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Abstract

Attention is the cornerstone of modern Large Language Models (LLMs). Yet
its quadratic complexity hinders efficiency and scalability, especially for long-
context processing. A promising approach is to leverage sparsity in attention.
However, existing sparsity-based solutions predominantly rely on predefined pat-
terns or heuristics at the attention head level, struggling to adapt dynamically to
different contexts efficiently. We propose SeerAttention, a simple yet effective
attention mechanism that directly learns the block-level attention sparsity from
the LLM itself. Inspired by the gating mechanism in Mixture of Experts (MoE),
SeerAttention augments the conventional attention with a learnable gate that se-
lectively activates important blocks within the attention map. Specifically, the
gate first pools the query (Q) and key (K) tensors along the sequence dimension
and processes them through learnable linear layers. The resulting matrices are
then multiplied together to produce the gating scores, which are used to predict
block-level attention sparsity. Combined with our block-sparse FlashAttention
kernel, SeerAttention can achieve significant speedup on GPUs. When applied to
pre-trained LLMs, SeerAttention only requires training the gate parameters in a
lightweight self-distillation manner, allowing rapid convergence. Our evaluation
results demonstrate that SeerAttention achieves better model accuracy and lower
latency for long-context pre-filling compared to prior methods. Code is available
at: https://github.com/microsoft/SeerAttention.

1 Introduction

Attention is a fundamental mechanism in transformer-based LLMs [51]. Despite its effectiveness, the
quadratic complexity of attention demands substantial computation and memory resources, limiting
the scalability and efficiency of LLMs, especially for long-context windows. This challenge has
become an active research topic in the community. One potential solution is to replace the quadratic
attention with cheaper architectures like linear attention or recurrent networks [30, 20, 40, 47] with
subquadratic complexity. While these approaches are more efficient, the majority of state-of-the-art
large language models (LLMs) continue to use full attention to achieve better performance.

A promising approach with increasing interests is to leverage sparsity in attention. Sparsity commonly
exists in attention maps, and it becomes more prominent in longer contexts. In certain LLM attention
heads, the sparsity ratio can reach 95% or even 99%, posing great opportunities for efficiency
improvements. However, prior post-training methods often rely on predefined sparsity patterns or
heuristics to approximate the attention mechanism [28, 18, 32, 64, 22, 54]. The sparsity observed in
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attention maps varies significantly across different models, input contexts and attention heads, making
predefined patterns or heuristics insufficient. On the other hand, pre-training a sparse attention model
from scratch like Native Sparse Attention [58] or MoBA [38] is costly and can not be directly applied
to other dense pre-trained models.

In this paper, we introduce SeerAttention, a simple yet effective post-training distillation method that
brings tangible attention sparsity to any full-attention models through self-distillation without relying
on predefined sparsity patterns. To achieve this, SeerAttention augments conventional attention with
a learnable gate called AttnGate that selectively activates a small subset of important blocks in the
attention map, drawing inspiration from the gating mechanism in MoE [45]. The AttnGates are
trained with the 2D block-level sparsity ground truth generated by the original LLMs. Importantly,
this distillation process only requires learning the gating parameters, while all other model parameters
remain fixed. This leads to fast training process as only the newly added gate weights requires to
compute gradient. In this way, without relying on human heuristic observations, users can obtain
tailored AttnGates for different models.

Our results demonstrate that SeerAttention surpasses state-of-the-art post-training sparse attention
methods like MInference [28], MoA [18] and DuoAttention [54] in terms of long context model accu-
racy and pre-filling latency. SeerAttention achieves highly linear speedup over dense configurations,
delivering a 7.3× speedup with 90% sparsity on sequences of 128k. Notably, in contrast to previous
methods that require careful calibration of sparse configuration for different heads, SeerAttention
offers strong capabilities of adaptation to different heads and contexts. Remarkably, on top of block-
sparse pattern, SeerAttention exhibits the ability to learn more diverse patterns, including A-shape
and Vertical-Slash, further demonstrating its versatility and performance.

Our contributions can be summarized as follows:

• We propose SeerAttention, an innovative learnable attention gating mechanism to enhance
efficiency for long-context LLMs.

• We have developed a self-distillation training scheme to efficiently train the AttnGate,
enabling it to learn the intrinsic sparsity of a pre-trained model.

• Experiments show that SeerAttention outperforms previous approaches, offering adaptability
to various context lengths and sparsity ratios.

