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Abstract001

Quantization has been widely studied as an002
effective technique for reducing the mem-003
ory requirement of large language models004
(LLMs), potentially improving the latency time005
as well. Utilizing the characteristic of ro-006
tational invariance of transformer, we pro-007
pose the rotation-based saliency-aware weight008
quantization (ROSAQ), which identifies salient009
channels in the projection feature space, not in010
the original feature space, where the projected011
“principal” dimensions are naturally considered012
as “salient” features. The proposed ROSAQ013
consists of 1) PCA-based projection, which014
first performs principal component analysis015
(PCA) on a calibration set and transforms via016
the PCA projection, 2) Salient channel identi-017
fication, which selects dimensions correspond-018
ing to the K-largest eigenvalues as salient chan-019
nels, and 3) Saliency-aware quantization with020
mixed-precision, which uses FP16 for salient021
dimensions and INT3/4 for other dimensions.022
Experiment results show that ROSAQ shows023
improvements over the baseline saliency-aware024
quantization on the original feature space and025
other existing quantization methods. With ker-026
nel fusion, ROSAQ presents about 2.3x speed027
up over FP16 implementation in generating 256028
tokens with a batch size of 64. Our code is pub-029
licly available in https://www.github.com/XXX030

1 Introduction031

Large language models (LLMs) have shown re-032

markable performances on various NLP tasks, how-033

ever, due to their huge sizes of model parameters,034

LLMs require significant GPU memory for infer-035

ence, substantially limiting the throughput and la-036

tency time. To address these challenges, quanti-037

zation methods (Yao et al., 2022; Dettmers et al.,038

2022, 2023; Wu et al., 2023b; Yao et al., 2023;039

Kim et al., 2024a) have been widely studied as040

an effective technique for reducing the memory041

requirement of LLMs, potentially improving the042

latency time as well, by representing weights and 043

activations of LLMs using low-precision. 044

In quantization, one of the most challenging is- 045

sues is the presence of outliers in weights and acti- 046

vations, as they widen the quantization range and 047

increase quantization error. Recently, leveraging 048

the rotational invariance of transformers (Liu et al., 049

2024b), rotation-based quantization has been ex- 050

tensively applied to mitigate outliers, motivated by 051

the observation that outliers are reduced after rota- 052

tion. Similarly, SmoothQuant (Xiao et al., 2023) 053

exploits the scaling invariance of linear layer, by 054

dividing activation values by channel-specific scal- 055

ing factors, thus greatly reducing activation outliers 056

without severely strengthening weight outliers. The 057

scaling invariance is further utilized in activation- 058

aware quantization (AWQ) (Lin et al., 2024), which 059

primarily focuses on “salient channels” to reduce 060

quantization errors, by identifying salient channels 061

based on activation magnitude. 062

Without being limited in the original feature 063

space as in (Lin et al., 2024), this paper ex- 064

tensively explores the rotational invariance for 065

saliency-aware weight quantization by identifying 066

salient channels based on “principal dimensions 067

on the projection space,” thereby proposing the 068

rotation-based saliency-aware weight quantization 069

(ROSAQ). By the definition, the principal dimen- 070

sions resulting from the principal component analy- 071

sis (PCA) maximize the variances of channel values 072

on projected space, and accordingly substantially 073

increase their activation magnitudes. Our key un- 074

derlying expectation is that these principal channels 075

with the largest eigenvalues are more dominant and 076

salient than the existing magnitude-based salient 077

channels in original space, due to their inherent 078

properties of maximizing variance, thereby further 079

improving the saliency-aware quantization. The 080

proposed ROSAQ consists of three steps: 081

• PCA-based projection, which first performs 082
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PCA projection with its eigenvectors on a cal-083

