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Abstract
Adam outperforms SGD in transformer optimization for language modeling tasks. Yet such bene-
fits are not well-understood theoretically – previous theoretical convergence analysis for Adam and
SGD mainly focus on the number of steps T and are already minimax-optimal in non-convex cases,
which are both O(T−1/4). In this work, we argue that the better dependency on the loss smooth-
ness and model dimension is the key that Adam optimizes faster than SGD, which is typically much
larger than total steps for modern language modeling tasks. More specifically, we give a new con-
vergence analysis for Adam under novel assumptions that loss is smooth under ℓ∞ geometry rather
than the more common ℓ2 geometry, which yields a much better empirical smoothness constant for
GPT-2 models. Moreover, we show that if we rotate the pretraining loss randomly, Adam can be
outperformed by some variants of SGD which is invariant to rotations. This implies that any prac-
tically relevant explanation of Adam’s optimization benefit must involve non-rotational invariant
properties of loss, such as ℓ∞ smoothness as used in our analysis.

1. Introduction

Large language models (LLMs) have gained phenomenal capabilities as their scale grows [3, 10,
16, 18, 19, 21, 28]. However, pre-training LLMs are incredibly time-consuming. Adaptive Mo-
mentum Estimation (Adam)[11] is the current to-go optimization algorithm for LLMs due to its fast
convergence. In contrast, SGD, the default algorithm for training more classic architectures like
ResNets [8], optimizes language model loss much slower than Adam.

However, the optimization benefit of Adam over SGD cannot be explained by existing theory.
Existing convergence analyses for Adam and SGD focus on the dependency on the number of steps
under assumptions on the smoothness and gradient bounds of the loss [6], and it has been shown
that both Adam and SGD achieve the minimax convergence rate O(T−1/4) in the non-convex set-
tings [1]. Thus according to the theory, in the worst case, SGD would be more desirable compared
to Adam because they have the same convergence rate, and yet Adam is less memory-efficient due to
its coordinate-wise adaptivity, which needs to store the empirical moving average of second-order
moments of past stochastic gradients. Therefore, we hypothesize that the coordinate-wise adaptivity
in Adam is exploiting some unknown properties of LLMs which SGD cannot make use of.

Towards this end, one significant difference between Adam and SGD we identified in this paper,
which is often ignored in the assumptions of the previous works, is that SGD is rotation-invariant
while Adam is only permutation-invariant (see definitions in Appendix C). Intuitively, this means
if we rotate the loss landscape, the optimization trajectory of SGD would be the same (up to some
rotation), while the trajectory of Adam could be completely different. If Adam optimizes much slower
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after rotation, then it suggests Adam is exploiting some non-rotational-invariant properties of the loss
function, which is not captured by standard theoretical assumptions in the convergence analysis.

Figure 1 summarizes our findings by comparing Adam on the original and rotated loss. The
performance of Adam does become much worse than Adam on the original loss. We also test some
memory-efficient and rotational-invariant variants of SGD, AdaSGD [22] (defined in Algorithm 2)1.
Surprisingly, the rotated Adam performs even much worse than the SGD variant. The results suggest
that it is impossible to separate the superior optimization performance of Adam over SGD just using
rotationally invariant assumptions on the loss function, which raises the natural question,

What are the non-rotation-invariant properties of a loss function that enable faster con-
vergence of Adam than SGD?

We hypothesize the common assumption that the gradient of the loss function is Lipschitz w.r.t.
ℓ2 norm does not provide the best convergence rate of Adam. Inspired by the similarity between Adam
and SignGD and the fact that SignGD is the normalized steepest descent with respect to ℓ∞ norm, we
propose ℓ∞ norm as a better norm for Lipschitzness because each coordinate of the parameter update
in a single step t in SignGD has the same magnitude, which is the learning rate ηt. Then we prove

a convergence rate of O(
√

1
T ) for Adam under this new assumption without noise, or O(( log TT )1/4)

with noise, which has the same dependency on T as previous results. However, our convergence
rate will depend on the (1, 1)-norm of Hessian instead of the top eigenvalue when assuming the
gradient is ℓ2 Lipschitz. In order to show that (1, 1)-norm of Hessian as a new metric can affect how
fast Adam converges in real tasks, we conduct experiments and find there is a correlation between
convergence rate and this metric.

We summarize our contributions below

1. We show by experiments that only using rotation-invariant assumptions cannot explain the
empirical optimization advantage of Adam over SGD for optimizing language models. (Fig-
ure 1)

2. We propose a new complexity metric for the optimization problem, which is the (1, 1)-norm
of the Hessian matrix of loss,

∥∥∇2L(x)
∥∥
1,1

. We present a novel convergence result for Adam
depending on this metric in the case of β1 = 0. (Theorem 2.6 )

3. We empirically verify that when Adam converges slower on the rotated loss on GPT-2 models,
the (1, 1)-norm of Hessian also increases, which suggests that our new complexity metric for
Adam’s convergence is practically relevant. (Table 1)

Notations and Settings. For a matrix A ∈ Rd1×d2 , its (1, 1)-norm is defined as
∑d1

i=1

∑d2
j=1 |Ai,j |.

We independent stochastic loss functions For a deterministic loss function L(x), we consider opti-
mization over L with only access independent stochastic functions {Lt(x)}Tt=1 such that ELt(x) =
L(x) for any input x ∈ Rd.

1. There is one small difference. We use an exponential average of the gradient for mt instead of momentum. Our
definition makes AdaSGD the same as Adam in a one-dimensional problem.
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Figure 1: We plot the training losses of Adam, AdaSGD and SGD. rotated Adam means running
Adam on a rotated loss. Adam on the original loss converges the fastest as expected. But Adam on a
rotated loss convergence is much slower and is even worse than AdaSGD.

2. Main Results: Convergence Rates of Adam

In this section, we present our main theoretical results, which is the convergence rate of Adam

for stochastic smooth loss with bounded gradient noise. We allow non-convex losses and thus
the convergence is measured by the 1-norm of the loss gradient. For deterministic loss, the best
convergence rate (Theorem 2.2) is achieved by SignGD (Adam with β1 = β2 = 0). For stochstic
loss with bounded gradient noise, the best rate (Theorem 2.6) is achieved by RMSProp (Adam with
β1 = 0 and β2 ∈ [0, 1]).

Similar to previous works [6], our analysis could be extended to the most general case of Adam,
where both β1,β2 are non-zero, but the rate becomes strictly worse than the RMSProp (the case of
β1 = 0), as there will be some extra polynomials of 1

1−β1
. We decide not to include result for the

most general case, on one hand for ease of presentation, and on the other hand, because such result
could explain the optimization benefit of momentum (β1 > 0) in practice and does not add any
insight on the benefit of Adam. We hypothesis that we are missing some important features of loss
landscape of transformers in the theoretical assumptions and we leave this for future work.

2.1. Wamrup: SignGD (β1 = β2 = 0)

In this section, we use the convergence analysis for SignGD (Adam with β1 = β2 = 0) as a warm-up
and illustrate how Adam could benefit from a non-rotational invariant property of the loss landscape,
which in particular is the ℓ∞ smoothness. The key observation here is that SignGD is the normal-
ized steepest descent with respect to ℓ∞ norm (see [24]), and thus it is more natural to analyze its
convergence using ℓ∞-norm-related geometry of the loss.

Definition 2.1 Given a norm ∥·∥ on Rd and ∥·∥∗ as its dual norm, we say a function L is H-smooth
w.r.t. ∥·∥ if for any x,y ∈ Rd, we have that ∥∇L(x)−∇L(y)∥∗ ≤ H ∥x− y∥.

Theorem 2.2 Let L be a H-smooth with respect to ∥ · ∥∞ and {xt}Tt=1 be the iterates of SignGD
(Adam with β1 = β2 = 0) on L with initialization x0 and learning rate η, it holds that

min
1≤t≤T

∥∇L(xt)∥1 ≤
L(x0)−minL

Tη
+

Hη

2

if we choose η =

√
2(L(x0)−minL)

TH , then min1≤t≤T ∥∇L(xt)∥1 ≤
√

2H(L(x0)−minL)
T .
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2.2. Main Result: RMSProp (β1 = 0, β2 ∈ [0, 1])

It is well-known that SignGD might not converge in the stochastic case as the expectation of descent
direction for mini-batch loss may not be a descent direction, and RMSProp is proposed to address
this issue by using a moving average of the squared gradient per coordinate to reduce the coor-
leation between the denominator and the numerator, thus making the expected update direction less
biased [9]. In this subsection we formalize the above intuition and show indeed a positive β2 in
Adam helps convergencein in the stochastic case. The main challenges here are from the both lower
bounding the first-order term and upper bounding the second-order term in the modified descent
lemma (the counterpart of Equation 1 for RMSProp). To circumvent these difficulties, we introduce
a slightly stronger assumption than Definition 2.1, which is Definition 2.3. By definition, H-smooth
coordinate-wisely w.r.t. ℓ∞ norm implies

∑d
i=1Hi smooth w.r.t. ℓ∞ norm. Due to the limitation of

space, we only present the main result here. The sketch of the proof is presented in Appendix E.1
while the full proof is in Appendix E with technical lemmas in Appendix D.