2 Background and Related Works

Powerful but Complex Attention in Transformer. The advent of attention mechanisms, particu-
larly within the Transformer architecture [51], marked a significant advancement in natural language
processing. Attention enables improved handling of long-range dependencies and a better understand-
ing of context by attending each token to every other token in the sequence, resulting in a quadratic
memory and time complexity O(n2), where n is the sequence length. This presents a significant
challenge as the community moves towards LLMs that can process increasingly longer contexts.
Many studies explore alternative attention mechanisms to mitigate this complexity. The Reformer
architecture [31] reduces the complexity to O(n log n) and the linear attention mechanism [30, 57]
further decreases complexity to O(n). Recently, there has been a trend of revisiting recurrent neural
networks, leading to the proposal of new architectural frameworks such as RWKV [40], RetNet [47],
and Mamba [20]. Despite their promise of efficiency, these methods struggle to match the performance
of full attention mechanisms, particularly with larger models and longer contexts.

Intrinsic but Dynamic Sparsity in Attention. Attention mechanisms inherently exhibit sparsity,
which arises from the attention map A generated by Q and K: A = softmax(QKT/

√
d). The

softmax function often produces a multitude of negligible scores that can be treated as zeros without
impacting model accuracy [59, 35, 52, 7, 36]. Attention sparsity becomes more pronounced with
longer contexts, presenting opportunities to optimize inference speed. Unfortunately, this sparsity is
dynamic, varying across different context inputs and attention heads, each displaying distinct sparsity
locations and ratios. Prior research has attempted to approximate attention sparsity using predefined
patterns and heuristics [18, 28] for different attention heads. Yet, these methods lack generality
and often rely on handcrafted features, struggling to fully capture the sparsity behavior of attention
mechanisms. The dynamic and input-dependent nature of attention sparsity echoes the principles of
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Figure 1: Overall of SeerAttention. The AttnGate in SeerAttention first pools the Q and K tensors
in sequence dimension and passes through learnable linear layers. The AttnGate output are trained
to mimic the 2D maxpooled results of the pre-trained model. During inference, it applies TopK or
Thresholding on the AttnGate output to locate activate blocks.

Mixture of Experts (MoE) models [45, 17] suggesting that sparsity should ideally be learned directly
from data within the model itself. This approach would allow models to adaptively harness sparsity,
improving efficiency while maintaining accuracy.

Long-Context LLM Optimizations. The ability to process long contexts is crucial for large
language models (LLMs) as it enables them to retain and utilize more extensive information. However,
it comes with substantial computational and memory costs. Various research efforts have explored
different strategies to optimize long-context processing. One major direction is improving prefill
efficiency, where techniques such as prompt compression [27, 39, 8] and sparse attention [28, 18,
1, 62]. Another approach focuses on optimizing the decoding phase by introducing sparse loading
mechanisms [56, 6]. Additionally, several methods aim to compress the KV cache, including KV
cache sharing [3, 5], KV eviction policies [63, 34, 19], and KV quantization [37, 25, 14, 61].

3 SeerAttention

SeerAttention adopts a fully learning-based approach to adaptively identify attention sparsity in
LLMs and leverages the learned sparsity for efficient inference. To ensure efficiency on modern
hardware like GPUs, we focus on learning block sparsity, which can seamlessly integrate with
the tiling computation scheme of FlashAttention [13, 12]. Figure 1 illustrates the overall diagram
of SeerAttention, which augments conventional attention with a learnable gating module, termed
Attention Gate (AttnGate). The AttnGate modules contain learnable parameters (linear layers) and are
distilled to mimic the 2D-Maxpooled results of the attention maps. At inference time, the AttnGate
can predict the block-level sparsity for the subsequent attention computation with a block-sparse
FlashAttention kernel, which significantly enhances performance by reducing I/O and computation
overhead.

3.1 Attention Gate Design

The AttnGate module is designed to learn block-wise information with minimal overhead. It takes
the original matrices Q and K as inputs and downsamples them using pooling operations along the
sequence dimension. As shown in Figure 1, for a given attention head, the sizes of the pooled Q and
K become [seq/B, d], where B is the kernel and stride size of the pooling operation (non-overlapped
blocks). The downsampled Q and K are then processed through a linear layer and multiplied together,
similar to the standard attention operation. This results in a matrix of size [seq/B, seq/B], where
each element corresponds to one block in the original full attention map. With a typical block size of
64, the output of the AttnGate module is only 1

4096 the size of the original attention map, making it
super efficient to compute. To its simplest form, the AttnGate output soft score can be expressed as:
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d). (1c)

where P (q)
i and P

(k)
j represents different pooling operations for Q and K, and d is the hidden size of

the tensors similar to attention computation. The detailed algorithm will be explained as follows.
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Figure 2: Test perplexity of different pooling combi-
nations on PG19. The best configuration applies Avg-
Pooling on Q and a combination of Max, Min, and
AvgPooling on K.