ibration set to obtain the PCA-projected cali-084

bration set. For the multi-head self-attention085

(MHSA) layer, we further propose the use of086

head-wise PCA, where the PCA projection is087

applied separately to each head-specific atten-088

tion representation.089

• Salient channel identification, which selects090

“principal channels” corresponding to the K-091

largest eigenvalues as ‘salient’ channels, and092

regards the other channels as normal non-093

salient channels.094

• Saliency-aware quantization with mixed-095

precision, which applies the per-group quan-096

tization, where employs FP16 for a salient097

group of channels, and INT3/4 for all other098

groups of non-salient channels, where a group099

consists of 128 channels.100

Experiment results on Wikitext2, zero-shot101

common-sense reasoning, and zero-shot MMLU102

tasks show that the proposed ROSAQ leads to im-103

provements over the baseline saliency-aware quan-104

tization with mixed-precision on original feature105

space and the existing quantization methods, with106

minimal performance degradation. Furthermore,107

with kernel fusion, ROSAQ exhibits about 2.3x108

speed up over FP16 implementation when generat-109

ing 256 tokens with a batch size of 64, and about 2x110

speedup when generating 128 tokens with a batch111

size of 128.112

Our contributions are summarized as follows:113

1) we propose ROSAQ, which is a novel rotation-114

based saliency-aware quantization, by choosing115

principal channels resulting from the PCA projec-116

tion as salient ones, 2) we apply the head-wise PCA117

projection across multiple heads for quantizing the118

parameters of MHSA, and 3) the proposed ROSAQ119

leads to improved performances over existing quan-120

tization on Wikitext2, zero-shot common-sense rea-121

soning, and zero-shot MMLU tasks.122

2 Related Work123

Quantization methods have been studied mainly124

two categories – quantization-aware training (QAT)125

(Liu et al., 2023; Shen et al., 2024; Ma et al., 2024)126

and post-training quantization (PTQ) (Pan et al.,127

2023; Tseng et al., 2024; Wu et al., 2023a; Guan128

et al., 2024; Yao et al., 2024; Liu et al., 2024a;129

Dettmers et al., 2024; Shao et al., 2024). PTQ130

Figure 1: An overview diagram of ROSAQ that quan-
tizes the weights of a linear layer XW, using rotational
invariance as described by Eq. (1), where X is the cali-
bration data matrix. ROSAQ first applies the PCA-based
projection, taking Q as R, with eigenvectors obtained
from Eq. (4). The salient channels denoted as WS , cor-
responding to the K largest eigenvalues, are represented
in FP16, while the remaining non-salient channels WN

are represented in low precision, such as INT3/INT4.

is widely applied because it requires no (or min- 131

imal) training and only needs to use a small cali- 132

bration set. While the “rotational invariance” has 133

previously applied for the language model prun- 134

ing (Ashkboos et al., 2024a; Hu et al., 2024), the 135

rotation-based quantization has been extensively 136

studied to reduce outliers, including incoherence 137

processing based on orthogonal projections (Chee 138

et al., 2024; Ashkboos et al., 2024b), and optimiz- 139

ing the rotation matrix (Liu et al., 2024b) based on 140

Cayley SGD(Li et al., 2020). 141

Saliency-aware quantization has also been pro- 142

posed by AWQ (Lin et al., 2024), which selects 143

salient channels based on activation magnitudes 144

but uses “full low-precision” quantization, lever- 145

aging the “scaling invariance” property of linear 146

layers without mixed precision. 147

Unlike rotation-based quantization methods such 148

as (Liu et al., 2024b), which aim to remove out- 149

liers, ROSAQ applies rotation to more effectively 150

identify salient channels. Instead of the scaling in- 151

variance used in AWQ, ROSAQ exploits rotational 152

invariance for salient channel identification. 153

3 Method: ROSAQ 154

Figure 1 presents the overall diagram of ROSAQ. 155

Suppose that a calibration set consists of N 156

data samples, formally presented as X = 157

[x1, · · · ,xN ]T ∈ RN×d, where xi ∈ Rd is i-th 158

data representation. ROSAQ uses the rotational 159

invariance for all linear layers formed with XW in 160

transformer, where W ∈ Rd×d′ is a weight matrix 161
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of parameters, formulated as follows:162

XW = (XR)
(
RTW

)
(1)163

where R ∈ Rd×d is a rotation matrix, which con-164

sists of orthonormal vectors.165

After applying the weight quantization, Eq. (1)166

is approximated by:167

XW ≈ (XR)Q
(
RTW

)
(2)168

where Q is a quantization function, which adopts169

per-group quantization with a group size of 128170

channels.171

Similar to AWQ (Lin et al., 2024), ROSAQ also172

takes into account the assumption that weights are173

not equally salient. Different from AWQ which174

applies the quantization to all channels, but in a175

scale-sensitive manner, ROSAQ deploys the mixed-176

precision which keeps high-precision for salient177

channels while using low-precision non-salient178

channels, in order to minimize the quantization179

error particularly for salient channels. To for-180

mally present the mixed-precision, suppose the181

column vectors of R are sorted by their saliency182

degrees, and they are then divided into two groups183

– salient and non-salient groups of channels, R =184

[RS ,RN ], where RS ∈ RK is the orthonormal185

vectors for salient channels, and RN ∈ Rd−K is186

one for non-salient channels. Under the mixed-187

precision, Eq. 2 is approximated by:188

XW ≈ (XR)

