DINGO,
and Fib-IOS indicating how many bits are transmitted by each client in both uplink and downlink directions.
We clearly see that Newton-CBAG is much more communication efficient than NL1, Fib-IOS and DINGO.
Besides, it outperforms FedNL in all cases. On top of that, we achieve improvement not only in communication
complexity, but also in computational cost with Newton-CBAG. Indeed, when clients do not send compressed
Hessian differences to the server there is no need to compute local Hessians. Consequently, computational
costs goes down. We decided not to compare Newton-3PC with first-order methods since FedNL already
outperforms them in terms of communication complexity in a variety of experiments in (Safaryan et al.,
2022).

11

Published in Transactions on Machine Learning Research (10/2023)

6.2 Does Bernoulli aggregation bring any advantage?

Next, we investigate the performance of Newton-CBAG based on Top-K. We report the results in heatmaps
(see Figure 1, second row) where we vary probability p along rows and compression level K along columns.
Notice that Newton-CBAG reduces to FedNL when p = 1 (left column). We observe that Bernoulli aggregation
(BAG) is indeed beneficial since the communication complexity reduces when p becomes smaller than 1 (in case
of a1a data set the improvement is significant). We can conclude that BAG leads to better communication
complexity of Newton-3PC over FedNL.

On top of that, we claim that Newton-CBAG is also computationally more efficient than FedNL; see Figure 1
(third row) that indicates the number of Hessian computations. We observe that even if communication
complexity in two regimes are close to each other, but computationally better the one with smaller p. Indeed,
in the case when p < 1 we do not have to compute local Hessians with probability 1 − p that leads to
acceleration in terms of computation complexity.

6.3 3PC based on adaptive thresholding

Next we test the performance of Newton-3PC using adaptive thresholding operator (5). We compare
Newton-EF21 (equivalent to FedNL), Newton-CBAG, and Newton-CLAG with adaptive thresholding against
Newton-CBAG with Top-d compressor. We fix the probability p = 0.5 for CBAG, the trigger ζ = 2 for CLAG,
and thresholding parameter λ = 0.5. According to the results presented in Figure 2 (first row), adaptive
thresholding can be beneficial since it improves the performance of Newton-3PC in some cases. Moreover, it
is computationally cheaper than Top-K as we do not sort entries of a matrix as it is for Top-K.

6.4 Newton-3PC-BC against FedNL-BC

In our next experiment we study bidirectional compression. We compare Newton-3PC-BC against FedNL-BC.
For Newton-3PC-BC we fix CBAG with p = 0.75 combined with Top-d compressor applied on Hessians, BAG
with p = 0.75 applied on gradients, and 3PCv4 (Richtárik et al., 2022) combined with (Top-K1, Top-K2)
compressors on iterates. For FedNL-BC we use Top-d compressor on Hessians and BAG with p = 0.75
on gradients, and Top-K compressor on iterates. We choose different values for K1 and K2 such that it
K1 + K2 = K always hold. Such choice of parameters allows to make the iteration cost of both methods to
be equal. Based on the results, we argue that the superposition of CBAG and 3PCv4 applied on Hessians
and iterates respectively is more communication efficient than the combination of EF21 and EF21.

6.5 Performance of Newton-3PC on Softmax problem

Finally, we also consider L2 regularized Softmax problem where all fi’s of the form

fi(x) = σ log
(∑m

j=1 exp
(

a⊤
ijx−bij

σ

))
.

Here σ > 0 is a smoothing parameter. One can show that this function has both Lipschitz continuous gradient
and Lipschitz continuous Hessian. We perform the same data shift as it was done in (Hanzely et al., 2020)
(section 8.2). Note that in this case we do not compare Newton-3PC against NL1 as this problem does not
belong to the class of generalized linear models.

We compare Newton-CBAG combined with Top-d compressor and probability p = 0.75, Newton-EF21 with
Rank-1 compressor, DINGO (Crane & Roosta, 2019), and Fib-IOS (Fabbro et al., 2022). As we can see in
Figure 2 (third row), Newton-CBAG and Newton-EF21 demonstrate almost equivalent performance: in some
cases slightly better the first one (a1a dataset), in some cases — the second (phishing dataset). Furthermore,
DINGO and Fib-IOS are significantly slower than Newton-3PC methods in terms of communication complexity.

References
Artem Agafonov, Dmitry Kamzolov, Rachael Tappenden, Alexander Gasnikov, and Martin Takáč. Flecs:

A federated learning second-order framework via compression and sketching. arXiv preprint: arXiv

12

Published in Transactions on Machine Learning Research (10/2023)

2206.02009, 2022.

Foivos Alimisis, Peter Davies, and Dan Alistarh. Communication-efficient distributed optimization with
quantized preconditioners. In International Conference on Machine Learning (ICML), 2021.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: Communication-efficient
SGD via gradient quantization and encoding. In Advances in Neural Information Processing Systems, pp.
1709–1720, 2017.

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Sarit Khirirat, Nikola Konstantinov, and Cédric Renggli.
The convergence of sparsified gradient methods. In 32nd Conference on Neural Information Processing
Systems, 2018a.

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, and Cédric Renggli.
The convergence of sparsified gradient methods. In Advances in Neural Information Processing Systems,
pp. 5977–5987, 2018b.

Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. In Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 1200–1205. ACM, 2017.

Amir Beck. Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications with MATLAB.
Society for Industrial and Applied Mathematics, USA, 2014. ISBN 1611973643.

Ron Bekkerman, Mikhail Bilenko, and John Langford. Scaling up machine learning: Parallel and distributed
approaches. Cambridge University Press, 2011.

Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, and Mher Safaryan. On biased compression for
distributed learning. arXiv preprint arXiv:2002.12410, 2020.

Shicong Cen, Huishuai Zhang, Yuejie Chi, Wei Chen, and Tie-Yan Liu. Convergence of distributed stochastic
variance reduced methods without sampling extra data. IEEE TRANSACTIONS ON SIGNAL PROCESS-
ING, volume 68, 2020.

Chih-Chung Chang and Chih-Jen Lin. LibSVM: a library for support vector machines. ACM Transactions
on Intelligent Systems and Technology (TIST), 2(3):1–27, 2011.

T. Chen, G. Giannakis, T. Sun, and W. Yin. LAG: Lazily aggregated gradient for communication-efficient
distributed learning. Advances in Neural Information Processing Systems, 2018.

Rixon Crane and Fred Roosta. Dingo: Distributed newton-type method for gradient-norm optimization. In
Advances in Neural Information Processing Systems, volume 32, pp. 9498–9508, 2019.

Nikita Doikov, El Mahdi Chayti, and Martin Jaggi. Second-order optimization with lazy hessians. In
Proceedings of the 40th International Conference on Machine Learning, 2023.

Nicolò Dal Fabbro, Subhrakanti Dey, Michele Rossi, and Luca Schenato. A newton-type algorithm for
federated learning based on incremental hessian eigenvector sharing. arXiv preprint arXiv: 2202.05800,
2022.

Hamid Reza Feyzmahdavian and Mikael Johansson. Asynchronous iterations in optimization: New sequence
results and sharper algorithmic guarantees. arXiv preprint arXiv:2109.04522, 2021.

H. S. Ghadikolaei, S. Stich, and M. Jaggi. LENA: Communication-efficient distributed learning with self-
triggered gradient uploads. International Conference on Artificial Intelligence and Statistics, pp. 3943–3951.
PMLR, 2021.

Avishek Ghosh, Raj Kumar Maity, and Arya Mazumdar. Distributed Newton Can Communicate Less and
Resist Byzantine Workers. Advances in Neural Information Processing Systems, 2020a.

13

Published in Transactions on Machine Learning Research (10/2023)

Avishek Ghosh, Raj Kumar Maity, Arya Mazumdar, and Kannan Ramchandran. Communication efficient
distributed approximate newton method. In 2020 IEEE International Symposium on Information Theory
(ISIT), pp. 2539–2544, 2020b. doi: 10.1109/ISIT44484.2020.9174216.

Avishek Ghosh, Raj Kumar Maity, Arya Mazumdar, and Kannan Ramchandran. Escaping Saddle Points in
Distributed Newton’s Method with Communication Efficiency and Byzantine Resilience. arXiv preprint
arXiv:2103.09424, 2020c.

Eduard Gorbunov, Konstantin Burlachenko, Zhize Li, and Peter Richtárik. MARINA: Faster non-convex
distributed learning with compression. arXiv preprint arXiv:2102.07845, 2021a.

Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. Local SGD: Unified theory and new efficient methods.
In International Conference on Artificial Intelligence and Statistics (AISTATS), 2021b.

Robert Gower and Peter Richtárik. Stochastic dual ascent for solving linear systems. arXiv preprint:
arXiv:1512.06890, 2015.

Robert M. Gower and Peter Richtárik. Randomized quasi-newton updates are linearly convergent matrix
inversion algorithms. SIAM Journal on Matrix Analysis and Applications, 38(4):1380–1409, 2017.

Vipul Gupta, Avishek Ghosh, Michal Derezinski, Rajiv Khanna, Kannan Ramchandran, and Michael Mahoney.
LocalNewton: Reducing Communication Bottleneck for Distributed Learning. In 37th Conference on
Uncertainty in Artificial Intelligence (UAI 2021), 2021.

Filip Hanzely, Konstantin Mishchenko, and Peter Richtarik. Sega: Variance reduction via gradient sketching.
In Advances in Neural Information Processing Systems, 2018.

Filip Hanzely, Nikita Doikov, Peter Richtárik, and Yurii Nesterov. Stochastic subspace cubic newton method.
arXiv preprint: arXiv 2002.09526, 2020.

Samuel Horváth, Dmitry Kovalev, Konstantin Mishchenko, Sebastian Stich, and Peter Richtárik. Stochastic
distributed learning with gradient quantization and variance reduction. arXiv preprint arXiv:1904.05115,
2019.

Rustem Islamov, Xun Qian, and Peter Richtárik. Distributed second order methods with fast rates and
compressed communication. International Conference on Machine Learning (ICML), 2021.

Peter Kairouz et al. Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977,
2019.

S. P. Karimireddy, Q. Rebjock, S. Stich, and M. Jaggi. Error feedback fixes SignSGD and other gradient
compression schemes. 36th International Conference on Machine Learning (ICML), 2019.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U. Stich, and
Ananda Theertha Suresh. SCAFFOLD: Stochastic controlled averaging for on-device federated learning.
In International Conference on Machine Learning (ICML), 2020.

Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. Learning from History for Byzantine Robust Optimiza-
tion. International Conference on Machine Learning (ICML), 2021.

Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. Byzantine-Robust Learning on Heterogeneous Datasets
via Bucketing. International Conference on Learning Representations (ICLR), 2022.

Anastasia Koloskova, Sebastian Stich, and Martin Jaggi. Decentralized stochastic optimization and gossip
algorithms with compressed communication. Proceedings of the 36th International Conference on Machine
Learning, volume 97, pp. 3478–3487. PMLR, 2019.

Anastasia Koloskova, Tao Lin, Sebastian U Stich, and Martin Jaggi. Decentralized deep learning with
arbitrary communication compression. International Conference on Learning Representations, 2020.

14

Published in Transactions on Machine Learning Research (10/2023)

Jakub Konečný, H. Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated optimization:
Distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527, 2016a.

Jakub Konečný, H. Brendan McMahan, Felix Yu, Peter Richtárik, Ananda Theertha Suresh, and Dave
Bacon. Federated learning: strategies for improving communication efficiency. In NIPS Private Multi-Party
Machine Learning Workshop, 2016b.

Dmitry Kovalev, Konstanting Mishchenko, and Peter Richtárik. Stochastic Newton and cubic Newton
methods with simple local linear-quadratic rates. In NeurIPS Beyond First Order Methods Workshop, 2019.

Dmitry Kovalev, Anastasia Koloskova, Martin Jaggi, Peter Richtárik, and Sebastian U. Stich. A linearly
convergent algorithm for decentralized optimization: sending less bits for free! The 24th International
Conference on Artificial Intelligence and Statistics (AISTATS), 2021.

Jason D. Lee, Qihang Lin, Tengyu Ma, and Tianbao Yang. Distributed Stochastic Variance Reduced Gradient
Methods by Sampling Extra Data with Replacement. Journal of Machine Learning Research, vilume 18,
pages 1-43, 2017.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: challenges, methods,
and future directions. IEEE Signal Processing Magazine, 37(3):50–60, 2020a. doi: 10.1109/MSP.2020.
2975749.

Zhize Li, Dmitry Kovalev, Xun Qian, and Peter Richtárik. Acceleration for compressed gradient descent in
distributed and federated optimization. In International Conference on Machine Learning, 2020b.

Chieh-Yen Lin, Cheng-Hao Tsai, Ching pei Lee, and Chih-Jen Lin. Large-scale logistic regression and linear
support vector machines using spark. 2014 IEEE International Conference on Big Data (Big Data), pp.
519–528, 2014.

H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics (AISTATS), 2017.

Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning with
compressed gradient differences. arXiv preprint arXiv:1901.09269, 2019.

Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich, and Peter Richtárik. ProxSkip: Yes! Local
gradient steps provably lead to communication acceleration! Finally! 39th International Conference on
Machine Learning (ICML), 2022.

Giorgi Nadiradze, Amirmojtaba Sabour, Peter Davies, Shigang Li, and Dan Alistarh. Asynchronous
decentralized SGD with quantized and local updates. 35th Conference on Neural Information Processing
Systems, 2021a.

Giorgi Nadiradze, Amirmojtaba Sabour, Peter Davies, Shigang Li, and Dan Alistarh. Asynchronous
decentralized SGD with quantized and local updates. Advances in Neural Information Processing Systems,
2021b.

Barak A. Pearlmutter. Fast exact multiplication by the hessian. Neural Computation, 1994.

Xun Qian, Peter Richtárik, and Tong Zhang. Error compensated distributed SGD can be accelerated. 35th
Conference on Neural Information Processing Systems, 2021.

Xun Qian, Rustem Islamov, Mher Safaryan, and Peter Richtárik. Basis matters: Better communication-
efficient second order methods for federated learning. In Proceedings of the 24th International Conference
on Artificial Intelligence and Statistics (AISTATS), 2022.

Sashank J. Reddi, Jakub Konečný, Peter Richtárik, Barnabás Póczos, and Alexander J. Smola. AIDE: Fast
and communication efficient distributed optimization. CoRR, abs/1608.06879, 2016.

15

Published in Transactions on Machine Learning Research (10/2023)

Peter Richtárik and Martin Takac. Stochastic reformulations of linear systems: algorithms and convergence
theory. arXiv preprint: arXiv:1706.01108, 2017.

Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. Ef21: A new, simpler, theoretically better, and practically
faster error feedback. 35th Conference on Neural Information Processing Systems, 2021.

Peter Richtárik, Igor Sokolov, Ilyas Fatkhullin, Elnur Gasanov, Zhize Li, and Eduard Gorbunov. 3pc: Three
point compressors for communication-efficient distributed training and a better theory for lazy aggregation.
39th International Conference on Machine Learning (ICML), 2022.

Fred Roosta, Yang Liu, Peng Xu, and Michael W. Mahoney. Newton-MR: Newton’s Method Without
Smoothness or Convexity. arXiv preprint arXiv:1810.00303, 2019.

