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Abstract

Scientific machine learning often involves representing complex solution fields that
exhibit high-frequency features such as sharp transitions, fine-scale oscillations,
and localized structures. While implicit neural representations (INRs) have shown
promise for continuous function modeling, capturing such high-frequency behavior
remains a challenge—especially when modeling multiple solution fields with a
shared network. Prior work addressing spectral bias in INRs has primarily focused
on single-instance settings, limiting scalability and generalization. In this work,
we propose Global Fourier Modulation (GFM), a novel modulation technique that
injects high-frequency information at each layer of the INR through Fourier-based
reparameterization. This enables compact and accurate representation of multiple
solution fields using low-dimensional latent vectors. Building upon GFM, we
introduce PDEfuncta, a meta-learning framework designed to learn multi-modal
solution fields and support generalization to new tasks. Through empirical studies
on diverse scientific problems, we demonstrate that our method not only improves
representational quality but also shows potential for forward and inverse inference
tasks without the need for retraining.

1 Introduction

Solving partial differential equations (PDESs) is essential to progress in many science and engineering
applications, including fluid dynamics, seismic inversion, climate modeling, and mechanical design.
Traditionally, these PDE problems are addressed using numerical methods (e.g. finite-difference [[1]],
finite-volume [2], finite-element [3]]), which are reliable but relatively slow and computationally
expensive for high-dimensional or high-resolution data. Scientific Machine Learning (SciML) [4,
516 7, 8] offers a more efficient alternative by combining physics-based models with data-driven
approaches to approximate solutions quickly and accurately. One critical challenge within SciML
applications involves the efficient compression and functional representation of large-scale scientific
datasets, which contain complex structures, sharp transitions, and high-frequency content [9,|10]. To
handle such data is critical — not only for reducing storage and memory costs but also for enabling
fast and flexible adaptation in downstream tasks such as operator learning, inverse modeling.

A promising strategy to address these challenges is the use of implicit neural representations (INRs),
which represent data as continuous functions by mapping coordinates X’ (e.g. spatial, temporal

*Equal Contribution
TCorresponding Author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



positions) to physical quantities f(X’). These methods inherently offer mesh-free and resolution-
invariant representations, making them particularly suitable for complex scientific data. Nevertheless,
standard INR architectures based on multilayer perceptrons (MLPs) suffer from a well-known
limitation called spectral bias [11} 12} [13], where the neural network tends to learn low-frequency
components more rapidly than high-frequency ones.

This problem has been rigorously formalized in prior theoretical work. In particular, according to
Theorem 1 in [11]], MLPs with tanh activation, gradients associated with high-frequency components
are smaller than those for low-frequency components.

Although various approaches, including SIREN [[14], Fourier feature networks (FFN) [[15], and
wavelet implicit neural representations (WIRE) [16], have demonstrated improved performance,
mitigating this spectral bias problem, by proposing advanced nonlinear activation functions, these
methods typically focus on training a single INR for a single data instance.

To resolve this weakness, we turn to the Low freq. High freq.
Functa paradigm [17], which functionalizes b 8
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outputs into lightweight latents while restor- (a1, a2)
ing their functional character and use this
reduced representation in performing down-
stream tasks (e.g., super-resolution, learning
forward/inverse PDE operators). However, naively adopting the Functa paradigm to the PDE domain
is expected to bring novel challenges, namely, spectral bias and no established mechanism describing
forward/inverse problems. See Figure [I|for example; existing INR modulation techniques (e.g., Shift,
Scale, FILM) struggle to capture high-frequency components of the PDE solution.

Figure 1: [Spectral bias problem] Experimental re-
sults on Helmholtz equations

Spectral bias of INR with modulation methods. Existing modulation approaches [17, 18] apply
instance-specific modulations directly in the latent space, without explicit control over spectral
characteristics. Consequently, these modulation methods inadequately represent PDE data with
complex, high-frequency features. To effectively overcome spectral bias within modulated INR
settings, we propose a novel modulation method based on Fourier reparameterization, a frequency-
aware method that explicitly injects spectral priors into the latent space.

In this paper, we address these challenges by introducing a spectrally balanced and resolution-invariant
framework for learning scientific data. We make the following key contributions:

* We propose Global Fourier Modulation (GFM), a modulation technique that extends Fourier
reparameterization to the modulated INR setting. Our GFM injects fixed Fourier bases into
each layer of the shared INR backbone, enabling it to learn high-frequency components that
other modulations fail to capture.

* We present PDEfuncta, a reversible architecture that represents input-output solution field
pairs using one shared latent modulation vector. This design supports bidirectional inference.

* Through various experiments on benchmark PDE datasets, we empirically demonstrate that
our method achieves high reconstruction accuracy, generalizes across parameter ranges and
resolutions, and outperforms existing modulation baselines.

Our approach also bridges the gap between INR-based compression and operator learning. While
classical neural operators [19} 20} 21}, 22} 23] are designed to map between function spaces, they
are limited to one-way inference. In contrast, our PDEfuncta leverages the functional continuity
and Fourier reparameterization based modulation to deliver a compact, flexible, and bidirectional
inference for learning function space mappings in the latent space.



2 Related Works

Implicit Neural Representation INR methodologies aim to receive coordinates as input and
map them to corresponding values. Two types of INR, namely Physics-informed Neural Network
(PINN) [24] and Neural Radiance Fields (NeRF) [25], have the goal of solving PDE problems and
representing 3D scenes, respectively. Since inference is possible through input coordinates, it is
feasible to represent at the desired resolution and express a single data point as a function. According
to [L5], Fourier feature mapping can maximize the performance of INR, showing equivalence to
the shift-invariant kernel method from the perspective of NTK [26]]. On the other hand, as seen
in [14} 16} 27], many studies have focused on proposing activation functions for INR to enhance both
the expressiveness and complexity of the INR model.

Data to Functa An INR is a network that continuously represents a signal or field in its domain.
INR methods like DeepSDF [28]] and NeRF model data as continuous functions. Recent work has
explored treating data as functions to improve learning in a function space. For example, Functa [17]]
shows that one can encode each data sample like an image, as a function (parameters of an INR)
and learn tasks over these representations. In this paradigm, each dataset sample is encoded as a
low-dimensional latent vector that modulates a shared INR network. Such functional representations
offer substantial benefits, including resolution independence, improved generalization, and efficient
data compression. Our work leverages these ideas by employing modulated INRs to encode PDE
solution fields and enable direct learning of operators in continuous function spaces, significantly
improving efficiency and flexibility in scientific machine learning applications.