[ (
RT

SWS

)
Q
(
RT

NWN

) ]
(3)189

where WS ∈ RK×d′ is the sub-block of the weight190

matrix for salient channels, and WN ∈ R(d−K)×d′191

is one for non-salient channels.192

ROSAQ consists of three steps — 1) PCA-based193

projection, 2) Salient channel identification, and 3)194

Saliency-aware quantization with mixed-precision,195

which will be presented in the next subsections196

with more details.197

3.1 PCA-based projection for Computing R198

To obtain the rotation matrix R in Eq. 3, we per-199

form PCA on the calibration set X as follows:200

XTX = RΛRT (4)201

where R ∈ Rd×d is the eigenvectors of XTX, and202

Λ is the corresponding eigenvalue matrix. With-203

out loss of generality, we assume that the column204

vectors of R are sorted by their eigenvalues.205
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Figure 2: Magnitude of the input activation values to
MHSA in LLaMA2-7B, before and after PCA-based
rotation. Salient channels are more dominant in PCA-
projected space than the original space. Detailed statis-
tics are presented in Appendix F.

To check whether the PCA projection helps to 206

identify salient channels, Fig 1 presents the acti- 207

vation magnitudes across all channels in both the 208

original and PCA-projected feature spaces. It is 209

seen that the activation values for salient channels 210

are more dominant, making them easier to distin- 211

guish compared to those in the original feature 212

space. 213

3.1.1 Head-wise PCA Projection in MHSA 214

In general, ROSAQ uses the layer-wise PCA projec- 215

tion, which is applied individually to the activation 216

matrix Xl in a layer-specific manner, for each lin- 217

ear layer represented by XlWl, thereby resulting 218

in its own rotation matrix Rl for each layer l. To 219

better capture the head-specific characteristics for 220

quantization, ROSAQ deploys a head-wise PCA 221

projection for MHSA, where a separate PCA is per- 222

formed for each head-specific attentive representa- 223

tion. More specifically, suppose that Hh ∈ Rm×dh 224

is h-th head-specific attentive representation result- 225

ing from the activation matrix Zl−1 at the previous 226

layer, as follows. 227

Hh = Attention
(
Zl−1W

Q
h ,Zl−1W

K
h ,Zl−1W

V
h

)
(5) 228

where WQ
h ,W

K
h ,WV

h ∈ Rd×dh are the weight 229

matrices at h-th head for query, key, and value 230

parts, respectively. 231

Instead of applying a global PCA on 232

the concatenated multi-head representation 233

concat (H1, · · · ,HH), we approximate MHSA by 234

using the head-specific PCA projection as follows: 235

MHSA (Zl−1) ≈
H∑

h=1

(HhRh)Q
(
RT

hW
O
h

)
(6) 236

where Rh is a head-specific PCA projection ma- 237

trix, which consists of eigenvectors obtained by 238
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Model Method PPL (↓) CSR Avg. (↑) MMLU (↑)

Llama3-8B

FP16 6.14 68.31 62.10
GPTQ *6.50 67.03 59.86

SpinQuant 6.71 66.20 59.00
AWQ 6.53 67.34 60.48
Mixed 6.63 67.28 59.80

ROSAQ 6.50 67.72 60.97

Qwen2-7B

FP16 7.14 68.92 69.42
GPTQ 7.30 68.76 67.26
AWQ 7.33 68.74 68.79
Mixed 7.39 68.29 67.81

ROSAQ 7.29 68.87 68.82

Table 1: Comparison results between ROSAQ and other
quantization methods on LLaMA3-8b and Qwen2-7b
models, when group-wise quantization is applied using
INT4 with a group size of 128 (i.e., INT4 g128). PPL
indicates the perplexity score on WikiText2, CSR and
MMLU refer to the averaged zero-shot accuracies on
zero-shot common sense reasoning and MMLU tasks,
respectively. * results were quoted from AWQ (Lin
et al., 2024). More detailed results are provided in
Appendix E.