Pooling Method Selection. Pooling op-
erations downsample tensors and may lead
to information loss. To better preserve
the characteristics of the attention ten-
sors, SeerAttention allows different pool-
ing methods to be composed for Q and K.
Specifically, we consider average, max, and
min pooling. When applying multiple pool-
ing methods to either Q or K, the resulting
pooled tensors are concatenated along the
hidden dimension before being fed into the
subsequent linear layer. Figure 2 presents
the test perplexity on the PG19 [42] dataset
for the top 15 pooling combinations using
the LLaMA-3.1-8B model. We observe
that applying AvgPooling on Q and a com-
bination of Max, Min, and AvgPooling on K yields the best perplexity across different sparsity ratios.
This trend may relate to prior findings in LLM quantization, where K tensors exhibit more outliers.
Incorporating Max and Min pooling thus helps capture these extreme activations, leading to richer
feature representations after pooling.

Length Extrapolation of AttnGate using Positional Encoding. Recent state-of-the-art LLMs
typically employ positional encoding (PE) such as RoPE [46] to encode positional information. If
the AttnGate relies solely on the original RoPE in the model, i.e., feeding the AttnGate with Qrope

and Krope, the positial information can possibly be damaged because of the pooling operation. This
compromises the length extrapolate ability of AttnGate during distillation. To address this issue, we
re-apply block-level PE in AttnGate with input wihtout PE, Qnope and Knope, (shown in Equation 9).
To represent the block-level information, the RoPE in AttnGate uses a reduced θ′ = θ/B, where θ is
the original RoPE theta of the LLM.
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Figure 3: Perplexity Comparison Between two PE setting in AttnGate on PG19 dataset. The
block-level RoPE in AttnGate allows it to effectively learn the block-level positional information,
resulting better test performance for different context length. Without the AttnGate PE, it fails to
deliver reasonable results with data longer than training length.

Figure 3 presents the test perplexity results with and without the block-level RoPE design in AttnGate.
The results indicate that without this block-level RoPE design, AttnGate fails to perform adequately
on evaluation data longer than 8k when trained with 8k length data. Similarly, when trained with 32k
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length data, it does not perform well on 128k length data. However, with the additional block-level
RoPE, AttnGate can extrapolate to different context lengths, significantly enhancing the model
performance and training efficiency.

3.2 AttnGate Training

While the introduced SeerAttention architecture is straightforward, training presents challenges.
Jointly training the gate and model from scratch, as in MoE, is costly and difficult. Fortunately, unlike
MoE, where gating network must learn expert selection from scratch, the AttnGate in SeerAttention
has a ground truth from standard attention for distillation.

Obtaining the Ground Truth. We use the 2D-MaxPooled attention map from full attention as
ground truth to distill AttnGate, as illustrated in Figure 1. Semantically, it means that only when
all the attention score in a block is small, the 2D-MaxPooled results will be small, which aligned
with the block-sparse definition. However, obtaining the max-pooled attention map for training
is non-trivial especially in long-context scenarios due to quadratic memory consumption of the
intermediate QKT results. To address this challenge, we customize an efficient kernel that directly
outputs the MaxPooled attention map ground truth by modifying FlashAttention kernel but largely
reuses its original computation flow. The detailed design are explained in A.1.

Loss Function. The Kullback-Leibler divergence loss [29] is use to distill the AttnGate. Since
AttnGate uses softmax in output similar to full attention computation, the row summation of gating
score will always be 1. KL-divergence loss allows the training process to focus on mimicking
the attention distribution instead of absolute magnitude like Mean-square-error loss. The overall
distillation process can be expressed as:

gt = MaxPool2D
(
softmax

(QropeK
T
rope√

d

))
,

o = AttnGate(Qnope,Knope),

loss = DKL

(
gt ∥ o

)
.

(2)

(3)

(4)

3.3 Inference with SeerAttention

After self-distillation training process, SeerAttention can utilizes the trained AttnGate to generate a
gating score for each block within the full attention mechanism. These scores are then used to select
the final activated sparse blocks. Further combined with our backend Block-sparse FlashAttention
kernel, SeerAttention can achieve significant speedup for long-context prefilling while maintaining
high accuracy.

Generating Binary Block Mask. SeerAttention provides the flexibility to convert the floating-point
gating scores o into a final binary block mask using either the TopK or Thresholding methods. If
using the TopK method, the k blocks with the highest scores in each row are selected.

bij =

{
1 if j ∈ TopK(oi, k).index,

0 otherwise.
(5)

Alternatively, users can activate blocks with score exceeding a threshold. This can further saving the
need of sorting the AttnGate output score.

b = o > threshold (6)

Notably, once AttnGate is trained, for the inference stges, we can adjust the TopK ratio or threshold-
based at test time to achieve various trade-offs.