Mher Safaryan, Rustem Islamov, Xun Qian, and Peter Richtárik. FedNL: Making Newton-Type Methods
Applicable to Federated Learning. 39th International Conference on Machine Learning (ICML), 2022.

Atal Narayan Sahu, Aritra Dutta, Ahmed M. Abdelmoniem, Trambak Banerjee, Marco Canini, and Panos
Kalnis. Rethinking gradient sparsification as total error minimization. 35th Conference on Neural
Information Processing Systems, 2021.

Ohad Shamir, Nati Srebro, and Tong Zhang. Communication-effcient distributed optimization using an
approximate newton-type method. In Proceedings of the 31th International Conference on Machine
Learning, volume 32, pp. 1000–1008, 2014.

Hossein Shokri Ghadikolaei, Sebastian Stich, and Martin Jaggi. Lena: Communication-efficient distributed
learning with self-triggered gradient uploads. In Proceedings of The 24th International Conference on
Artificial Intelligence and Statistics, 2021.

S. U. Stich, J.-B. Cordonnier, and M. Jaggi. Sparsified SGD with memory. In Advances in Neural Information
Processing Systems (NeurIPS), 2018a.

Sebastian U. Stich. Local SGD converges fast and communicates little. In International Conference on
Learning Representations (ICLR), 2020.

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified SGD with memory. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural
Information Processing Systems 31, pp. 4452–4463. Curran Associates, Inc., 2018b.

J. Sun, T. Chen, G. Giannakis, and Z. Yang. Communication-efficient distributed learning via lazily aggregated
quantized gradients. Advances in Neural Information Processing Systems, 32:3370–3380, 2019a.

Jun Sun, Tianyi Chen, Georgios Giannakis, and Zaiyue Yang. Communication-efficient distributed learning
via lazily aggregated quantized gradients. In Advances in Neural Information Processing Systems, 2019b.

Alexander Tyurin and Peter Richtárik. Distributed nonconvex optimization with communication compression,
optimal oracle complexity, and no client synchronization. arXiv preprint arXiv:2202.01268, 2022.

Shusen Wang, Fred Roosta abd Peng Xu, and Michael W Mahoney. GIANT: Globally improved approximate
Newton method for distributed optimization. In Advances in Neural Information Processing Systems
(NeurIPS), 2018.

Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. Gradient sparsification for communication-efficient
distributed optimization. In Advances in Neural Information Processing Systems, pp. 1306–1316, 2018.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad: Ternary
gradients to reduce communication in distributed deep learning. In Advances in Neural Information
Processing Systems, pp. 1509–1519, 2017.

Haibo Yang, Minghong Fang, and Jia Liu. Achieving Linear Speedup with Partial Worker Participation in
Non-IID Federated Learning. International Conference on Learning Representations (ICLR), 2021.

16

Published in Transactions on Machine Learning Research (10/2023)

Jiaqi Zhang, Keyou You, and Tamer Basar. Distributed adaptive Newton methods with globally superlinear
convergence. arXiv preprint arXiv:2002.07378, 2020a.

Jiaqi Zhang, Keyou You, and Tamer Başar. Achieving globally superlinear convergence for distributed
optimization with adaptive newton method. In 2020 59th IEEE Conference on Decision and Control
(CDC), pp. 2329–2334, 2020b. doi: 10.1109/CDC42340.2020.9304321.

Yuchen Zhang and Lin Xiao. DiSCO: Distributed optimization for self-concordant empirical loss. In In
Proceedings of the 32nd International Conference on Machine Learning, PMLR, volume 37, pages 362–370,
2015.

Yong Zhuang, Wei-Sheng Chin, Yu-Chin Juan, and Chih-Jen Lin. Distributed newton methods for regularized
logistic regression. In Tru Cao, Ee-Peng Lim, Zhi-Hua Zhou, Tu-Bao Ho, David Cheung, and Hiroshi
Motoda (eds.), Advances in Knowledge Discovery and Data Mining, pp. 690–703, Cham, 2015. Springer
International Publishing. ISBN 978-3-319-18032-8.

17

Published in Transactions on Machine Learning Research (10/2023)

A Appendix

B Limitations

Here we discuss key limitations of our work and areas that are not explored in this paper.

• Developed theoretical claims are for strongly convex loss functions. The globalization mechanism
with cubic regularization can be anaylized for convex functions as well, but we do not consider
non-convex objectives in this work.

• Our methods are analyzed in the regime when the exact local gradients and exact local Hessians
of local loss functions are computed for all participating devices. We do not consider stochastic
gradient or stochastic Hessian oracles of local loss functions in our analyses. However, when we use
sketch-and-project operator we rely on Hessian-vector products which does not require full Hessian
computations.

C Detailed Literature Review of Second-Order Methods

In this section we provide more detailed literature review of second-order methods. The comparison is
made based on the most relevant prior works in the literature highlighting main differences over our
work. The comparison is performed based on criterias including generality of the considered problem
structure, assumptions made on the (local) loss functions, communication complexity per iteration, theoretical
convergence guarantees and other aspects of the method.

• GIANT (Wang et al., 2018) and NL (Islamov et al., 2021) are not designed to handle a general finite
sum problem. In contrast to our work, they only work with Generalized Linear models.

• Communication costs per iteration of DAN (Zhang et al., 2020a) and Quantized Newton (Alimisis
et al., 2021) are significantly high which make them impractical.

• NL (Islamov et al., 2021) directly reveals local data in each iteration which breaks privacy preserving
guarantees.

• The drawback of GIANT, DINGO is in their convergence rates which depend on the condition number
of the problem. In some cases theoretical convergence guarantees are even worse than those of
first-order methods. DANE (Shamir et al., 2014) and AIDE (Reddi et al., 2016) suffer from the same
problem because those methods are first-order methods.

• The first drawback of FLECS (Agafonov et al., 2022) is that SVD decomposition is needed in each step
to perform a truncation which means that the computation cost of those methods can not be reduced.
Besides, there is no good local theory for that method; the only convergence guarantee is derived
under the assumption that the iterates remain close to the optimum. Next, convergence of FLECS
and FLECS-SGD depend on the product of the condition number and truncation parameters. For
example, using the same truncation parameters as in their experiments, the convergence guarantees
are of the order 1022κ, where κ is the condition number. Finally, they need backtracking line search
or other learning techniques with additional parameters to perform one step of the methods.

• Fib-IOS (Fabbro et al., 2022) introduces Newton-type method based on SVD decomposition which
means that similarly to FLECS the computation cost can not be reduced. Besides, this approach is
also restricted to rank-type compression only, and consequently does not support popular compression
techniques such as Top-K or Rand-K. On top of that, Fib-IOS always requires backtracking line
search technique to find appropriate stepsize.

• GIANT and DANE work well only in homogeneous setting while in practice the problem could be
significantly heterogeneous. In our work we do not make any assumptions on heterogeneity of the
problem.

18

Published in Transactions on Machine Learning Research (10/2023)

• While convergence guarantees of FedNL (Safaryan et al., 2022) and Newton-3PC are the same (fast
local linear/superlinear rates independent of the condition number) there are several points that
make our work superior: (i) FedNL can be seen as a special case of Newton-3PC; (ii) we provide
much wider compression mechanisms going beyond those proposed in (Safaryan et al., 2022); (iii) we
propose two ways how to reduce computation costs (lazy aggregation and sketching) of Newton-3PC.

D More on Sketch-and-Project Mechanism

Sketch-and-project operator has been widely studied as a technique to solve linear systems (Richtárik &
Takac, 2017; Gower & Richtárik, 2015), an application to first-order methods (Hanzely et al., 2018). Besides,
Gower & Richtárik (2017) showed that various Quasi-Newton updates can be seen as a special case of
sketch-and-project mechanism. Let us now describe it in more details. For this reason, we introduce an
arbitrary twice differentiable function φ : Rd → R. Our desire is to compute an approximation of its Hessian
∇2φ at point x. Let X0 be the first approximation of ∇2φ(x). Then we define a sequence {Xk} that
approximates ∇2φ(x) better and better as k goes to infinity solving the following optimization problem

Xk+1 := argminX∈Rd×d

1
2∥X − Xk∥2

F s.t. S⊤∇2φ(x) = S⊤X, (14)

where S ∈ Rd×τ is a random matrix drawn in i.i.d. fashion from a fixed distribution D. To solve this problem
we define a function vec(A) = (A11, . . . , Ad1, A12, . . . , Ad2, . . . , A1d, . . . , Add)⊤. Moreover, we need to define
an extended sketch matrix S̃ of the form

S̃ :=

S 0 . . . 0
0 S . . . 0
...

...
0 0 . . . S

 ∈ Rd2×dτ . (15)

Using (15), we can reformulate (14) as follows

vec(Xk+1) = argminX∥vec(X) − vec(Xk)∥2, S̃⊤vec(X) = S̃⊤vec(∇2φ(x)). (16)

The latter has an explicit solution (Hanzely et al., 2018) of the following form

vec(Xk+1) = vec(Xk) + Z̃(vec(∇2φ(x)) − vec(Xk)), (17)

where Z̃ := S̃(S̃⊤S̃)†S̃⊤. It is easy to show that Z̃ can be rewritten as follows

Z̃ =

Z 0 . . . 0
0 Z . . . 0
...

...
0 0 . . . Z

 , (18)

where Z := S(S⊤S)†S⊤ is a projection matrix onto the range of a sketch S. Since it is not clear how to
compute the process (17), we rewrite it explicitly as

Xk+1 = Xk + S(S⊤S)†(∇2φ(x) − Xk).

The way in which the above formula is written resembles the update from (Safaryan et al., 2022).

E Deferred Proofs from Section 3 and New 3PC Compressors

E.1 Proof of Lemma 3.4: Adaptive Thresholding

Basically, we show two upper bounds for the error and combine them to get the expression for α. From the
definition (5), we get

∥C(X) − X∥2
F =

∑
j,l:|Xjl|<λ∥X∥∞

X2
jl ≤ d2λ2∥X∥2

∞ ≤ d2λ2∥X∥2
F.

19

Published in Transactions on Machine Learning Research (10/2023)

The second inequality is derived from the observation that at least on entry, the top one in magnitude, is
selected always. Since the top entry is missing in the sum below, we imply that the average without the top
one is smaller than the overall average.

∥C(X) − X∥2
F =

∑
j,l:|Xjl|<λ∥X∥∞

X2
jl ≤ d2 − 1

d2

d∑
j,l=1

X2
jl ≤

(
1 − 1

d2

)
∥X∥2

F.

E.2 Proof of Lemma 3.6: Sketch-and-Project

Note that since Z is a projection matrix, then it is symmetric and satisfies

ZZ = S(S⊤S)†S⊤S(S⊤S)†S⊤

= S(S⊤S)†S⊤ = Z,

As a consequence, its eigenvalues are between 0 and 1. Assuming that X is symmetric we derive

E
[
∥ZX − X∥2

F
]

= E
[
∥ZX∥2

F − 2 ⟨ZX, X⟩
]

+ ∥X∥2
F

= E
[
Tr(X⊤Z⊤ZX)

]
− 2 ⟨E [Z] X, X⟩ + ∥X∥2

F

= E [⟨X, ZX⟩] − 2 ⟨E [Z] X, X⟩ + ∥X∥2
F

= ∥X∥2
F − Tr(X⊤E [Z] X)

≤ (1 − λ+
min(Z))∥X∥2

F.

Note that we can force X to be symmetric in the same way as it was done in (Qian et al., 2022) by using
symmetrization operator [X]s = 1

2 (X + X⊤) which does not change the theory.

E.3 Proof of Lemma 3.10: Compressed Bernoulli AGgregation (CBAG)

As it was mentioned CBAG has two independent sources of randomness: Bernoulli aggregation and possible
random contractive compression. To show that CBAG is a 3PC mechanism, we consider these randomness
one by one and upper bound the error as follows:

E
[
∥CH,Y(X) − X∥2] = (1 − p)∥H − X∥2 + pE

[
∥C(X − H) − (X − H)∥2]

≤ (1 − p)∥X − H∥2 + p(1 − α)∥X − H∥2

= (1 − pα)∥X − H∥2

≤ (1 − pα)(1 + s)∥H − Y∥2 + (1 − pα)(1 + 1/s)∥X − Y∥2.

E.4 New 3PC: Adaptive Top-K

Assume that in our framework we are restricted by the number of floats we can send from clients to the
server. For example, each client is able to broadcast d0 ≤ d2 floats to the server. Besides, we want to use
Top-K compression operator with adaptive K, but due to the aforementioned restrictions we should control
how K evolves. Let KH,Y be such that

KH,Y = min
{⌈

∥Y − H∥2
F

∥X − H∥2
F

d2
⌉

, d0

}
.

We introduce the following compression operator

CH,Y(X) := H + Top-KH,Y (X − H) . (19)

The next lemma shows that the described compressor satisfy (3).
Lemma E.1. The compressor CY,H (19) satisfy (3) with

A = d0

2d2 , B = max
{(

1 − d0

d2

)(
2d2

d0
− 1
)

, 3
}

.

20

Published in Transactions on Machine Learning Research (10/2023)

Proof. Recall that if C is a Top-K compressor, then for all X ∈ Rd×d

∥C(X) − X∥2
F ≤

(
1 − K

d2

)
∥X∥2

F ,

Using this property we get in the case when KY,H = d0

∥CH,Y(X) − X∥2
F = ∥H + Top-KH,Y(X − H) − X∥2

F

≤
(

1 − d0

d2

)
∥H − X∥2

F

≤
(

1 − d0

2d2

)
∥H − Y∥2

F +
(

1 − d0

d2

)
2d2 − d0

d0
∥Y − X∥2

F .

If KH,Y =
⌈

∥Y−H∥2
F

∥X−H∥2
F

d2
⌉
, then −KH,Y ≤ − ∥Y−H∥2

F
∥X−H∥2

F
d2, and we have

∥CH,Y(X) − X∥2
F = ∥H + Top-KH,Y(X − H) − X∥2

F

≤
(

1 − KH,Y

d2

)
∥H − X∥2

F

≤

(
1 −

∥Y − H∥2
F

∥X − H∥2
F

)
∥H − X∥2

F

= ∥H − X∥2
F − ∥Y − H∥2

F

≤ 3
2 ∥H − Y∥2

F + 3 ∥Y − X∥2
F − ∥Y − H∥2

F

= 1
2 ∥Y − H∥2

F + 3 ∥Y − X∥2
F ,

where in the last inequality we use Young’s inequality. Since we always have d0
2d2 (because d0 ≤ d2), then

A = d0
2d2 .

E.5 New 3PC: Rotation Compression

Qian et al. (2022) proposed a novel idea to change the basis in the space of matrices that allows to apply
more aggresive compression mechanism. Following Section 2.3 from (Qian et al., 2022) one can show that
for Generalized Linear Models local Hessians can be represented as ∇2fi(x) = QiΛi(x)Q⊤

i , where Qi is
properly designed basis matrix. This means that Qi is orthogonal matrix. Their idea is based on the fact that
Λi(x) is potentially sparser matrix than ∇2fi(x), and applying compression on Λi(x) could require smaller
compression level to obtain the same results than applying compression on dense standard representation
∇2fi(x). We introduce the following compression based on this idea. Let C be an arbitrary contractive
compressor with parameter α, and Q be an orthogonal matrix, then our new compressor is defined as follows

CH,Y(X) := H + QC
(
Q⊤(X − H)Q

)
Q⊤. (20)

Now we prove that this compressor satisfy (3).
Lemma E.2. The compressor CH,Q (20) based on a contractive compressor C with parameter α ∈ (0, 1]
satisfy (3) with A = α/2 and B = (1 − α) ((2−α)/α).