Neural Operator Neural operator is one of the methods to approximate solutions to PDEs, aiming
to map input and output function spaces. Fundamental research in this field, known as the deep
operator network (DeepONet) [29]], is composed of a branch network and a trunk network, each
used to learn the PDE operator. In this process, DeepONet requires a fixed discretization of the
input function. On the other hand, there are studies that learn operator by approximating kernel
integral operations. In this domain, a promising study known as Fourier neural operator (FNO) [20]
maps function spaces using convolution operation in the Fourier domain. Furthermore, investigations
involve training models in the wavelet domain [30,[31]] and utilizing message passing in graph neural
networks for operator learning [32,133]]. These approaches are highly effective in learning PDE data
and can perform computations rapidly during dynamic simulations. However, a drawback of these
methods is the requirement for input and output data to have consistent sampling point. Subsequently,
solutions such as the [34, 35]], which feature a GNN-based encoder-decoder structure, have been
proposed to address problems beyond fixed rectangular domains. Additionally, there are DINO [22]
and CORAL [36] based on implicit neural representation, which enables learning and inference even
in situations where the sampling ratios of input and output data differ.

3 Global Fourier Modulation for Mitigating the Spectral Bias Problem

INRs model data as continuous functions f(X'; ) that map spatio-temporal coordinates X to solution
fields, offering resolution-invariant representations. However, they require a separately trained set of
parameters 6 = {W, b} for each data sample, which limits scalability. The Functa framework [17} [37]]
addresses this scalability issue by introducing modulated INRs, where a single shared INR network
is used across all samples, and each instance is customized via a sample-specific latent code z.
This latent vector is passed through a lightweight modulation network g(z; 7) to produce a set of
layer-wise modulation vectors {a*}£_, where 7 = {Winod, bmoda } are the parameters of g. The latent
vector z is learnable and initialized as a zero vector, forming a set known as Functaset.

However, modulated INRs still inherit the spectral bias of MLPs, where low-frequency components
are learned more rapidly than high-frequency ones. To mitigate this, we propose Global Fourier
Modulation (GFM), which is a novel modulation strategy that explicitly injects frequency-awareness
into the network. Its design and theoretical foundation are detailed next.

3.1 Spectral Bias and Fourier Reparameterization

INRs are well known for exhibiting spectral bias, the tendency of neural networks to approximate the
low-frequency components of a target function much earlier than the high-frequency components.



Global Fourier Modulation (GFM)
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Figure 2: Overall pipeline of GFM. The GFM framework injects fixed Fourier bases into each layer
of the shared INR, enabling effective learning of both low- and high-frequency components.

Theorem 1 from [[L1] provides a theoretical explanation for this phenomenon, showing that low-
frequency components dominate the gradient dynamics near initialization. As a result, model struggle
to capture fine-scale structures, which are essential in many physical systems and PDE-based data.

To mitigate this issue, prior works has proposed frequency-aware parameterizations that explicitly
embed spectral priors into the model architecture [38]]. A representative approach is to reparameterize
each weight matrix as W = S-® , where S € RMX*D ig a trainable coefficient matrix and & € RP*M
is a fixed Fourier basis composed of sinusoidal functions. This formulation restricts the function class
to lie within a predefined frequency subspace, making high-frequency modes more accessible during
training. It also improves the conditioning of the Neural Tangent Kernel (NTK), leading to a more
balanced eigenvalue spectrum and better convergence on complex signals.

Theorem 1 (Theorem 2 in [38]) Let W € RM*M denote the weight matrix of a hidden layer in an
MLP. Suppose that it is reparameterized as W = S - ®, where S € RM*P s a trainable coefficient
matrix and ® € RP*M s a fixed Fourier basis matrix. Then, for any two frequencies F1 > F2 > 0,
any € > 0, and fixed index 1, for m = 1, ..., M there must exist a set of basis matrices such that:
OL(Fy) ,OL(F2) OL(Fy1) ,OL(F2) ’ OL(F1) /8L(]:2) e M

> max
asz‘,m 3Si,m { 3w¢,1 5'101:,1 awi,M 3wi,M

where s; , and w; ., denote elements of S and W, respectively.

Theorem [1| formalizes the gradient dynamics under Fourier reparameterization. It shows that the
gradient ratio between high-frequency and low-frequency components is greater under Fourier
reparameterization than standard weights, up to a small error €. This indicates that high-frequency
structures receive relatively stronger gradient signals during training, improving the model’s ability
to learn fine-scale patterns.

Construction of the Fourier Basis. The fixed basis matrix ®* € RP*M is constructed by
evaluating phase-shifted cosine functions over a uniform spatial grid {p,,}}_; in the range
[—Timax/2; Tmax /2], where Tax is determined by the smallest frequency used. Each row cor-
responds to a unique combination of frequency w and phase shift ¢, allowing spectral diversity across
layers. Specifically, each basis row in the k-th layer is defined as:

85 = {cos(w - p + MLy, for d=1,....D @

where w is selected from a mixture of low and high frequency components, and ¢ is a phase shift
uniformly sampled from [0, 27]. This diverse basis configuration enables the network to better capture
both smooth and high-frequency features. Full construction details are provided in Appendix [H]

3.2 Global Fourier Modulation for Modulated INRs

While Fourier reparameterization [38] effectively mitigates spectral bias in standard INRs by pro-
jecting weights into a frequency-aware subspace, it is fundamentally restricted to single-instance
settings. In contrast, modulated INRs aim to generalize across datasets by injecting instance-specific
information through modulation. However, prior modulation techniques—such as Shift, Scale, and
FiLM—operate solely in the activation space and lack explicit frequency control. This limitation
makes them inadequate for modeling signals with rich high-frequency content (see Figure [6).
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Figure 3: Proposed method: PDEfuncta. PDEfuncta leverages GFM to represent paired function
spaces using a shared latent vector, supporting bidirectional inference between input and output fields.
This architecture enables efficient compression and reversible mapping for scientific datasets.

To address this gap, we propose GFM, a novel modulation strategy that integrates frequency-awareness
directly into the weight space. GFM extends Fourier reparameterization to multi-sample settings
by combining a shared Fourier basis ®* (cf. Section with sample-specific modulation vector
ak = {aFW ok}, Here, o™ € RY modulates the spectral components of the weight matrix,
while o € R? adjusts the bias term. At each layer k, the weight matrix is computed as:

=S5k oF = (RF + oMW .1T) . oF, 3)

where R* € R4*M i a shared learnable base matrix and 1 € R* is a vector of ones for broadcasting.
This construction enables direct, sample-specific modulation in the frequency domain. To clarify how
GFM differs from previous approaches, we first revisit the general update rule for modulated INRs:

R = (W(WF - BF 4+ b7 ah)) 4

where h¥ € R? is the hidden representation at layer k, +y is an activation function and 1(-; a*) is a
modulation function. Existing modulation methods apply ¢/ in the activation space as follows:

Shift : ((W* - B* +%); %) = (WF - BP +0%) + ¥, )
Scale : Y((WF - b* + b%); %) = (WE-B* + %) 0 oF, (6)
FiLM : (W5 - B £ %), %) = (WH - hE 4 0%) © oW 4 oMb, (7)

These approaches adjust values per instance but leave the weight matrices unchanged, limiting their
capacity to modulate frequency content explicitly. In contrast, GFM redefines the transformation as:

GEM (Ours) : (WF - ¥ + b%); 0%, ®F) = (RF 4 oW . 1T) . ®F . p* 4 0% 4 aFb (8)
While the primary effect arises from spectral modulation via o*>", the additional bias term o
enhances representational flexibility and fine-grained control over output activations.