applying PCA on the head-specific calibration set239

Xh ∈ RN×dh for h-th head, and WO
h ∈ Rdh×d is240

the output projection matrix. In Appendix C, we241

present that the use of head-specific PCA leads to242

the decrease of perplexity, comparing to the global243

PCA, as in Table 3.244

3.2 Salient channel identification245

To identify salient channels on the PCA-based pro-246

jection space, we sort projected channels according247

to their eigenvalues, and select a group of channels248

corresponding to the larger eigenvalues as salient249

ones. In Appedix F, Table 8 shows that the top-250

ranked channels also tend to have the largest aver-251

age magnitudes.252

3.3 Saliency-aware quantization with253

mixed-precision channel254

After splitting weights into two groups – WS and255

WN – salient and non-salient channels, we retain256

FP16 precision for the salient group, while apply-257

ing quantization under the INT3/INT4 to the non-258

salient group. Detailed settings can be found in259

Appendix G.260

4 Experiments261

4.1 Experimental Setup262

We apply per-group weight quantization under an263

INT3/INT4, where each group consists of 128 chan-264

nels. Similar to AWQ(Lin et al., 2024), we use265

a small calibration set from the Pile dataset(Gao266

et al., 2020) to prevent overfitting to any spe- 267

cific downstream domain. For LLMs, we employ 268

open-source models, including the LLaMA2 and 269

LLaMA3 (Touvron et al., 2023; AI@Meta, 2024) 270

and Qwen-2 (Yang et al., 2024) model families. 271

To evaluate the quantized LLMs, we report per- 272

plexity (PPL) on the WikiText-2 dataset(Merity 273

et al., 2016) and use standard evaluation metrics 274

for zero-shot Common Sense Reasoning tasks and 275

zero-shot MMLU benchmark(Hendrycks et al., 276

2021). 277

We compare ROSAQ with the existing quanti- 278

zation methods, such as GPTQ, (Frantar et al., 279

2023), SpinQuant (Liu et al., 2024b), and AWQ 280

(Lin et al., 2024). We also report the “rotation-less” 281

baseline run, denoted as Mixed which select salient 282

channels according to the activation magnitudes on 283

the original feature space (i.e., R = I in Eq. (3)). 284

4.2 Main Results 285

Table 1 presents the performances of quantized 286

models in INT4, in terms of the perplexity on Wiki- 287

Text2 and the zero-shot accuracies on Common 288

Sense Reasoning tasks and zero-shot MMLU. 289

As seen in Table 1, ROSAQ exhibits slightly 290

superior to GPTQ(Frantar et al., 2023), Spin- 291

Quant(Liu et al., 2024b) and AWQ(Lin et al., 2024) 292

except perplexity. Notably in Table 6 which is 293

more aggressive 3bit setting, ROSAQ outperforms 294

other methods achieving the highest MMLU results 295

across the various categories. 296

Detailed results are presented in Appendix E, D. 297

In particular, Table 4 compares inference through- 298

puts, reporting that ROSAQ achieves approxi- 299

mately 2.3x speedup over FP16 when generating 300

256 tokens with a batch size of 64. 301

5 Conclusion 302

In this paper, we proposed ROSAQ, a novel 303

saliency-aware quantization method that uses PCA- 304

based rotation to identify salient channels and pre- 305

serve them in a high-precision. Experimental re- 306

sults on LLaMA and Qwen-2 models demonstrate 307

that ROSAQ achieves promising outcomes in most 308

cases. In the future, we aim to further generalize 309

rotational invariance by incorporating scaling fac- 310

tors for selecting salient channels. We also would 311

like to extend saliency-aware quantization to both 312

weights and activations, thereby optimizing the 313

efficiency of the retrieval-augmented generation 314

(RAG) (Lewis et al., 2020). 315
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Limitations316