Definition 2.3 For any H = (H1, . . . ,Hd) ∈ Rd, we say a function L is H-smooth coordinate-
wisely w.r.t. ℓ∞ norm , iff for any i ∈ [d], x,y ∈ Rd, |∇iL(x)−∇iL(y)| ≤ Hi ∥x− y∥∞ .

Assumption 2.4 (Bounded coordinate-wise noise) There exist constants σi such that |∇iLt(x)−∇iL(x)| ≤
σi for any i ∈ [d], t ∈ N and x ∈ Rd.

Assumption 2.5 (Bounded coordinate-wise stochastic gradient) For any i ∈ [d], t ∈ N and
x ∈ Rd, |∇iLt(x)| ≤ G.

Theorem 2.6 (Main) Let {Lt}Tt=1 be independent stochastic losses satisfying Assumptions 2.4
and 2.5 and that their expectation L is H-coordinate-wisely smooth w.r.t. ℓ∞ norm. For β1 = 0,
we have that

min
1≤t≤T

E ∥∇L(xt)∥1 ≤ E +

√
E ·
∑d

i=1
σi +

√
dEϵ1/4

with C = ln
G2+maxi σ

2
i +ϵ

ϵ and E = O

(
1√
T

√√
C (L(x0)−minL)

∑d
i=1Hi +

√
(log T+C)

T

∑d
i=1 σi

)
if we choose 1− β2 = Ω( log T+C

T ) and η = Θ

(√
L(x0)−minL√
C

∑d
i=1 HiT

)
We will interpret the results in the deterministic and stochastic settings respectively and we

will see the match the standard rates but with the usual ℓ2 smoothness replaced by ℓ∞ related
smoothness, which is much smaller for language models such as GPT-2 empirically Table 1. In

the deterministic setting, σi = 0 and thus the RHS becomes O(E) = O(

√∑d
i=1 Hi(L(x0)−minL)

T ),

which is much faster than the O(T− 1
4 ) rate by Défossez et al. [6]. In the stochastic case, the RHS

becomes

O

√√√√E ·
n∑

i=1

σi

 = O

((
log T

T

)1/4 d∑
i=1

σi) +O((
(
∑d

i=1Hi(L(x0)−minL))
1/4(

∑d
i=1 σi)

1/2

T 1/4

)
.
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While many previous works rely on the relatively large magnitude of ϵ compared to vt and
give a bound in the regime of SGD when the adaptive effect is dominated by the constant ϵ [5,
25], our result has a much milder dependency on ϵ, i.e., log ϵ and thus we could ignore the last
addtive term by picking ϵ to be inverse of some high-degree polynomial of T , or machine precision.
Like previous works[6, 7], we also assume the stochastic gradients are almost surely bounded.
However,our convergence rates depends on logG/ϵ instead of G itself. In fact, we can even get
C = log T maxi Hiη

ϵ without any assumption on the gradient magnitude, where η is learning rate.

(1,1)-norm as a surrogate complexity measure. Hi is determined by supx
∑d

j=1

∣∣∣∇2
i,jL(x)

∣∣∣,
which is difficult to compute because it requires taking supreme over the entire domain. Instead,
we approximate

∑d
i=1Hi locally by the (1, 1)-norm of Hessian of loss along the training trajectory,

which can also efficiently be approximated by using hessian-vector product against random Cauchy
vectors. Definition 2.3 is not rotation-invariant in the sense that the (1, 1)-norm of Hessian matrix
can vary a lot when a rotation is performed on the loss. In comparison, previous works often assume
∥∇L(x)−∇L(y)∥2 ≤ H ∥x− y∥2 and H can be interpreted as the top singular value of Hessian
matrix which won’t be changed after rotation.

3. Experiments

In order to empirically investigate and confirm the implications of our propsosed theory, we compare
the training performance of Adam with AdaSGD, SGD and rotated Adam on a language modeling
task with a transformer-based architecture. The details can be found in Appendix F.

3.1. Analysis of results

Since we propose the (1, 1)-norm of Hessian as a non rotation-invariant metric that can affect the
convergence rate of Adam, we also measure it for original loss function L and rotated loss function
L̃ on checkpoints trained with different losses. The results are presented in Table 1.

For the same checkpoint, no matter if the Adam training is done on the original loss or rotated
loss, the (1, 1)-norm of rotated loss L̃ is always larger than that of original loss L and comparable
to larger than d times the top singular value. It suggests that the loss exhibits good ℓ∞ geometry
property in the original space, which no longer holds after random permutation. Moreover, compar-
ing the (1, 1)-norm of Hessian of the rotated loss evaluated at the checkpoint trained with rotated
loss, the (1, 1)-norm of the original loss evaluated at the checkpoint trained with the original loss is
much smaller (more than 20 times, 57.48-¿2.70). This together with our Theorem 2.6 explains why
in Figure 1, rotated Adam performs worse than Adam.

Trained with L Trained with rotated loss L̃

Measured Loss L L̃ L L̃

∥·∥1,1 /d 2.70 121.05 5.41 57.48

∥·∥2 65.02 63

Table 1: (1, 1)-norm and ℓ2 norm of different losses on different checkpoints.
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Appendix A. Related Works

Comparison between Adam and SGD Previous work tries to analyze the difference between Adam

and SGD from different perspectives. Zhou et al. [31] proves a faster convergence rate of Adam than
SGD when the stochastic gradients are sparse. Zhang et al. [27] suggests that SGD suffers more from
heavy-tailed noise than Adam. Pan and Li [17] claims that Adam has lower directional sharpness
because of the effect of coordinate-wise clipping. Other works also consider the coordinate-wise
normalization of Adam [2, 12]. Kunstner et al. [13] shows that the heavy-tailed class imbalance
in language modeling tasks will cause SGD to converge slower when it can only optimize majority
class well. Zhang et al. [30] finds that Adam is better at handling the block heterogeneity of Hessian
matrix, which is a specific phenomenon in transformers. When viewing Adam as an adaptive method,
there are works showing that adaptive methods have an advantage of achieving optimal convergence
rate without relying on problem-dependent constant [14, 23].

Convergence rate of Adam There are many works showing convergence rate for Adam Chen
et al. [4], Défossez et al. [6], Guo et al. [7], Shi and Li [20], Zhang et al. [29], Zhou et al. [31], Zou
et al. [32]. Most of them rely on the smoothness of the loss function, which is measured w.r.t. ℓ2
norm. Zhang et al. [26] proposes the (L0, L1) smoothness condition should be more reasonable than
globally bounded smoothness. Li et al. [15] further generalizes the (L0, L1) smoothness condition.
However, they still focus on the default ℓ2 norm which is rotation-invariant. To the best of our
knowledge, we are the first to assume gradient Lipschitzness under ℓ∞ norm.

Appendix B. Convergence rate of SignGD for deterministic loss

Proof [Proof of Theorem 2.2] We will directly prove a more general verion of Theorem 2.2. Because
L is H-smooth with respect to ∥ · ∥∞, we have that

L(xt+1)− L(xt) ≤ −∇L(xt)
⊤(xt − xt+1) +

H

2
∥xt − xt+1∥2

≤ −η ∥∇L(xt)∥∗ +
η2H

2
η2 (1)

This implies that

min
1≤t≤T

∥∇L(xt)∥∗ ≤
1

T

T∑
t=1

∥∇L(xt)∥∗ ≤
L(x0)− L(xT )

Tη
+

Hη

2
,

which completes the proof.

Appendix C. Invariance property of Adam and SGD

In this section, we will show the different property between Adam and SGD in the following Theo-
rem C.2.
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Algorithm 1 Adam

Hyperparam: β1, β2, ϵ ≥ 0, total steps T , learning rate schedule {ηt}Tt=1, ϵ
Input: initialization x0, stochastic loss functions {Lt}Tt=1

m0 ← g1,v0 ← g2
1

for t = 1, 2, · · · , T :
gt ← ∇Lt(xt−1)
mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)g

2
t

xt ← xt−1 − ηt
mt√
vt+ϵ

return xT

Algorithm 2 AdaSGD

Hyperparam: β1, β2 > 0, total steps T , learning rate schedule {ηt}Tt=1

Input: initialization x0, stochastic loss functions {Lt}Tt=1

m0 ← g1, v0 ← ∥g1∥22 /d
for t = 1, 2, · · · , T :
gt ← ∇Lt(xt−1)
mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)(∥gt∥22 /d)
xt ← xt−1 − ηt√

vt
mt

return xT

Rotation. For an invertible function T : Rd → Rd, T is a rotating transformation if there exists
an orthogonal matrix T ∈ Rd×d such that T (x) = Tx. T is a permutating transformation if there
exists a permutation π : [d] → [d] such that T (x) = [xπ(1), . . . , xπ(d)]

⊤. A permutating transfor-
mation is always a rotating transformation. We will useR to denote a rotating transformation.