By conditioning weights on a shared Fourier basis and modulating them in the frequency domain,
GFM inherits the benefits of Fourier reparameterization—such as improved NTK conditioning and
stronger high-frequency response (Theorem [T)—while scaling to dataset-level representations. This
design enables frequency-targeted, sample-specific adaptation in a parameter-efficient manner.

4 PDEfuncta: From discrete to continuous solution representations

Applying our proposed GFM to the Functa framework effectively overcomes the spectral bias com-
pared to conventional modulation strategies (see Table [T|and Figure[f]in Section[5). As demonstrated
theoretically in Section [3] GFM significantly improves the compression and accurate reconstruction
of scientific data with high-frequency components. While effectively modeling individual datasets
is valuable, scientific applications frequently involve data pairs defined on two distinct yet related
function spaces (A, U). A representative example is full waveform inversion (FWT) [39] [10]], where
paired data samples exist as seismic velocity fields and corresponding seismic waveforms (cf. Ap-
pendix D). In this section, leveraging Functa’s functionalization and compression capabilities, we
introduce PDEfuncta, a novel framework designed to jointly represent these paired function spaces
through a shared latent modulation vector z.



4.1 Overall Architecture

Our proposed method, as depicted in Figure [3] represents functions in the function space A and
function space U through respective neural networks f,(X’;6,) and f,(X;6,). These two INR
models receive spatio-temporal coordinates h® = [, ¢]T as input and have the following structure:

ht = ~A(WO - h0 + 1),
hk+1 Z’Y(lbk(Wk hk+bk)aakaq)k)a k: 1""’L7 (9)
(X 0) = WhHL pll g plt,

Here, 0, = {Wk b¥}E_| and 6, = {WF bF}L_ | are the weight and bias of the INRs f, and f,,
respectively, which are common model parameters used for samples in the dataset. In contrast, a*
represents the modulation vector for the k-th layer, serving as model parameters that vary depending

on the data as follows:
{OZZ}£:1 = 0a(%7a),  Ga(2;7a) = W,;“Odz + bx;od

10
{O‘ﬁ}ézl = gu(2imu)s  Gu(2mu) = W;mdz""bg()d' (4

The latent modulation vector z consists of parameters learned through auto-decoding [28]] from data
sample, and one z is generated for each data sample. The weights and bias parameters constituting a
linear layers, 7, = [Wmod pmod] g = [Wmed pmod] recejve the z as input and output modulation
vectors {a¥,ak}E_, (i.e. Eq (10)), these two modulation vectors are applied to each layer of the
INR networks f, and f,, enabling the neural network to represent various data samples. We extend

Fourier reparameterization to support multiple data instances via GFM.
W) =Sk oF = (RE+oEW.1T). 0% Wh(a) = 5% oF = (RE+aEW.1T). 0k (11)

where {RY, RE}EL_ is a base coefficient matrix (shared across all instances) and {a®W o&W}L_
are a modulation term derived from a shared latent modulation vector z. In the simplest instantiation,
the GFM method adds {ak, ok} € R to each row of {RF, RE}L_ | € RM*D (or an equivalent

broadcasting) so that {a*, a*} adjust the coefficients associated with the D Fourier basis vectors.

4.2 How to train

Our training method requires steps to learn the functaset that matches to train/testset during both the
training and testing phases. We use a nested loop structure in the training phase (cf. Algorithm [I)
following functa framework: an inner loop that focuses on construction of functaset, and an outer
loop that updates the global model parameters. Both loops use the same loss function L, which is the
sum of reconstruction errors from f, and f,, as follows:

L; = (LXi (ai,fa(X;Ha,ga(Zi;ﬂa))) +LXL (uivfu(X;euvgu(zi;ﬂ-u))))' (12)

While both loops utilize the same loss function Ly (z,%) = (x — 2)2, the inner loop updates
parameters for each individual sample, whereas the outer loop updates the parameters based on

the batch loss Zil L;. In the inner loop, we sample K samples from each batch and update
modulations of the selected samples. This bilevel approach mimics a specialized form of Model-
Agnostic Meta-Learning (MAML) [40] that focuses on learning only a subset of weights, facilitating
efficient adaptation and learning across diverse datasets 41 [17]].

S Experiments

In this section, we empirically evaluate the proposed GFM and PDEfuncta frameworks. Our ex-
periments focus on four main goals: (i) validating GFM’s ability to compress and reconstruct PDE
solution fields under single-INR modulation; (ii) evaluating whether the learned latent space enables
generalization to unseen parameter configurations; (iii) demonstrating PDEfuncta’s ability to perform
bidirectional inference across paired function spaces; and (iv) comparing PDEfuncta against neural
operator baselines on complex geometry benchmarks.



Table 1: Comparison with existing modulation methods (PSNR1/MSE])
Convection Helmholtz #1  Helmholtz #2  Navier-Stokes Kuramoto-Sivashinsky
SNR MSE PSNR MSE PSNR MSE PSNR MSE PSNR MSE

Shift [17]  13.225 0.3849 25.467 0.0341 18.249 0.1426 25.767 0.0092 16.962 79715
Scale [17] 27.410 0.0067 25.669 0.0472 18.183 0.1355 31.469 0.0024 20.395 3.8306
FiLM [22] 27.330 0.0125 33.611 0.0133 22.771 0.0762 31.904 0.0022 22.297 2.3309
GFM 42.474 0.0004 39.139 0.0006 29.033 0.0056 34.754 0.0011 29.827 0.4198

Modulation

5.1 Experimental Setup

For each dataset, we report reconstruction performance using Peak Signal-to-Noise Ratio (PSNR)
and Mean Squared Error (MSE). For neural operator tasks, we use the L?-norm of prediction error,
which is the standard metric in literature. All modulation-based experiments use a 20-dimensional
latent vector z to modulate the shared INR. Further details are provided in Appendix[E]

Datasets. We evaluate the performance of our proposed GFM using four scientific datasets: the con-
vection equation (Eq. (T3))), Helmholtz equation (Eq. (T4)), Navier-Stokes (NS) equation (Eq. (7)),
and Kuramoto—Sivashinsky (KS) equation (Eq. (T6)). To assess capability of PDEfuncta for bidi-
rectional inference, we use the OpenFWI dataset [10], which contains pairs of samples across two
distinct function spaces. Lastly, we explore performance of our proposed method in a challenging
neural-operator scenario, using the Airfoil (Eq. (21)) and Pipe flow (Eq. (22)) datasets. Detailed
descriptions of each dataset are provided in Appendix

Baselines. We compare our GFM against three representative modulation methods: Shift, Scale, and
FiLM. Additionally, we provide comparisons with Spatial Functa [37)] in Appendix [J] To evaluate
the neural operator capability of PDEfuncta, we consider established baselines including FNO [20],
UNet [42], Geo-FNO [35], FFNO [21], CORAL [36] and MARBLE [23].