In ROSAQ, we focus solely on weight quantization,317

however, weight-activation quantization is often318

important, especially for retrieval-augmented gen-319

eration (RAG). Additionally, while we currently320

use mixed precision by retaining FP16 for salient321

channels, it would be valuable to explore the use322

of fully low-precision formats, as in AWQ (Lin323

et al., 2024), by further generalizing the rotational324

invariance applied in our approach.325

While ROSAQ achieve better performance by326

explicitly separating salient weights, but hardware327

inefficiencies still remain. In AWQ (Lin et al.,328

2024), they fully address the mixed-precision is-329

sue by quantizing all weights to 4 bits, making330

the approach more hardware-friendly. Consider-331

ing the use of mixed precision, we may need to332

explore more hardware-friendly approaches to sup-333

port mixed precision, or generalize the proposed334

framework by quantizing all weights into low-335

precision formats.336

We explore rotational invariance to select salient337

features; however, further analysis is needed to338

understand how this saliency-aware quantization339

relates to other rotation-based approaches for miti-340

gating outliers. Both theoretical and empirical in-341

vestigations are required to establish a connection342

between saliency-aware quantization and outlier-343

free quantization when rotational operations are344

adopted.345
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A ROSAQ vs. AWQ: Rotational 600

invariance vs. Scaling invariance for 601

Selecting Salient Channels 602

ROSAQ and AWQ uses different types of com- 603

putational invariance of a linear layer – the rota- 604

tional and scaling invariance. In other words, while 605

ROSAQ uses the rotational invariance based on 606

Eq. (1), AWQ (Lin et al., 2024) uses the scaling 607

invariance, formulated as follows: 608

XW ≈
(
XD−1

)
Q (DW) (7) 609

where D ∈ Rd×d is a positive diagonal matrix, 610

where AWQ uses the power of the average magni- 611

tudes of channels. 612

B Impact of Salient Channel 613

Identification 614

Selected PPL (↓)
Top 5.57
Bottom 6.63
Random 6.59
Top & Bottom 5.58

Table 2: Comparison of variants of the salient channel
identification in ROSAQ, in terms of perplexity (PPL)
on WikiText-2, under Llama2-7B setting.

As in Section 3.2, after performing PCA, 615

ROSAQ selects the principal dimensions corre- 616

sponding to the K largest eigenvalues as salient 617

features. To examine the effect of using the top- 618

K eigenvalues, Table 2 compares different meth- 619

ods for identifying salient channels in the PCA- 620

projected space, measured by perplexity (PPL) on 621

WikiText2 under the LLaMA2-7B setting. Top 622

refers to ROSAQ’s method of selecting the largest 623

eigenvalues, Bottom represents a scheme that se- 624

lects the least-principal dimensions corresponding 625

to the K smallest eigenvaluesl, Random refers 626

to a selection scheme of a random group of K- 627

consecutive channels, and Top & Bottom refers to 628

a combined scheme that takes both channels se- 629

lected by Top and Bottom. The results show that 630
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Rotation PPL (↓)
w/ Head-wise 5.57
w/o Head-wise 5.94

Table 3: Comparison results between the head-wise
PCA and the global PCA (corresponds to the row named
“w/o Head-wise row”) in terms of PPL scores on Wiki-
Text2 under the LLaMA2-7B setting.