Definition C.1 For initialization x0 and stochastic losses {Lt}Tt=1, we can get xt when running
algorithm A on (x0, {Lt}Tt=1). For a transformation T , we can also get x̃t when running A with
the same hyperparameters on (x̃0, {L̃t}Tt=1) with x̃0 = T −1(x0) and L̃t = Lt ◦ T .

An algorithm A is invariant w.r.t. T if it always holds that x̃t = T −1(xt) for any hyperpa-
rameters, initialization and stochastic losses. An algorithm A is rotation invariant if it is invariant
w.r.t. any rotating transformation R. And A is permutation invariant if it is invariant w.r.t. any
permutating transformation.

Theorem C.2 SGD and AdaSGD are rotation-invariant. Adam and SignGD are permutation-invariant.

Proof For SGD and AdaSGD, we will show they are rotation-invariant by induction. For any rotating
transformation R(x) = Rx, suppose x̃s = R−1(xs) = R⊤xs holds for s ≤ t− 1. Then we have
that g̃t = ∇x̃L̃t(x̃t) = R⊤∇xL(R

−1x̃t−1) = R⊤∇xL(xt−1) = R⊤gt and m̃t = R⊤mt. From
the update rule of SGD, we have that x̃t = x̃t−1 − ηtm̃t = R⊤xt−1 − ηtR

⊤mt = R⊤(xt−1 −
ηtmt) = R⊤xt. For the update rule of AdaSGD, we further have that ∥g̃t∥22 = ∥gt∥22 because R is
an orthogonal matrix. Then ṽt = vt and the derivation is similar.
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For Adam and SignGD, it is easy to show by induction they are invariant w.r.t. any permu-
tating transformation because the operation on gradient is performed on each coordinate sepa-
rately. We only need to show they are not invariant w.r.t. a rotating transformation. We choose
R = [ 1√

2
, 1√

2
; 1√

2
,− 1√

2
], Lt(x) = L(x) = 2x21 + x22. Due to the update rule of SignGD, it can

only update x and x̃ in the direction of [1, 1] and [1,−1]. But when rotating the update direction
on x̃ back to the space of x. The update direction can only be [1, 0] or [0, 1] that are different from
the update direction in the original space. Because the first step in Adam takes the same direction in
SignGD, we simultaneously show that both SignGD and Adam are not rotation-invariant.

Appendix D. Technical Lemmas

Lemma D.1 Given any β1 ≤ β2 < 1, suppose scalar sequences {vt}∞t=0 and {gt}∞t=1 satisfy that
v0 ≥ 0, v1 > 0 and vt − β2vt−1 ≥ (1 − β2)g

2
t for t ≥ 1. Given initial value m0 ≤ v0, define

mt = β1mt−1 + (1 − β1)g
2
t for t ≥ 1. For any coefficients {ηt}∞t=1 and 0 ≤ T1 < T2, it always

holds that
T2∑

t=T1+1

ηt
mt

vt
≤

T2∑
t=T1+1

ηt +
β2 − β1
(1− β2)

T2∑
t=0

αt ln vt

with

αt =


ηt −

∑T2−t
i=1 (1− β1)β

i−1
1 ηt+i T1 + 1 ≤ t ≤ T2

−
∑T2

i=T1+1(1− β1)β
i−t−1
1 ηi 1 ≤ t ≤ T1

−
∑T2

i=T1+1 ηiβ
i−1
1 t = 0

Specifically, when all the ηt are the same η and there exists constant C such that ln vt
vs
≤ C0 for any

s < t, we can have
T2∑

t=T1+1

η
mt

vt
≤ η(T2 − T1) +

(β2 − β1)ηC0

(1− β2)(1− β1)
.
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Proof [Proof of Lemma D.1] Notice that 1− x ≤ ln 1
x for any positive x. We can have that

T2∑
t=T1+1

ηt
mt

vt

=

T2∑
t=T1+1

ηt

(
βt
1m0

vt
+

t−1∑
i=0

(1− β1)β
i
1

g2t−i

vt

)

≤
T2∑

t=T1+1

ηt
βt
1v0
vt

+

T2∑
t=T1+1

ηt

t−1∑
i=0

(1− β1)β
i
1

vt−i − β2vt−i−1

(1− β2)vt

=

T2∑
t=T1+1

ηt
βt
1v0
vt

+

T2∑
t=T1+1

ηt
1− β1

(1− β2)vt

(
vt − βt−1

1 β2v0 +
t−1∑
i=1

(βi
1 − β2β

i−1
1 )vt−i

)

=

T2∑
t=T1+1

ηt +
β2 − β1
1− β2

T2∑
t=T1+1

ηt

(
1− βt−1

1

v0
vt
− (1− β1)

t−1∑
i=1

βi−1
1

vt−i

vt

)

≤
T2∑

t=T1+1

ηt +
β2 − β1
1− β2

T2∑
t=T1+1

ηt

(
βt−1
1

(
1− v0

vt

)
+ (1− β1)

t−1∑
i=1

βi−1
1

(
1− vt−i

vt

))

≤
T2∑

t=T1+1

ηt +
β2 − β1
1− β2

T2∑
t=T1+1

ηt

(
βt−1
1 ln

(
vt
v0

)
+ (1− β1)

t−1∑
i=1

βi−1
1 ln

(
vt
vt−i

))

=

T2∑
t=T1+1

ηt +
β2 − β1
1− β2

T2∑
t=T1+1

ln vt

(
ηt −

T2−t∑
i=1

(1− β1)β
i−1
1 ηt+i

)

−β2 − β1
1− β2

T1∑
t=1

ln vt

 T2∑
i=T1+1

(1− β1)β
i−t−1
1 ηi

− β2 − β1
1− β2

ln v0

 T2∑
i=T1+1

ηiβ
i−1
1


=

T2∑
t=T1+1

ηt +
β2 − β1
1− β2

T2∑
t=0

αt ln vt, (2)

which finishes the proof for general ηt.
When all the ηt = η, we can determine the sign of coefficient αt for each ln vt. When T1 +1 ≤

t ≤ T2, αt = ηβT2−t
1 and is positive. When 1 ≤ t ≤ T1, αt = η(βT2−t

1 −βT1−t
1 ) and is negative. For

t = 0, α0 = η
β
T2
1 −β

T1
1

1−β1
and is negative. It is easy to verify that

∑T2
t=0 αt = 0. For any 0 ≤ t1 ≤ T1

and T1 + 1 ≤ t2 ≤ T2, we can find non-negative αt1,t2 such that
∑T2

t=T1+1 αt1,t = −αt1 holds for
any 0 ≤ t1 ≤ T1 and

∑T1
t=0 αt,t2 = αt2 holds for any T1 + 1 ≤ t2 ≤ T2. Then we can rewrite
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∑T2
t=0 αt ln vt as

T2∑
t=0

αt ln vt =

T1∑
t1=0

T2∑
t2=T1+1

(−αt1,t2) ln vt1 +

T2∑
t2=T1+1

T1∑
t1=0

αt1,t2 ln vt2

=

T1∑
t1=0

T2∑
t2=T1+1

αt1,t2 ln

(
vt2
vt1

)

≤
T1∑

t1=0

T2∑
t2=T1+1

αt1,t2C

= C

T2∑
t2=T1+1

αt2 = C

T2∑
t2=T1+1

ηβT2−t2
1 = ηC

1− βT2−T1
1

1− β1
.

We can plug it into Equation 2 and get that

T2∑
t=T1+1

ηt
mt

vt
≤ (T2 − T1)η +

β2 − β1
1− β2

ηC
1− βT2−T1

1

1− β1

= η(T2 − T1) +
(β2 − β1)ηC0

(1− β2)(1− β1)
.

Starting from here till the end of this section, {gt}Tt=1 is any scalar sequence and {vt}Tt=0 is
defined by v0 = g21 and vt = (1− β2)g

2
t + β2vt−1 for t ≥ 1.

Lemma D.2 Suppose there exists C1, C2 such that |gt − gs| ≤ C1(t−s)
√
1 + β2C2

(1−β2)(t−s) for any
1 ≤ s < t. Then it holds that∣∣√vt + ϵ−

√
vt−1 + ϵ

∣∣ ≤ |√vt −√vt−1| ≤
12(1 + C2)√

C2
C1 + (1−

√
β2)β

t−1
2

2 |g1| .

