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Abstract

3D scene segmentation based on neural implicit representation has emerged re-
cently with the advantage of training only on 2D supervision. However, existing
approaches still requires expensive per-scene optimization that prohibits generaliza-
tion to novel scenes during inference. To circumvent this problem, we introduce a
generalizable 3D segmentation framework based on implicit representation. Specif-
ically, our framework takes in multi-view image features and semantic maps as
the inputs instead of only spatial information to avoid overfitting to scene-specific
geometric and semantic information. We propose a novel soft voting mechanism
to aggregate the 2D semantic information from different views for each 3D point.
In addition to the image features, view difference information is also encoded in
our framework to predict the voting scores. Intuitively, this allows the semantic
information from nearby views to contribute more compared to distant ones. Fur-
thermore, a visibility module is also designed to detect and filter out detrimental
information from occluded views. Due to the generalizability of our proposed
method, we can synthesize semantic maps or conduct 3D semantic segmentation for
novel scenes with solely 2D semantic supervision. Experimental results show that
our approach achieves comparable performance with scene-specific approaches.
More importantly, our approach can even outperform existing strong supervision-
based approaches with only 2D annotations. Our source code is available at:
[https://github.com/HLinChen/GNeSH

1 Introduction

Understanding high-level semantics of 3D scenes in digital images and videos is a fundamental
research in computer vision. Several extensively studied tasks such as scene classification [22], object
detection [34], and semantic segmentation [[10] facilitate the extraction of semantic descriptions
from RGB and other sensor data. These tasks form the foundation for applications such as visual
navigation [4]] and robotic interaction [2].

Several commonly used 3D representations include 3D point clouds [[11}132], voxel grids [42]], and
polygonal meshes [28| [18]]. A direct learning of semantics on these 3D representations require large
amounts of well-annotated 3D ground truths for training. Unfortunately, these 3D ground truths are
often much more laborious and expensive to obtain compared to its 2D counterparts. Recently, Neural
Radiance Field (NeRF) [30,52] has emerged as a new 3D representation, which can capture intricate
geometric details [41] using solely RGB images. Many researchers utilize this 3D representation to
propose the concept of Neural Semantic Field [55[17, 3], where semantics is assigned to each 3D
point. However, these existing works on neural semantic fields inherited the per-scene optimization
limitation of the vanilla NeRF and thus cannot generalize across novel scenes. As a result, the
practicality of the approaches for semantic segmentation is severely restricted.

In view of the limitations in existing neural semantic field works, this paper addresses the challenging
task of generalizable neural semantic fields. The objective is to construct a generalizable semantic
field capable of producing high-quality semantic rendering from novel views and 3D semantic
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segmentation using input images from unseen scenes. The generalization ability offers numerous
interactive applications that provide valuable feedback to users during 3D capture without the
requirement for retraining. Recently, NeSF [44]] claims the ability to generate 3D semantic fields for
novel scenes by utilizing 3D UNet [36]] to extract semantic features from a density field obtained
from a pre-trained NeRF model. However, this method lacks efficiency as it requires training a
separate NeRF model for each scene before segmenting the 3D scene. Furthermore, it lacks sufficient
generalizability to new scenes, thus making it suitable only for offline applications. Recently, several
researchers propose generalizable NeRF methods [6, 45} 53] that demonstrate effective generalization
across scenes for reconstructing radiance fields without the need for laborious per-scene optimization.
A naive approach for generalizable Neural Semantic Field (NeSF) is to incorporate an additional
semantic head to the generalizable NeRF framework. However, this method does not perform well
for complex and realistic indoor scenes, as demonstrated in Tab. [T|and [20]. One possible reason
is that semantics represents high-level information, and a simple head without direct 3D semantic
supervision is insufficient for generating 3D semantic fields.