Proof. From the definition of contractive compressor

E
[
∥C(X) − X∥2

F

]
≤ (1 − α) ∥X∥2

F .

21

Published in Transactions on Machine Learning Research (10/2023)

Thus, we get

E
[
∥CH,Y(X) − X∥2

F

]
= E

[∥∥QC
(
Q⊤(X − H)Q

)
Q⊤ − (X − H)

∥∥2
F

]
= E

[∥∥QC
(
Q⊤(X − H)Q

)
Q⊤ − QQ⊤(X − H)QQ⊤∥∥2

F

]
= E

[∥∥C
(
Q⊤(X − H)Q

)
− Q⊤(X − H)Q

∥∥2
F

]
≤ (1 − α)

∥∥Q⊤(X − H)Q
∥∥2

F

= (1 − α) ∥X − H∥2
F

≤ (1 − α)(1 + β) ∥Y − H∥2
F + (1 − α)(1 + β−1) ∥Y − X∥2

F ,

where we use the fact that an orthogonal matrix doesn’t change a norm. Let β = α
2(1−α) , then

E
[
∥CH,Y(X) − X∥2

F

]
≤
(

1 − α

2

)
∥Y − H∥2

F + (1 − α)
(

2 − α

α

)
∥Y − X∥2

F . (21)

F Deferred Proofs from Section 4 (Newton-3PC)

F.1 Auxiliary lemma

Denote by Ek+1[·] the conditional expectation given (k + 1)th iterate xk+1. We first develop a lemma to
handle the mismatch Ek∥Hk+1

i − ∇2fi(x∗)∥2
F of the estimate Hk+1

i defined via 3PC compressor.

Lemma F.1. Assume that
∥∥xk+1 − x∗

∥∥2 ≤ 1
2
∥∥xk − x∗

∥∥2 for all k ≥ 0. Then

Ek+1
[
∥Hk+1

i − ∇2fi(x∗)∥2
F
]

≤
(

1 − A

2

)
∥Hk

i − ∇2fi(x∗)∥2
F +

(
1
A

+ 3B

)
L2

F∥xk − x∗∥2
F

Proof. Using the defining inequality of 3PC compressor and the assumption of the error in terms of iterates,
we expand the approximation error of the estimate Hk+1

i as follows:

Ek+1
[
∥Hk+1

i − ∇2fi(x∗)∥2
F
]

= Ek+1

[
∥CHk

i
,∇2fi(xk)

(
∇2fi(xk+1)

)
− ∇2fi(x∗)∥2

F

]
≤ (1 + β)Ek+1

[
∥CHk

i
,∇2fi(xk)

(
∇2fi(xk+1)

)
− ∇2fi(xk+1)∥2

F

]
+ (1 + 1/β)∥∇2fi(xk+1) − ∇2fi(x∗)∥2

F

≤ (1 + β)(1 − A)∥Hk
i − ∇2fi(xk)∥2

F + B∥∇2fi(xk+1) − ∇2fi(x∗)∥2
F + (1 + 1/β)∥∇2fi(xk+1) − ∇2fi(x∗)∥2

F

≤ (1 + β)(1 − A)∥Hk
i − ∇2fi(xk)∥2

F

+2B∥∇2fi(xk) − ∇2fi(x∗)∥2
F + (1 + 1/β + 2B)∥∇2fi(xk+1) − ∇2fi(x∗)∥2

F

≤ (1 + β)(1 − A)∥Hk
i − ∇2fi(xk)∥2

F

+2BL2
F∥xk − x∗∥2

F + (1 + 1/β + 2B)L2
F∥xk+1 − x∗∥2

F

≤ (1 + β)(1 − A)∥Hk
i − ∇2fi(xk)∥2

F +
(

β + 1
2β

+ 3B

)
L2

F∥xk − x∗∥2
F.

where we use Young’s inequality for some β > 0. By choosing β = A
2(1−A) when 0 < A < 1, we get

Ek+1
[
∥Hk+1

i − ∇2fi(x∗)∥2
F
]

≤
(

1 − A

2

)
∥Hk

i − ∇2fi(x∗)∥2
F +

(
1
A

+ 3B − 1
2

)
L2

F∥xk − x∗∥2
F

When A = 1, we can choose β = 1 and have

Ek+1
[
∥Hk+1

i − ∇2fi(x∗)∥2
F
]

≤ (3B + 1) L2
F∥xk − x∗∥2

F.

Thus, for all 0 < A ≤ 1 we get the desired bound.

22

Published in Transactions on Machine Learning Research (10/2023)

F.2 Proof of Theorem 4.2

The proof follows the same steps as for FedNL until the appearance of 3PC compressor. We derive recurrence
relation for ∥xk − x∗∥2 covering both options of updating the global model. If Option 1. is used in FedNL,
then

∥xk+1 − x∗∥2 =
∥∥∥xk − x∗ −

[
Hk

µ

]−1 ∇f(xk)
∥∥∥2

≤
∥∥∥[Hk

µ

]−1
∥∥∥2 ∥∥Hk

µ(xk − x∗) − ∇f(xk))
∥∥2

≤ 2
µ2

(∥∥(Hk
µ − ∇2f(x∗)

)
(xk − x∗)

∥∥2 +
∥∥∇2f(x∗)(xk − x∗) − ∇f(xk) + ∇f(x∗)

∥∥2)
= 2

µ2

(∥∥(Hk
µ − ∇2f(x∗)

)
(xk − x∗)

∥∥2 +
∥∥∇f(xk) − ∇f(x∗) − ∇2f(x∗)(xk − x∗)

∥∥2)
≤ 2

µ2

(∥∥Hk
µ − ∇2f(x∗)

∥∥2 ∥xk − x∗∥2 + L2
∗

4 ∥xk − x∗∥4
)

= 2
µ2 ∥xk − x∗∥2

(∥∥Hk
µ − ∇2f(x∗)

∥∥2 + L2
∗

4 ∥xk − x∗∥2
)

≤ 2
µ2 ∥xk − x∗∥2

(∥∥Hk − ∇2f(x∗)
∥∥2 + L2

∗
4 ∥xk − x∗∥2

)
≤ 2

µ2 ∥xk − x∗∥2
(∥∥Hk − ∇2f(x∗)

∥∥2
F + L2

∗
4 ∥xk − x∗∥2

)
,

where we use Hk
µ ⪰ µI in the second inequality, and ∇2f(x∗) ⪰ µI in the fourth inequality. From the

convexity of ∥ · ∥2
F, we have

∥Hk − ∇2f(x∗)∥2
F =

∥∥∥∥∥ 1
n

n∑
i=1

(
Hk

i − ∇2fi(x∗)
)∥∥∥∥∥

2

F

≤ 1
n

n∑
i=1

∥Hk
i − ∇2fi(x∗)∥2

F = Hk.

Thus,

∥xk+1 − x∗∥2 ≤ 2
µ2 ∥xk − x∗∥2Hk + L2

∗
2µ2 ∥xk − x∗∥4. (22)

If Option 2. is used in FedNL, then as Hk + lkI ⪰ ∇2f(xk) ⪰ µI and ∇f(x∗) = 0, we have

∥xk+1 − x∗∥ = ∥xk − x∗ − [Hk + lkI]−1∇f(xk)∥
≤ ∥[Hk + lkI]−1∥ · ∥(Hk + lkI)(xk − x∗) − ∇f(xk) + ∇f(x∗)∥

≤ 1
µ

∥(Hk + lkI − ∇2f(x∗))(xk − x∗)∥ + 1
µ

∥∇f(xk) − ∇f(x∗) − ∇2f(x∗)(xk − x∗)∥

≤ 1
µ

∥Hk + lkI − ∇2f(x∗)∥∥xk − x∗∥ + L∗

2µ
∥xk − x∗∥2

≤ 1
nµ

n∑
i=1

∥Hk
i + lk

i I − ∇2fi(x∗)∥∥xk − x∗∥ + L∗

2µ
∥xk − x∗∥2

≤ 1
nµ

n∑
i=1

(∥Hk
i − ∇2fi(x∗)∥ + lk

i)∥xk − x∗∥ + L∗

2µ
∥xk − x∗∥2.

From the definition of lk
i , we have

lk
i = ∥Hk

i − ∇2fi(xk)∥F ≤ ∥Hk
i − ∇2fi(x∗)∥F + LF∥xk − x∗∥.

23

Published in Transactions on Machine Learning Research (10/2023)

Thus,

∥xk+1 − x∗∥ ≤ 2
nµ

n∑
i=1

∥Hk
i − ∇2fi(x∗)∥F∥xk − x∗∥ + L∗ + 2LF

2µ
∥xk − x∗∥2.

From Young’s inequality, we further have

∥xk+1 − x∗∥2 ≤ 8
µ2

(
1
n

n∑
i=1

∥Hk
i − ∇2fi(x∗)∥F∥xk − x∗∥

)2

+ (L∗ + 2LF)2

2µ2 ∥xk − x∗∥4

≤ 8
µ2 ∥xk − x∗∥2

(
1
n

n∑
i=1

∥Hk
i − ∇2fi(x∗)∥2

F

)
+ (L∗ + 2LF)2

2µ2 ∥xk − x∗∥4

= 8
µ2 ∥xk − x∗∥2Hk + (L∗ + 2LF)2

2µ2 ∥xk − x∗∥4, (23)

where we use the convexity of ∥ · ∥2
F in the second inequality.

Thus, from (22) and (23), we have the following unified bound for both Option 1 and Option 2:

∥xk+1 − x∗∥2 ≤ C

µ2 ∥xk − x∗∥2Hk + D

2µ2 ∥xk − x∗∥4. (24)

Assume ∥x0 − x∗∥2 ≤ µ2

2D and Hk ≤ µ2

4C for all k ≥ 0. Then we show that ∥xk − x∗∥2 ≤ µ2

2D for all k ≥ 0 by
induction. Assume ∥xk − x∗∥2 ≤ µ2

2D for all k ≤ K. Then from (24), we have

∥xK+1 − x∗∥2 ≤ 1
4∥xK − x∗∥2 + 1

4∥xK − x∗∥2 ≤ µ2

2D
.

Thus we have ∥xk − x∗∥2 ≤ µ2

2D and Hk ≤ µ2

4C for k ≥ 0. Using (24) again, we obtain

∥xk+1 − x∗∥2 ≤ 1
2∥xk − x∗∥2. (25)

Assume ∥x0 − x∗∥2 ≤ µ2

2D and Hk ≤ µ2

4C for all k ≥ 0. Then we show that ∥xk − x∗∥2 ≤ µ2

2D for all k ≥ 0 by
induction. Assume ∥xk − x∗∥2 ≤ µ2

2D for all k ≤ K. Then from (24), we have

∥xK+1 − x∗∥2 ≤ 1
4∥xK − x∗∥2 + 1

4∥xK − x∗∥2 ≤ µ2

2D
.

Thus we have ∥xk − x∗∥2 ≤ µ2

2D and Hk ≤ µ2

4C for k ≥ 0. Using (24) again, we obtain

∥xk+1 − x∗∥2 ≤ 1
2∥xk − x∗∥2. (26)

Thus, we derived the first rate of the theorem. Next, we invoke Lemma F.1 to have an upper bound for Hk+1:

Ek[Hk+1] ≤
(

1 − A

2

)
Hk +

(
1
A

+ 3B

)
L2

F∥xk − x∗∥2.

Using the above inequality and (26), for Lyapunov function Φk we deduce

Ek[Φk+1] ≤
(

1 − A

2

)
Hk +

(
1
A

+ 3B

)
L2

F∥xk − x∗∥2 + 3
(

1
A

+ 3B

)
L2

F∥xk − x∗∥2

=
(

1 − A

2

)
Hk +

(
1 − 1

3

)
6
(

1
A

+ 3B

)
L2

F∥xk − x∗∥2

≤
(

1 − min
{

A

2 ,
1
3

})
Φk.

24

Published in Transactions on Machine Learning Research (10/2023)

Hence Ek[Φk] ≤
(
1 − min

{
A
2 , 1

3
})k Φ0. Clearly, we further have E[Hk] ≤

(
1 − min

{
A
2 , 1

3
})k Φ0 and E[∥xk −

x∗∥2] ≤ A
6(1+3AB)L2

F

(
1 − min

{
A
2 , 1

3
})k Φ0 for k ≥ 0. Assume xk ̸= x∗ for all k. Then from (24), we have

∥xk+1 − x∗∥2

∥xk − x∗∥2 ≤ C

µ2 Hk + D

2µ2 ∥xk − x∗∥2,

and by taking expectation, we have

E
[

∥xk+1 − x∗∥2

∥xk − x∗∥2

]
≤ C

µ2E[Hk] + D

2µ2E[∥xk − x∗∥2]

≤
(

1 − min
{

A

2 ,
1
3

})k (
C + AD

12(1 + 3AB)L2
F

)
Φ0

µ2 ,

which concludes the proof.

F.3 Proof of Lemma 4.3

We prove this by induction. Assume ∥Hk
i − ∇2fi(x∗)∥2

F ≤ µ2

4C and ∥xk − x∗∥2 ≤ e2
1 for k ≤ K. Then we also

have Hk ≤ µ2

4C for k ≤ K. From (24), we can get

∥xK+1 − x∗∥2 ≤ C

µ2 ∥xK − x∗∥2HK + D

2µ2 ∥xK − x∗∥4

≤ 1
4∥xK − x∗∥2 + 1

4∥xK − x∗∥2

≤ ∥xK − x∗∥2 ≤ e2
1.

Using Lemma F.1 and the assumptions that we use non-random 3PC compressor, we have

∥HK+1
i − ∇2fi(x∗)∥2

F ≤
(

1 − A

2

)
∥HK

i − ∇2fi(x∗)∥2
F + 1 + 3AB

A
L2

F∥xK − x∗∥2

≤
(

1 − A

2

)
µ2

4C
+ 1 + 3AB

A
L2

F · A2µ2

8(1 + 3AB)CL2
F

= µ2

4C
.

F.4 Proof of Lemma 4.4

We prove this by induction. Assume ∥xk − x∗∥ ≤ e1 and ∥Hk
i − ∇2fi(x∗)∥2

F ≤ µ2

4C for k ≤ K. Then we also
have Hk ≤ µ2

4C for k ≤ K. From (24), we can get

∥xK+1 − x∗∥2 ≤ C

µ2 ∥xK − x∗∥2HK + D

2µ2 ∥xK − x∗∥4

≤ 1
4∥xK − x∗∥2 + 1

4∥xK − x∗∥2 ≤ e2
1.

From the definition

Hk+1
i =

{
Hk

i + C(∇2fi(xk+1) − Hk
i) with probability p,

Hk
i with probability 1 − p.