Proof When |gt| ≤
√
vt−1, we have

√
vt −

√
vt−1 ≤ 0. Then we have

√
vt−1 −

√
vt

=
vt−1 − vt√
vt−1 +

√
vt

=
(1− β2)(vt−1 − g2t )√

vt−1 +
√
vt

≤(1− β2)
βt−1
2 (v0 − g2t ) + (1− β2)

∑t−2
i=0 β

i
2(g

2
t−1−i − g2t )√

vt−1 +
√
vt

≤
(1− β2)

2
∑t−2

i=0 β
i
2 |gt−1−i| (|gt−1−i| − |gt|)√
vt−1 +

√
vt

+
(1− β2)

2
∑t−2

i=0 β
i
2 |gt| (|gt−1−i| − |gt|)√

vt−1 +
√
vt

+
(1− β2)β

t−1
2 v0√

vt−1 +
√
vt

.
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We deal with the first term

(1− β2)
2
t−2∑
i=0

βi
2 |gt−1−i| (|gt−1−i| − |gt|) ≤ (1− β2)

2

(
t−2∑
i=0

βi
2g

2
t−1−i

) 1
2
(

t−2∑
i=0

βi
2(|gt−1−i| − |gt|)2

) 1
2

≤ (1− β2)
√
vt−1

(
(1− β2)

t−2∑
i=0

βi
2 |gt−1−i − gt|2

) 1
2

≤ C1(1− β2)
√
vt−1

(
(1− β2)

t−1∑
i=1

βi
2

(
i2 +

β2C2i

1− β2

)) 1
2

≤ C1(1− β2)
√
vt−1

(
(1− β2)

∞∑
i=1

βi
2

(
i2 +

β2C2i

1− β2

)) 1
2

= C1(1− β2)
√
vt−1

√
β2 + (1 + C2)β2

2

1− β2

= C1
√
vt−1

√
β2 + (1 + C2)β2

2 .

Then we deal with the second term

(1− β2)
2
t−2∑
i=0

βi
2 |gt| (|gt−1−i| − |gt|) ≤ (1− β2)

2
t−2∑
i=0

βi
2
√
vt−1(|gt−1−i| − |gt|)

≤ (1− β2)
√
vt−1

(
(1− β2)

t−2∑
i=0

βi
2 |gt−1−i − gt|2

) 1
2

≤ C1
√
vt−1

√
β2 + (1 + C2)β2

2 .

For the third term, we have that

(1− β2)β
t−1
2 v0√

vt−1 +
√
vt
≤ (1− β2)β

t−1
2 v0√

βt−1
2 v0 +

√
βt
2v0

= (1−
√

β2)β
t−1
2

2

√
v0.

So we have that

√
vt−1 −

√
vt ≤

2C1
√
vt−1

√
β2 + (1 + C2)β2

2√
vt−1 +

√
vt

+ (1−
√
β2)β

t−1
2

2

√
v0

≤ 2
√

β2 + (1 + C2)β2
2C1 + (1−

√
β2)β

t−1
2

2

√
v0

≤ 2
√

β2 + (1 + C2)β2
2C1 + (1−

√
β2)β

t−1
2

2 |g1| .

When |gt| ≥
√
vt−1, we define f(u) =

√
β2vt−1 + (1− β2)u2. Then

√
vt = f(|gt|) and

√
vt−1 =

f(
√
vt−1). Since f(u) is a convex function w.r.t. u, when |gt| ≥

√
vt−1 we have

0 ≤
√
vt −

√
vt−1 ≤ f ′(|gt|)(|gt| −

√
vt−1) =

(1− β2) |gt|√
β2vt−1 + (1− β2) |gt|2

(|gt| −
√
vt−1). (3)
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We further define et−1 = βt−1
2

√
v0 + (1− β2)

∑t−2
i=0 β

i
2 |gt−1−i|. We can verify that

βt−1
2 (
√
v0 − et−1)

2 +

t−2∑
i=0

(1− β2)β
i
2 (|gt−1−i| − et−1)

2

=βt−1
2 v0 + (1− β2)

t−2∑
i=0

βi
2g

2
t−1−i +

(
βt−1
2 + (1− β2)

(
t−1∑
i=0

βi
2

))
e2t−1

−2et−1

(
βt−1
2

√
v0 + (1− β2)

t−2∑
i=0

βi
2 |gt−1−i|

)
=vt−1 + e2t−1 − 2e2t−1 = vt−1 − e2t−1.

(4)

Then we define the gap between |gt| and et−1 as ∆t := |gt| − et−1. From the assumption, we
have that

∆t ≤ βt−1
2 |gt −

√
v0|+ (1− β2)

t−2∑
i=0

βi
2 |gt − gt−i−1|

≤ βt−1
2 |gt −

√
v0|+ (1− β2)

t−1∑
i=1

βi
2C1i

√
1 +

β2C2

(1− β2)i

≤ βt−1
2 |gt −

√
v0|+ C1(1− β2)

t−1∑
i=1

βi
2i

(
1 +

β2C2

(1− β2)i

)
= βt−1

2 |gt −
√
v0|+

C1β2(1 + C2)

1− β2

Define k = min {[ β2C2

1−β2
], [

(1−β2)∆2
t

8C2
1β2C2

]}. If such k is 0, then (1−β2)∆2
t

8C2
1β2C2

< 1.2 We can get a stronger

bound ∆t ≤
√
8β2C2C1√
1−β2

. Then we have

(1− β2) |gt|√
β2vt−1 + (1− β2) |gt|2

(|gt| −
√
vt−1) ≤

(1− β2) |gt|√
(1− β2) |gt|2

(|gt| −
√
vt−1)

=
√
1− β2(|gt| −

√
vt−1)

≤
√
1− β2∆t

≤
√
8β2C2C1.

2. We would assume 1− β2 very small and hence β2C2
1−β2

must be greater than 1.
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When such k is a positive integer, we have that 1 ≤ β2C2

(1−β2)i
and C1

√
2β2C2i
1−β2

≤ ∆t
2 when i ≤ k.

Then we have

|gt−i| ≥ |gt| − ηHi

√
1 +

β2C2

(1− β2)i

≥ |gt| − C1

√
2β2C2i

1− β2

≥ et +
∆t

2
.

We only consider the first k terms in Equation 4,

vt−1 − e2t−1 ≥
k−1∑
i=0

(1− β2)β
i
2 (|gt−1−i| − et−1)

2

≥
k−1∑
i=0

(1− β2)β
i
2

∆2
t

4

= (1− βk
2 )

∆2
t

4
.

Then we have

vt−1 ≥ e2t−1 +
1− βk

2

4
∆2

t

= (gt −∆t)
2 +

1− βk
2

4
∆2

t

≥ 1− βk
2

4

(
(|gt| −∆t)

2 +∆2
t

)
=

1− βk
2

4

(
g2t
2

+

(
|gt|√
2
−
√
2∆t

)2
)

≥ 1− βk
2

8
g2t ≥

k(1− β2)

8
g2t

Back to Equation 3, we have that

(1− β2) |gt|√
β2vt−1 + (1− β2)g2t

(|gt| −
√
vt−1) ≤

√
8(1− β2) |gt|√
β2k(1− β2) |gt|

(|gt| −
√
vt−1)

≤
√
8(1− β2)√

β2k
(|gt| − et)

=

√
8(1− β2)√

β2k
∆t.
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When β2C2

1−β2
≥ (1−β2)∆2

t

8C2
1β2C2

, k = [
(1−β2)∆2

t

8C2
1β2C2

] ≥ (1−β2)∆2
t

16C2
1β2C2

. Then
√

8(1−β2)√
β2k

∆t ≤ 8
√
2C2C1. When

β2C2

1−β2
≤ (1−β2)∆2

t

8C2
1β2C2

, k = [ β2C2

1−β2
] ≥ β2C2

2(1−β2)
. Then we have that√

8(1− β2)√
β2k

∆t ≤
4(1− β2)

β2
√
C2

∆t ≤
4(1 + C2)√

C2
C1 +

4(1− β2)β
t−2
2√

C2
|gt −

√
v0|

=
4(1 + C2)√

C2
C1 +

4(1− β2)β
t−2
2√

C2
|gt − g1|

≤ 4(1 + C2)√
C2

C1 +
4(1− β2)β

t−2
2√

C2
C1(t− 1)

√
1 +

β2C2

(1− β2)(t− 1)

≤ 4(1 + C2)√
C2

C1 +
4(1− β2)β

t−2
2√

C2
C1(t− 1)

(
1 +

β2C2

(1− β2)(t− 1)

)
≤ 4(1 + C2)√

C2
C1 + 8

C1√
C2

+ 4
√
C2C1 =

4C1(3 + 2C2)√
C2

.

The last inequality is because maxt β
t−2
2 (t− 1) ≤ 2

1−β2
.