the Top method yields the lowest PPL score, con-631

firming that ROSAQ’s selection scheme, based on632

the largest eigenvalues, effectively identifies infor-633

mative salient channels.634

C Impact of Head-Wise PCA Projection635

As in Section 3.1.1, ROSAQ applies a head-wise636

PCA projection, where PCA is performed sepa-637

rately on each head-specific attention representa-638

tion. To examine the effect of head-wise PCA, we639

explore an alternative approach using global PCA,640

applied to the concatenated multi-head attention641

representations, as follows642

MHSA (Zl−1) ≈643

concat [H1, · · · ,HH ]R Q
(
RTWO

)
(8)644

where R ∈ Rdh·H×d is the global PCA projec-645

tion matrix which is obtained by performing the646

PCA on the calibration set Xmulti that consists647

of concatenated multi-head representations, and648

WO ∈ Rdh·H×d is the global output weight ma-649

trix.650

Table 3 presents a comparison between the head-651

wise PCA and the global PCA (corresponds to the652

row named “w/o Head-wise row”) in terms of PPL653

scores on WikiText2 under the LLaMA2-7B setting.654

The results show that head-wise PCA achieves a655

PPL of 5.57, improving upon the PPL of 5.94 from656

global PCA, confirming the effectiveness of the657

head-wise PCA approach.658

D Evaluation of Throughput using Kernel659

Fusion660

To evaluate the throughput of ROSAQ for infer-661

ence time, we apply the QUICK(Kim et al., 2024b)662

kernel to assess its advantages over the FP16 im-663

plementation in an INT4 quantization setting. Con-664

sidering that most quantization methods present665

similar inference speeds to those using FP16 as666

batch size increases, we also evaluate the through-667

put using batch sizes ranging from 64 to 128 on an668

RTX A6000.669

For each test, we design our experiment such 670

that the number of tokens to be generated is the 671

same as the number of the context tokens (e.g., 32 672

tokens are generated after seeing 32 context tokens 673

generated 32 tokens, and 64 tokens are generated 674

after seeing 64 context tokens). Generation pro- 675

cess continues until an Out-of-Memory error is 676

encountered, after which we calculates throughput 677

performance as follows: 678

DecodeSpeed =
1

MedianTimePerToken
, (9) 679

680

Throughput = DecodeSpeed× BatchSize,
(10) 681

Table 4 shows results of throughput for inference, 682

comparing ROSAQ with AWQ1 and GPTQ2, eval- 683

uated on sample sets in Wikitext2, under LLaMA2- 684

7b, with the relative speedup over the FP16 im- 685

plementation. It is shown that ROSAQ achieves 686

about 2.3x speedup for generating 256 tokens with 687

a batch size of 64, and about 2x speedup for gener- 688

ating 128 tokens with a batch size of 128. 689

E Detailed Experiment Results 690

Tables 5, 6, and 7 present the full comparison 691

results of ROSAQ, GPTQ(Frantar et al., 2023), 692

SpinQuant(Liu et al., 2024b), AWQ(Lin et al., 693

2024), and Mixed, in terms of PPL on WikiText2, 694

zero-shot accuracies on Common Sense Reason- 695

ing and MMLU(Hendrycks et al., 2021) tasks, 696

under INT4/INT3 quantization, using LLaMA2- 697

7b, LLaMA3-8b, and Qwen2-7b, respectively. 698

Zero-shot commonsense reasoning tasks include 699

PIQA(Bisk et al., 2020), WinoGrande(Sakaguchi 700

et al., 2019), HellaSwag(Zellers et al., 2019), 701

ARC-easy and ARC-challenge (Clark et al., 2018), 702

CommonsenseQA(Talmor et al., 2019), Open- 703

bookQA(Mihaylov et al., 2018). 704

F Activation Values of Salient channels: 705

Original vs. PCA-Projected Spaces 706

To examine how the average magnitudes of the 707

salient channels differ between the original and 708

PCA-projected spaces, Table 8 represents the av- 709

erage magnitudes of top salient channels, where 710

ten channels are selected after sorting all channels 711

1https://github.com/casper-hansen/AutoAWQ
2https://github.com/AutoGPTQ/AutoGPTQ
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Device Batch Size # of given,
# to generate

FP16 AWQ GPTQ ROSAQ
Decode Speed Decode Speed vs FP16 Decode Speed vs FP16 Decode Speed vs FP16

RTX A6000

64
128 1106 2323 110% 1331 20% 1667 50%
256 708 1909 169% 800 12% 1638 131%
512 OOM 1395 - 433 - 1235 -

128
64 2077 2635 26% 2274 9% 2788 34%

128 1299 2479 90% 1453 12% 2604 100%
256 OOM 2012 - 806 - 2082 -

Table 4: Comparison of throughput for inference, between ROSAQ, AWQ, and GPTQ, computed on a RTX A6000,
using sample sets in Wikitext2, under LLaMA2-7b, on RTX A6000, with the relative speedup over the FP16
implementation. For kernel funsions, AWQ, GPTQ, and ROSAQ use AWQ kernel, the marlin kernel, and QUICK
kernel, respectively.

Model Method PPL ↓ Common Sense Reasoning 0-shot ↑ MMLU 0-shot ↑
PIQA WinoGrande HellaSwag ARC_e ARC_c CSQA OBQA Avg. Humanities Social Science STEM Other Avg.

Llama2
-7B

FP16 - 5.47 79.11 69.3 76 74.58 46.42 32.84 44.2 60.35 38.83 46.12 34.48 47.02 41.26

INT4
g128

GPTQ *5.69 78.62 68.82 75.33 72.56 44.20 28.83 44 58.91 36.96 42.57 31.72 44.67 38.72
SpinQuant 5.52 77.15 67.96 74.39 70.75 42.75 24.73 42.2 57.13 31.20 34.97 28.10 37.46 32.72