(27)

we have two cases for Hk+1
i we need to upper bound individually instead of in expectation. Note that the

case Hk+1
i = Hk

i is trivial as ∥Hk+1
i − ∇2fi(x∗)∥F = ∥Hk

i − ∇2fi(x∗)∥F ≤ µ

2
√

C
. For the other case when

25

Published in Transactions on Machine Learning Research (10/2023)

Hk+1
i = Hk

i + C(∇2fi(xk+1) − Hk
i), we have

∥Hk+1
i − ∇2fi(x∗)∥F

= ∥Hk
i + C(∇2fi(xk+1) − Hk

i) − ∇2fi(x∗)∥F

≤ ∥C(∇2fi(xk+1) − Hk
i) − (∇2fi(xk+1) − Hk

i)∥F + ∥∇2fi(xk+1) − ∇2fi(x∗)∥F

≤
√

1 − α∥∇2fi(xk+1) − Hk
i ∥F + LF∥xk+1 − x∗∥

≤
√

1 − α∥Hk
i − ∇2fi(x∗)∥F +

√
1 − α∥∇2fi(xk+1) − ∇2fi(x∗)∥F + LF∥xk+1 − x∗∥

≤
√

1 − α∥Hk
i − ∇2fi(x∗)∥F + 2LF∥xk+1 − x∗∥

≤
√

1 − α
µ

2
√

C
+ 2LF · (1 −

√
1 − α)µ

4
√

CLF
= µ

2
√

C
,

which completes our induction step and the proof.

G Deferred Proofs from Section 5 (Newton-3PC-BC)

G.1 Proof of Theorem 5.1

First we have

∥xk+1 − x∗∥2 = ∥zk − x∗ − [Hk]−1
µ gk∥2

=
∥∥[Hk]−1

µ

(
[Hk]µ(zk − x∗) − (gk − ∇f(x∗))

)∥∥2

≤ 1
µ2

∥∥[Hk]µ(zk − x∗) − (gk − ∇f(x∗))
∥∥2

, (28)

where we use ∇f(x∗) = 0 in the second equality, and ∥[Hk]−1
µ ∥ ≤ 1

µ in the last inequality.

If ξk = 1, then

∥∥[Hk]µ(zk − x∗) − (gk − ∇f(x∗))
∥∥2

=
∥∥∇f(zk) − ∇f(x∗) − ∇2f(x∗)(zk − x∗) + (∇2f(x∗) − [Hk]µ)(zk − x∗)

∥∥2

≤ 2
∥∥∇f(zk) − ∇f(x∗) − ∇2f(x∗)(zk − x∗)

∥∥2 + 2
∥∥(∇2f(x∗) − [Hk]µ)(zk − x∗)

∥∥2

≤ L2
∗

2 ∥zk − x∗∥4 + 2∥[Hk]µ − ∇2f(x∗)∥2 · ∥zk − x∗∥2

≤ L2
∗

2 ∥zk − x∗∥4 + 2∥Hk − ∇2f(x∗)∥2
F∥zk − x∗∥2

= L2
∗

2 ∥zk − x∗∥4 + 2
∥∥∥∥ 1

n
Hk

i − 1
n

∇2fi(x∗)
∥∥∥∥2

F
∥zk − x∗∥2

≤ L2
∗

2 ∥zk − x∗∥4 + 2
n

n∑
i=1

∥Hk
i − ∇2fi(x∗)∥2

F∥zk − x∗∥2, (29)

where in the second inequality, we use the Lipschitz continuity of the Hessian of f , and in the last inequality,
we use the convexity of ∥ · ∥2

F.

26

Published in Transactions on Machine Learning Research (10/2023)

If ξk = 0, then

∥∥[Hk]µ(zk − x∗) − (gk − ∇f(x∗))
∥∥2

=
∥∥[Hk]µ(zk − wk) + ∇f(wk) − ∇f(x∗) − [Hk]µ(zk − x∗)

∥∥2

=
∥∥[Hk]µ(x∗ − wk) + ∇f(wk) − ∇f(x∗)

∥∥2

=
∥∥∇f(wk) − ∇f(x∗) − ∇2f(x∗)(wk − x∗) + (∇2f(x∗) − [Hk]µ)(wk − x∗)

∥∥2

≤ L2
∗

2 ∥wk − x∗∥4 + 2∥Hk − ∇2f(x∗)∥2
F∥wk − x∗∥2

≤ L2
∗

2 ∥wk − x∗∥4 + 2
n

n∑
i=1

∥Hk
i − ∇2fi(x∗)∥2

F∥wk − x∗∥2. (30)

For k ≥ 1, from the above three inequalities, we can obtain

Ek∥xk+1 − x∗∥2 ≤ L2
∗p

2µ2 ∥zk − x∗∥4 + 2p

nµ2

n∑
i=1

∥Hk
i − ∇2fi(x∗)∥2

F∥zk − x∗∥2

+ L2
∗(1 − p)

2µ2 ∥wk − x∗∥4 + 2(1 − p)
nµ2

n∑
i=1

∥Hk
i − ∇2fi(x∗)∥2

F∥wk − x∗∥2

= p

2µ2

(
L2

∗∥zk − x∗∥2 + 4Hk
)

∥zk − x∗∥2

+ (1 − p)
2µ2

(
L2

∗∥wk − x∗∥2 + 4Hk
)

∥wk − x∗∥2, (31)

where we denote Hk := 1
n

∑n
i=1 ∥Hk

i − ∇2fi(x∗)∥2
F.

For k = 0, since z0 = w0, it is easy to verify that the above equality also holds.

From the update rule of zk, we have

Ek∥zk+1 − x∗∥2 ≤ (1 + α)Ek∥zk+1 − xk+1∥2 +
(

1 + 1
α

)
Ek∥xk+1 − x∗∥2

≤ (1 + α)(1 − AM)∥zk − xk∥2 + (1 + α)BMEk∥xk+1 − xk∥2 +
(

1 + 1
α

)
Ek∥xk+1 − x∗∥2

≤ (1 + α)(1 − AM)(1 + β)∥zk − x∗∥2 + (1 + α)(1 − AM)
(

1 + 1
β

)
∥xk − x∗∥2

+ 2(1 + α)BM ∥xk − x∗∥2 +
(

2(1 + α)BM + 1 + 1
α

)
Ek∥xk+1 − x∗∥2,

for any α > 0, β > 0. By choosing α = AM

4 and β = AM

4(1− 3AM
4)

, we arrive at

Ek∥zk+1 − x∗∥2 ≤
(

1 − AM

2

)
∥zk − x∗∥2 +

(
4

AM
− 3 + 5BM

2

)
∥xk − x∗∥2 +

(
4

AM
+ 1 + 5BM

2

)
Ek∥xk+1 − x∗∥2

≤
(

1 − AM

2

)
∥zk − x∗∥2 + CM ∥xk − x∗∥2 + CMEk∥xk+1 − x∗∥2, (32)

27

Published in Transactions on Machine Learning Research (10/2023)

where we denote CM := 4
AM

+ 1 + 5BM

2 . Then we have

Ek[∥zk+1 − x∗∥2 + 2CM ∥xk+1 − x∗∥2] ≤
(

1 − AM

2

)
∥zk − x∗∥2 + CM ∥xk − x∗∥2 + 3CMEk∥xk+1 − x∗∥2

(31)
≤
(

1 − AM

2

)
∥zk − x∗∥2 + 3CM p

2µ2

(
L2

∗∥zk − x∗∥2 + 4Hk
)

∥zk − x∗∥2

+ 3CM (1 − p)
2µ2

(
L2

∗∥wk − x∗∥2 + 4Hk
)

∥wk − x∗∥2 + CM ∥xk − x∗∥2.

Assume ∥zk − x∗∥2 ≤ AM µ2

24CM L2
∗

and Hk ≤ AM µ2

96CM
for k ≥ 0. Then from the update rule of wk, we also have

∥wk − x∗∥2 ≤ AM µ2

24CM L2
∗

for k ≥ 0. Therefore, we have

Ek[∥zk+1−x∗∥2+2CM ∥xk+1−x∗∥2] ≤
(

1 − AM

2 + AM p

8

)
∥zk−x∗∥2+AM (1 − p)

8 ∥wk−x∗∥2+CM ∥xk−x∗∥2.

(33)

From the update rule of wk, we have

Ek∥wk+1 − x∗∥2 = p∥zk+1 − x∗∥2 + (1 − p)∥wk − x∗∥2. (34)

Define Φk
1 := ∥zk − x∗∥2 + CM ∥xk − x∗∥2 + AM (1−p)

4p ∥wk − x∗∥2. Then we have

Ek[Φk+1
1] = Ek[∥zk+1 − x∗∥2 + 2CM ∥xk+1 − x∗∥2] + AM (1 − p)

4p
Ek∥wk+1 − x∗∥2

(34)
≤
(

1 + AM (1 − p)
4

)
Ek[∥zk+1 − x∗∥2 + 2CM ∥xk+1 − x∗∥2] + AM (1 − p)2

4p
∥wk − x∗∥2

(33)
≤
(

1 + AM (1 − p)
4

)(
1 − AM

2 + AM p

8

)
∥zk − x∗∥2 +

(
1 + AM (1 − p)

4

)
CM ∥xk − x∗∥2

+
((

1 + AM (1 − p)
4

)
AM (1 − p)

8 + AM (1 − p)2

4p

)
∥wk − x∗∥2

≤
(

1 − AM

4

)
∥zk − x∗∥2 +

(
1 − 3

8

)
2CM ∥xk − x∗∥2 + AM (1 − p)

4p

(
1 − 3p

8

)
∥wk − x∗∥2

≤
(

1 − min{2AM , 3p}
8

)
Φk

1 .

By applying the tower property, we have

E[Φk+1
1] ≤

(
1 − min{2AM, 3p}

8

)
E[Φk

1].

Unrolling the recursion, we can get the result.

G.2 Proof of Lemma 5.2

We prove the results by mathematical induction. Assume the results hold for k ≤ K. From the update rule
of wk, we know ∥wk − x∗∥2 ≤ min{ AM µ2

24CM L2
∗
, AW AM µ2

384CM CW L2
F

} for k ≤ K. If ξK = 1, from (28) and (29), we have

∥xK+1 − x∗∥2 ≤ 1
µ2

(
L2

∗
2 ∥zK − x∗∥2 + 2HK

)
∥zK − x∗∥2 (35)

≤ AM

24CM
∥zK − x∗∥2.

28

Published in Transactions on Machine Learning Research (10/2023)

If ξK = 0, from ∥wK − x∗∥2 ≤ min{ AM µ2

24CM L2
∗
, AW AM µ2

384CM CW L2
F

} and (30), we can obtain the above inequality simi-

larly. From the upper bound of ∥zK − x∗∥2, we further have ∥xK+1 − x∗∥ ≤ 11AM

24CM
min{ AM µ2

24C2
M

L2
∗
, AW AM µ2

384CM CW L2
F

}.
Then from (32) and the fact that CM

zk,xk (xk+1) is deterministic, we have

∥zK+1 − x∗∥2 ≤
(

1 − AM

2

)
∥zK − x∗∥2 + CM ∥xK − x∗∥2 + CM ∥xK+1 − x∗∥2

≤
(

1 − AM

2 + AM

24

)
∥zK − x∗∥2 + CM · 11AM

24CM
min{ AM µ2

24C2
M L2

∗
,

AW AM µ2

384CM CW L2
F

}

≤ min{ AM µ2

24C2
M L2

∗
,

AW AM µ2

384CM CW L2
F

}.

For ∥Hk+1
i − ∇2fi(x∗)∥2

F, we have

Ek∥Hk+1
i − ∇2fi(x∗)∥2

F ≤ (1 + α)Ek∥Hk
i − ∇2fi(zk+1)∥2

F +
(

1 + 1
α

)
Ek∥∇2fi(zk+1) − ∇2fi(x∗)∥2

F

≤ (1 + α)(1 − AW)∥Hk
i − ∇2fi(zk)∥2

F + (1 + α)BWEk∥∇2fi(zk) − ∇2fi(zk+1)∥2
F

+
(

1 + 1
α

)
Ek∥∇2fi(zk+1) − ∇2fi(x∗)∥2

F

≤ (1 + α)(1 − AW)∥Hk
i − ∇2fi(zk)∥2

F + (1 + α)BW L2
FEk∥zk − zk+1∥2

+
(

1 + 1
α

)
L2

FEk∥zk+1 − x∗∥2

≤ (1 + α)(1 − AW)(1 + β)∥Hk
i − ∇2fi(x∗)∥2

F + (1 + α)(1 − AW)
(

1 + 1
β

)
L2

F∥zk − x∗∥2

+ 2(1 + α)BW L2
F∥zk − x∗∥2 +

(
2(1 + α)BW + 1 + 1

α

)
L2

F∥zk+1 − x∗∥2,

for any α > 0, β > 0. By choosing α = AW

4 and β = AW

4(1− 3AW
4)

, we arrive at

Ek∥Hk+1
i − ∇2fi(x∗)∥2

F ≤
(

1 − AW

2

)
∥Hk

i − ∇2fi(x∗)∥2
F + CW L2

F∥zk − x∗∥2 + CW L2
FEk∥zk+1 − x∗∥2, (36)

where we denote CW := 4
AW

+ 1 + 5BW

2 . Since CW
Hk

i
,∇2fi(zk)(z

k+1) is disterministic, from (36), we have

HK+1 ≤
(

1 − AW

2

)
HK + CW L2

F∥zK − x∗∥2 + CW L2
F∥zK+1 − x∗∥2

≤
(

1 − AW

2

)
AM µ2

96CM
+ 2CW L2

F · AW AM µ2

384CM CW L2
F

≤ AM µ2

96CM
.

G.3 Proof of Lemma 5.3

We prove the results by mathematical induction. From the assumption on Hk
i , we have

Hk = 1
n

n∑
i=1

∥Hk
i − ∇2fi(x∗)∥2

≤ 1
n

n∑
i=1

d2 max
jl

{|(Hk
i)jl − (∇2f(x∗))jl|2}

≤ d2L2
∞ max

0≤t≤k
∥zt − x∗∥2. (37)

29

Published in Transactions on Machine Learning Research (10/2023)

Then from ∥x0 − x∗∥2 ≤ c̃1, we have H0 ≤ min{ AM µ2

96CM
, µ2

4d }. Assume the results hold for all k ≤ K. If ξK = 1,
from (35), we have

∥xK+1 − x∗∥2 ≤ 1
µ2

(
L2

∗
2 ∥zK − x∗∥2 + 2HK

)
∥zK − x∗∥2

≤ 1
d

∥zK − x∗∥2

≤ c̃1.

If ξK = 0, from ∥wK − x∗∥2 ≤ dc̃1 and (30), we can obtain the above inequality similarly. From the
assumption on zk, we have

∥zK+1 − x∗∥2 ≤ d max
j

|zK+1
j − x∗

j |2

≤ d max
0≤t≤K+1

∥xt − x∗∥2

≤ dc̃1.

At last, using (37), we can get HK+1 ≤ min{ AM µ2

96CM
, µ2

4d }, which completes the proof.

H Extension to Bidirectional Compression and Partial Participation

In this section, we unify the bidirectional compression and partial participation in Algorithm 3. The algorithm
can also be regarded as an extension of BL2 in (Qian et al., 2022) by the three point compressor. Here the
symmetrization operator [·]s is defined as

[A]s := A + A⊤

2

for any A ∈ Rd×d. The update of the global model at k-th iteration is

xk+1 =
(
[Hk]s + lkI

)−1
gk,

where Hk, lk, and gk are the average of Hk
i , lk

i , and gk
i respectively. This update is based on the following

step in Stochastic Newton method (Kovalev et al., 2019)

xk+1 =
[

1
n

n∑
i=1

∇2fi(wk
i)
]−1 [

1
n

n∑
i=1

(
∇2fi(wk

i)wk
i − ∇fi(wk

i)
)]

.