Block Sparse Flash-Attn Kernel. In designing the Block Sparse Flash-Attention kernel, the block
size of AttnGate is aligned with the tiling size used in Flash-Attention, typically 64 or 128. By doing
so, we can create a customized block-sparse Flash-Attention kernel that leverages the binary block
mask generated by AttnGate to selectively skip the I/O and computation for unactivated blocks. This
approach is highly efficient on modern GPUs, as it optimizes the processing of sparse data at the block
level rather than dealing with fine-grained element-wise level, leading to significant performance
gains.
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4 Experiments

In this section, we evaluate both the accuracy and efficiency of SeerAttention. In our current
experiments, block-size B for the AttnGate and sparse kernel is fixed at 64 and AttnGate solely
applies in the prefill stage.

Models, Baselines and Tasks. We apply SeerAttention to the pre-trained models Llama-3.1-8B-
Instruct and Llama-3.1-70B-Instruct [15], as well as Qwen2.5-7B-Instruct, Qwen2.5-14B-Instruct
and Qwen2.5-32B-Instruct [55] in the experiments. We compare SeerAttention with three state-
of-the-art sparse attention methods, MoA [18], MInference [28], and DuoAttention [54]. It shoule
be noted that Llama-3.1-8B-Instruct is the only model that all the other methods provide official
support/configuration. Thus, we only compare with them using Llama-3.1-8B-Instruct model. MoA
uses an offline search scheme to apply static sparse patterns across different attention heads. In our
experiment, we adopt their official implementation with "KV Sparsity" in 0.5 which means "Attention
Sparsity" in 0.35. MInference dynamically generates sparse indices using heuristic methods for each
head based on pre-defined sparse patterns. We used their official configuration for Llama-3.1-8B-
Instruct model, where all attention heads choose the "Vertical-Slash" sparsity pattern. DuoAttention
differentiates some attention heads as streaming heads [53] while keep the rest as dense heads. In
the following experiment, we adopted their official setup for Llama-3.1-8B-Instruct model with
50% head as streaming heads. We evaluate the performance using on two long context benchmarks:
LongBench [4] and RULER [26], and 4 short-context task from Open LLM Leaderboard [50]:
HellaSwag [60], MMLU [24], ARC-challenge [9], GSM8K [10]. For long-context benchmark, we
follow a similar practice in Star Attention [2] and SCBench [33] that only applies sparsity in context
rather than question in SeerAttention. All the evaluation were run on A100 GPUs.

Distillation Training Setup. We use the RedPajama [11] dataset for AttnGate distillation, which
are chunked into 64k with BOS and EOS tokens. Our training employs a learning rate of 1e-3 with
cosine decay. We set the global batch size to 16 and conduct training for only 500 steps, leveraging
DeepSpeed [43] stage 2 optimization on A100 GPUs. As only AttnGate parameters are learned and
updated, the distillation process can be completed within around 40 A100 hours for 7B or 8B models.
To prevent the quadratic memory explosion that occurs when saving the intermediate attention map
for ground truth generation, we customized a FlashAttention kernel. This kernel directly outputs the
2D max-pooled ground truth on top of the original attention computation. Further details about this
kernel can be found in A.1.

4.1 Accuracy of Evaluation

LongBench Evaluation. LongBench is a long-context understanding benchmark. We compare with
those of MoA, MInference, and DuoAttention using the Llama-3.1-8B-Instruct model. DuoAttention

Table 1: LongBench Results on Llama and Qwen models.

Model Method 0-4k 4-8k 8k+ Avg.
Acc.

Avg.
Sparsity

Llama-3.1-8B-Instruct

Full Attention 55.32 53.98 52.9 54.07 0.0
MInference 55.23 53.78 52.18 53.73 0.31

MoA 50.74 49.84 51.89 50.82 0.35
DuoAttention 53.77 52.17 51.27 52.40 0.5*
SeerAttention 55.43 54.49 52.69 54.20 0.50

Llama-3.1-70B-Instruct Full Attention 58.32 57.29 57.32 57.64 0.0
SeerAttention 57.83 56.07 55.61 56.50 0.62

Qwen2.5-7B Full Attention 53.72 50.52 48.21 50.81 0.0
SeerAttention 53.94 50.78 48.73 51.80 0.55

Qwen2.5-14B Full Attention 54.64 53.16 50.68 52.83 0.0
SeerAttention 54.55 52.84 51.21 52.86 0.55

Qwen2.5-32B Full Attention 56.29 52.17 51.83 53.43 0.00
SeerAttention 56.43 51.93 52.01 53.45 0.56

* 50% streaming heads, the real sparsity <50%
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uses 50% of the heads as streaming heads and 50% as dense heads. For streaming heads, the attention
only occurs in the attention sink and recent tokens. As a result, it is not less than 50% sparsity overall.
In this benchmark test, SeerAttention employs a threshold of 2e-3 for all AttnGates. With the same
threshold, different attention gates can exhibit varying sparsity ratios, and longer context data tends
to be sparser. This approach allows for a more adaptive allocation of sparsity. As demonstrated in
Table 1, SeerAttention consistently outperforms other methods across various test lengths. Notably,
in the 0-4k and 4-8k tests, our score surpasses even the dense baseline. This may be attributed
to AttnGate filtering out noisy attention in certain cases. Furthermore, SeerAttention achieves the
highest average score and the highest average sparsity across all tests. For other models except
Llama-3.1-8B-Instruct, SeerAttention demonstrates similar accuracy performance compared to dense
baseline with > 50% averaged sparsity. The 8k+ split typically has an sparsity around 70%.