Lemma D.3 If we assume there exists C3 such that ln vt+ϵ
vs+ϵ ≤ C3 for all 1 ≤ s, t ≤ T , then we

have
T∑
t=1

∣∣∣∣1− √vt−1 + ϵ√
vt + ϵ

∣∣∣∣ ≤ 3

2

1− β2
β2

T +
C3

2
.

Proof [Proof of Lemma D.3] When
√
vt + ϵ ≤

√
vt−1 + ϵ, we have

√
vt + ϵ =

√
(1− β2)g2t + β2vt−1 + ϵ ≥√

β2
√
vt−1 + ϵ. Then

0 ≥ 1−
√
vt−1 + ϵ√
vt + ϵ

≥ 1− 1√
β2
≥ 1− 1

β2
=

β2 − 1

β2
.

We have
∣∣∣1− √

vt−1+ϵ√
vt+ϵ

∣∣∣ ≤ 1−β2

β2
.

When
√
vt + ϵ >

√
vt−1 + ϵ,

∣∣∣1− √
vt−1+ϵ√
vt+ϵ

∣∣∣ = 1−
√
vt−1+ϵ√
vt+ϵ

≤ ln
√
vt+ϵ√

vt−1+ϵ
.
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When combining both parts, we have

T∑
t=1

∣∣∣∣1− √vt−1 + ϵ√
vt + ϵ

∣∣∣∣ = ∑
√
vt+ϵ≤

√
vt−1+ϵ

∣∣∣∣1− √vt−1 + ϵ√
vt + ϵ

∣∣∣∣+ ∑
√
vt+ϵ>

√
vt−1+ϵ

∣∣∣∣1− √vt−1 + ϵ√
vt + ϵ

∣∣∣∣
≤ 1− β2

β2
T +

∑
√
vt+ϵ>

√
vt−1+ϵ

ln

√
vt + ϵ√
vt−1 + ϵ

=
1− β2
β2

T + ln

√
vT + ϵ√
v0 + ϵ

−
∑

√
vt+ϵ≤

√
vt−1+ϵ

ln

√
vt + ϵ√
vt−1 + ϵ

≤ 1− β2
β2

T + ln

√
vT + ϵ
√
v0 + ϵ

−
∑

√
vt+ϵ≤

√
vt−1+ϵ

ln
√
β2

≤ 1− β2
β2

T + ln

√
vT + ϵ√
v0 + ϵ

+
T

2
(− lnβ2)

≤ 1− β2
β2

T + ln

√
vT + ϵ√
v0 + ϵ

+
T

2
(1− β2)

≤ 3

2

1− β2
β2

T +
C3

2

Lemma D.4 Suppose there exists C1, C2, C3 such that |gt − gs| ≤ C1(t− s)
√

1 + β2C2

(1−β2)(t−s) for

any 1 ≤ s < t ≤ T and ln vt+ϵ
vs+ϵ ≤ C3 for any 1 ≤ s, t ≤ T . Then it holds that

T∑
t=1

g2t√
vt + ϵ

≥
T∑
t=1

vt − βt
2v0

2
√
vt + ϵ

− 18(1 + C2)C1√
C2

T

− 6
(1 + C2)C1C3β2√

C2(1− β2)
− 3(1−

√
β2)

2
T |g1| −

β2C3

2(1 +
√
β2)
|g1|
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Proof [Proof of Lemma D.4]

T∑
t=1

g2t√
vt + ϵ

=
T∑
t=1

(vt + ϵ)− β2(vt−1 + ϵ)− (1− β2)ϵ

(1− β2)
√
vt + ϵ

=
T∑
t=1

1 + β2
1− β2

√
vt + ϵ− 2β2

1− β2

√
vt−1 + ϵ− β2

1− β2

(
√
vt + ϵ−

√
vt−1 + ϵ)2√

vt + ϵ
− ϵ√

vt + ϵ

=
2β2

1− β2

√
vT + ϵ− 2β2

1− β2

√
v0 + ϵ+

T∑
t=1

(√
vt + ϵ− ϵ√

vt + ϵ

)
− β2

1− β2

T∑
t=1

(
√
vt + ϵ−

√
vt−1 + ϵ)2√

vt + ϵ

=
2β2

1− β2

√
vT + ϵ− 2β2

1− β2

√
v0 + ϵ+

T∑
t=1

vt√
vt + ϵ

− β2
1− β2

T∑
t=1

(
√
vt + ϵ−

√
vt−1 + ϵ)2√

vt + ϵ

≥ 2β2
1− β2

(
√
vT + ϵ−

√
v0 + ϵ) +

T∑
t=1

vt√
vt + ϵ

− β2
1− β2

T∑
t=1

(
√
vt + ϵ−

√
vt−1 + ϵ)2√

vt + ϵ

≥ 2β2
1− β2

(
√

βT
2 v0 + ϵ−

√
v0 + ϵ) +

T∑
t=1

βt
2v0√

βt
2v0 + ϵ

+

T∑
t=1

(
vt√
vt + ϵ

− βt
2v0√

βt
2v0 + ϵ

)

− β2
1− β2

T∑
t=1

(
√
vt + ϵ−

√
vt−1 + ϵ)2√

vt + ϵ

We prove that β2u√
β2u+ϵ

≥ 2β2

1−β2
(
√
u+ ϵ −

√
β2u+ ϵ) for any positive value. Actually the right

hand side equals to 2β2

1−β2

(1−β2)u√
u+ϵ+

√
β2u+ϵ

= 2β2u√
u+ϵ+

√
β2u+ϵ

and the inequality comes from
√
u+ ϵ ≥

√
β2u+ ϵ. Therefore, we can get that

T∑
t=1

βt
2v0√

βt
2v0 + ϵ

≥
T∑
t=1

2β2
1− β2

(√
βt−1
2 v0 + ϵ−

√
βt
2v0 + ϵ

)
=

2β2
1− β2

(√
v0 + ϵ−

√
βT
2 v0 + ϵ

)
and the first two terms are canceled out.

For the third term, define f(x) = x√
x+ϵ

. f(x) is a concave function and vt ≥ βt
2v0. Then we

have that

vt√
vt + ϵ

− βt
2v0√

βt
2v0 + ϵ

= f(vt)− f(βt
2v0) ≥ f ′(vt)(vt − βt

2v0)

=
vt + 2ϵ

2(vt + ϵ)1.5
(vt − βt

2v0)

≥ vt − βt
2v0

2
√
vt + ϵ

.
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From Lemma D.2 and Lemma D.3, we have that

T∑
t=2

(
√
vt + ϵ−

√
vt−1 + ϵ)2√

vt + ϵ

≤
(
12(1 + C2)√

C2
C1 + (1−

√
β2) |g1|

) T∑
t=2

∣∣∣∣1− √vt−1 + ϵ√
vt + ϵ

∣∣∣∣
≤
(
12(1 + C2)√

C2
C1 + (1−

√
β2) |g1|

)(
3

2

1− β2
β2

T +
C3

2

)
≤18(1 + C2)C1√

C2β2
(1− β2)T + 6

(1 + C2)C1C3√
C2

+
3(1−

√
β2)

2β2
(1− β2)T |g1|+

1−
√
β2

2
C3 |g1| ,

which finishes the proof.

Appendix E. Convergence rate of RMSProp for stochastic loss

Additional Notations. We define v̄t = β2v̄t−1+(1−β2)ḡ2
t as the exponential moving average of

squared deterministic gradient and v̂t = E[vt|L<t] = (1−β2)E[g2
t |L<t]+β2vt−1 as the conditional

expectation of vt conditional on steps before time t.

E.1. Proof sketch

Before presenting the complete proof, we first present the key steps that perform the analysis in a
coordinate-wise manner and don’t rely on the boundness of gradient.

In a single step, we first focus on the second order term which will be bounded with the following
Lemma E.6 when assuming the gradient coordinate is Lipschitz w.r.t. ℓ∞ norm. It allows us to have
different Hi for each coordinates while the coefficient will be the same H when assuming ℓ2 norm
smoothness. The dependence on ℓ2 smoothness coefficient will be d times worse.

Lemma E.1 (second order term) Under Definition 2.3, we have for any x and any ∆ ∈ Rd

∆⊤∇2L(x)∆ ≤
d∑

i=1

Hi∆
2
i .

The first-order term is often a big challenge because it is hard to take expectation when the de-
nominator vt has gt. Previous works will replace the stochastic vt with v̂t which is fixed conditional
on steps before time t and show the gap induced by the replacement is small because of boundness

of gradients. Instead, in Lemma E.5 we will replace E gt,iḡt,i√
vt,i+ϵ

by E ḡ2t,i√
v̄t,i+σ2

i +ϵ/2
and show the gap

can be bounded by noise σi while sacrificing some constant.