We use [Hk
i]s + lk

i I to estimate ∇2fi(wk
i), and gk

i to estimate ∇2fi(wk
i)wk

i − ∇fi(wk
i), where lk

i = ∥[Hk
i]s −

∇2fi(zk
i)∥F is adopted to guarantee the positive definiteness of [Hk]s + lkI. Hence, like BL2 in (Qian et al.,

2022), we maintain the key relation

gk
i = ([Hk

i]s + lk
i I)wk

i − ∇fi(wk
i). (38)

Since each node has a local model wk
i , we introduce zk

i to apply the bidirectional compression with the three
point compressor and Hk

i is expected to learn hi(∇2fi(zk
i)) iteratively. For the update of gk

i on the server
when ξk

i = 0, from (38), it is natural to let

gk+1
i − gk

i = ([Hk+1
i]s − [Hk

i]s + lk+1
i I − lk

i I)wk+1
i ,

since we have wk+1
i = wk

i when ξk
i = 0. The convergence results of Newton-3PC-BC-PP are stated in the

following two theorems.

30

Published in Transactions on Machine Learning Research (10/2023)

Algorithm 3 Newton-3PC-BC-PP (Newton’s method with 3PC, BC and Partial Participation)
1: Parameters: Worker’s (CW) and Master’s (CM) 3PC; probability p ∈ (0, 1]; 0 < τ ≤ n
2: Initialization: w0

i = z0
i = x0 ∈ Rd; H0

i ∈ Rd×d; l0
i = ∥[H0

i]s − ∇2fi(w0
i)∥F; g0

i = ([H0
i]s + l0

i I)w0
i −

∇fi(w0
i); Moreover: H0 = 1

n

∑n
i=1 H0

i ; l0 = 1
n

∑n
i=1 l0

i ; g0 = 1
n

∑n
i=1 g0

i

3: on server
4: xk+1 =

(
[Hk]s + lkI

)−1
gk,

5: choose a subset Sk ⊆ [n] such that P[i ∈ Sk] = τ/n for all i ∈ [n]
6: zk+1

i = CM
zk

i
,xk (xk+1) for i ∈ Sk

7: zk+1
i = zk

i , wk+1
i = wk

i for i /∈ Sk

8: Send CM
zk

i
,xk (xk+1) to the selected devices i ∈ Sk

9: for each device i = 1, . . . , n in parallel do
10: for participating devices i ∈ Sk do
11: zk+1

i = CM
zk

i
,xk (xk+1)

12: Hk+1
i = CW

Hk
i

,∇2fi(zk
i

)(∇
2fi(zk+1

i))
13: lk+1

i = ∥[Hk+1
i]s − ∇2fi(zk+1

i)∥F
14: Sample ξk+1

i ∼ Bernoulli(p)
15: if ξk+1

i = 1
16: wk+1

i = zk+1
i , gk+1

i = ([Hk+1
i]s + lk+1

i I)wk+1
i − ∇fi(wk+1

i), send gk+1
i − gk

i to server
17: if ξk+1

i = 0
18: wk+1

i = wk
i , gk+1

i = ([Hk+1
i]s + lk+1

i I)wk+1
i − ∇fi(wk+1

i)
19: Send Hk+1

i , lk+1
i − lk

i , and ξk+1
i to the server

20: for non-participating devices i /∈ Sk do
21: zk+1

i = zk
i , wk+1

i = wk
i , Hk+1

i = Hk
i , lk+1

i = lk
i , gk+1

i = gk
i

22: end for
23: on server
24: if ξk+1

i = 1
25: wk+1

i = zk+1
i , receive gk+1

i − gk
i

26: if ξk+1
i = 0

27: wk+1
i = wk

i , gk+1
i − gk

i =
[
Hk+1

i − Hk
i

]
s

wk+1
i + (lk+1

i − lk
i)wk+1

i

28: gk+1 = gk + 1
n

∑
i∈Sk

(
gk+1

i − gk
i

)
29: Hk+1 = 1

n

∑n
i=1 Hk+1

i

30: lk+1 = lk + 1
n

∑
i∈Sk

(
lk+1
i − lk

i

)

For k ≥ 0, define Lyapunov function

Φk
3 := Zk + 2τCM

n
∥xk − x∗∥2 + AM

4p
Wk,

where τ ∈ [n] is the number of devices participating in each round.

Theorem H.1. Let Assumption 4.1. Assume ∥zk
i − x∗∥2 ≤ AM µ2

36(H2+4L2
F)CM

and Hk ≤ AM µ2

576CM
for all i ∈ [n]

and k ≥ 0. Then we have

E[Φk
3] ≤

(
1 − τ min{2AM , 3p}

8n

)k

Φ0
3,

for k ≥ 0.

31

Published in Transactions on Machine Learning Research (10/2023)

Proof. First, similar to (30) in (Qian et al., 2022), we can get

∥xk+1 − x∗∥2 ≤ 3L2
∗

4µ2 (Wk)2 + 12Wk

nµ2

n∑
i=1

∥Hk
i − ∇2fi(x∗)∥2

F + 3L2
F

µ2 ZkWk

= 3L2
∗

4µ2 (Wk)2 + 12Wk

µ2 Hk + 3L2
F

µ2 ZkWk, (39)

where Wk = 1
n

∑n
i=1 ∥wk

i − x∗∥2 and Zk = 1
n

∑n
i=1 ∥zk

i − x∗∥2. For i ∈ Sk, we have zk+1
i = CM

zk
i

,xk (xk+1).
Then, similar to (32), we have

Ek∥zk+1
i − x∗∥2 ≤

(
1 − AM

2

)
∥zk

i − x∗∥2 + CM ∥xk − x∗∥2 + CM ∥xk+1 − x∗∥2.

Noticing that P[i ∈ Sk] = τ/n and zk+1
i = zk

i for i /∈ Sk, we further have

Ek∥zk+1
i − x∗∥2 = τ

n
Ek[∥zk+1

i − x∗∥2 | i ∈ Sk] +
(

1 − τ

n

)
Ek[∥zk+1

i − x∗∥2 | i /∈ Sk]

≤ τ

n

(
1 − AM

2

)
∥zk

i − x∗∥2 + τCM

n
∥xk − x∗∥2 + τCM

n
∥xk+1 − x∗∥2 +

(
1 − τ

n

)
∥zk

i − x∗∥2

=
(

1 − τAM

2n

)
∥zk

i − x∗∥2 + τCM

n
∥xk − x∗∥2 + τCM

n
∥xk+1 − x∗∥2,

which implies that

Ek[Zk+1] = 1
n

n∑
i=1

Ek∥zk+1
i − x∗∥2

≤ 1
n

n∑
i=1

(
1 − τAM

2n

)
∥zk

i − x∗∥2 + τCM

n
∥xk − x∗∥2 + τCM

n
∥xk+1 − x∗∥2

=
(

1 − τAM

2n

)
Zk + τCM

n
∥xk − x∗∥2 + τCM

n
∥xk+1 − x∗∥2. (40)

Combining (39) and (40), we have

Ek[Zk+1 + 2τCM

n
∥xk+1 − x∗∥2]

≤
(

1 − τAM

2n

)
Zk + τCM

n
∥xk − x∗∥2 + 3τCM

n
∥xk+1 − x∗∥2

≤
(

1 − τAM

2n

)
Zk + τCM

n
∥xk − x∗∥2 + 3τCM

n

(
3L2

∗
4µ2 Wk + 12Hk

µ2 + 3L2
FZk

µ2

)
Wk.

Assume ∥zk
i − x∗∥2 ≤ AM µ2

36(L2
∗+4L2

F)CM
and Hk ≤ AM µ2

576CM
for all i ∈ [n] and k ≥ 0. Then we have

3L2
∗

4µ2 Wk + 12Hk

µ2 + 3L2
FZk

µ2 ≤ AM

24CM
,

which indicates that

Ek[Zk+1 + 2τCM

n
∥xk+1 − x∗∥2] ≤

(
1 − τAM

2n

)
Zk + τCM

n
∥xk − x∗∥2 + τAM

8n
Wk. (41)

For Wk, similar to (32) in (Qian et al., 2022), we have

Ek[Wk+1] =
(

1 − τp

n

)
Wk + τp

n
E[Zk+1].

32

Published in Transactions on Machine Learning Research (10/2023)

Then from the above two inequalities we have

Ek[Φk+1
3]

≤
(

1 + τAM

4n

)
Ek[Zk+1 + 2τCM

n
∥xk+1 − x∗∥2] + AM

4p

(
1 − τp

n

)
Wk

(41)
≤
(

1 − τAM

4n

)
Zk +

(
1 + τAM

4n

)
τCM

n
∥xk − x∗∥2 + AM

4p

(
1 − τp

n
+ τp

2n

(
1 + τAM

4n

))
Wk

≤
(

1 − τ min{2AM , 3p}
8n

)
Φk

3 .

By applying the tower property, we have

E[Φk+1
3] ≤

(
1 − τ min{2AM , 3p}

8n

)
E[Φk

3].

Unrolling the recursion, we can obtain the result.

Define Φk
4 = Hk + 16CW L2

F
AM

∥xk − x∗∥2 for k ≥ 0, where CW := 4
A + 1 + 5B

2 .
Theorem H.2. Let Assumption 4.1 holds, ξk ≡ 1, Sk ≡ [n], and CM

zk
i

,xk (xk+1) ≡ xk+1 for all i ∈ [n] and

k ≥ 0. Assume ∥zk
i − x∗∥2 ≤ AM µ2

36(L2
∗+4L2

F)CM
and Hk ≤ AM µ2

576CM
for all i ∈ [n] and k ≥ 0. Then we have

E[Φk
4] ≤ θk

2 Φ0
4,

E
[

∥xk+1 − x∗∥2

∥xk − x∗∥2

]
≤ θk

2

(
3(L2

∗ + 4L2
F)AM

64CW L2
Fµ2 + 12

µ2

)
Φ0

4.

for k ≥ 0, where θ2 :=
(

1 − min{2AW ,AM }
4

)
.

Proof. Since ξk ≡ 1, Sk ≡ [n], and CM
zk

i
,xk (xk+1) ≡ xk+1 for all i ∈ [n] and k ≥ 0, we have zk

i ≡ wk
i ≡ xk for

all i ∈ [n] and k ≥ 0. Then from (41), we have

Ek∥xk+1 − x∗∥2 ≤
(

1 − 3AM

8

)
∥xk − x∗∥2. (42)

For ∥Hk+1
i − ∇2fi(x∗)∥2

F, similar to (36), we have

Ek∥Hk+1
i − ∇2fi(x∗)∥2

F ≤
(

1 − AW

2

)
∥Hk

i − ∇2fi(x∗)∥2
F + CW L2

F∥zk
i − x∗∥2 + CW L2

FEk∥zk+1
i − x∗∥2.

Considering zk
i ≡ xk, we further have

Ek∥Hk+1
i − ∇2fi(x∗)∥2

F ≤
(

1 − AW

2

)
∥Hk

i − ∇2fi(x∗)∥2
F + CW L2

F∥xk − x∗∥2 + CW L2
FEk∥xk+1 − x∗∥2

(42)
≤
(

1 − AW

2

)
∥Hk

i − ∇2fi(x∗)∥2
F + 2CW L2

F∥xk − x∗∥2,

which implies that
Ek[Hk+1] ≤

(
1 − AW

2

)
Hk + 2CW L2

F∥xk − x∗∥2. (43)

33

Published in Transactions on Machine Learning Research (10/2023)

Thus, we have

Ek[Φk+1
4] = Ek[Hk+1] + 16CW L2

F
AM

Ek∥xk+1 − x∗∥2

≤
(

1 − AW

2

)
Hk + 2CW L2

F∥xk − x∗∥2 + 16CW L2
F

AM
Ek∥xk+1 − x∗∥2

(42)
≤
(

1 − min{2AW , AM }
4

)
Φk

4 .

By applying the tower property, we have E[Φk+1
4] ≤ θ1E[Φk

4]. Unrolling the recursion, we have E[Φk
4] ≤ θk

2 Φ0
4.

Then we further have E[Hk] ≤ θk
2 Φ0

4 and E∥xk − x∗∥2 ≤ AM
16CW L2

F
θk

2 Φ0
4.

From (39), we can get

∥xk+1 − x∗∥2 ≤ 1
µ2

(
3(L2

∗ + 4L2
F)

4 ∥xk − x∗∥2 + 12Hk

)
∥xk − x∗∥2.

Assume xk ̸= x∗ for all k ≥ 0. Then we have

∥xk+1 − x∗∥2

∥xk − x∗∥2 ≤ 1
µ2

(
3(L2

∗ + 4L2
F)

4 ∥xk − x∗∥2 + 12Hk

)
,

and by taking expectation, we arrive at

E
[

∥xk+1 − x∗∥2

∥xk − x∗∥2

]
≤ 3(L2

∗ + 4L2
F)

4µ2 E∥xk − x∗∥2 + 12
µ2E[Hk]

≤ θk
2

(
3(L2

∗ + 4L2
F)AM

64CW L2
Fµ2 + 12

µ2

)
Φ0

4.

Next, we explore under what conditions we can guarantee the boundedness of ∥zk
i − x∗∥2 and Hk.

Theorem H.3. Let Assumption 4.1 holds.
(i) Let CM and CW be deterministic. Assume ∥x0 − x∗∥2 ≤ 11AM

24CM
min{ AM µ2

36(L2
∗+4L2

F)CM
, AW AM µ2

2304CM CW L2
F

}

and H0 ≤ AM µ2

576CM
. Then we have ∥xk − x∗∥ ≤ 11AM

24CM
min{ AM µ2

36(L2
∗+4L2

F)CM
, AW AM µ2

2304CM CW L2
F

}, ∥zk
i − x∗∥2 ≤

min{ AM µ2

36(L2
∗+4L2

F)CM
, AW AM µ2

2304CM CW L2
F

} and Hk ≤ AM µ2

576CM
for all i ∈ [n] and k ≥ 0.

(ii) Assume (zk
i)j is a convex combination of {(xt)j}k

t=0, and (Hk
i)jl is a convex combina-

tion of {(∇2fi(zk
i))jl}k

t=0 for all i ∈ [n], j, l ∈ [d], and k ≥ 0. If ∥x0 − x∗∥2 ≤
c̃2 := min{ 2µ2

3d2(L2
∗+4L2

F) , AM µ2

36dCM (L2
∗+4L2

F) , AM µ2

576d3CM L2
∞

, µ2

24d4L2
∞

}, then ∥zk
i − x∗∥2 ≤ dc̃2 and Hk ≤

min{ AM µ2

576CM
, µ2

24d } for all i ∈ [n] and k ≥ 0.

Proof. The proof is similar to that of Lemmas 5.2 and 5.3. Hence we omit it.