5.2 Compression and Reconstruction with Single-INR modulation

We begin with the standard single-INR setting, where a single 1.0
INR is modulated by a sample-specific latent codes to com-  0-8
press and reconstruct individual continuous solution fields. Ex- 40.6
periments are conducted on four PDE datasets known for high- =0.4

frequency details: 1D convection equations (8 € {1,...,50}), 0.2
2D Helmholtz equations (#1: aj,a2 € {1,...,5}; #2: o0 :
ay,as € {1,...,10}), 2D incompressible NS, and KS equa- 0 1000 20?5(,))03?00 40003000

tions. Detailed experimental setup is listed in Appendix [E] ) ) )
. . . ) Figure 4: [Kuramoto—Sivashinsky]
As summarized in Table[I] GFM achieves the highest PSNR Training loss (MSE) over epochs.

and lowest MSE across all datasets. Notably, it improves

PSNR by up to 15dB over the strongest baseline, FiLM, on the convection equation, and by 3-7dB on
the others. Figure @] shows the training loss curves up to 5000 epochs on the KS equation for four
modulation methods: Shift, Scale, FiLM, and our proposed GFM. GFM shows the fastest and most
stable convergence, reaching the lowest final MSE among all baselines. This also highlights that
GFM can successfully compress and reconstruct high-frequency spatiotemporal dynamics using only
a 20-dimensional latent code. We also present qualitative reconstruction results in Figure[6] The top
row shows KS error maps, and the bottom row shows Helmholtz reconstructions. GFM shows the
most visually accurate outputs with minimal error, while others show noticeable distortion.

5.2.1 Evaluating Functional Representation in Latent Modulation Space

To evaluate whether the learned latent modulation space  Table 2: Results on unseen coefficients
captures meaningful functional representations, we design

li K X 4 Method Setting 1 Setting 2
etho
two generfl 1za.t1.0n experlments. These experlments test PSNR MSE PSNR  MSE
the model’s ability to interpolate beyond the discrete set -
. . . Shift 8427 0.5305 13307 0.4533
of PDE coefficients seen during training. We report results Scale 9.125 04186 9.197 0.5421
; ; 3 FLM 10613 03954 11927 0.3268
on.the corivectlon equation, where we test on unseen coef- GEM 3286 00017 30830 0.0033
ficients 5* € {1.5,2.5,...,49.5} that are excluded from

the training set (8 € {1,2,...,50}). In both cases, we aim to recover the full solution for 5* using
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Figure 6: Top: Error maps for the Kuramoto—Sivashinsky equation. Bottom: Helmholtz equation

(a1 = 6.0, a2 = 9.0) reconstructions. GFM achieves the most accurate reconstructions.

only its inferred latent code z, without updating the shared INR. All results are obtained using the
pre-trained model from Section[5.2] Additional details are provided in Appendix [F2]

Setting 1: Latent Interpolation. We assume no access to the target solution for the unseen
coefficient 8*. Its latent code zg- is estimated via cubic interpolation between the latent codes
of nearby training coefficients. This setting evaluates whether the latent space encodes smooth,
functionally meaningful transitions between parameter-conditioned solutions.

Setting 2: Latent Fitting from Partial Observation. We assume partial access to the target
solution over ¢ € [0, 0.5] and optimize only the latent code z3- to fit the observed segment while
freezing the shared INR. We evaluate reconstruction performance on both the observed segment and
the unobserved future ¢ € [0.5, 1].

in Table 2] and Figure 5] empirically demonstrate /// /// ///

that, even when trained only on a finite discrete

set of PDE coefficients, the proposed method  ® & "o+ % “ ‘“ S ” 807 on ¢ O n;’;en “’
can effectively generalize to unseen continuous  (a) GT(3 = 24.5) (b) Setting 1 (©) Settmg 2

parameter values via latent space interpolation. // // // W

This indicates that the latent modulation vectors
capture a smooth, functional mapping aligned
80 " 02 04 06 08 m 80 w 80 02 04
(d) GT(,B =49.5) (e) Settlng 1 ) Settlng 2

Our experimental results, which are summarized

with the underlying parametric dependence of
the PDE family. In Setting 2, where partial
observations of the solution are available, our
method successfully recovers the full spatiotem-
poral structure of the solution by optimizing only
the latent code while keeping the INR fixed. The
model not only fits the observed interval accurately but also extrapolates reliably to the unobserved
region, highlighting the adaptability and efficiency of the latent modulation space. Further, this
property is essential for scientific applications where one frequently encounters novel or intermedi-
ate parameter regimes that were not explicitly present in the training set. Additional experiments,
including settings where partial observations are available for 5*, are discussed in Appendix [F:2]

Figure 5: [Convection] Reconstruction results for
unseen 8 = 24.5,49.5 on Setting 1 and 2.

5.3 Bidirectional Inference

A core contribution of the PDEfuncta framework is its ability to perform bidirectional functional
inference between two function spaces .4 and U, via a joint latent representation. This capability
enables unified modeling of forward and inverse mappings between parametric PDE function spaces
— a setting frequently encountered in scientific applications such as aerodynamic design. In this
section, we evaluate this bidirectional capability in two key aspects: (i) reconstruction fidelity on seen
paired instances using diverse modulation strategies and (ii) generalization to unseen PDE instances
with complex geometries in neural operator settings.



Table 3: Comparison with existing modulation methods (PSNR1/MSE])
FWI (A) FWI (/) Navier—Stokes (A)  Navier-Stokes (I/)
PSNR MSE PSNR MSE PSNR MSE PSNR MSE

Shift [17] 25.879 0.0102 24995 0.0126 28.134  0.0155  26.306  0.0219
Scale [17] 25256  0.0117 29.978 0.0039 38.784  0.0013  38.747  0.0013
FILM [22]  25.292 0.0115 30.026 0.0035 42.649  0.0005 43.105  0.0004

Modulation

GFM 28.757 0.0054 32.761 0.0021 43.166  0.0004 43.792  0.0003
(a) GT(Airfoil) (b) Pred: G (c) Pred: gt (d) GT(Pipe) (e) Pred: G (f) Pred: gt

Figure 7: PDEfuncta reconstructs both forward Gt : A — ¢/ and inverse G : &/ — A mappings
between function spaces for unseen airfoil and pipe flow samples.