When dealing with E ḡ2t,i√
v̄t,i+σ2

i +ϵ/2
, we also don’t rely on the upper bound of v̄t,i to relax it

into O(ḡ2t,i). In Lemma D.4, we employ some nontrivial telescoping sum technique to connect

E
∑T

i=1

ḡ2t,i√
v̄t,i+σ2

i +ϵ/2
with E

∑T
i=1

v̄t,i−βt
2v̄0,i√

v̄t,i+σ2
i +ϵ/2

while the gap can be handled when ḡt,i doesn’t

move too fast. Actually we control the moving speed of ḡt,i in with Lipschitz assumption and only
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need the moving speed of xt is not too fast, which is shown in Lemma D.1 as an extension from
Lemma 4.2 in Xie and Li [24].

Then we employ Jensen’s inequality to extract many E ḡ2t,i√
ḡ2t,i+σ2

i +ϵ/2
from E

∑T
i=1

v̄t,i−βt
2v̄0,i√

v̄t,i+σ2
i +ϵ/2

.

It can infer that the minimum value of ∥ḡt∥21
∥ḡt∥1+

∑d
i=1 σi+d

√
ϵ/2

is smaller than the E defined in Theo-

rem 2.6 and we solve the quadratic function to get an upper bound for ∥gt∥1.

E.2. Complete Proof

We first recall the definitions of some notations. gt denotes the gradient of mini-batch Lt(xt−1) at
step t. And E [gt|xt−1] = ∇L(xt−1) because ELt = L. The full-batch gradient is ḡt = ∇L(xt−1).
Different kinds of second-order momentum are defined in the following way.

vt,i = βt
2g

2
1,i + (1− β2)

t−1∑
j=0

βj
2g

2
t−j,i

v̂t,i = (1− β2)E
[
g2t,i|xt−1

]
+ β2vt−1,i = E [vt,i|xt−1]

v̄t,i = βt
2ḡ

2
1,i + (1− β2)

t−1∑
j=0

βj
2ḡ

2
t−j,i

Here are the assumptions.

Definition 2.3 For any H = (H1, . . . ,Hd) ∈ Rd, we say a function L is H-smooth coordinate-
wisely w.r.t. ℓ∞ norm , iff for any i ∈ [d], x,y ∈ Rd, |∇iL(x)−∇iL(y)| ≤ Hi ∥x− y∥∞ .

Assumption 2.4 (Bounded coordinate-wise noise) There exist constants σi such that |∇iLt(x)−∇iL(x)| ≤
σi for any i ∈ [d], t ∈ N and x ∈ Rd.

Assumption 2.5 (Bounded coordinate-wise stochastic gradient) For any i ∈ [d], t ∈ N and
x ∈ Rd, |∇iLt(x)| ≤ G.

Lemma E.2 Let C = ln
G2+maxi σ

2
i +ϵ

ϵ . It holds that ln vt,i+ϵ
vs,i+ϵ ≤ C and ln

v̄t,i+ϵ
v̄s,i+ϵ ≤ C for any

i ∈ [d] and any t ≥ s ≥ 1.

First we give an upper bound for vt,i and v̂t,i with v̄t,i.

Lemma E.3
v̂t,i ≤ 2v̄t,i + 2σ2

i

Proof

vt,i = (1− β2)

t−1∑
j=0

βj
2g

2
t−j,i ≤ (1− β2)

t−1∑
j=0

βj
2(ḡt−j,i+σi)

2 ≤ (1− β2)

t−1∑
j=0

βj
2·2(ḡ

2
t−j,i+σ2

i ) = 2v̄t+2σ2
i .

v̂t,i = E [vt,i|xt−1] ≤ 2v̄t.i + 2σ2
i .
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Lemma E.4 (Distance between gradients) Let gt,i, mt,i and vt,i be defined in Adam. Then we
have that

|ḡt,i − ḡt−k,i| ≤ ηHik

√
1 +

β2 − β1
(1− β2)(1− β1)k

C.

Specifically, when β1 = 0, we have that

|ḡt,i − ḡt−k,i| ≤ ηHik

√
1 +

β2
(1− β2)k

C.

Proof [Proof of Lemma E.4] From the lipschitzness we can have that

|ḡt,i − ḡt−k,i| ≤ Hi ∥xt − xt−k∥∞ .

For each coordinate j ∈ [d], we can have

|xt,j − xt−k,j | =

∣∣∣∣∣
t∑

l=t−k+1

η
ml,j√
vl,j + ϵ

∣∣∣∣∣
=

∣∣∣∣∣
t∑

l=t−k+1

η
βl
1m0,j + (1− β1)

∑l−1
n=0 β

n
1 ḡl−n,j√

vl,j + ϵ

∣∣∣∣∣
≤

(
t∑

l=t−k+1

η
βl
1m

2
0,j + (1− β1)

∑l−1
n=0 β

n
1 ḡ

2
l−n,j

vl,j + ϵ

) 1
2
(

t∑
l=t−k+1

η

(
βl
1 + (1− β1)

l−1∑
n=0

βn
1

)) 1
2

If we define xt = βt
1m

2
0,j + (1− β1)

∑t−1
n=0 β

n
1 ḡ

2
t−n,j and yt = vt,j + ϵ, then {xt} and {yt} satisfy

the condition in Lemma D.1 and we can have

t∑
l=t−k+1

η
βl
1m

2
0,j + (1− β1)

∑l−1
n=0 β

n
1 ḡ

2
l−n,j

vl,j + ϵ
≤ ηk +

(β2 − β1)ηC

(1− β2)(1− β1)
.

And we know that

t∑
l=t−k+1

η

(
βl
1 + (1− β1)

l−1∑
n=0

βn
1

)
=

t∑
l=t−k+1

η = ηk.

Therefore, we have that

|xt,j − xt−k,j | ≤ ηk

√
1 +

β2 − β1
(1− β2)(1− β1)k

C

and it is the same upper bound for ∥xt − xt−k∥∞.
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Lemma E.5 (first-order approximation, no momentum)

E
T∑
t=1

gt,iḡt,i√
vt,i + ϵ

≥ 1

4
√
2
E

T∑
t=1

v̄t,i − βt
2v̄0,i√

v̄t,i + σ2
i + ϵ/2

− 9(1 + C)ηHi√
2
√
C

T

− 3
√
C(1 + C)β2√
2(1− β2)

ηHi −
3(1−

√
β2)

4
√
2

TE |ḡ1,i| −
C

4
√
2(1 +

√
β2)

E |ḡ1,i|

− 4
√
1− β2Tσi −

4σiC√
1− β2

Proof [Proof of Lemma E.5] The first order change can decomposed into two terms.3

E
T∑
t=1

gtḡt√
vt + ϵ

= E
T∑
t=1

gtḡt√
v̂t + ϵ

+ E

[
T∑
t=1

gtḡt√
vt + ϵ

− gtḡt√
v̂t + ϵ

]

= E
T∑
t=1

E
[

gtḡt√
v̂t + ϵ

∣∣∣∣xt−1

]
+ E

[
T∑
t=1

gtḡt√
vt + ϵ

− gtḡt√
v̂t + ϵ

]

= E
T∑
t=1

ḡ2t√
v̂t + ϵ

+ E

[
T∑
t=1

gtḡt√
vt + ϵ

− gtḡt√
v̂t + ϵ

] (5)

For the second term, we have that∣∣∣∣gtḡt( 1√
vt + ϵ

− 1√
v̂t + ϵ

)∣∣∣∣ = |gtḡt (v̂t − vt)|√
vt + ϵ

√
v̂t + ϵ

(√
vt + ϵ+

√
v̂t + ϵ

)
=

∣∣gtḡt(1− β2)
(
E
[
g2t |xt−1

]
− g2t

)∣∣
√
vt + ϵ

√
v̂t + ϵ

(√
vt + ϵ+

√
v̂t + ϵ

)
=

∣∣∣gtḡt(1− β2)
(√

E
[
g2t |xt−1

]
+ gt

)(√
E
[
g2t |xt−1

]
− gt

)∣∣∣
√
vt + ϵ

√
v̂t + ϵ

(√
vt + ϵ+

√
v̂t + ϵ

)
≤ 1

2

ḡ2t√
v̂t + ϵ

(√
E
[
g2t |xt−1

]
+ gt

)2
E[
(√

E
[
g2t |xt−1

]
+ gt

)2
|xt−1]

+
1

2

(1− β2)
2g2tE[

(√
E
[
g2t |xt−1

]
+ gt

)2
|xt−1]

(√
E
[
g2t |xt−1

]
− gt

)2
(vt + ϵ)

√
v̂t + ϵ

(√
vt + ϵ+

√
v̂t + ϵ

)2
We know that

E

 ḡ2t√
v̂t + ϵ

(√
E
[
g2t |xt−1

]
+ gt

)2
E[
(√

E
[
g2t |xt−1

]
+ gt

)2
|xt−1]

∣∣∣∣∣∣∣xt−1

 =
ḡ2t√
v̂t + ϵ

E[
(√

E
[
g2t |xt−1

]
+ gt

)2
|xt−1]