I Globalization Through Cubic Regularization and Line Search Procedure

So far, we have discussed only the local convergence of our methods. To prove global rates, one must
incorporate additional regularization mechanisms. Otherwise, global convergence cannot be guaranteed. Due

34

Published in Transactions on Machine Learning Research (10/2023)

to the smooth transition from contractive compressors to general 3PC mechanism, we can easily adapt two
globalization strategies of FedNL (equivalent to Newton-EF21) to our Newton-3PC algorithm.

The two globalization strategies are cubic regularization and line search procedure. We only present the
extension with cubic regularization Newton-3PC-CR (Algorithm 4) analogous to FedNL-CR (Safaryan et al.,
2022). Similarly, line search procedure can be combined as it was done in FedNL-LS (Safaryan et al., 2022).

Algorithm 4 Newton-3PC-CR (Newton’s method with 3PC and Cubic Regularization)
1: Input: x0 ∈ Rd, H0

1, . . . , H0
n ∈ Rd×d, H0 := 1

n

∑n
i=1 H0

i , l0 = 1
n

∑n
i=1 ∥H0

i − ∇2fi(x0)∥F
2: on master
3: hk = arg minh∈Rd Tk(h), where Tk(h) :=

〈
∇f(xk), h

〉
+ 1

2
〈
(Hk + lkI)h, h

〉
+ L∗

6 ∥h∥3

4: Update global model to xk+1 = xk + hk and send to the nodes
5: for each device i = 1, . . . , n in parallel do
6: Get xk+1 and compute local gradient ∇fi(xk+1) and local Hessian ∇2fi(xk+1)
7: Take ∇2fi(xk) from memory and update Hk+1

i = CHk
i

,∇2fi(xk)(∇2fi(xk+1))
8: Send ∇fi(xk+1), Hk+1

i and lk+1
i := ∥Hk+1

i − ∇2fi(xk+1)∥F to the server
9: end for

10: on server
11: Aggregate ∇f(xk+1) = 1

n

∑n
i=1 ∇fi(xk+1), Hk+1 = 1

n

∑n
i=1 Hk+1

i , lk+1 = 1
n

∑n
i=1 lk+1

i

We omit theoretical analysis of these extension as they can be obtained directly from FedNL approach with
minor adaptations. In particular, one can get global linear rate for Newton-3PC-CR, global O(1

k) rate for
general convex case and the same fast local rates (9) and (11) of Newton-3PC.

J Additional Experiments and Extended Numerical Analysis

In this section we provide extended variety of experiments to analyze the empirical performance of Newton-3PC.
We study the efficiency of Newton-3PC in different settings changing 3PC compressor and comparing with
other second-order state-of-the-art algorithms. Tests were carried out on logistic regression problem with L2
regularization

min
x∈Rd

{
1
n

n∑
i=1

fi(x) + λ

2 ∥x∥2

}
, fi(x) = 1

m

m∑
j=1

log
(
1 + exp(−bija⊤

ijx)
)

, (44)

where {aij , bij}j∈[m] are data points at the i-th device. On top of that, we also consider L2 regularized
Softmax problem of the form

min
x∈Rd

{
1
n

n∑
i=1

fi(x) + λ

2 ∥x∥2

}
, fi(x) = σ log

 m∑
j=1

exp
(

a⊤
ijx − bij

σ

) , (45)

where σ > 0 is a smoothing parameter. One can show that this function has both Lipschitz continuous
gradient and Lipschitz continuous Hessian. Let ãij be initial data points, and f̃i be defined as

f̃i(x) = σ log

 m∑
j=1

exp
(

ã⊤
ijx − bij

σ

) .

Then data shift is performed as follows

aij = ãij − f̃i(0), j ∈ [m], i ∈ [n].

After such shift we may claim that 0 is the optimum since ∇f(0) = 0. Note that this problem does not
belong to the class of generalized linear models.

35

Published in Transactions on Machine Learning Research (10/2023)

J.1 Datasets split

We use standard datasets from LibSVM library (Chang & Lin, 2011). We shuffle and split each dataset into
n equal parts representing a local data of i-th client. Exact names of datasets and values of n are shown in
Table 2.

Table 2: Datasets used in the experiments with the number of worker nodes n used in each case.

Data set # workers n total # of data points (= nm) # features d
a1a 16 1600 123
a9a 80 32560 123
w2a 50 3450 300
w8a 142 49700 300
phishing 100 11000 68

J.2 Choice of parameters

We follow the authors’ choice of DINGO (Crane & Roosta, 2019) in choosing hyperparameters: θ = 10−4, ϕ =
10−6, ρ = 10−4. Besides, DINGO uses a backtracking line search that selects the largest stepsize from
{1, 2−1, . . . , 2−10}. The initialization of H0

i for Newton-3PC, FedNL (Safaryan et al., 2022) and its extensions,
NL1 (Islamov et al., 2021) is ∇2fi(x0) if it is not specified directly. For Fib-IOS (Fabbro et al., 2022) we set
di

k = 1. Local Hessians are computed following the partial sums of Fibonacci number and the parameter
ρ = λqj+1 . This is stated in the description of the method. The parameters of backtracking line search for
Fib-IOS are α = 0.5 and β = 0.9.

We conduct experiments for two values of regularization parameter λ ∈ {10−3, 10−4}. In the figures we plot
the relation of the optimality gap f(xk) − f(x∗) and the number of communicated bits per node. In the
heatmaps numbers represent the communication complexity per client of Newton-3PC for some specific choice
of 3PC compression mechanism (see the description in corresponding section). The optimal value f(x∗) is
chosen as the function value at the 20-th iterate of standard Newton’s method.

In our experiments we use various compressors for the methods. Examples of classic compression mechanisms
include Top-K and Rank-R. The parameters of these compressors are parsed in details in Section A.3
of Safaryan et al. (2022); we refer a reader to this paper for disaggregated description of aforementioned
compression mechanisms. Besides, we use various 3PC compressors introduced in (Richtárik et al., 2022).

J.3 Behavior of Newton-CLAG based on Top-K and Rank-R compressors

Next, we study how the performance of Newton-CLAG changes when we vary parameters of biased compressor
CLAG compression mechanism is based on. In particular, we test Newton-CLAG combined with Top-K and
Rank-R compressors modifying compression level (parameters K and R respectively) and trigger parameter
ζ. We present the results as heatmaps in Figure 3 indicating the communication complexity in Mbytes
for particular choice of a pair of parameters ((K, ζ) or (R, ζ) for CLAG based on Top-K and Rank-R
respectively) .

First, we can highlight that in special cases Newton-CLAG reduces to FedNL (ζ = 0, left column) and
Newton-LAG (compression is identity, bottom row). Second, we observe slight improvement from using the
lazy aggregation.

J.4 Efficiency of Newton-3PCv2 under different compression levels

On the following step we study how Newton-3PCv2 behaves when the parameters of compressors 3PCv2 is
based on are changing. In particular, in the first set of experiments we test the performance of Newton-3PCv2
assembled from Top-K1 and Rand-K2 compressors where K1 + K2 = d. Such constraint is forced to make
the cost of one iteration to be O(d). In the second set of experiments we choose K1 = K2 = K and vary K.
The results are presented in Figure 4.

36

Published in Transactions on Machine Learning Research (10/2023)

0 2 8 16 32 128 256 512 1024
trigger ³

8
17
34
51
60
68

136
680

2346co
m

pr
es

sio
n

le
ve

l K

55 55 55 55 55 55 55 55 55
39 39 39 39 39 39 39 39 39
29 30 30 30 30 30 30 30 30
26 26 26 26 26 26 26 26 27
26 25 25 25 25 25 25 26 26
25 25 25 25 25 25 25 25 26
24 24 24 24 24 24 25 25 25
35 35 35 33 33 31 32 33 31
47 38 38 38 38 38 38 38 42

FedNL

LAG 25

32

39

46

0 2 8 16 32 128 256 512 1024
trigger ³

15
30
61
93

108
123
246

1230
7626co

m
pr

es
sio

n
le

ve
l K

130 130 130 130 130 131 131 131 132
91 91 91 91 91 92 92 93 96
69 69 69 69 69 70 73 78 84
62 62 62 62 63 66 69 75 83
60 60 60 61 60 66 69 74 82
59 60 60 60 60 65 69 74 81
59 58 58 59 61 65 69 74 79
63 67 62 62 62 61 77 85 88

242 184 184 184 184 290 302 267 283

FedNL

LAG 60

140

220

300

0 2 8 16 32 128 256 512 1024
trigger ³

15
30
61
93

108
123
246

1230
7626co

m
pr

es
sio

n
le

ve
l K

99 99 99 99 99 100 100 100 100
66 66 66 66 66 67 67 67 68
47 47 47 47 48 48 48 49 50
42 41 41 42 42 42 43 44 45
40 40 40 40 40 41 42 42 44
39 39 39 39 39 40 41 42 43
38 37 38 38 37 38 39 40 42
52 50 50 55 50 53 49 51 48

211 154 154 154 154 156 155 156 127

FedNL

LAG 40

90

140

190

(a) phishing, λ = 10−3, d = 68 (b) a1a, λ = 10−4, d = 123 (c) a9a, λ = 10−3, d = 123

0 2 8 16 32 128 256 512 1024
trigger ³

1
2

4
8

16
32

68co
m

pr
es

sio
n

le
ve

l R

14 14 14 15 15 16 16 19 20
15 15 15 15 16 17 18 19 20
17 18 18 17 17 18 20 21 24
21 22 24 23 23 23 24 24 25
31 32 32 33 32 28 28 30 27
43 44 44 36 45 36 40 42 35
56 48 48 48 48 48 48 48 77

FedNL

LAG 15

35

55

75

0 2 8 16 32 128 256 512 1024
trigger ³

1
2

4
8

16
32

12
3co

m
pr

es
sio

n
le

ve
l R

85 84 85 85 85 86 86 89 96
82 81 82 81 82 85 89 92 96
91 87 88 87 91 92 94 97 101

108 105 104 101 100 99 103 104 106
130 135 128 128 127 118 114 119 124
174 162 163 163 188 181 170 159 149
242 184 184 184 184 290 302 267 283

FedNL

LAG 90

160

230

300

0 2 8 16 32 128 256 512 1024
trigger ³

1
2

4
8

16
32

12
3co

m
pr

es
sio

n
le

ve
l R

45 44 45 44 45 46 46 47 48
46 45 46 46 45 47 46 47 49
52 51 51 49 52 52 50 51 50
64 61 62 62 59 61 62 63 60
89 83 84 76 85 79 80 81 82

142 113 113 113 114 117 103 104 105
211 154 154 154 154 156 155 156 127

FedNL

LAG
45

95

145

195

(e) phishing, λ = 10−3, d = 68 (f) a1a, λ = 10−4, d = 123 (g) a9a, λ = 10−3, d = 123

Figure 3: First row: The performance of Newton-CLAG based on Top-K varying values of (ζ, K) in terms of
communication complexity (in Mbytes). Second row: The performance of Newton-CLAG based on Rank-R
varying values of (ζ, R) in terms of communication complexity (in Mbytes).

211 214 217 220

communicated bits per node

101

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

3PCv2, Top8-Rand60
3PCv2, Top17-Rand51
3PCv2, Top34-Rand34
3PCv2, Top51-Rand17
3PCv2, Top60-Rand8

211 214 217 220

communicated bits per node

101

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

3PCv2, Top15-Rand108
3PCv2, Top30-Rand93
3PCv2, Top61-Rand62
3PCv2, Top93-Rand30
3PCv2, Top108-Rand15

211 214 217 220

communicated bits per node

101

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

3PCv2, Top15-Rand108
3PCv2, Top30-Rand93
3PCv2, Top61-Rand62
3PCv2, Top93-Rand30
3PCv2, Top108-Rand15

211 214 217 220

communicated bits per node

101

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

3PCv2, Top37-Rand263
3PCv2, Top75-Rand225
3PCv2, Top150-Rand150
3PCv2, Top225-Rand75
3PCv2, Top263-Rand37

(a) phishing, λ = 10−4 (b) a1a, λ = 10−3 (c) a9a, λ = 10−4 (d) w8a, λ = 10−3

211 214 217 220

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

3PCv2, Top8-Rand8
3PCv2, Top17-Rand17
3PCv2, Top34-Rand34
3PCv2, Top68-Rand68

211 214 217 220

communicated bits per node

101

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

3PCv2, Top15-Rand15
3PCv2, Top30-Rand30
3PCv2, Top61-Rand61
3PCv2, Top123-Rand123

211 214 217 220

communicated bits per node

101

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

3PCv2, Top15-Rand15
3PCv2, Top30-Rand30
3PCv2, Top61-Rand61
3PCv2, Top123-Rand123

214 217 220

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15
f(
x
k
)
¡
f(
x
¤
)

3PCv2, Top37-Rand37
3PCv2, Top75-Rand75
3PCv2, Top150-Rand150
3PCv2, Top300-Rand300

(e) phishing, λ = 10−4 (f) a1a, λ = 10−3 (g) a9a, λ = 10−4 (h) w8a, λ = 10−3

Figure 4: First row: The performance of Newton-3PCv2 where 3PCv2 compression mechanism is based on
Top-K1 and Rand-K2 compressors with K1 + K2 = d in terms of communication complexity. Second row:
The performance of Newton-3PCv2 where 3PCv2 compression mechanism is based on Top-K1 and Rand-K2
compressors with K1 = K2 ∈ {d/8, d/4, d/2, d} in terms of communication complexity.

For the first set of experiments, one can notice that randomness hurts the convergence since the larger the
value of K2, the worse the convergence in terms of communication complexity. In all cases a weaker level
of randomness is preferable. For the second set of experiments, we observe that the larger K, the better
communication complexity of Newton-3PCv2 except the case of w8a where the results for K = 150 are slightly
better than those for K = 300.

J.5 Behavior of Newton-3PCv4 under different compression levels

Now we test the behavior of Newton-3PCv4 where 3PCv4 is based on a pair (Top-K1, Top-K2) of compressors.
Again, we have to sets of experiments: in the first one we examine the performance of Newton-3PCv4 when
K1 + K2 = d; in the second one we check the efficiency of Newton-3PCv4 when K1 = K2 = K varying K. In
both cases we provide the behavior of Newton-EF21 (equivalent to FedNL) for comparison. All results are
presented in Figure 5.