Inspired by image-based rendering (IBR) [9, 145]], we propose a soft voting scheme (shown in Fig.
to aggregate the 2D semantic information from different views for each 3D point for learning a
Generalizable Neural Semantic Field (GNeSF). Specifically, we use a pre-trained 2D semantic
segmentation model to generate 2D semantic maps for the source views and then leverage the
warping, resampling, and/or blending operations of IBR to infer the semantics of a sample 3D point.
Considering the unbounded nature and the lack of meaning for logit values across multiple views,
we utilize a probability distribution instead of semantic logits to represent semantics across views.
Our framework utilizes multi-view image features instead of position information as input to further
enhance the generalizability of our model and prevent overfitting to scene-specific geometric and
semantic information. In addition to the extracted image features, our framework incorporates view
difference information to include the prior of higher significance for nearby views when generating
the voting scores for blending source views. We then introduce a soft voting scheme to compute the
semantics of each sample point as the weighted combination of the projected semantics from the
source views.

Geometric information is predicted to perform volumetric rendering after obtaining semantics of
3D points along sampled ray. Specifically, we first build a feature volume by projecting each vertex
of the volume to latent 2D features and aggregating these 2D features to get a density 3D feature.
This feature volume is then fed into a 3D neural network to obtain a geometry encoding volume. For
a sampled 3D point, we use an MLP network to infer the specific geometric representations, e.g.,
density or Signed Distance Function (SDF), from the interpolated features of the geometry encoding
volume.

Weights of points along the ray are obtained from the predicted geometric representations. A final
semantic value is computed for each ray through volume rendering by weighted summing semantics
alone the ray. Due to the generalizability of our proposed method, we can synthesize semantic maps
or conduct 3D semantic segmentation for novel scenes with solely 2D semantic supervision. To
facilitate 3D semantic segmentation, we design a visibility module (shown in Fig. 2b) that identifies
and removes occluded views for each spatial point. The remaining semantics from the visible views
are then utilized to vote on the semantics of the respective point. In summary, our contributions
include:

* We are the first to tackle the task of generalizable neural semantic field. Our proposed
GNeSF is capable of inferring novel view synthesis of semantic maps or 3D semantic
segmentation of novel scenes without retraining. Furthermore, our method depends solely
on 2D semantic supervision during training.

* We propose a novel soft voting scheme that determines the semantics for each 3D point
by considering the 2D semantics from multiple source views. A visibility module is also
designed to detect and filter out detrimental information from occluded views.

* Our proposed GNeSF enables synthesis of semantic maps for both novel views and novel
scenes, and achieves comparable performance to per-scene optimized methods. The results
on ScanNet and Replica demonstrate comparable or superior performance compared to
existing methods utilizing strong 3D supervision.



2 Related Work

2.1 2D & 3D Semantic Segmentation

Traditionally, semantic segmentation has been treated as a per-pixel classification task, where FCN-
based architectures [27] assign category labels to individual pixels independently. Subsequent
methods have acknowledged the importance of context in achieving accurate per-pixel classification
and have concentrated on developing specialized context modules [[7, 18, 54]] or incorporating self-
attention variations [39, 46, [10]. In our work, we utilize the state-of-the-art Mask2Former [10]]
with a Swin-Transformer [26] backbone as our pre-trained 2D semantic segmenter. 3D semantic
segmentation also has been investigated with pre-computed 3D structures such as voxel grids or point
clouds [[19,132] 133}, 137,112, [14} 35]], and simultaneous segmentation and 3D reconstruction from 2D
images [31}129]. Unlike these methods, our GNeSF aims to segment a dense 3D representation using
only 2D inputs and semantic supervision without the need for 3D semantic annotations.

2.2 Neural Semantic Fields

Semantic-NeRF [53] is first to introduce the integration of semantics into NeRF. It showcases the
fusion of noisy 2D semantic segmentations into a coherent volumetric model. This integration
enhanced the accuracy of the model and enabled the synthesis of novel views with semantic masks.
Subsequently, numerous studies have built upon this concept. For example, [17, 23} 21] incorporate
instance modeling, and [43] encode abstract visual features that allow for post hoc derivation of
semantic segmentation. NeRF-SOS [[16] combines object segmentation and neural radiance fields to
segment objects in complex real-world scenes using self-supervised learning. [50] proposes an object-
compositional neural radiance field. RFP [25] designs an unsupervised approach to segment objects
in 3D during reconstruction using only unlabeled multi-view images of a scene. Panoptic NeRF [17]]
and DM-NeREF [3]] are specifically designed for panoptic radiance fields for tasks such as label transfer
and scene editing, respectively. However, these methods require scene-specific optimization and thus
not generalizable to unseen scenes. Similar to our objective, NeSF [44] addresses the challenge of
generalization to unseen scenes. Nonetheless, NeSF relies on multiple pre-trained and scene-specific
optimized NeRF models for density field generation and segmentation which restricts its overall
generalizability. In contrast, our GNeSF is able to infer on novel scenes directly without any further
optimization.