E[
(√

E
[
g2t |xt−1

]
+ gt

)2
|xt−1]

=
ḡ2t√
v̂t + ϵ

3. We omit subscript i for simplicity.
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and

(1− β2)
2g2tE[

(√
E
[
g2t |xt−1

]
+ gt

)2
|xt−1]

(√
E
[
g2t |xt−1

]
− gt

)2
(vt + ϵ)

√
v̂t + ϵ

(√
vt + ϵ+

√
v̂t + ϵ

)2
≤
(1− β2)

2g2tE[
(
2E
[
g2t |xt−1

]
+ 2g2t

)
|xt−1]

(√
E
[
g2t |xt−1

]
− gt

)2
(vt + ϵ)

√
v̂t + ϵ

(√
vt + ϵ+

√
v̂t + ϵ

)2
=
(1− β2)

2g2t 4E[g2t |xt−1]
(√

E
[
g2t |xt−1

]
− gt

)2
(vt + ϵ)

√
v̂t + ϵ

(√
vt + ϵ+

√
v̂t + ϵ

)2
≤4(1− β2)

2 g2t
vt + ϵ

E[g2t |xt−1]

v̂t + ϵ

(∣∣∣√E
[
g2t |xt−1

]∣∣∣+ |gt|)
√
vt + ϵ+

√
v̂t + ϵ

∣∣∣∣√E
[
g2t |xt−1

]
− gt

∣∣∣∣
≤4(1− β2)

2 g2t
vt + ϵ

1

1− β2

1√
1− β2

∣∣∣∣√E
[
g2t |xt−1

]
− gt

∣∣∣∣
=4
√
1− β2

g2t
vt + ϵ

∣∣∣∣√E
[
g2t |xt−1

]
− gt

∣∣∣∣
≤4
√
1− β2

g2t
vt + ϵ

(∣∣∣∣√E
[
g2t |xt−1

]
− ḡt

∣∣∣∣+ |ḡt − gt|
)

≤8
√
1− β2

g2t
vt + ϵ

σ.

Then back to Equation 5, we have that

E
T∑
t=1

gtḡt√
vt + ϵ

= E
T∑
t=1

ḡ2t√
v̂t + ϵ

+ E

[
T∑
t=1

gtḡt√
vt + ϵ

− gtḡt√
v̂t + ϵ

]

≥ E
T∑
t=1

ḡ2t√
v̂t + ϵ

− 1

2
E

T∑
t=1

ḡ2t√
v̂t + ϵ

− 1

2
8
√

1− β2σE
T∑
t=1

g2t
vt + ϵ

=
1

2
E

T∑
t=1

ḡ2t√
v̂t + ϵ

− 1

2
8
√
1− β2σE

T∑
t=1

g2t
vt + ϵ

≥ 1

2
E

1√
2

T∑
t=1

ḡ2t√
v̄t + σ2 + ϵ/2

− 1

2
8
√
1− β2σE

T∑
t=1

g2t
vt + ϵ

For the first term, we can show that {ḡt,i} and {v̄t,i} satisfy the condition for Lemma D.4 with
C1 = ηHi, C2 = C,C3 = C and ϵ = σ2

i + ϵ/2 based on Lemma E.2 and Lemma E.4. Then we can
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have
T∑
t=1

ḡ2t,i√
v̄t,i + σ2

i + ϵ/2
≥

T∑
t=1

v̄t,i − βt
2v0

2
√
v̄t,i + σ2

i + ϵ/2
− 18(1 + C)ηHi√

C
T

− 6

√
C(1 + C)β2ηHi

1− β2
− 3(1−

√
β2)

2
T |ḡ1,i| −

β2C

2(1 +
√
β2)
|ḡ1,i| .

For the second term, we can apply Lemma D.1 with β1 = 0 and get that

T∑
t=1

g2t
vt + ϵ

≤ T +
C

1− β2
.

Combining these two terms, we can get that

E
T∑
t=1

gt,iḡt,i√
vt,i + ϵ

≥ 1

4
√
2
E

T∑
t=1

v̄t,i − βt
2v̄0,i√

v̄t,i + σ2
i + ϵ/2

− 9(1 + C)ηHi√
2
√
C

T

− 3
√
C(1 + C)β2√
2(1− β2)

ηHi −
3(1−

√
β2)

4
√
2

TE |ḡ1,i| −
C

4
√
2(1 +

√
β2)

E |ḡ1,i|

− 4
√
1− β2Tσi −

4σiC√
1− β2

Lemma E.6 (second order term) Under Definition 2.3, we have for any x and any ∆ ∈ Rd

∆⊤∇2L(x)∆ ≤
d∑

i=1

Hi∆
2
i .

Proof From Definition 2.3, we know that
∣∣∇2L(x)i,:∆

∣∣ ≤ Hi ∥∆∥∞ for any ∆ ∈ Rd. When ∆ is
chosen as sign

(
∇2L(x)i,:

)
, we have

∑d
j=1

∣∣∇2L(x)ij
∣∣ ≤ Hi.

2
d∑

i=1

Hi∆
2
i ≥ 2

d∑
i=1

d∑
j=1

∣∣∇2L(x)ij
∣∣∆2

i

=
d∑

i=1

d∑
j=1

∣∣∇2L(x)ij
∣∣∆2

i +
d∑

i=1

d∑
j=1

∣∣∇2L(x)ji
∣∣∆2

i

≥
d∑

i=1

d∑
j=1

∣∣∇2L(x)ij
∣∣∆2

i +
d∑

i=1

d∑
j=1

∣∣∇2L(x)ij
∣∣∆2

j

≥
d∑

i=1

d∑
j=1

2∇2L(x)ij∆i∆j

= 2∆⊤∇2L(x)∆.
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Theorem E.7 Under all the assumptions, we have that

E[ min
1≤t≤T

∥∇L(xt)∥1] ≤ E +

√√√√E(

d∑
i=1

σi + d
√
ϵ/2)

with E = O

(
1√
T

√√
C (L(x0)− L(xT ))

∑d
i=1Hi +

√
(log T+C)√

T

∑d
i=1 σi

)
.

Proof In a single step we have that

L(xt)− L(xt−1) ≤ ∇L(xt−1)
⊤(xt − xt−1) +

1

2

d∑
i=1

Hi (xt,i − xt−1,i)
2

= −η
d∑

i=1

gt,iḡt,i√
vt,i + ϵ

+
1

2
η2

d∑
i=1

Hi

g2t,i
vt,i + ϵ

.

If we sum over t from 1 to T and take expectation, we can get

E [L(xT )− L(x0)] ≤ −E

[
η

d∑
i=1

T∑
t=1

gt,iḡt,i√
vt,i + ϵ

]
+

1

2
η2E

[
d∑

i=1

Hi

T∑
t=1

g2t,i
vt,i + ϵ

]

≤ −E

[
η

d∑
i=1

T∑
t=1

gt,iḡt,i√
vt,i + ϵ

]
+

1

2
η2E

[
d∑

i=1

Hi

(
T +

β2
1− β2

C

)]
.

The second inequality comes from applying Lemma D.1 with β1 as we did in Lemma E.5. Then we
also apply Lemma E.5 to deal with the first term and get that

E [L(xT )− L(x0)]

≤− E

[
η

d∑
i=1

T∑
t=1

gt,iḡt,i√
vt,i

]
+

1

2
η2E

[
d∑

i=1

T∑
t=1

Hi

g2t,i
vt,i

]

≤− η

4
√
2
E

d∑
i=1

T∑
t=1

v̄t,i − βt
2v̄0,i√

v̄t,i + σ2
i + ϵ/2

+ η

d∑
i=1

9(1 + C)ηHi√
2
√
C

T

+ η

d∑
i=1

3
√
C(1 + C)β2√
2(1− β2)

ηHi + η

d∑
i=1

3(1−
√
β2)

4
√
2

TE |ḡ1,i|+ η

d∑
i=1

C

4
√
2(1 +

√
β2)

E |ḡ1,i|

+ η
d∑

i=1

4
√

1− β2Tσi + η

d∑
i=1

4σiC√
1− β2

+
1

2
η2

d∑
i=1

Hi

(
T +

β2
1− β2

C

)
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E
∑T

t=1

∥∥∥∥ v̄t−βt
2v̄0√

v̄t+σ2+ϵ/2

∥∥∥∥
1

T
≤ 4
√
2 (L(x0)− L(xT ))

ηT

+

(
36(1 + C)√

C
+
√
2

)
η

d∑
i=1

Hi +
(12
√
C(1 + C) +

√
C)β2η

(1− β2)T

d∑
i=1

Hi

+ 6(1−
√

β2)E ∥ḡ1∥1 +
C

(1 +
√
β2)T

E ∥ḡ1∥1

+ 16
√
2
√

1− β2

d∑
i=1

σi +
16
√
2C√

1− β2T

d∑
i=1

σi

When we choose 1− β2 = Ω( log T+C
T ) and η = Θ

(√
L(x0)−L(xT )√
C

∑d
i=1 HiT

)
, the right hand side is

O

 1√
T

√√√√√C (L(x0)− L(xT ))
d∑

i=1

Hi +

√
(log T + C)√

T

d∑
i=1

σi

 .