5.3.1 Reconstruction Fidelity on Seen Samples: Modulation Comparison

We evaluate PDEfuncta’s ability to compress and reconstruct paired data from seen samples using a
shared 20-dimensional latent vector. Experiments are conducted on the FWI and 2D incompressible
Navier—Stokes datasets, covering distinct scientific domains. In FWI, A denotes seismic data and
U is the corresponding velocity map. For Navier—Stokes, A consists of velocity fields at early time
steps (¢ € [0, 14]), and U at later timesteps (¢ € [15,29]). This setup enables bidirectional inference
between physical states over time or domains. We compare four modulation strategies: Shift, Scale,
FiLM, and our GFM. As shown in Table 3] GFM achieves the best reconstruction performance across
both directions. On FWI, it reconstructs velocity maps from seismic data with a PSNR of 32.76 dB.
On Navier—Stokes, it shows the lowest MSE of 0.0003 for velocity reconstruction at ¢ € [15,29].
These results highlight PDEfuncta’s ability to learn accurate bidirectional mappings between paired
fields. Additional experimental results and analyses are provided in the Appendix [G]

5.3.2 Generalization to Unseen Instances: Neural Operator Comparison

Finally, we compare our PDEfuncta with neural operator baselines Table 4: Test Lo-error ({)
on two complex geometry benchmark datasets extending it to neural
operator, i.e., Euler-NACA (Airfoil) and Pipe. The Euler-NACA

Method Euler-NACA  Pipe

. . e FNO . .01
datas§t predicts airflow (U/) over hfald out airfoil shape (A), wherefls UNet 8‘8232 8'8232
the pipe benchmark dataset considers incompressible flow (/) in ~ Geo-FNO  0.0158  0.0066
. . . FENO 0.0062  0.0073
unseen pipe cross sections(A4). In both cases, we aim to learn a CORAL 0.0059  0.0120

pair of bidirectional solution operators between function spaces: the g/l&RfBthi 8'8(0)281 8‘8(1)2;)?
forward mapping G : A — U and the inverse mapping G' : U — A. uneta & :

We evaluate both G and G' on unseen samples. Tablereports Lo errors for forward mapping G, and
PDEfuncta achieves the lowest error on the Airfoil task and competitive performance on the Pipe
dataset. As shown in Figure[7] PDEfuncta demonstrates strong inference performance in both forward
and inverse mappings. These results demonstrate that the proposed model generalizes well across
domains and supports consistent bidirectional inference between geometry and solution spaces.

6 Conclusion

We presented GFM, a simple re-parameterization that handles spectral bias in modulated INRs
by conditioning every layer through a fixed Fourier basis. Theory and experiments show that this
approach can learn high-frequency components as well as low-frequency components, and provides
reliable compression of scientific machine learning data. Building on GFM, we introduced PDEfuncta,
a bidirectional novel architecture that encodes paired fields with a single latent vector. Taken together,
GFM and PDEfuncta offer a lightweight, resolution free characteristic, unified frameworks for
functionalized data and spectrally balanced modeling of PDE systems.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims in the abstract and introduction clearly reflect the paper’s contribu-
tions and scope.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The paper discusses potential limitations in the Appendix [B]
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: Theoretical results are stated clearly with underlying assumptions in Section 3}
Guidelines:

* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Detailed information, including dataset descriptions and training/testing proce-
dures, is fully explained to enable reproducibility (See Appendix [D).

Guidelines:
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* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Data and code used in experiments are publicly available with explicit instruc-
tions included in supplementary materials.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental setup and details, including data splits, hyperparameter, training
algorithm are provided in main paper and Appendix [D}

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars are provided as standard deviations over multiple runs, as detailed
in Appendix [G|

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Experimental setup and computer resources details are given in Appendix [E]

Guidelines:
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11.

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: All research activities conform to the NeurIPS Code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: : Both positive and negative societal impacts are discussed in Appendix [B]
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: The paper does not release high-risk data or models
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Detailed license and data information is provided in Appendix [D]
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: All new assets are provided in the supplementary material.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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15.

16.

Answer: [NA]
Justification: This work does not involve human subjects or crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: No large language models were used as a core component.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Symbol Definitions

Table [5] summarizes the key symbols and notation used throughout the paper for clarity and reference.

Table 5: Definitions of symbols.

Symbol Description

Input and function space variables

X Input coordinate (spatial and/or temporal position).

T, t Spatial and temporal components of the input coordinate X.

fa(X504) INR modeling a function in space .4 (with parameters 6,).

Fu(X;604) INR modeling a function in space U (with parameters 6,,).

AU Input and output function spaces

g, 6t Function space mapping A — U and U — A

Neural network architecture parameters

0 Set of network parameters (weights and biases of an INR).

Oq, 0. Network parameters for f, and f.,, respectively.

L Number of hidden layers in the INR.

ho Initial input to the network.

hi Hidden feature vector at layer k (ho is input, hr,41 is final hidden layer output).
wk Weight matrix of layer & in the network.

bk Bias vector of layer k in the network.

ol Nonlinear activation function applied to hidden layers.

d Dimension of each hidden layer (Iength of hj and by).

Fourier reparameterization and spectral terms

Sk Trainable coefficient matrix for layer k under Fourier reparameterization.
(o8 Fixed Fourier basis for layer k.

Pm m-th point in the uniform spatial grid used to construct ®.

Trmax Maximum coordinate value for the Fourier basis sampling interval.

w = {Wiow,whigr}  Frequency component used in constructing the Fourier basis.

q Phase shift applied in the Fourier basis construction.

D Number of Fourier basis functions per layer.

M Number of sample points per basis function.

Fi, Fy High and low reference frequencies (F1 > F> > 0) used in Theorem .
€ Small positive constant (error tolerance in Theorem .

Modulation and training variables

R Shared base coefficient matrix for layer k.

af Modulation vector for layer k

oW kb Components of oy, that modulate the weight and bias at layer &, respectively.
Vi () Modulation function applied at layer k

z Latent modulation vector (sample-specific)

9a(z;7a) Mapping for function space A: generates {a§ }~_; from latent z.

gu(z; ) Mapping for function space U: generates {cj } ¥_; from latent z.

Ta, Tu Learnable parameters of the modulation networks g, and g,,.

Ninner, Nouter Learning rates for inner/outer loop

Training loss function.

PDE-specific parameters (experiment settings)
PDE coefficient in the 1D convection equation.
ai, az PDE coefficients in the 2D Helmholtz equations.
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B Limitation and Broader Impact

Our proposed GFM method allows explicit control over the ratio of high-frequency and low-frequency
components in the Fourier basis during weight construction. While optimal performance may require
careful hyperparameter tuning to select the appropriate frequency ratio, this flexibility enables our
framework to be adapted to a wide range of scientific problems and data characteristics. Additionally,
our proposed methods, GFM and PDEfuncta, enable efficient compression and representation of
multiple PDE solution datasets, offering significant advantages in terms of memory efficiency. These
methods can facilitate effective storage and transmission of scientific data, potentially making large-
scale modeling and simulation more accessible across various domains.