2.3 Generalizable Neural Implicit Representation

Significant advancements have been achieved in the field of neural implicit representation [30} 48 52].
However, these approaches heavily depend on computationally expensive per-scene optimization.
To address this limitation, several new neural implicit representation methods emphasizing on
generalization has emerged. These methods [6l 45, 149, 51} 5] aim to learn a representation of the
radiance field from a provided set of images of novel scenes. This enables the synthesis of novel views
without requiring per-scene optimization. PixelNeRF [51] and IBRNet [45] utilize volume rendering
techniques to generate novel view images by employing warped features from nearby reference
images. In addition to novel synthesis, MonoNeuralFusion [56]] introduces a novel neural implicit
scene representation with volume rendering for high-fidelity generalizable 3D scene reconstruction
from monocular videos. Inspired by these generalizable methods, we takes in multi-view image
feature as the input instead of the position information to enhance the generalizability of our model.
Semantic knowledge obtained from 2D vision is then aggregated to infer 3D semantics by the
proposed soft voting scheme.

3 Our GNeSF: Generalizable Neural Semantic Fields

We propose GNeSF to achieve generalizable semantic segmentation on neural implicit representation.
As illustrated in Fig. |1} our GNeSF consists of three main components: 1) Feature extraction and
semantic prediction from multiple source views; 2) Geometry and semantics prediction for sampled
3D points; 3) Semantic map prediction with volume rendering.
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Figure 1: The GNeSF framework comprises three key components: 1) Extraction of features and
semantic prediction from multiple source views, shown in the blue dashed box; 2) Prediction of
geometry and semantics for sampled 3D points, shown in the yellow dashed box; 3) Prediction of
semantic maps using volume rendering, shown in the red dashed box. Here, “MVS” means using
Multi-View Stereo to build the feature volume.

3.1 Source-View Image Features and Semantics Map

Inspired by existing generalizable neural implicit representations [6l 45]], our framework leverages
image features from source-view images for generalization to unseen scenes during inference. We
extract an image feature map F; € R¥:*Wixd for each source image I; € [0, 1]#:*Wix3 with a
U-Net-based convolutional neural network, where H; x W; and d denotes the dimensions of the
image and the feature maps, respectively. Concurrently, we use a pre-trained mask2former [[10] to
predict the semantic maps S; € R:XWiX¢ of each source image I;, where ¢ represents the number
of categories.

3.2 3D Point Geometry and Semantics Predictions

Using the source-view image features and semantics maps, we predict the geometry o(x) and
semantics s(x) for each sampled 3D point x € R?. We first build a geometry encoding volume M
based on the image feature map F; and then predict the geometry o (x) using an MLP. Concurrently,
we design a soft voting scheme (shown in Fig. [2a) based on the 2D semantic observations S; €
RH:XWixe tg predict the semantics s(x).

3.2.1 Geometry Encoding Volume

To construct the geometry encoding volume M, we project each vertex k € R? of the volume to the
image feature maps F; and obtain its image features F';(;(k)) by interpolation, where 7; (k) denotes
the projected pixel location of k on the feature map F;. For simplicity, we abbreviate F;(m;(k)) as
F;(k). We then compute the mean p € R? and variance v € R? of the projected image features
{F;(k)}Y, from the N source views to capture the global information. The mean y and variance v
are concatenated to build a feature volume B. Intuitively, the mean image feature provides cues for
the appearance information, and the variance for geometry reasoning. Finally, we use a 3D neural
network H, to aggregate the feature volume B to obtain the geometry encoding volume M. Formally,
the whole process can be expressed by:

p(k) = Mean({F;(k)};L,),  v(k) = Var({Fi(k)}}L,), (1a)
B(k) = [:U'(k)a V(k)]a M= HQ(B)a (1b)
where [+, -] represents feature concatenation, and Mean(-) and Var(+) are the averaging and variance

operations. For a sampled 3D point x, we use an MLP network fp to predict the geometry o(x)
based on the interpolated features of the geometry encoding volume M(x), i.e.:

o(x) = fo(M(x)). )
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(a) Soft Voting Scheme (b) Visibility Module

Figure 2: (a) The soft voting scheme aggregates the 2D semantic information from different views to
infer semantics of each 3D point. (b) The visibility module detects and eliminates occluded views
for each spatial point. For example, x; is visible in the 2D semantic observation because the SDF
values along the ray from the source view to the target point transits from positive to negative. On the
other hand, x, and x3 are occluded in the 2D semantic observation because the value changes from
positive to negative and then back to positive.

Note that geometry o(x), e.g., volume density or Signed Distance Function (SDF) is represented
differently in different neural implicit representations. More details are provided in Sec. 4]

3.2.2 Semantics Soft Voting

Given a query point location x € R? along a ray r € R3, we project x onto N nearby source
views using the respective camera parameters. Image features {F;(x)}Y, € R and semantics
maps {S;(x)}X, € [0,1]* are then sampled at the projected pixel locations over the N source
views through bilinear interpolation on the image feature F'; and semantic maps S;, respectively.
We propose a soft voting scheme to predict the semantics s(x) of a sampled 3D point x based on
the 2D projected image features {F;(x)}Y, and semantics maps {S;(x)}, . Specifically, the 2D
projected image features {F;(x)}, are used to predict voting weights {v; }}_, for the corresponding

semantics maps {S;(x)}, in the source views.

We first calculate the mean and variance of the image features {F;(x)}Y ; from the N source views
to capture the global consistency information. Each image feature F;(x) is concatenated with the
mean and variance together, and then fed into a tiny MLP network to generate a new feature F/(x).
Subsequently, we feed the new feature F’,(x), the displacement Ad; = x — o; between the 3D point
x and the camera origin o; of the corresponding source view, and the trilinearly interpolated volume
encoding feature M(x) into an MLP network f,, to generate voting weights v;(x). In contrast to
view-dependent color, we use only displacement for semantics since it remains consistent regardless
of the viewing direction.

Furthermore, we encode the displacement information Ad; = x — o; for voting weights prediction
since nearby views should contribute more compared to the distant ones. The voting weight v; (x) is
predicted as:

v;(x) = fo(Fi(x), M(x), Ad;). 3)

The final semantics of the 3D point is obtained through a soft voting mechanism, given by:

N
s(x) =Y | Silx) - exp (vi(x)) / Zexp (i) | O]

i=1

where exp(.) represents the exponential function.

Remarks. An alternative approach would be to directly regress s(x) instead of predicting the voting
weights. Compared to this alternative approach, predicting the voting weights makes it easier for the
network to leverage the source-view semantics maps which are easier to obtain without direct 3D
supervision. Our conjecture is verified experimentally by the degraded performance when we directly
regress the semantics.



3.3 Semantics Rendering and Training

Rendering. The method presented in the previous section enables the computation of semantics
s(x) and geometry o(x), e.g., volume density or SDF in the continuous 3D space. The volume
rendering of the semantics S(r) along a ray r traversing the scene is approximated by the weighted
sum of the semantics from the M samples along the ray, i.e.:
M
S(r) = > w(xm) - 5(%m), (5)
m=1

where the samples from 1 to M are sorted in ascending order based on their depth values. x,,
represents the query point of the m-th sample along the ray r. s(x,,) and w(x,,) represent the
semantics and the corresponding weight of the query sample x,,, respectively. The computation of
the weight w(x,,,) depends on the task of view synthesis or 3D segmentation (c.f: Sec. [4|for details).