Table 2: RULER Benchmark Results on Llama-3.1-8B-Instruct Model.

Methods 4k 8k 16k 32k 64k 128k Average
Accuracy

Average
Speedup

Full Attention 95.53 92.37 92.01 87.63 84.39 76.26 88.01 1.00
MInference 95.53 92.64 91.37 85.71 83.24 67.02 85.92 0.83

DuoAttention 95.64 92.08 90.71 84.75 83.24 75.32 86.96 1.09
SeerAttention 95.53 92.71 92.02 88.49 83.48 73.37 87.60 1.41

RULER Evaluation. RULER is a long-context LLM evaluation benchmark consisting of 13
challenging sub-tasks. It generates tests with data sizes ranging from 4k to 128k. In this experiment,
SeerAttention employs a threshold of 5e-4, which allows it to automatically adapt sparsity from
approximately 10% for 4k data to around 85% for 128k data. Due to out-of-memory (OOM) issues in
some tests, MoA was excluded from this benchmark. Table 2 provides detailed accuracy results across
different evaluation lengths. It is evident that SeerAttention achieves the best accuracy in most tests
(8k-64k). For the 128k test, DuoAttention has less than 50% sparsity, whereas SeerAttention maintains
an sparsity higher than 80%, which accounts for the slightly lower performance. SeerAttention also
attains the highest average accuracy compared to other models (only 0.41% lower than the dense
baseline) while delivering the highest average end-to-end speedup (1.41×) in prefilling time.

Table 3: Short Context Tests on Llama-3.1-8B-Instruct Model
MMLU HellaS. ARC-c GSM-8K

Full Attention 68.1 80.1 60.7 75.7
SeerAttention 67.9 79.8 60.2 75.6
Avg Sparsity 3.4 50.4 26 52.1
Avg Seqlens 118 840 395 872

Short Context Test. For short context input, attention contributes a smaller proportion in the total
runtime. Consequently, sparse attention does not significantly enhance latency performance. Never-
theless, we evaluate SeerAttention accuracy performance under a very high threshold 3e-2 to achieve
high sparsity. The results, as shown in 3, indicate that SeerAttention exhibits negligible accuracy loss.
For instance, with an average sequence length of 872 in the GSM-8K task, SeerAttention achieves
only 0.1% degradation in accuracy with 52% averaged sparsity.

4.2 Efficiency Evaluation

We evaluate the efficiency of SeerAttention using our implementation of CUDA kernels. We evaluate
the kernel-level as well as end-to-end speedup using a Llama-3.1-8B-Instruct on a single A100 GPU.
Results are compared to FlashAttention-2 (dense baseline), MoA, MInference and DuoAttention.

4.2.1 Kernel evaluation

Negligible Overhead incurred by AttnGate. 4 shows the kernel-level latency breakdown of
SeerAttention. It demonstrates that the overhead introduced by the AttnGate during inference is
minimal. For instance, at a context length of 32K and a sparsity of 0.5, the AttnGate contributes
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from AttnGates is minimal. Our block-sparse attention kernel achieves highly linear speedup over
dense configurations, delivering a 7.3× speedup with 90% sparsity on sequences of 128k. The
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Figure 5: Kernel-level Speedup Comparison Between Different Works. SeerAttention translates
sparsity to speedup more effectively.

only 1% to the total latency of an attention layer. In the cases of 128K sequence length, the relative
overhead almost diminishes.

Block-sparse FlashAttention Kernel Speedup. Figure 4 also shows that our kernel exibits linear
speedup over various sparsity levels. At a sequence length of 128K with 90% sparsity, SeerAttention
achieves a speedup of 7.3× compared with FlashAttention-2 (full attention) on a single A100 GPU.
This demonstrates the effectiveness of the block-level sparsity employed by SeerAttention, which is
highly efficient on GPUs and translates into high speedup.

Kernel-level Comparison with Related Works. We compare the kernel-level speedup of SeerAt-
tention with MoA and MInference. MInference uses offline calibration to identify a pre-defined sparse
pattern for each layer. For Llama-3.1-8B-Instruct model, MInference consistently uses "Vertical-
slash" pattern across all layers. During runtime, MInference will dynamically generate non-zero
indices based on their approximation algorithm. On the other hand, MoA uses "A-shape" blocks as
their sparse pattern and calibrate the shape parameters offline under given sparsity constraint. DuoAt-
tention is omitted in kernel-level comparison as it’s a combination between streaming and dense head,
whose performance is a mixture results of block sparse attention and dense FlashAttention.