AWQ 5.60 79.05 68.67 75.31 73.70 44.28 27.76 44.2 59 36.20 46.70 35.81 46.31 40.64
Mixed 5.68 79.22 69.53 75.36 74.16 44.71 31.78 42.6 59.62 37.79 43.74 33.62 45.67 39.90
Ours 5.57 78.62 69.38 75.32 73.19 44.80 31.12 42.6 59.29 39.09 46.47 34.51 46.25 41.26

INT3
g128

GPTQ *6.43 76.66 66.93 70.62 63.97 39.07 22.36 41.2 54.40 28.25 30.03 27.40 30.29 28.90
SpinQuant 6.25 75.90 66.38 70.09 65.24 39.51 21.46 38.8 53.91 26.06 27.66 25.37 30.54 27.25

AWQ 6.24 77.37 68.19 73.32 69.53 44.2 26.37 40 57 31.16 32.27 30.26 37.17 32.53
Mixed 6.30 77.48 68.11 73.20 71.63 42.49 26.78 41 57.24 34.43 39.42 33.42 40.52 36.65
Ours 6.08 78.24 66.46 73.26 70.58 42.92 28.26 39.8 57.07 34.52 40.43 32.76 42.45 37.17

Table 5: Comparison results between ROSAQ and other quantization methods on LLaMA2-7B, when group-wise
quantization is applied using INT4/INT3 with a group size of 128 (i.e., INT4/3 g128). PPL indicates the perplexity
score on WikiText2, the performances reported at Common Sense Reasoning and MMLU indicate the zero-shot
accuracies across tasks. * results were quoted from AWQ (Lin et al., 2024).

Model Method PPL (↓)
Common Sense Reasoning 0-shot (↑) MMLU 0-shot (↑)

PIQA WinoGrande HellaSwag ARC_e ARC_c CSQA OBQA Avg. Humanities Social Science STEM Other Avg.

Llama3
-8B

FP16 - 6.14 80.85 72.61 79.16 77.69 53.33 69.53 45 68.31 54.84 72.96 53.50 71.07 62.10

INT4
g128

GPTQ *6.5 80.03 73.88 77.64 76.81 51.45 65.03 44.4 67.03 53.73 70.39 50.17 68.55 59.86
SpinQuant 6.71 79.22 72.61 78.42 73.7 50.26 66.01 43.2 66.2 52.20 69 50.52 68.04 59

AWQ 6.53 80.52 70.88 77.73 78.11 49.32 80.99 43.6 68.74 53.20 71.47 52.24 68.73 60.48
Mixed 6.63 79.81 72.45 78.19 77.61 52.22 66.09 44.6 67.28 53.43 70.30 50.59 68.39 59.80
Ours 6.50 81.01 70.72 78.21 75.84 51.54 79.36 45.4 68.87 54.24 71.30 52.27 69.75 60.97

INT3
g128

GPTQ *8.2 73.18 67.56 70.95 60.48 39 34.15 37.2 54.65 41.11 49.95 35.65 48.60 43.48
SpinQuant 7.98 78.18 68.98 74.67 73.95 47.78 50.78 40.4 62.11 43.91 49.24 38.03 51.69 45.48

AWQ 8.24 78.13 72.14 73.97 73.4 46.16 59.87 42.8 63.78 46.48 59.70 39.52 57.32 50.21
Mixed 10.67 74.32 68.75 71.52 64.27 41.21 47.50 38.8 58.05 42.64 55.83 40.34 58.42 48.50
Ours 8.11 77.64 68.59 74.1 69.82 45.65 58.64 42 62.35 47.55 60.42 45.83 58.55 52.41

Table 6: Comparison results between ROSAQ and other quantization methods on LLaMA3-8B, when group-wise
quantization is applied using INT4/INT3 with a group size of 128 (i.e., INT4/3 g128). PPL indicates the perplexity
score on WikiText2, the performances reported at Common Sense Reasoning and MMLU indicate the zero-shot
accuracies across tasks. * results were quoted from AWQ (Lin et al., 2024).

Model Method PPL (↓)
Common Sense Reasoning 0-shot (↑) MMLU 0-shot (↑)

PIQA WinoGrande HellaSwag ARC_e ARC_c CSQA OBQA Avg. Humanities Social Science STEM Other Avg.