Training objective. To train the model, we minimize the cross-entropy error between the rendered
semantics S(r) and the corresponding ground truth pixel semantics S(r).:

1 N
Ly=——=> S(r)logS(r), (6)
|R| rckR
where R represents the set of rays included in each training batch.

4 Semantic View Synthesis and 3D Segmentation

Our proposed generalizable neural semantic field can be applied to the tasks of semantic view
synthesis and 3D semantic segmentation.

4.1 Semantic View Synthesis

Semantic view synthesis aims to render the semantic maps for novel views. A naive approach for
synthesizing novel semantic views first uses a generalizable NeRF to generate images of the novel
views and then followed by applying 2D semantic segmentation to these synthesized images using a
separate 2D semantic segmentor. In contrast to this two-stage method, our approach is a one-step
synthesis that is more efficient and streamlined. In semantic view synthesis, we use the predicted
geometry o(X,,) from Eq.[2|as the volume density. We then follow NeRF [30] to compute the weight
w(X;,) used in Eq. [5|by:

—1

W(Xm) = T(xm) (1 —exp(—0(x))), where T(x,,) = exp(— o(Xm)) @)
1

3

<.
I

is the accumulated transmittance along the ray. Once the weights w(x,, ) are computed, we proceed
to construct and train a generalizable neural semantic field based on the approach proposed in Sec. [3.3]
for rendering semantic views.

4.2 3D Semantic Segmentation

The goal of 3D semantic segmentation is to predict the semantic of each sample point in the 3D space.
Consequently, the rendering of the semantic map is dependent on high-quality surfaces. To this end,
we predict the geometry o(x,,) as a signed distance field (SDF) based on Eq. [2l Following [1]], we
then compute the weights w(x,,) by:

w(Xy,) = Sigmoid (o(xm)) - Sigmoid (—U(Xm>) , )
tr tr
where tr represents the truncation distance. We set the weights of samples beyond the first truncation
region to zero to account for possible multiple intersections. Subsequently, the normalized weight
w(x) used in Eq.[3]is calculated as:
€))

w(Xpy) = 7



In this scheme, the highest integration weight is assigned to surface points, while the weights for the
points that are farther away are reduced.

Visibility module. While most nearby views offer valuable semantic observations for a 3D point
x, there exists some views that contribute negatively due to occlusion. The most straightforward
approach to address occlusion is to render the depth map in the same manner as color or semantics.
However, this method incurs additional computational cost. To address occlusion efficiently, we
leverage the property of signed distance function (SDF): the SDF value is positive in front of the
surface and negative behind it. This implies that if a source view can observe a target 3D point, the
SDF values of the points along the ray transit from positive to negative at the origin of the source
view to the target point (c.f x; in Fig[2b). However, in the presence of occlusion, the value changes
from positive to negative and then back to positive (c.f. x2 and x3 in Fig[2b). We use this property to
mask out occluded views and mitigate the influence of occlusion.

S Experiments

We evaluate our method on the tasks of semantic view synthesis in Sec. [5.I.1] and 3D semantic
segmentation in Sec.[5.1.2] Additionally, we validate the effectiveness of the proposed modules in

Sec.5.21

Dataset and Metrics. We perform the experiments on two indoor datasets: ScanNet (V2) [13]
and Replica [38]]. The ScanNet dataset contains 1,613 indoor scenes with ground-truth camera
poses, surface reconstructions, and semantic segmentation labels. We follow [31] and [40] on the
three training/validation/test splits commonly used in previous works. The 2D semantic segmentor
Mask2Former is pre-trained on the train split of ScanNet without any additional amendment. Further-
more, we follow the 20-class semantic segmentation task defined in the original ScanNet benchmark.
In contrast to NeRF-based methods [53}156] which only use the training subset of ScanNet to train
and test their methods, we train and test our method on the complete dataset. Replica consists of 16
high-quality 3D scenes of apartments, rooms, and offices. We use the same 8 scenes as in [S5]. While
Replica originally features 100 classes, we rearranged them into 19 frequently observed semantic
classes. We use the model trained on ScanNet to perform the validation on Replica. For the evaluation
metrics, we use the mean of class-wise intersection over union (mloU) and the average pixel accuracy
(mAcc). For 3D semantic segmentation, we follow the evaluation procedure of Atlas [31].