C Comparison with Existing Neural PDE Solvers

PDEfuncta demonstrates clear advantages over traditional Physics-Informed Neural Networks
(PINNs) and Neural Operators. (1) PINNs, while effective in integrating physical laws directly
into training, often struggle with scalability and generalization to complex, high-frequency PDE
solutions. (2) Neural Operators, including methods like FNO and DeepONet, address scalability
but typically require consistent discretizations and are limited to one-way function space mappings.
PDEfuncta overcomes these challenges by leveraging Global Fourier Modulation, providing a com-
pact, efficient, and spectrally-aware representation capable of accurate forward and inverse mappings
without retraining. Its shared latent modulation vector further enhances generalization across varied
parameter spaces, demonstrating clear advantages in efficiency, generalization, and bidirectional
inference capabilities compared to both PINN and Neural Operator frameworks.

D Dataset Description

We provide detailed descriptions of all benchmark PDE datasets used in the main paper, including the
governing equations, boundary/initial conditions, parameter ranges, and scientific context for each.

D.1 Convection Equation

The convection dataset is based on the one-dimensional convection equation with a controllable
advection speed parameter 5. The PDE governs the evolution of a field u(z, t) as:

ou N

ot
where (3 is the convection coefficient. In our experiments, 5 varies within a range (e.g. 8 € [1,50]) to
represent solution fields of different characteristic speeds. We impose periodic boundary conditions

on the spatial domain 2. An initial condition u(x,0) is 1 4 sin(x)). It is a fundamental model for
wave propagation and convective transport.

6@:07 x €N, tel0,T], (13)
ox

D.2 Helmholtz Equation

The Helmbholtz dataset involves a steady-state wave equation in two spatial dimensions. We generate
solutions of the form u(x, y) by choosing forcing functions that yield analytic solutions. The PDE is
given by:

Pulz,y) | Pulz,y) o _
8(E2 + ayg + k u(.ﬁC,y) - Q('Tvy) - 07 (14)

q(z,y) = (—(a17)? — (agm)? + k?) sin(ay 7x) sin(agmy),

u(z,y) = k? sin(a; ) sin(agmy), (15)

where k is the wavenumber and ¢(z,y) is a source term. The coefficients a; and ay are PDE
coefficients that control the number of oscillations of the solution in the = and y directions, respectively.
In our dataset, we consider two difficulty settings: Helmholtz #1 with {a1,as} € {1,...,5} (limited
frequencies), and Helmholtz #2 with {a1,a2} € {1,...,10}.
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D.3 Kuramoto-Sivashinsky Equation

The one-dimensional Kuramoto—Sivashinsky equation [43] is a prototypical model for spatio-temporal
chaos and pattern formation. Following the experimental setup in [43]], we use the data without
normalization to preserve its natural scale.

Up + ULy + Uy + VUgaee =0, (t,2) € [0,T] x [0, L],
20 (16)
u(0,z) = ug(z), u(x) =Y _ Asin((2rkiz/L)+ ¢:),
i=0
where u(z,t) is the evolving scalar field, and v > 0 is a viscosity (or hyperviscosity) parameter. In

our simulations, we take periodic boundary conditions on the domain [0, L] (so that derivatives in z
are periodic), which is natural given that initial conditions are composed of Fourier modes.

D.4 Navier-Stokes Equation

We use the 2D Navier—stokes equation data employed in the neural operator related studies [20, 21} 44].
This equation represents the dynamics of incompressible fluid within a rectangular domain and is
expressed as follows:

% = —u(z,t) - Vw(x,t) + vAw(x,t) + f, re(0,1)% te(0,T] (7)
w(z,t) =V x u(x,t), re(0,1)% te(0,T] (18)
V -u(z,t) =0, z € (0,1)%te (0, 7] (19)

where w is the velocity field and w is the vorticity. v is the viscosity and f is a forcing term. The
initial condition wy(x) is generated according to wy ~ p where = N(0, 73/2(—A 4 491)~25),

We consider the spatial domain 2 € (0, 1)? with the following boundary condition:

fz1,22) = 0.1(sin(2mw (21 + z2)) + cos(2m(z1 + x2))). (20)

D.5 Euler’s Equation (Airfoil)

In our study, we employ the Euler’s equation (airflow), which is a pivotal component of the discussed
benchmark data in [34} 22]. The governing equation is as follows:

0 Opsv oE

28s + V- (psv) =0, Al +V(ipvv+pl) =0, —+V-(E+pyv)=0, @D

ot ot ot

where py, p, v and E are the fluid density, the pressure, the velocity vector and the total energy
respectively. The viscous effect is neglected. The far-field boundary condition is specified as po, = 1,
Poo = 1.0, M, = 0.8, AoA = 0, where M, represents the Mach number and AoA denotes the
angle of attack. In our experimentation, we use a total of 1,000 training data samples and 200 test
data samples. The computational grid utilized is the C-grid mesh with about 200 x 50 quadrilateral
elements.

D.6 Pipe

The pipe dataset [35] is derived from simulations of viscous incompressible flow in a pipe, governed
by the Navier—Stokes equations for velocity and pressure.

ov

- . - _ 2
5t +(v-V)v Vp+vVev, 22)
V.-v=0

where v is the velocity field, p is the pressure, and v is the kinematic viscosity. The domain is a
cylindrical pipe, a long tube with circular cross section, though our dataset is represented on a mesh
(in the format of a 129 x 129 grid for a cross-sectional plane, as indicated by the input size).
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D.7 Seismic Wave Equation

The OpenFWI dataset [[10]] is a collection of seismic forward modeling simulations used for full-
waveform inversion research. Each data sample consists of a subsurface velocity model (a spatial map
of wave propagation speeds) and simulated seismic wavefields recorded from sources propagating
through that medium.
2,1 0%
P2 a2
where p(x, z,t) is the pressure wavefield (or particle displacement) at spatial location (x, z) and time
t, and v(x, z) is the velocity model (spatially-varying wave speed). The term s(x, z, t) represents the
seismic source (for example, a Ricker wavelet point source on or near the surface). In our dataset, €2
is a 2D slice of the Earth’s subsurface (with x horizontal and z depth).

= s, (23)

E Detailed experimental setup

This section provides the detailed experimental setup, including hyperparameter choices and compu-
tational cost measurements. Experiments are conducted on a system running UBUNTU 18.04 LTS,
PYTHON 3.9.7, PYTORCH 1.13.0, CUDA 11.6, 19 CPU, and NVIDIA RTX A5000.

E.1 Hyperparameters

For all experiments, we fixed the backbone INR to SIREN in order to isolate and compare the effects
of different modulation methods. Across all models and experiments, we set 9;nner = 0.01 and Moy ter
=0.0001. All networks use a total of 5 layers, each with hidden dimension M = 256. The modulation
mapping is implemented as a two-layer MLP with hidden dimension 512, and the dimension of the
latent code z is fixed to 20 for all settings. For GFM, additional hyperparameter settings are required
to construct the Fourier basis (cf. Appendix . Specifically, the number of phase shifts (nphase) 1S
fixed to 32 for all datasets, while the numbers of high-frequency and low-frequency components
(Mhigh, Tow) are set as follows: 128 and 32 for Convection and FWI, 128 and 128 for Helmholtz, 64
and 16 for Kuramoto-Sivashinsky, and 8 and 128 for Navier-Stokes. The batch size and the number of
training epochs for each dataset are as follows: batch size 32 and epoch 1,000 for Convection, batch
size 16 and epoch 5,000 for Helmholtz, bach size 32 and epoch 5,000 for Kuramoto-Sivashinsky,
batch size 10 and epoch 1,000 for Navier-Stokes, and batch size 16 and epoch 10,000 for FWI.