Figure 5 shows the sparsity v.s. speedup plots of different methods on 8k, 32k, 128k sequences
length, where the speedup baseline is FlashAttention-2. The kernel-level sparsity statistics were
collected from PG19 datasets. For MoA, we generated the sparse configurations under their 0.5
overall "KV-sparsity" constraints, which corresponds to an average of 0.35 sparsity in attention. The
results demonstrates that the block-sparse attention kernel used in SeerAttention outperforms both
MoA and MInference in most cases.
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Figure 6: Comparing Prefilling Time Speedup on RULER Test Setting. SeerAttention outperforms
related works in most long-context data scenarios (≥ 16k). For longer context data, the attention
mechanism constitutes a larger proportion of the total runtime, allowing sparse methods to achieve
better speedup. Overall, SeerAttention achieves the highest average speedup (1.41×) while maintain-
ing the best average accuracy under this RULER benchmark setting.

4.2.2 End-to-end Speedup Comparison.

To assess the end-to-end speedup of our method, we measured the average prefilling time, or time-
to-first-token (TTFT), using the Llama-3.1-8B-Instruct model on the RULER test discussed above.
Since attention takes up more runtime with longer contexts, all methods generally achieve better
speedup with longer context lengths. It should be noted that SeerAttention uses an identical threshold
across all tests in RULER, automatically adjusting to higher sparsity for longer contexts (ranging
from approximately 10% sparsity for 4k to around 85% sparsity for 128k). This approach results
in an end-to-end prefilling speedup of up to 2.43× on 128k length. On the other hand, MInference
experiences a slowdown with data sizes less than 64k due to significant overhead in searching for
sparse indices during runtime. It is feasible for SeerAttention to adjust to higher sparsity to achieve
greater speedup in shorter contexts as a tradeoff. Nevertheless, SeerAttention delivered the highest
average accuracy (87.6) and the greatest average speedup (1.41×) in this RULER benchmark setting.

4.3 Training Cost and Parameter Overhead.

The additional training cost of SeerAttention is modest. On LLaMA-3-8B-Instruct, it requires
about 40 A100 GPU hours, similar to or lower than DuoAttention. In comparison, MInference
calibrates faster but shows lower accuracy and slower inference. SeerAttention introduces about 101
M trainable parameters, roughly 1.3 % of the model, and adds less than 5 % memory and latency
overhead compared with FlashAttention, supported by our customized distillation kernels. The gating
module also scales well to larger models, such as 503 MB for LLaMA-3.1-70B and 252 MB for
DeepSeek-R1-Distill-Qwen-32B, showing that the method remains lightweight and scalable for large
deployments.

4.4 Visualization of Learned Attention Maps.

The AttnGate module automatically learns diverse sparse patterns without any prior knowledge
or heuristics. Figure 7 shows several example outputs from AttnGate, including (a) "A-shape," or
streaming head (b) "Vertical," (c) "Slash" with empty vertical spaces, (d) block sparsity along the
diagonal, and (e) random patterns. These patterns not only encompass but also extend beyond those
observed in previous works such as MoA and MInference, showcasing the versatillty of our learning
based methods.

(a) (b) (c) (d) (e)

Figure 7: Visualization of the AttnGate’s outputs.
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5 Conclusion and Future Work

This paper presents SeerAttention, a new attention mechanism that learns and leverages the intrinsic
sparsity in attention to boost long-context LLMs. SeerAttention learns the attention sparsity from
the LLM itself with a lightweight self-distillation approach. Our experiments demonstrate that
SeerAttention outperforms previous approaches in terms of long context model accuracy and pre-
filling latency. For future work, there are several promising directions to explore for improving and
expanding the capabilities of SeerAttention. One key area is enhancing the training methodologies
for SeerAttention, such as applying SeerAttention in long-context continued pre-training with more
training tokens to achieve higher sparsity without sacrificing accuracy. Another important avenue is
applying SeerAttention in the decoding stage, especially for long-CoT.
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A Appendix

A.1 Training SeerAttention with Customized GPU Kernel

In this appendix, we provide a detailed design and implementation of our efficient kernel, highlighting
key modifications to FlashAttention and optimizations for long-context scenarios. We then evaluate
the peak memory usage and additional latency overhead of our training kernel during the AttnGate
training stage, showing that it incurs only minimal overhead in both memory and latency compared
to training with FlashAttention-2.