Table 1: Quantitative comparison on semantic view synthesis from the validation set of ScanNet.
‘Ours-100" means the model trained on 100 scenes and ‘Ours-1000’ trained on full training set of
ScanNet. Semantic-Ray is also trained on full training set of ScanNet. ‘Predict Directly’ represents
the method that incorporates a semantic head into the generalizable NeRF framework.

\ Method Novel View \ Novel Scene
\ mloU (%) mAcc (%) | mloU (%) mAcc (%)
Per-scene Semantic-NeRF [55]] 96.8 98.2 - -
ontimized DM-NeRF [3] 93.5 96.1 - -
P PNF [23] 94.1 97.2 - -
Mask2Former [10] 80.9 90.7 64.6 77.9
Gneralizable Predict Directly 50.2 62.3 39.1 54.2
Semantic-Ray [24]] - - 56.0 -
Ours-100 93.3 96.3 47 60.8
Ours-1000 87.8 93.3 71.6 82.3

5.1 Comparisons to Baselines
5.1.1 Semantic View Synthesis

We compare with state-of-the-art per-scene optimized neural semantic field methods: Semantic-NeRF
[55]], Panoptic Neural Fields (PNF) [23]] and DM-NeRF [3]]. For each per-scene optimized method,
we train a NeRF model on each scene from the train set of ScanNet, and then compute the 2D mlIoU



across these scenes. Note that although PNF and DM-NeRF aim to predict panoptic segmentation,
they can still predict semantic segmentation. We train our method for different number of scenes,
including 100 scenes (denoted as Ours-100) and full training set (denoted as Ours-1000), to show
the capacity of our model over different scenarios. For generalizable methods, we compare with
Mask2Former, Sematic-Ray [24] and the method adding a semantic head to a generalizable NeRF
(denoted as Predict Directly) in the same training and testing setting. For Mask2Former, IBRNet
[435] is first used to render color images on novel views, and then Mask2Former is used to predict
semantic results on rendered images. For Predict Directly, we use IBRNet as its generalizable NeRF
framework.

As shown in Tab. [T} we outperform the baselines across ScanNet on semantic segmentation tasks.
Compared with per-scene optimized methods, our method can obtain comparable performance
(93.3% v.s. 93.5% 2D mloU) on novel views. Moreover, only our methods can be generalized to
novel scenes (47% 2D mloU). Although Semantic-NeRF performs better than our method (+3.5%),
it requires per-scene optimization and thus not generalizable to unseen scenes. Comparing with other
generalizable methods, our method obtain the state-of-the-art performance. For example, our method
significantly improves over Mask2Former by 7%, which shows our method is better and more concise.
Furthermore, our improves significantly (71.6% v.s. 56%) compared with Sematic-Ray. In addition,
our method has improved tremendously (71.6% v.s. 39.1%) over the naive approach that incorporates
a semantic head into the generalizable NeRF framework. This validates the effectiveness of our soft
voting scheme.

Table 2: Quantitative comparison on 3D semantic segmentation from the val and test set of ScanNet.
Note that ‘Geometry’ means using 3D geometry as input and ‘Sup.” represents supervision.

Method \ Val Split (mIoU)  Test Split (mloU) Geometry
Atlas [31] 36.8 34 X
3D Sup. NeuralRecon [40] 37.5 35.1 X
Joint Recon-Segment [29]] - 51.5 X
PointNet++ [33] 53.5 33.9 v
PointConv [47] 61 55.6 v
S4R [20] 36.9 - v
ScanComplete [13] 29.5 - v
2D Sup. Ours 58.8 55.1 X
Ours with Mesh 60.4 55.8 v

5.1.2 3D semantic segmentation

We evaluate 3D semantic segmentation on the val and test set of ScanNet. We compare our method
with approaches trained on 3D semantic supervision, i.e., Atlas [31], NeuralRecon [40], Joint
Recon-Segment [29], PointConv [47]], and PointNet++ [33]], and approaches trained on 2D semantic
supervision, i.e., S4R [20], and ScanComplete [[15]. The input of these methods are different:
PointConv [47]], PointNet++ [33]], S4R [20], and ScanComplete [15] use 3D geometry, e.g., point
cloud, 3D mesh, etc, as input; Others, i.e., Atlasm NeuralRecon, and Joint Recon-Segment [29] use
RGB images as input to predict 3D surfaces and use an extra semantic head to predict semantics. In
Tab. 2] we use ‘Geometry’ to denote 3D geometry as input and ‘Sup.” to represent supervision.