37

Published in Transactions on Machine Learning Research (10/2023)

214 215 216 217 218

communicated bits per node

101

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

3PCv4, Top8-Top60
3PCv4, Top17-Top51
3PCv4, Top34-Top34
3PCv4, Top51-Top17
3PCv4, Top60-Top8
EF21, Top68

214 216 218

communicated bits per node

101

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

3PCv4, Top15-Top108
3PCv4, Top30-Top93
3PCv4, Top61-Top62
3PCv4, Top93-Top30
3PCv4, Top108-Top15
EF21, Top123

214 216 218

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

3PCv4, Top15-Top108
3PCv4, Top30-Top93
3PCv4, Top61-Top62
3PCv4, Top93-Top30
3PCv4, Top108-Top15
EF21, Top123

214 216 218

communicated bits per node

101

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

3PCv4, Top37-Top263
3PCv4, Top75-Top225
3PCv4, Top150-Top150
3PCv4, Top225-Top75
3PCv4, Top263-Top37
EF21, Top300

(a) phishing, λ = 10−4 (b) a1a, λ = 10−3 (c) a9a, λ = 10−4 (d) w8a, λ = 10−3

211 214 216 218

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

3PCv4, Top8-Top8
3PCv4, Top17-Top17
3PCv4, Top34-Top34
3PCv4, Top68-Top68
EF21, Top68

214 216 218

communicated bits per node

101

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

3PCv4, Top15-Top15
3PCv4, Top30-Top30
3PCv4, Top61-Top61
3PCv4, Top123-Top123
EF21, Top123

214 216 218

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

3PCv4, Top15-Top15
3PCv4, Top30-Top30
3PCv4, Top61-Top61
3PCv4, Top123-Top123
EF21, Top123

214 216 218

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

3PCv4, Top37-Top37
3PCv4, Top75-Top75
3PCv4, Top150-Top150
3PCv4, Top300-Top300
EF21, Top300

(e) phishing, λ = 10−4 (f) a1a, λ = 10−3 (g) a9a, λ = 10−4 (h) w8a, λ = 10−3

Figure 5: First row: The performance of Newton-3PCv4 where 3PCv4 compression mechanism is based
on Top-K1 and Top-K2 compressors with K1 + K2 = d in terms of communication complexity. Second
row: The performance of Newton-3PCv4 where 3PCv4 compression mechanism is based on Top-K1 and
Top-K2 compressors with K1 = K2 ∈ {d/8, d/4, d/2, d} in terms of communication complexity. Performance of
Newton-EF21 with Top-d is given for comparison.

214 216 218 220

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

NL1, Rand1
Newton-3PCv1, Top68
Newton-EF21, Top68
DINGO

212 214 216 218 220 222

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

NL1, Rand1
Newton-3PCv1, Top123
Newton-EF21, Top123
DINGO

212 214 216 218 220 222

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

NL1, Rand1
Newton-3PCv1, Top123
Newton-EF21, Top123
DINGO

214 216 218 220 222 224

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

NL1, Rand1
Newton-3PCv1, Top300
Newton-EF21, Top300
DINGO

(a) phishing, λ = 10−4 (b) a1a, λ = 10−3 (c) a9a, λ = 10−4 (d) w8a, λ = 10−3

Figure 6: The performance of Newton-3PCv1 with 3PCv1 based on Top-d, Newton-EF21 (equivalent to
FedNL) with Top-d, NL1 with Rand-1, and DINGO in terms of communication complexity.

As we can see, in the first set of experiments it does not matter how we distribute d between K1 and K2
since it does not affect the performance. Regarding the second set of experiments, we can say that in some
cases less aggressive compression (K1 = K2 = d) could be better than Newton-EF21.

J.6 Study of Newton-3PCv1

Next, we investigate the performance of Newton-3PCv1 where 3PC compression mechanism is based on Top-K.
We compare its performance with Newton-EF21 (equivalent to FedNL) with Top-d, NL1 with Rand-1, and
DINGO. We observe in Figure 6 that Newton-3PCv1 is not efficient method since it fails in all cases.

J.7 Performance of Newton-3PCv5

In this section we investigate the performance of Newton-3PCv5 where 3PC compression mechanism is based
on Top-K. We compare its performance with Newton-EF21 (equivalent to FedNL) with Top-d, NL1 with
Rand-1, and DINGO. According to the plots presented in Figure 7, we conclude that Newton-3PCv5 is not as
effective as NL1 and Newton-EF21, but it is comparable with DINGO. The reason why Newton-3PCv5 is not
efficient in terms of communication complexity is that we still need to send true Hessians with some nonzero
probability which hurts the communication complexity of this method.

38

Published in Transactions on Machine Learning Research (10/2023)

28 212 216 220

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

NL1, Rand1
Newton-3PCv5, Top123, p= 1

123

Newton-EF21, Top68
DINGO

24 28 212 216 220

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

NL1, Rand1
Newton-3PCv5, Top123, p= 1

123

Newton-EF21, Top123
DINGO

24 28 212 216 220

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

NL1, Rand1
Newton-3PCv5, Top123, p= 1

123

Newton-EF21, Top123
DINGO

26 210 214 218 220 222

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

NL1, Rand1
Newton-3PCv5, Top123, p= 1

123

Newton-EF21, Top300
DINGO

(a) phishing, λ = 10−4 (b) a1a, λ = 10−3 (c) a9a, λ = 10−4 (d) w8a, λ = 10−3

Figure 7: The performance of Newton-3PCv5 with 3PCv5 based on Top-d, Newton-EF21 (equivalent to
FedNL) with Top-d, NL1 with Rand-1, and DINGO in terms of communication complexity.

28 211 214 217 220

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

EF21, Top68
CLAG, Top68
LAG
3PCv1, Top68
3PCv2, Top60-Rand8
3PCv4, Top34-Top34
3PCv5, Top123; p= 1

123

28 211 214 217 220

communicated bits per node

101

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

EF21, Top123
CLAG, Top123
LAG
3PCv1, Top123
3PCv2, Top108-Rand15
3PCv4, Top61-Top62
3PCv5, Top123; p= 1

123

28 211 214 217 220

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

EF21, Top123
CLAG, Top123
LAG
3PCv1, Top123
3PCv2, Top108-Rand15
3PCv4, Top61-Top62
3PCv5, Top123; p= 1

123

24 28 212 216 220 224

communicated bits per node

101

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

EF21, Top300
CLAG, Top300
LAG
3PCv1, Top300
3PCv2, Top263-Rand37
3PCv4, Top150-Top150
3PCv5, Top123; p= 1

123

(a) phishing, λ = 10−4 (b) a1a, λ = 10−3 (c) a9a, λ = 10−4 (d) w8a, λ = 10−3

Figure 8: The performance of Newton-3PC with different choice of 3PC compression mechanism in terms of
communication complexity.

J.8 Newton-3PC with different choice of 3PC compression mechanism

Now we investigate how the choice of 3PC compressor influences the communication complexity of Newton-3PC.
We test the performance of Newton-3PC with EF21, CLAG, LAG, 3PCv1 (based on Top-K), 3PCv2 (based
on Top-K1 and Rand-K2), 3PCv4 (based on Top-K1 and Top-K2), and 3PCv5 (based on Top-K). We choose
p = 1/d for Newton-3PCv5 in order to make the communication cost of one iteration to be O(d). The choice
of K, K1, and K2 is justified by the same logic.

We clearly see that Newton-3PC combined with EF21 (Newton-3PC with this 3PC compressor reduces to
FedNL), CLAG, 3PCv2, 3PCv4 demonstrates almost identical results in terms of communication complexity.
Newton-LAG performs worse than previous methods except the case of phishing dataset. Surprisingly,
Newton-3PCv1, where only true Hessian differences is compressed, demonstrates the worst performance among
all 3PC compression mechanisms. This probably caused by the fact that communication cost of one iteration
of Newton-3PCv1 is significantly larger than those of other Newton-3PC methods.

J.9 Analysis of Bidirectional Newton-3PC

J.9.1 EF21 compression mechanism

In this section we analyze how each type of compression (Hessians, iterates, and gradients) affects the
performance of Newton-3PC. In particular, we choose Newton-EF21 (equivalent to FedNL) and change
parameters of each compression mechanism. For Hessians and iterates we use Top-K1 and Top-K2 compressors
respectively. In Figure 9 we present the results when we vary the parameter K1, K2 of Top-K compressor
and probability p of Bernoulli Aggregation. The results are presented as heatmaps indicating the number of
Mbytes transmitted in uplink and downlink directions by each client.

In the first row in Figure 9 we test different combinations of compression parameters for Hessians and
iterates keeping the probability p of BAG for gradients to be equal 0.5. In the second row we analyze various
combinations of pairs of parameters (K, p) for Hessians and gradients when the compression on iterates is not
applied. Finally, the third row corresponds to the case when Hessians compression is fixed (we use Top-d),
and we vary pairs of parameters (K, p) for iterates and gradients compression.

39

Published in Transactions on Machine Learning Research (10/2023)

According to the results in the heatmaps, we can conclude that Newton-EF21 benefits from the iterates
compression. Indeed, in both cases (when we vary compression level applied on Hessians or gradients) the
best result is given in the case when we do apply the compression on iterates. This is not the case for
gradients (see second row) since the best results are given for high probability p; usually for p = 1 and rarely
for p = 0.75. Nevertheless, we clearly see that bidirectional compression is indeed useful in almost all cases.

37 75 112 150 187 225 300
Iterate compression level K

75
15

0
30

0
60

0
He

ss
ia

n
co

m
pr

es
sio

n
le

ve
l K

29 35 40 44 40 38 52

37 28 32 38 34 40 49

30 27 31 38 31 42 35

66 58 34 42 34 42 42
27

40

53

66

15 30 46 61 76 92 123
Iterate compression level K

30
61

12
3

24
6

He
ss

ia
n

co
m

pr
es

sio
n

le
ve

l K

14 13 16 23 22 20 31

13 14 16 15 18 17 23

14 14 14 17 16 17 21

15 14 21 16 18 17 20
13

19

25

31

15 30 46 61 76 92 123
Iterate compression level K

30
61

12
3

24
6

He
ss

ia
n

co
m

pr
es

sio
n

le
ve

l K

17 14 21 24 20 29 40

14 18 19 21 17 22 28

18 13 14 19 19 21 17

18 21 19 15 17 18 17
13

22

31

40

(a1) w2a, λ = 10−4 (b1) a9a, λ = 10−3 (c1) a1a, λ = 10−4

0.1 0.25 0.5 0.75 1.0
Gradient compression level p

75
15

0
30

0
60

0
He

ss
ia

n
co

m
pr

es
sio

n
le

ve
l K

72 67 57 49 50

91 52 43 47 43

63 53 39 42 38

323 79 50 44 42

FedNL

40

130

220

310

0.1 0.25 0.5 0.75 1.0
Gradient compression level p

30
61

12
3

24
6

He
ss

ia
n

co
m

pr
es

sio
n

le
ve

l K

39 37 25 26 23

33 35 21 19 20

33 27 21 17 17

56 23 22 15 17

FedNL

15

28

41

54

0.1 0.25 0.5 0.75 1.0
Gradient compression level p

30
61

12
3

24
6

He
ss

ia
n

co
m

pr
es

sio
n

le
ve

l K

44 36 33 30 25

33 35 23 21 20

30 36 19 18 18

43 22 19 19 17

FedNL

17

26

35

44

(a2) w2a, λ = 10−4 (b2) a9a, λ = 10−3 (c2) a1a, λ = 10−4

37 75 112 150 187 225 300
Iterate compression level K

0.
1

0.
25

0.
5

0.
75

1.
0

Gr
ad

ie
nt

 c
om

pr
es

sio
n

le
ve

l p

32 53 37 72 75 98 59

41 28 30 52 35 31 41

25 26 30 31 34 41 44

41 30 25 31 31 33 35

34 31 27 29 27 32 35
25

49

73

97

15 30 46 61 76 92 123
Iterate compression level K

0.
1

0.
25

0.
5

0.
75

1.
0

Gr
ad

ie
nt

 c
om

pr
es

sio
n

le
ve

l p

19 16 40 23 33 21 22

16 14 16 17 19 23 20

11 12 13 12 14 19 20

12 11 11 13 13 13 17

10 10 11 11 12 13 14 13

22

31

40

15 30 46 61 76 92 123
Iterate compression level K

0.
1

0.
25

0.
5

0.
75

1.
0

Gr
ad

ie
nt

 c
om

pr
es

sio
n

le
ve

l p

21 34 22 26 26 20 29

17 13 25 18 25 15 25

14 24 26 14 14 18 18

11 23 17 15 16 17 21

14 15 14 15 16 17 18 13

22

31

(a3) w2a, λ = 10−4 (b3) a9a, λ = 10−3 (c3) a1a, λ = 10−4

Figure 9: First row: The performance of Newton-3PC-BC in terms of communication complexity for different
values of (K1, K2) of Top-K1 and Top-K2 compressors applied on Hessians and iterates respectively while
probability p = 0.75 of BAG applied on gradients is fixed. Second row: The performance of Newton-EF21 in
terms of communication complexity for different values of (K1, p) of Top-K1 compressor applied on Hessians
and probability p of BAG applied on gradients while K2 = d parameter of Top-K2 applied on iterates is fixed.
Third row: The performance of Newton-EF21 in terms of communication complexity for different values
of (K2, p) of Top-K2 compressor applied on iterates and probability p of BAG applied on gradients while
K1 = d parameter of Top-K1 applied on Hessians is fixed.

J.9.2 3PCv4 compression mechanism

In our next set of experiments we fix EF21 compression mechanism based on Top-d compressor applied on
Hessians and probability p = 0.75 of Bernoulli aggregation applied on gradients. Now we use 3PCv4 update
rule on iterates based on outer and inner compressors (Top-K1, Top-K2) varying the values of pairs (K1, K2).
We report the results as heatmaps in Figure 10.

We observe that in all cases it is better to apply relatively smaller outer and inner compression levels as this
leads to better performance in terms of communication complexity. Note that the first row in heatmaps
corresponds to Newton-3PC-BC when we apply just EF21 update rule on iterates. As a consequence, Newton-
3PC-BC reduces to FedNL-BC method (Safaryan et al., 2022). We obtain that 3PCv4 compression mechanism
applied on iterates in this setting is more communication efficient than EF21. This implies the fact that
Newton-3PC-BC could be more efficient than FedNL-BC in terms of communication complexity.

J.10 BL1 (Qian et al., 2022) with 3PC compressor

As it was stated in Section 4.1 Newton-3PC covers methods introduced in (Qian et al., 2022) as a special case.
Indeed, in order to run, for example, BL1 method we need to use rotation compression operator 20. The role
of orthogonal matrix in the definition plays the basis matrix.

In this section we test the performance of BL1 in terms of communication complexity with different 3PC
compressors: EF21, CBAG, CLAG. For CBAG update rule the probability p = 0.5, and for CLAG the

40

Published in Transactions on Machine Learning Research (10/2023)

15 30 61 93 108 123
Outer compression level K

0
15

30
61

93
10

8
12

3
In

ne
r c

om
pr

es
sio

n
le

ve
l K 30 24 21 18 17 17

12 13 15 17 18 19
14 14 14 18 18 22
15 16 17 21 20 22
17 18 18 23 23 22
17 18 19 22 21 29
19 20 20 22 22 26

12

18

24

30

15 30 61 93 108 123
Outer compression level K

0
15

30
61

93
10

8
12

3
In

ne
r c

om
pr

es
sio

n
le

ve
l K 49 35 29 22 22 21

16 16 18 17 25 32
18 18 19 16 21 26
17 25 20 24 25 25
20 21 25 36 26 27
21 24 35 26 27 28
24 33 25 27 28 31

16

27

38

49

8 17 34 51 60 68
Outer compression level K

0
8

17
34

51
60

68
In

ne
r c

om
pr

es
sio

n
le

ve
l K 31 24 25 21 20 20

13 11 14 18 21 16
15 15 20 19 21 21
20 18 19 17 25 23
20 22 22 23 25 30
17 19 17 19 24 25
22 25 18 26 20 22 12

18

24

30

37 75 150 225 263 300
Outer compression level K

0
37

75
15

0
22

5
26

3
30

0
In

ne
r c

om
pr

es
sio

n
le

ve
l K 64 50 44 42 42 38

33 39 33 39 44 44
38 42 37 49 41 47
32 38 41 35 43 50
34 38 43 42 53 49
36 39 41 55 49 45
39 41 48 53 52 50

32

42

52

62

(a) a9a, λ = 10−3 (b) a1a, λ = 10−4 (c) phishing, λ = 10−3 (d) a1a, λ = 10−4

Figure 10: The performance of Newton-3PC-BC with EF21 update rule based on Top-d compressor applied
on Hessians, BAG update rule with probability p = 0.75 applied on gradients, and 3PCv4 update rule based
on (Top-K1, Top-K2) compressors applied on iterates for different values of pairs (K1, K2).

trigger ζ = 2. All aforementioned 3PC compression operators are based on Top-τ compressor where τ is the
dimension of local data (see Section 2.3 of (Qian et al., 2022) for detailed description).