For the left hand side, we choose T1 such that β
T1
2

T (1−β2)
v̄0,i√
σ2
i +ϵ
≤

√
ϵ

T 100 for every i ∈ [d]. It can

be relaxed into

βT1
2

T (1− β2)

v̄0,i√
σ2
i + ϵ

√
ϵ
≤ βT1

2

T (1− β2)

v̄0,i
ϵ
≤ βT1

2

T (1− β2)
eC ≤ 1

T 100

because C = ln G2+σ2+ϵ
ϵ ≥ ln G2

ϵ ≥ ln
v̄0,i
ϵ . It requires that

T1 ≥ Ω(
C + ln (1− β2) + lnT

1− β2
)

which can be satisfied when 1− β2 = Ω( log T+C
T ) and T1 =

T
3 . Then we have that

T∑
t=1

∥∥∥∥∥ v̄t − βt
2v̄0√

v̄t + σ2 + ϵ/2

∥∥∥∥∥
1

≥
T∑

t=T1

∥∥∥∥∥ v̄t − βt
2v̄0√

v̄t + σ2 + ϵ/2

∥∥∥∥∥
1

≥
T∑

t=T1

∥∥∥∥∥ v̄t√
v̄t + σ2 + ϵ/2

∥∥∥∥∥
1

−
T∑

t=T1

∥∥∥∥∥ βt
2v̄0√

v̄t + σ2 + ϵ/2

∥∥∥∥∥
1

≥
T∑

t=T1

∥∥∥∥∥ v̄t√
v̄t + σ2 + ϵ/2

∥∥∥∥∥
1

−
T∑

t=T1

∥∥∥∥∥ βt
2v̄0√

σ2 + ϵ/2

∥∥∥∥∥
1

=
T∑

t=T1

∥∥∥∥∥ v̄t√
v̄t + σ2 + ϵ/2

∥∥∥∥∥
1

− βT1
2

1− β2

∥∥∥∥∥ v̄0√
σ2 + ϵ/2

∥∥∥∥∥
1

≥
T∑

t=T1

∥∥∥∥∥ v̄t√
v̄t + σ2 + ϵ/2

∥∥∥∥∥
1

− d
√
ϵ

T 100
.
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If we define f(x) = x√
x+σ2+ϵ/2

, f(x) is a concave function. Then we can apply Jensen’s inequality

on v̄t,i = βt
2v̄0,i + (1− β2)

∑t−1
j=0 β

t−i
2 ḡ2j,i and get that

f(v̄t,i) ≥ βt
2f(v̄0,i) + (1− β2)

t−1∑
j=1

βt−j
2 f(ḡ2j,i).

Then we further have

T∑
t=T1

∥∥∥∥∥ v̄t√
v̄t + σ2 + ϵ/2

∥∥∥∥∥
1

≥
T∑

t=T1

βt
2

∥∥∥∥∥ v̄0√
v̄0 + σ2 + ϵ/2

∥∥∥∥∥
1

+ (1− β2)
t−1∑
j=1

βt−j
2

∥∥∥∥∥∥ ḡ2
j√

ḡ2
j + σ2 + ϵ/2

∥∥∥∥∥∥
1


≥

T∑
t=T1

(1− βT−t+1
2 )

∥∥∥∥∥ ḡ2
t√

ḡ2
t + σ2 + ϵ/2

∥∥∥∥∥
1

≥
T2∑

t=T1

1

2

∥∥∥∥∥ ḡ2
t√

ḡ2
t + σ2 + ϵ/2

∥∥∥∥∥
1

when choosing T2 = T − O( 1
1−β2

). And we can show that
∥∥∥∥ ḡ2

t√
ḡ2
t+σ2+ϵ/2

∥∥∥∥
1

≥ ∥ḡt∥21∥∥∥√ḡ2
t+σ2+ϵ/2

∥∥∥
1

≥

∥ḡt∥21
∥ḡt∥1+

∑d
i=1 σi+d

√
ϵ/2

. Then we have that

E min
T1≤t≤T2

∥ḡt∥21
∥ḡt∥1 +

∑d
i=1 σi + d

√
ϵ/2

≤ 1

T2 − T1 + 1
E

T2∑
t=T1

∥ḡt∥21
∥ḡt∥1 +

∑d
i=1 σi + d

√
ϵ/2

≤ 2

T2 − T1 + 1

(
E

T∑
t=1

∥∥∥∥∥ v̄t − βt
2v̄0√

v̄t + σ2 + ϵ/2

∥∥∥∥∥
1

+
d
√
ϵ

T 100

)

:=E = O

 1√
T

√√√√√C (L(x0)− L(xT ))
d∑

i=1

Hi

+O

(√
(log T + C)√

T

d∑
i=1

σi

)
.
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Then we consider the increasing function h(x) = x2

x+
∑d

i=1 σi+d
√

ϵ/2
and solve h(x) = E. We can

get

E min
T1≤t≤T2

∥ḡt∥1 ≤ h−1(E1)

=
E1

2
+

√√√√E(
d∑

i=1

σi + d
√

ϵ/2) +
E2

4

≤E +

√√√√E(
d∑

i=1

σi + d
√

ϵ/2)

≤E +

√√√√E
d∑

i=1

σi +

√
Ed
√

ϵ/2

≤O(
1√
T

√√√√√C (L(x0)− L(xT ))
d∑

i=1

Hi +

√
(log T + C)√

T

d∑
i=1

σi

+

√∑d
i=1 σi

(√
C (L(x0)− L(xT ))

∑d
i=1Hi

)1/4
T 1/4

+

(∑d
i=1 σi

)
(log T + C)1/4

T 1/4

+

√
d
√

ϵ/2
(√

C (L(x0)− L(xT ))
∑d

i=1Hi

)1/4
T 1/4

+

√
(
∑d

i=1 σi)d
√

ϵ/2(log T + C)1/4

T 1/4
)

Appendix F. Experiment Details

We conduct our experiments on a GPT-2 [18] of size 125M parameters. We train the model on the
OpenWebText corups containing more than 9B tokens for 100k iterations.

F.1. Training Adam On a Rotated Loss

A key difficulty in implementing rotated Adam arises from applying an orthogonal rotation on the
parameters before calculating the loss. It is computationally infeasible to apply a 125M × 125M
orthogonal matrix on the 125M-sized parameter vector. To avoid such computation, we design a
new orthogonal transformer to rotate the parameters of the network. In what follows, we elaborate
on this rotation.

RandPerm. Given a vector v of size d, we can orthogonally rotate it by repeatedly applying these
consecutive operations: 1. Permute the entries of the vector according to a randomly chosen per-
mutation π ∈ Sd. 2. Reshape the permuted vector into a 3D tensor of size [s1, s2, s3], apply a fixed
orthogonal rotation of size s × s on each side of the tensor and then reshape it back to a vector of
size d.

This operation performs an orthogonal transformation R on the input vector v. We can chain
multiple operations of this kind and construct RandPermk, where k is a positive number indicating
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the number of consecutive RandPerm s applied. Building upon this rotation, we train GPT-2 125M
with Adam on L◦RandPerm2 to analyze our hypothesis regarding the ℓ∞ geometry of the loss land-
scape and to verify that Adam will indeed suffer from the induced orthogonal equivariance. Figure 1
confirms our findings, as the performance of rotated Adam with RandPerm2 is significantly worse
than Adam. This suggests that Adam is highly sensitive to the rotation and adaptivity alone can’t
explain its advantage.

F.2. Computation of (1, 1)-norm

It is impossible to get the full Hessian matrix and sum over all the entries. Therefore, we propose
Algorithm 3 that leverages Hessian vector product function in pytorch to estimate the (1, 1)-norm
of Hessian matrix.

Algorithm 3 (1, 1)-Norm Estimation

Require: C: number of Cauchy vectors
Require: θ: parameters of the network, vector of size Rd.
Require: B = {b1, b2, · · · bg}: set of batches of data of size g
Require: T : Rd → Rd: a transformation
Require: L : X × Rd → R+ a loss function mapping data and parameters to a positive scalar.

1: H← {}.
2: for i = 1→ C :
3: Sample a Cauchy vector v ∈ Rd from Γ(0, 1)/d.
4: Set h = 0
5: for b ∈ B :
6: Set Lb ← L(b, ·)
7: h← h + ∇2(Lb ◦ T )(T −1(θ))[v]

8: Append h/g to H .
9: return

∑
(median(abs(H), axis = 1))
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