As shown in Tab. 2], our proposed method achieves comparable performance to the methods with 3D
semantic supervision, and significantly outperforms all methods with 2D semantic supervision. For
example, our approach performs significantly better than all other methods using RGB images as

Table 3: Quantitative comparison on Replica.
Method  Atlas NeuralRecon Ours

3DmloU 254 26.2 43.8
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Figure 3: Qualitative 3D semantic segmentation results on ScanNet. As we can see from the
figure, our method is better than NeuralRecon, especially on the ‘bed’ class. In detail, NeuralRecon
mistakenly classifies the bed as a table (highlight in black box).

input. The highest mIoU of the previously best method that predicts 3D surface on the ScanNet test
setis 51.5% [29]], which is significantly less than our results of 55.1%. More importantly, they need
3D semantic supervision while we only require 2D semantic supervision. Our approach still performs
better than some of the methods (58.8% v.s. 53.5% [33]]) with 3D supervision and 3D geometry
as input. Our method is comparable to PointConv which uses 3D Geometry as input (60.4% v.s.
61%) when we replace SDF prediction with ground truth. Similar to our method, S4R leverages
differentiable rendering as training supervision. However, S4R incorporates a semantic head into the
existing NeRF framework and uses 3D geometry as input. Our approach outperforming S4R (36.9%
v.s. 58.8% ) proves the effectiveness of our proposed soft voting scheme. We also show qualitative
comparison with NeuralRecon in Fig.[3] We can see that NeuralRecon wrongly classifies the bed
as table (highlight in black box), while our approach makes the correct prediction. Tab. [3|shows
the performance of our method compared with Altas and NeuralRecon [40] that also use color
images as input when trained on ScanNet and test on Replica. We can see that our method shows
much stronger ability (43.8% v.s. 25.4%/26.2%) for cross-dataset generalization.

5.2 Ablation Studies

As shown in Tab. ] we do ablation study to investigate the contribution of each component proposed
in our method on ScanNet. We start with a baseline method predicting the semantics directly of
each 3D query point. Next, we use only semantic logits to vote for semantics of each 3D query
point. We then performed a series of tests where we include each component of our framework
one-by-one and measured the impact on the performance. The third row shows the impact of using
a probability distribution instead of semantic logits, and the fourth shows the impact of adding the
visibility module. We find that each component improves the 3D segmentation IoU performance.

Table 4: Ablations of our design choices on 3D semantic segmentation.
Predict Directly Logit Prob. Visibility Module mloU mAcc

37.5 (+0) 47.0 (+0)
57.3 (+19.8) 70.9 (+23.9)
57.9 (+0.6)  71.2 (+0.3)
58.8 (+0.9)  72.1 (+0.9)
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6 Conclusion

In this paper, we introduce a generalizable 3D segmentation framework based on implicit repre-
sentation. Specifically, we propose a novel soft voting mechanism on 2D semantic information
from multiple viewpoints to predict the semantics for each 3D point. Instead of using positional
information, our framework utilizes multi-view image features as input and thus avoids the need to
memorize scene-specific geometric and semantic details. Additionally, our framework encodes view
differences to give higher importance to nearby views compared to distant ones when predicting the
voting scores. We also design a visibility module to identify and discard detrimental information
from occluded views. By incorporating view difference encoding and visibility prediction, our
framework achieves more effective aggregation of the 2D semantic information. Experimental results
demonstrate that our approach performs comparably to scene-specific methods. More importantly,
our approach even surpasses existing strong supervision-based approaches with just 2D annotations.
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