Observing the results in Figure 11, we can notice that there is no improvement of one update rule over
another. However, in EF21 is slightly better than other 3PC compressors in a half of the cases, and CBAG
insignificantly outperform in other cases. This means that even if the performance of BL1 with EF21 and
CBAG are almost identical, CBAG is still preferable since it is computationally less expensive since we do
not need to compute local Hessians and their representations in new basis.

212 214 216

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

EF21
CLAG
CBAG

212 214 216

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

EF21
CLAG
CBAG

212 214 216

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

EF21
CLAG
CBAG

212 214 216

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

EF21
CLAG
CBAG

(a) a9a, λ = 10−3 (b) phishing, λ = 10−4 (c) a1a, λ = 10−3 (d) w2a, λ = 10−4

Figure 11: The performance of BL1 with EF21, CBAG and CLAG 3PC compression mechanisms in terms
of communication complexity.

J.11 Analysis of Newton-3PC-BC-PP

J.11.1 3PC’s parameters fine-tuning for Newton-3PC-BC-PP

On the following step we study how the choice of parameters of 3PC compression mechanism and the number
of active clients influence the performance of Newton-3PC-BC-PP.

In the first series of experiments we test Newton-3PC-BC-PP with CBAG compression combined with Top-2d
compressor and probability p applied on Hessians; EF21 with Top-2d/3 compressor applied on iterates; BAG
update rule with probability p = 0.75 applied on gradients. We vary aggregation probability p of Hessians
and the number of active clients τ . Looking at the numerical results in Figure 12 (first row), we may claim
that the more clients are involved in the optimization process in each communication round, the faster the
convergence since the best results in each case always belongs the first column. However, we do observe that
lazy aggregation rule with probability p < 1 is still beneficial.

In the second row of Figure 12 we investigate Newton-3PC-BC-PP with CBAG compression based on Top-d
and probability p = 0.75 applied on Hessians; 3PCv5 update rule combined with Top-2d/3 and probability p
applied on iterates; BAG lazy aggregation rule with probability p − 0.75 applied gradients. In this case we
modify iterate aggregation probability p and the number of clients participating in the training. We observe
that again the fastest convergence is demonstrated when all clients are active, but aggregation parameter p of
iterates smaller than 1.

Finally, we study the effect of BAG update rule on the communication complexity of Newton-3PC-BC-PP. As
in previous cases, Newton-3PC-BC-PP is more efficient when all clients participate in the training process.

41

Published in Transactions on Machine Learning Research (10/2023)

Nevertheless, lazy aggregation rule of BAG still brings the benefit to communication complexity of the
method.

100 80 66 50 33 20
active clients

1.
0

0.
9

0.
8

0.
7

0.
5

0.
4

0.
2He

ss
ia

n
ag

gr
eg

at
io

n
 p

ro
ba

bi
lit

y
p

38 48 62 85 121 189
39 47 58 86 114 205
38 52 59 81 125 199
40 51 61 80 120 215
42 51 62 80 122 197
40 51 68 89 130 216
48 77 87 119 164 268 50

120

190

260

16 12 10 8 5 3
active clients

1.
0

0.
9

0.
8

0.
7

0.
5

0.
4

0.
2He

ss
ia

n
ag

gr
eg

at
io

n
 p

ro
ba

bi
lit

y
p

39 59 80 90 149 224
40 56 70 85 158 231
38 56 72 90 144 236
40 57 66 84 141 257
44 61 67 93 149 250
42 63 72 92 158 307
48 78 86 127 209 329

40

130

220

310

50 40 33 25 16 10
active clients

1.
0

0.
9

0.
8

0.
7

0.
5

0.
4

0.
2He

ss
ia

n
ag

gr
eg

at
io

n
 p

ro
ba

bi
lit

y
p

100 144 167 235 351 563
114 144 151 204 388 617
108 135 161 195 409 601
98 142 160 218 350 623

107 149 181 246 436 616
115 145 193 251 384 703
125 213 245 275 458 735

100

310

520

730

(a1) phishing, λ = 10−4 (b1) a1a, λ = 10−3 (c1) w2a, λ = 10−4

100 80 66 50 33 20
active clients

1.
0

0.
9

0.
8

0.
7

0.
5

0.
4

0.
2Ite

ra
te

 a
gg

re
ga

tio
n

 p
ro

ba
bi

lit
y
p

45 59 70 106 144 230
48 58 71 94 144 241
45 58 74 100 139 246
47 62 78 107 157 238
44 60 76 100 162 252
47 59 81 121 175 270
46 90 99 131 219 372

45

145

245

345

16 12 10 8 5 3
active clients

1.
0

0.
9

0.
8

0.
7

0.
5

0.
4

0.
2Ite

ra
te

 a
gg

re
ga

tio
n

 p
ro

ba
bi

lit
y
p

39 57 69 79 160 242
36 55 72 91 156 267
42 52 66 92 152 251
44 59 73 103 145 281
44 69 88 104 182 275
57 67 87 109 171 279
51 67 97 155 259 436 60

200

300

420

50 40 33 25 16 10
active clients

1.
0

0.
9

0.
8

0.
7

0.
5

0.
4

0.
2Ite

ra
te

 a
gg

re
ga

tio
n

 p
ro

ba
bi

lit
y
p

112 148 179 233 455 563
109 132 153 254 385 542
119 151 173 221 330 784
102 158 178 276 446 650
106 164 182 267 393 684
149 168 242 306 467 702
114 208 366 323 733 982

390

680

970

(a2) phishing, λ = 10−4 (b2) a1a, λ = 10−3 (c2) w2a, λ = 10−4

100 80 66 50 33 20
active clients

1.
0

0.
9

0.
8

0.
7

0.
5

0.
4

0.
2Gr

ad
ie

nt
 a

gg
re

ga
tio

n
 p

ro
ba

bi
lit

y
p

39 53 67 89 136 228
42 52 63 85 130 205
39 50 63 82 130 217
37 53 59 76 116 201
38 50 61 77 121 190
38 47 59 79 121 214
47 62 75 100 149 278 60

130

200

270

16 12 10 8 5 3
active clients

1.
0

0.
9

0.
8

0.
7

0.
5

0.
4

0.
2Gr

ad
ie

nt
 a

gg
re

ga
tio

n
 p

ro
ba

bi
lit

y
p

38 53 70 79 132 248
37 53 67 80 138 215
40 59 68 89 153 234
36 59 71 94 153 231
46 63 71 96 166 229
49 64 80 99 164 306
66 84 105 131 231 360 45

135

225

315

50 40 33 25 16 10
active clients

1.
0

0.
9

0.
8

0.
7

0.
5

0.
4

0.
2Gr

ad
ie

nt
 a

gg
re

ga
tio

n
 p

ro
ba

bi
lit

y
p

103 137 161 235 353 589
91 132 147 214 350 542

104 146 157 205 452 609
105 144 154 217 388 590
121 133 201 262 417 758
116 179 230 263 439 598
256 219 275 406 747 1032

100

410

720

1030

(a3) phishing, λ = 10−4 (b3) a1a, λ = 10−3 (c3) w2a, λ = 10−4

Figure 12: The performance of Newton-3PC-BC-PP with various update strategies in terms of communication
complexity (in Mbytes).

J.11.2 Comparison of different 3PC update rules

Now we test different combinations of 3PC compression mechanisms applied on Hessians and iterates. First,
we fix probability parameter of BAG update rule applied on gradients to p = 0.7. The number of active
clients in all cases τ = n/2. We analyze various combinations of 3PC compressors: CBAG (Top-d and p = 0.7)
and 3PCv5 (Top-d/2 and p = 0.7); EF21 (Top-d) and EF21 (Top-d/2); CBAG (Top-d and p = 0.7) and EF21
(Top-d/2); EF21 (Top-d) and 3PCv5 (Top-d/2 and p = 0.7) applied on Hessians and iterates respectively.
Numerical results might be found in Figure 13. We can see that in all cases Newton-3PC-BC-PP performs
the best with a combination of 3PC compressors that differ from EF21+EF21. This allows to conclude that
EF21 update rule is not always the most effective since other 3PC compression mechanisms lead to better
performance in terms of communication complexity. Nonetheless one can notice that it is useless to apply
CBAG or LAG compression mechanisms on iterates. Indeed, in the case when we skip communication the
iterates remain intact, and the next step is equivalent to previous one. Thus, there is no need to carry out
the step again.

214 217 220

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

CBAG+3PCv5
EF21+EF21
CBAG+EF21
EF21+3PCv5

217 220

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

CBAG+3PCv5
EF21+EF21
CBAG+EF21
EF21+3PCv5

214 217 220

communicated bits per node

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

CBAG+3PCv5
EF21+EF21
CBAG+EF21
EF21+3PCv5

214 217 220

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

CBAG+3PCv5
EF21+EF21
CBAG+EF21
EF21+3PCv5

(a1) a1a, λ = 10−3 (b1) w2a, λ = 10−4 (c1) a9a, λ = 10−3 (c1) w8a, λ = 10−4

Figure 13: The performance of Newton-3PC-BC-PP with different combinations of 3PC compressors applied
on Hessians and iterates respectively.

J.12 Global convergence of Newton-3PC

Now we investigate the performance of globally convergent Newton-3PC-LS — an extension of Newton-
3PC — based on the line search as it performs significantly better than Newton-3PC-CR based on cubic

42

Published in Transactions on Machine Learning Research (10/2023)

regularization. The experiments are done on synthetically generated datasets with heterogeneity control.
A detailed description of how the datasets are created is given in section B.12 of (Safaryan et al., 2022).
Roughly speaking, the generation function has 2 parameters α and β that control the heterogeneity of local
data. We denote datasets created in a such way with parameters α and β as Synt(α, β). All datasets are
generated with dimension d = 100, split between n = 20 clients each of which has m = 1000 local data points.
In all cases the regularization parameter is chosen λ = 10−4.

We compare 5 versions of Newton-3PC-LS combined with EF21 (based on Rank-1 compressor), CBAG (based
on Rank-1 compressor with probability 0.8), CLAG (based on Rank-1 compressor and communication trigger
ζ = 2), 3PCv2 (based on Top-3d/4 and Rand-d/4 compressors), and 3PCv4 (based on Top-d/2 and Top-d/2
compressors). In this series of experiments the initialization of H0

i is equal to zero matrix. The comparison
is performed against ADIANA (Li et al., 2020b) with random dithering (s =

√
d), Fib-IOS (Fabbro et al.,

2022), and GIANT (Wang et al., 2018).

The numerical results are shown in Figure 14. According to them, we observe that Newton-3PC-LS is more
resistant to heterogeneity than other methods since they outperform others by several orders in magnitude.
Besides, we see that Newton-CBAG-LS and Newton-EF21-LS are the most efficient among all Newton-3PC-LS
methods; in some cases, the difference is considerable.

28 211 214 217 220 223

communicated bits per node

101

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

Newton-EF21-LS
Newton-CBAG-LS
Newton-CLAG-LS
Newton-3PCv2-LS
Newton-3PCv4-LS
ADIANA
Fib-IOS
GIANT

28 211 214 217 220 223

communicated bits per node

101

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

Newton-EF21-LS
Newton-CBAG-LS
Newton-CLAG-LS
Newton-3PCv2-LS
Newton-3PCv4-LS
ADIANA
Fib-IOS
GIANT

28 211 214 217 220 223

communicated bits per node

101

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

Newton-EF21-LS
Newton-CBAG-LS
Newton-CLAG-LS
Newton-3PCv2-LS
Newton-3PCv4-LS
ADIANA
Fib-IOS
GIANT

25 28 211 214 217 220 223

communicated bits per node

101

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

Newton-EF21-LS
Newton-CBAG-LS
Newton-CLAG-LS
Newton-3PCv2-LS
Newton-3PCv4-LS
ADIANA
Fib-IOS
GIANT

(a) Synt(0.5,0.5) (b) Synt(1,1) (c) Synt(1.5,1.5) (d) Synt(2,2)

Figure 14: The performance of Newton-3PC-LS with different combinations of 3PC compressors applied on
Hessians against ADIANA, Fib-IOS, and GIANT.

43

	Introduction
	Related work: from first-order to second-order distributed optimization

	Motivation and Contributions
	Flexible communication strategies for Newton-type methods
	New compression and aggregation schemes
	Extensions
	Fast local linear/superlinear rates
	Extensive experiments and Numerical Study

	Three Point Compressors for Matrices
	Newton-3PC: Newton's Method with 3PC
	General technique for learning the Hessian
	Flexible Hessian communication and computation schemes.
	Options for updating the global model
	Local convergence theory

	Extension to Bidirectional Compression (Newton-3PC-BC)
	Experiments
	Comparison between Newton-3PC and other second-order methods
	Does Bernoulli aggregation bring any advantage?
	3PC based on adaptive thresholding
	Newton-3PC-BC against FedNL-BC
	Performance of Newton-3PC on Softmax problem

	Appendix
	Limitations
	Detailed Literature Review of Second-Order Methods
	More on Sketch-and-Project Mechanism
	Deferred Proofs from Section 3 and New 3PC Compressors
	Proof of Lemma 3.4: Adaptive Thresholding
	Proof of Lemma 3.6: Sketch-and-Project
	Proof of Lemma 3.10: Compressed Bernoulli AGgregation (CBAG)
	New 3PC: Adaptive Top-K
	New 3PC: Rotation Compression

	Deferred Proofs from Section 4 (Newton-3PC)
	Auxiliary lemma
	Proof of Theorem 4.2
	Proof of Lemma 4.3
	Proof of Lemma 4.4

	Deferred Proofs from Section 5 (Newton-3PC-BC)
	Proof of Theorem 5.1
	Proof of Lemma 5.2
	Proof of Lemma 5.3

	Extension to Bidirectional Compression and Partial Participation
	Globalization Through Cubic Regularization and Line Search Procedure
	Additional Experiments and Extended Numerical Analysis
	Datasets split
	Choice of parameters
	Behavior of Newton-CLAG based on Top-K and Rank-R compressors
	Efficiency of Newton-3PCv2 under different compression levels
	Behavior of Newton-3PCv4 under different compression levels
	Study of Newton-3PCv1
	Performance of Newton-3PCv5
	Newton-3PC with different choice of 3PC compression mechanism
	Analysis of Bidirectional Newton-3PC
	EF21 compression mechanism
	3PCv4 compression mechanism

	BL1 qian2021basis with 3PC compressor
	Analysis of Newton-3PC-BC-PP
	3PC's parameters fine-tuning for Newton-3PC-BC-PP
	Comparison of different 3PC update rules

	Global convergence of Newton-3PC