E.2 Computational cost

To assess the computational requirements of different Table 6: Computational cost
modulation methods, we report peak GPU memory

usage and average training time per epoch for each ~ Method Memory (GB) Time (sec)
model, measured on a single NVIDIA A5000 GPU. g 8.15 0.20
As a representative case, we provide results for the Scale 12.15 0.24
Helmholtz#2 setting under the single-INR modula- FiLM 12.15 0.29
tion configuration (cf. Section[5.2]and Appendix [J)). SpatialFuncta 8.83 0.59
Results are summarized in Table[6l GFM achieves a GFM (Ours) 8.28 0.27

strong trade-off between model complexity and com-
putational efficiency, with memory consumption and training speed close to Shift, yet substantially
better than Scale, FiILM, and SpatialFuncta. Notably, SpatialFuncta exhibits a much higher training
time per epoch (0.59s), which is due to the extra computational cost of applying modulation at every
spatial location, rather than globally, despite moderate memory usage. Other experimental settings
showed similar trends in both memory and runtime.
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F More Experimental Results on Experiments with Single-INR modulation

This section provides additional analyses and experimental results to supplement Section[5.2] We
present training loss curves for every dataset, a detailed evaluation of the latent modulation space
through interpolation analyses, and statistical comparisons across all benchmarks.

F.1 Training loss curves

Figure |§|presents the training loss (MSE) curves for Shift, Scale, FiLM, and GFM across all PDE
benchmarks considered in Section[5.2} As discussed in Section[5.2] GFM consistently achieves faster
and more stable convergence compared to other modulation strategies. This advantage is especially
notable for challenging cases such as Helmholtz#2 and Kuramoto-Sivashinsky, where baselines
exhibit slow or unstable training. These results further demonstrate the effectiveness of GFM in
robust optimization and in mitigating the spectral bias typically observed in modulated INRs.
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Figure 8: Training loss (MSE) curves for Shift, Scale, FILM, and GFM on (a) Convection, (b)
Helmholtz#1, (c) Helmholtz#2, (d) Navier-Stokes, and (e) Kuramoto-Sivashinsky. GFM consistently
achieves faster and more stable convergence across all benchmarks.

F.2 Additional Analysis of Latent Modulation Space

To further analyze the properties of the learned latent modulation space, we present additional
qualitative and quantitative results for the generalization experiments described in Section [5.2.1]
Specifically, we visualize the dynamics of the interpolated latents for the convection equation and
compare interpolation results across different modulation strategies.

Figure [0]shows the cubic interpolation trajectories of the latent code z for the convection equation.
Each subplot corresponds to one dimension of the 20-dimensional latent modulation vector. Blue dots
indicate latents obtained from the seen (training) coefficients, while red crosses denote interpolated
latents for unseen test coefficients, estimated via cubic interpolation. This visualization suggests that
the latent space encodes smooth and coherent functional variations as the PDE parameter is varied.
The interpolated latents for unseen coefficients generally follow the manifold traced by the seen
points, indicating that the latent space may provide a functionally meaningful representation aligned
with the underlying parametric dependence of the PDE family.

To further investigate the effect of latent interpolation across different modulation strategies, Figure [I0]
presents the reconstruction results for an unseen coefficient (5 = 30.5) obtained via cubic interpola-
tion of the latent code for each modulation method (Shift, Scale, FiILM, and GFM). The ground truth
solution is shown in Figure @Ka), and Figures @kb)—(e) show the corresponding reconstructions.
These results highlight that only GFM produces an accurate reconstruction that closely matches the
ground truth, whereas Shift, Scale, and FiLM all fail to capture the solution structure.
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Figure 9: Dynamics of Latents (convection equations)

F.3 Statistical Comparison Across Modulation Methods

Table 7] provides the mean and standard deviation of PSNR across three trials for each modulation
method and PDE benchmark. While Table [I] in the main paper presents the mean values, this
supplementary table highlights the consistency and robustness of the results by reporting the standard

deviations.

25



o[ 6] of] 6] off
4 4 4 4 4
x X 3 X 3 X 3] X 3
2 2 2 2 2
| | /| |
85 0 02 o0& 08 08 10

8o 02 04 06 08 Lo To B0 0z 04 . 06 0§ lo B9 o 8
t t t t t

(a) GT (8=30.5)  (b) Shift (3=30.5)  (c) Scale (8=30.5) (d) FiLM (3=30.5) () GFM (3=30.5)

Figure 10: [Convection] Predicted solution snapshots for unseen coefficient 5 = 30.5 from
interpolated latent codes using different modulation methods. (a) Ground truth, (b) Shift, (c)
Scale, (d) FiLM, and (e) GFM. For each method, the latent code for 5 = 30.5 is obtained via cubic
interpolation between neighboring training latents.

Table 7: Comparison with existing modulation methods with mean and standard deviation (PSNRT).

Modulation Convection  Helmholtz#1 Helmholtz#2 Navier-Stokes Kuramoto-Sivashinsky

Shift 13.225+0.597 25.467+£0.925 18.249+0.901 25.76740.635 16.962+0.819
Scale [17] 27.410+0.608 25.669+0.492 18.183+0.683 31.469+0.507 20.395+0.997
FiLM 27.330+1.254 33.611£0.506 22.7714+0.533 31.904+0.502 22.297+1.896
GFM 42.4744+0.412 39.139+0.530 29.033+0.556 34.754=£0.779 29.827+0.290

G More Experimental Results on Bidirectional Inference
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Figure 11: Visualization of the PDEfuncta pipeline for the Airfoil dataset. Two modalities in
airfoil data are represented as separate INRs f, and f,,, and are jointly compressed and reconstructed
through a shared latent modulation vector z.