Qwen2
-7B

FP16 - 7.14 81.12 72.30 78.80 74.62 49.74 81.65 44.2 68.92 60.72 80.92 64.95 75.73 69.42

INT4
g128

GPTQ 7.3 80.41 70.64 77.84 75.76 51.62 79.28 45.8 68.76 58.55 79.46 61.16 74.12 67.26
AWQ 7.33 80.52 70.88 77.73 78.11 49.32 80.99 43.6 68.74 60.77 80.08 63.53 75.09 68.79
Mixed 7.39 80.47 70.48 78.12 74.07 50.60 80.92 43.4 68.29 58.55 80.18 62.54 74.93 67.81
Ours 7.29 81.01 70.72 78.21 75.84 51.54 79.36 45.4 68.87 60.85 79.95 63.5 75.28 68.82

INT3
g128

GPTQ 8.04 77.69 67.48 74.44 71.55 46.5 70.93 43.2 64.54 54.35 72.77 54.17 67.36 61.22
AWQ 8.16 79.71 68.82 74.69 74.96 50.34 77.97 43.2 67.1 55.49 75.92 56.11 71.13 63.57
Mixed 22.25 70.40 58.96 54.77 61.36 42.24 74.94 41.8 57.78 55.47 75.37 57.98 70.10 63.63
Ours 7.97 79.71 69.85 76.58 69.15 46.42 78.13 43.6 66.21 56.37 77.87 61.08 72.22 65.65

Table 7: Comparison results between ROSAQ and other quantization methods on Qwen2-7B, when group-wise
quantization is applied using INT4/INT3 with a group size of 128 (i.e., INT4/3 g128). PPL indicates the perplexity
score on WikiText2, the performances reported at Common Sense Reasoning and MMLU indicate the zero-shot
accuracies across tasks. * results were quoted from AWQ (Lin et al., 2024).
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Method # Rank of Avg. Magnitude
1 2 3 4 5 6 7 8 9 10

Rotated
Magnitude 42.13 9.38 6.25 5.44 5.06 4.38 4.04 4.03 3.96 3.27
Channel Index 0 1 2 4 3 5 6 8 7 10
Eigenvalue 20449.56 7449.92 4075.54 2847.99 3839.25 2720.07 2446.66 2038.99 2229.96 1551.73

Original
Magnitude 7.44 2.12 1.23 1.21 0.88 0.70 0.65 0.62 0.51 0.50
Channel Index 1512 2944 2298 2393 3135 3431 310 3893 2077 1415

Table 8: Comparison of statistics of the salient channels between the original and PCA-projected spaces, using
the LLaMA2-7B model with a random 2048-token sequence from WikiText-2. 1) The average magnitudes of top
salient channels, where ten channels are selected after sorting all channels based on their average magnitudes in
each respective space. 2) The corresponding eigenvalues in the PCA-projected channels

based on their average magnitudes in each respec-712

tive space, using the LLaMA2-7B model with a713

random 2048-token sequence from WikiText-2. In714

the PCA-projected channels, we also present their715

corresponding eigenvalues.716

The results show that the PCA-projected space717

tends to have larger average magnitudes compared718

to those of the original space. The relative ratio of719

the average magnitudes between the top-1 and top-720

2 channels is more dominant in the PCA-projected721

space compared to the original space.722

G Weight Splitting Section723

For the attention block, we allocate 128 salient fea-724

tures for WQ,WK , and WV . In the case of WO,725

we allocate 32 salient features per head to ensure726

the group size for quantization is a multiple of 32.727

For the FFN block, 128 salient features are set for728

both WU and WG. However, since the rotation729

matrix between weights of FFN block cannot be730

absorbed into WU and WG, we do not rotate the731

WD. Instead, we apply per-channel scaling, pro-732

posed by AWQ(Lin et al., 2024), to protect the733

salient features of the WD during quantization. We734

also provide an ablation study in Table 2 to test735

whether the earlier features of the weights are truly736

salient.737

10


	Introduction
	Related Work
	Method: ROSAQ
	PCA-based projection for Computing R
	Head-wise PCA Projection in MHSA

	Salient channel identification
	Saliency-aware quantization with mixed-precision channel

	Experiments
	Experimental Setup
	Main Results

	Conclusion
	ROSAQ vs. AWQ: Rotational invariance vs. Scaling invariance for Selecting Salient Channels
	Impact of Salient Channel Identification
	Impact of Head-Wise PCA Projection
	Evaluation of Throughput using Kernel Fusion
	Detailed Experiment Results
	Activation Values of Salient channels: Original vs. PCA-Projected Spaces
	Weight Splitting Section