FlashAttenion with 2D-MaxPooling: A Customized training kernel. In Section 3.2, we discussed
the method for obtaining the ground truth attention map used to distill AttnGate. Specifically, we
leverage the 2D-MaxPooled attention map from full attention as the ground truth, aligning with the
block-sparse attention definition. However, directly computing this attention map is challenging
due to the quadratic memory complexity and the fused operation nature of FlashAttention. To
overcome this, we developed a customized kernel based on Triton [49] that efficiently extracts the
2D-MaxPooled attention map by modifying the FlashAttention kernel while largely preserving its
computation flow. Figure 8 shows the pseudo code and diagram of this customized kernel.

Block Size B

B

d KT

Q row max

Store rij
… 

after iterating the 
entire row with final 
max and sum of exp

Load rij aij = exp( rij – mi ) / li

Aij

rescale col max
QKT

Q

KT

V

Inner Loop

O

Pseudo Code of Customized Flash-Attn with MaxPooled AttnMap 
Input: Q, K, V; Output: O, A
for i from 1 to Tr
 Load Qi
 for j from 1 to Tc
  Load Kj, Vj
  Compute Sij = dot(Qi,Kj), rij = rowmax(Sij)
  Store rij
  Update mij = max(mi(j−1), rij), lij and Oij 
 Compute final li, mi and Oi

for j from 1 to Tc 
 Load and Rescale aij = exp(rij  − mi)/li 
 Compute and Store Aij = colmax(aij) 

Return O, A

Figure 8: Efficient FlashAttention kernel with pooling of attention map.

Normally, the softmax function ensures numerical stability by subtracting the maximum value before
applying the exponential operation. FlashAttention computes the local row max of each block, and
gradually updates the global maximum through iteration:

Sij = QiK
T
j ;

rij = rowmax(Sij);

mij = max(mi(j−1), rij).

(7)

where rij is typically treated as a temporary result. However, we store it in HBM and rescale it later
with the final global max mi and sum of exp li after the iteration:

aij = exp(rij −mi)/li (8)

This aij represents the correct row max of the original attention block. With that, 2D-MaxPooling
is achieved by applying a column max over aij . This introduces only minor overhead (storing and
rescaling rij) but significantly improves the efficiency of obtaining the ground truth. The overhead of
memory and latnecy analysis is in Figure 9.

Performance of the Training Kernel. We evaluate our customized FlashAttention kernel with 2D-
MaxPooled attention map for scalable training of SeerAttention by comparing against with PyTorch
naïve manual attention implementation and FlashAttention-2. As shown in Figure 9b, the PyTorch
kernel runs out of memory (OOM) when the sequence length exceeds 4k, while our customized kernel
costs similar peak memory usage compared to FlashAttention-2. Regarding latency, since PyTorch
encounters OOM for sequences longer than 8K, the attention operations per head into a loop to assess

15



kernel-level latency. Figure 9b shows that the latency overhead introduced by the additional pooling
operation is minimal compared to FlashAttention-2, while the PyTorch implementation suffers from
a significant slowdown.
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Figure 9: Memory and latency of customized FlashAttention with max-pooling training kernel.

A.2 Preliminary Experiments of Fine-tuning with SeerAttention
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Figure 10: Fine-tuning Loss.

Figure 11: By incorporating SeerAttention with YaRN [41] to extend a Llama-3-8B model from 8k
to 32k context length, the loss curves for 50% to 90% sparsity are nearly identical to the dense YaRN
baseline.

Table 4: Perplexity of YaRN baseline, SeerAttention after YaRN and YaRN fine-tuning with SeerAt-
tention.

YaRN Post-training SeerAttention after YaRN YaRN with SeerAttention
Sparsity 0.0 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9
PG19 8.79 9.16 9.30 9.48 9.73 10.18 8.81 8.82 8.85 8.93 9.16

Proof-pile 2.46 2.53 2.57 2.61 2.68 2.85 2.47 2.47 2.48 2.51 2.60

In this preliminary experiment, we demonstrate that SeerAttention can be seamlessly integrated in
Long-context extension fine-tuning stages. We follow YaRN [41] to extend the context size of a
Llama-3-8B model from 8k to 32k. The loss function is the summation of original LM loss and
AttnGate loss. To ensure stable training, the AttnGates are first initialized using the post-training
self-distillation before fine-tuning the entire model. We integrate SeerAttention into YaRN and
compare the performance against the YaRN dense baseline and the post-training time self-distillation
of SeerAttention applied after YaRN. Figure 10 presents the loss curves of the YaRN dense baseline
and SeerAttention at 50% and 90% sparsity. The curve at 50% sparsity nearly overlaps with the
baseline, while the curve at 90% sparsity shows slightly higher loss. Table 4 displays the test
perplexity on the PG19 and ProofPile datasets evaluated at a 32k context length. The YaRN dense
baseline achieves perplexity scores of 8.79 and 2.46, respectively. Post-training SeerAttention results
in increased perplexity. When applying SeerAttention during the YaRN extension fine-tuning, it
maintains near-lossless performance at 50% sparsity (with scores of 8.81 and 2.47), and even at 90%
sparsity, the loss remains minimal.
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A.3 Preliminary Results on Introducing Sparse Attention at Decoding Stage