This section provides supplementary explanations for Section[5.3] First, we include a schematic
illustration to visually describe how the Airfoil dataset is used in the unseen neural operator setting
(cf. Section[5.3.2). Figure[IT]illustrates the overall architecture of PDEfuncta applied to the Airfoil
dataset. The two modalities—geometry and flow field—are modeled using separate INRs f, and f,,
while a shared latent modulation vector enables joint compression and bidirectional reconstruction
between them. Additionally, we present FWI reconstruction results for seen samples using different
modulation methods in Figures[12]and [[3]
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(a) Velocity (b) Seismic #1 (c) Seismic #2 (e) Seismic #4 (f) Seismic #5

Figure 12: Ground truth for a representative FWI sample. (a) Velocity map and (b—f) correspond-
ing seismic data.

e |

(s) Velocity (t) Seismic #1 (u) Seismic #2 (v) Seismic #3 (w) Seismic #4 (x) Seismic #5

Figure 13: FWI bidirectional reconstruction results for seen samples using different modulation
methods. Each row shows a velocity map and its corresponding seismic data reconstructed by a
different modulation method: (a—f) Shift, (g-1) Scale, (m-r) FiLM, and (s—x) GFM.
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H Implementation Details of Fourier Basis Construction

This section provides additional details regarding the construction and implementation of the fixed
Fourier bases used in Global Fourier Modulation (GFM), supplementing Section [3.1] of the main
paper. The fixed Fourier bases for each layer are constructed following the procedure introduced
in [38]. In all experiments, the fixed Fourier basis ®" for each layer is constructed by combining
a set of frequencies and phase shifts (cf. Equation[3.1I). To ensure spectral diversity, we employ
Njow low-frequency components (wWiow = { mlow, niw, ..., 1}) and Nhigh high-frequency components
(Whigh = {1,2,..., nhigh}). For each frequency, we use npnase phase shifts uniformly spaced over
[0, 27]. Here, now, Nhigh, and Nphase are hyperparameters, and the total number of basis vectors per
layer is thus D = (njow + nhigh) X TNphase- Bach basis vector is evaluated at uniformly spaced M points
within the interval [—Tinax/2, Tmax /2], where Tinax = 27nyew. The number of sampling points M is
chosen to match the input dimension of the corresponding layer, ensuring compatibility with weight
reparameterization. In our implementation, these bases are precomputed, fixed throughout training,
and not updated by gradient descent.

I Meta-learning based Training Algorithm

In this section, we outline the meta-learning-based training and inference procedures for PDEfuncta.
Algorithm [T] describes both the training and inference phase, where both network parameters and
sample-specific latent vectors are jointly optimized via a nested inner—outer loop.

Algorithm 1 Training and Inference of the proposed method

Ju—

/* Training */
Input: Spatio-temporal grid X' = (z, t)
Randomly initialize 6 = {0,,0,}, ™ = {74, 7y } and set 2445 < 0 (zero vector)
while not done do

Sample batch B of output {a’, u'};ep

Sample K examples from batch B

/* Inner loop */

for j = 1to K do ‘ A

Lj = ]]"Xj (a’jv fa(X; 90«7 ga(’zir(m’n; Wa))) + LXj (uj ’ fu(‘){, 97“ gu(’ziwzin; T(U)))

10: Zijtrain — Zgrain - ninnervzz ) ]L‘]
11:  end for o
12:  /* Outer loop */ _ _ _
13: ]LB = ZiEB(LX'L (al7 fa(X; 96“ ga(zzrain; ﬂ-a))) + LX{, (ulv fU(X; auv gu(ziltrain; ﬂ-u))))
14: 0 < 0 — Nouter Volp
15: 7 < T — Nouter ValLp
16: end while

R B A A R

18: /* Inference (G : A — U) */

19: Input: New sample a*®*! from space A, coordinates X, trained parameters 6, 7

20: Output: Corresponding sample u”"*¢ in space U

21: /* Latent Fitting */

22: while not converged do

23: L, = H—‘X(atESt7fa(X;eavga(Ztest”Ta)))

24: Ztest < Ztest — Minfer V ziess Lia

25: end while

26: /* Prediction */

27: uPred = fu(Xy O, gu<ztest§ 7Tu))

28: return uP" ¢

29: /* Note: Inverse Problem (Gt : U — A) is symmetric: optimize Ziesy using L, =
L (u', fu (X5 0u, gu(2test; ), then predict aP™ = fo(X; 04, ga(ztest; Ta)) */
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J Comparison with Spatial Functa

Table 8: Performance comparison (PSNR1/MSE/) between Spatial Functa and GFM on Convection,
Helmbholtz, and Kuramoto-Sivashinsky equations.

Convection Helmholtz #1 ~ Helmholtz #2  Kuramoto-Sivashinsky
Modulation

PSNR MSE PSNR MSE PSNR MSE PSNR MSE
SpatialFuncta [37] 20.390 0.0739 28.908 0.0068 25.976 0.0141 20.728 3.4297
GFM 42.474 0.0004 39.139 0.0006 29.033 0.0056 29.827 0.4198
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Figure 14: Train loss (MSE) curves comparing Spatial Functa and GFM across epochs for PDE
benchmarks (Convection, Helmholtz#1, Helmholtz#2, Kuramoto-Sivachinsky)

To evaluate the performance of our proposed GFM in comparison with Spatial Functa [37], we
conduct experiments under the same conditions as those reported in Table[I] Unlike global modulation
approaches such as Shift, Scale, FiLM and GFM, which inject instance-specific information via
a low-dimensional global latent vector (e.g., z € R?° in our experimental setup), Spatial Functa
utilizes a high-dimensional spatially structured latent code (e.g., z € R®*®*16 in our implementation)
designed to modulate local regions of the underlying function space. Note that these latent dimensions
are representative of the settings used in our experiments and may vary depending on the specific
model architecture or dataset. Due to the structural difference in latent space dimensionality, a
direct comparison under fixed latent size is infeasible. We therefore present Spatial Functa as a
separate baseline, following the original implementation and latent dimension, and report results
on the convection, Helmholtz, and Kuramoto—Sivashinsky benchmarks. We exclude Navier—Stokes
since its 3D-coordinates are incompatible with the 2D latent grid arrangement used by Spatial Functa.

Table ] reports the reconstruction accuracy for both methods, and Figure[T4]shows the training loss
curves. Figures[I5]and[I6 provide the reconstructed solutions on convection and Helmholtz dataset,
respectively. Notably, in Figures|15(and we observe that as 5 and a; increases, the reconstruction
quality of Spatial Functa (second row) deteriorates significantly, whereas GFM (third row) maintains
high fidelity even in challenging high-frequency regimes. While Spatial Functa achieves moderate
improvements over basic global modulation methods such as Shift, Scale, and FiLM (cf. Table E]),
our GFM method consistently achieves superior PSNR and lower reconstruction errors across all
considered datasets. This empirical advantage highlights the effectiveness of explicitly injecting
frequency-aware priors into the modulation space, allowing GFM to better capture both global
structure and fine-scale, which global modulation was previously thought to be insufficient.

We also observe that Spatial Functa requires significantly higher computational cost compared to
global modulation methods. The use of high-dimensional spatial latent codes results in longer training
times (see Section[E.2). In contrast, GFM requires less computational cost, leveraging compact latent
codes for faster training and inference.
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Figure 15: Reconstruction results for Spatial Functa and GFM on the convection equation with
B8 = {10,20,30,40,50}. Rows represent ground truth (top), Spatial Functa (middle), and GFM
(bottom).
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Figure 16: Reconstruction results for Spatial Functa and GFM on the convection equation with
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