Adjusting AttnGate for decoding The current AttnGate design mainly works for accelerating
long-context prefill. However, applying the attention gate distillation idea is also a feasible direction.
This is important to improve the efficiency of reasoning models that generate longer sequences
during inference before producing an answer, aka test-time scaling. Adjusting current design to
compatible for decoding cases requires removing the sequence level pooling of Query to adhere to
the token-by-token generation fashion. Here is a modification of AttnGate design in (9):

Qc = RoPE
(
Wq

gate reshape(Qnope, [..., g · d])
)
, (9a)

Kc = RoPE
(
Wk

gate concat[Pmax(Knope),Pmin(Knope),Pavg(Knope)]
)
, (9b)

S = softmax(Qc K
⊤
c /

√
dgate). (9c)

where, Pmax, Pmin, and Pavg stand for Max, Min and Average Pooling in sequence dimension, and
g is the group size of GQA setting. d and dgate are the hidden dimension of the original model
and AttnGate for each head, respectively. S is the output score of each block from AttnGate.
We aggregate Query heads within each group to share sparsity decisions to improve the decoding
efficiency. Specifically, a linear layer in the Q branch reduces each subgroup of queries (e.g., 32
heads → 8 heads for g=4) to a single Qc head while keeping K heads unchanged, enabling shared
sparsity among grouped queries. To compress K along the sequence dimension, we apply non-
overlapping block-level pooling that concatenates Max, Min, and Average pooling outputs before
a linear projection. Additionally, AttnGate reapplies RoPE on pre-RoPE Q and K, assigning each
block the position of its first token, which we find improves the accuracy.

Evaluation on Reasoning Tasks We evaluate this design on three reasoning benchmarks: AIME24,
MATH-500 [23], and GPQA-Diamond [44] using DeepSeek-R1-Distill-Qwen-14B [21]. We compare
against full attention and Quest [48], which is a training-free sparse decoding method using query-
aware KV cache selection. Both methods use a block size of 64 and apply sparsity to all layers for
fair comparison. The maximum output length is fixed at 32,768 tokens across all settings. Accuracy
is reported as average pass@1 over 64 (AIME24), 8 (MATH-500), and 16 (GPQA) samples. For
AttnGate distillation, we use OpenR1-MATH-220k [16] dataset with 800 steps and global batch size
16 on AMD MI300x GPUs, employing DeepSpeed ZeRO-2, AdamW optimizer, and a 1e-3 learning
rate with cosine decay.

Table 5: Performance comparison across different token budgets for SeerAttention-decoding and
Quest using DeepSeek-R1-Distill-Qwen-14B model.

Method Dataset Token Budgets Full

2k 4k 6k 8k

SeerAttention-decoding
AIME24 55.78 66.35 67.50 66.82 67.50

MATH500 87.65 92.10 93.05 93.12 93.30
GPQA-Diamond 51.26 56.79 56.41 57.48 57.80

Quest
AIME24 25.83 46.67 53.75 60.00 67.50

MATH500 57.40 79.60 88.60 92.20 93.30
GPQA-Diamond 35.35 50.25 52.53 54.55 57.80

Table Table 5 shows the superior performance of our design compared to Quest across multiple
reasoning benchmarks and token budgets. On AIME24, we consistently outperforms Quest, achieving
55.78 vs. 25.83 accuracy at 2k tokens and maintaining a strong lead using more token budgets.
Similarly, on MATH500 and GPQA-Diamond, SeerAttention-decoding shows better budget-accuracy
tradeoff compared with Quest, reflecting better information retention under sparse decodin owing to
its learned gate that shares sparsity decisions, enabling more coherent block selection.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In abstract and introduction, we provide a clear description of motivation,
methods and contribution of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide discussion of limitations in the last section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: All the results are real experiment results without theoretical assumption.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Training and testing details are listed in detail. The training data and testing
benchmark are all public-available resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: We did not provide code in the supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have listed detailed hyperparameters of the training setting.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The experiments results are mostly deterministic without an error bar.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide training GPU settings and typical GPU hours information.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research does not involve human subjects, and all the training/testing
dataset and models are commonly used open-source resources.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work is mainly about model efficiency. We believe the societal impact is
mostly related to the model functionality itself instead of how fast it can run.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

21

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: We use the common open-sourced models in our experiments.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: This paper properly credits and cites the creators or original owners of the
assets used including code, data, and models.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We did not provide code in submissions.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This research does not involve LLMs as any important, original, or non-
standard components
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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