

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 INTERMEDIATE REPRESENTATIONS ARE STRONG AI- GENERATED IMAGE DETECTORS

Anonymous authors

Paper under double-blind review

ABSTRACT

The rapid advancement in generative AI models has enabled the creation of photo-realistic images. At the same time, there are growing concerns about the potential misuse and dangers of generated content, as well as a pressing need for effective AI-generated image detectors. However, current training-based detection techniques are typically computationally costly and can hardly be generalized to unseen data domains, while training-free methods fall short in detection performance. To bridge this gap, we propose a [search-based](#) method employing data embedding sensitivity in intermediate layers to detect AI-generated images. Given a set of real and AI-generated images, our method scans through the detection performance in the composite configuration space of intermediate layer, perturbation type, and severity level to identify the best configuration for detection. We examine the proposed method on two comprehensive benchmarks: GenImage and DF40. Our method exhibits improved performance across different datasets compared to both training-free and training-based state-of-the-art methods. On average, our method outperforms the best training-free/training-based methods on the GenImage benchmark by 16.1%/4.9% and on the DF40 benchmark by 14.5%/8.7% in AUROC score. We release the code at <https://anonymous.4open.science/r/Intermediate-Public-D256>.

1 INTRODUCTION

The advent of image generative models enables the creation of realistic synthetic images. Fueled by advances in deep learning techniques, generative models such as generative adversarial network (GAN) (Goodfellow et al., 2020; Metz et al., 2016; Liu & Tuzel, 2016; Mao et al., 2017; Yoon et al., 2019; Karras et al., 2019), Variational Autoencoder (VAE) (Mescheder et al., 2017; Mishra et al., 2018; Pinheiro Cinelli et al., 2021; He et al., 2022), diffusion model (Ho et al., 2020; Song et al., 2020; Saharia et al., 2022; Podell et al., 2023; Blattmann et al., 2023; Peebles & Xie, 2023), *etc.* have demonstrated significant progress in image generation. While some image-generation applications have attracted users to go bananas, generative models pose serious ethical, societal, and security challenges. The misuse and the associated cost of generated images can cause negative impacts such as copyright violation, deepfake, and fake content in publications. Furthermore, training datasets for deep learning models might be corrupted by generated images at scale, leading to unintentional bias or malicious exploits for future models. These critical challenges underscore the need for reliable AI-generated image detection.

There are two mainstream approaches to detecting AI-generated images: *training-based* and *training-free* approaches. Current training-based approaches have limited generalization to unseen data domains, while training-free approaches have inferior detection performance. To bridge the gap, we propose a simple yet effective training-free detector that exploits a pre-trained image foundation model to detect AI-generated images. Following prior arts in training-detection (He et al., 2024; Tsai et al., 2024) that use a similarity score computed by a pair of test image and its perturbed version for detection, our method firstly considers the exploration of the best *configuration* to derive the most discriminative feature between real and AI-generated images, where the space of configurations is a tuple consisting of (i) the layer index of the model, (ii) the perturbation type, and (iii) the severity level of the selected perturbation type. Given a set of real and AI-generated images, our method calculates the similarity scores across all configurations and selects the optimal one for detection. For example, our implementation uses CLIP (Radford et al., 2021) (ViT-L/14 image encoder) as

Figure 1: Illustration of the proposed method. (a) Both the original image and the perturbed image are fed to the feature extractor (a pretrained image foundation model). Embeddings across all layers are extracted to obtain intermediate representations. The cosine similarity between the embeddings of the original image and the perturbed image is computed as the metric to make a binary classification on whether an image is AI-generated. (b) We use a small portion of the training dataset to determine which perturbation (including perturbation type and severity level) and embedding from which layer are best to be used to compute the similarity for detection. (c) The configuration search space includes a combination of the optimal intermediate layer, perturbation type, and severity level.

the backbone model (with 25 layers) together with 8 unique image perturbation functions and 8 different severity levels. This yields a total of $25 \times 8 \times 8 = 1600$ configurations. Consequently, some training-free methods such as (He et al., 2024; Tsai et al., 2024) can be viewed as a special case of our method with a fixed configuration that only leverages the embedding from a designated layer and considers a limited set of perturbation types (usually less than two). Figure 1 illustrates the overview of our proposed **search-based** detector. By scaling up the configuration space, our method exhibits better performance compared to both training-free approaches and training-based approaches on the GenImage benchmark (Zhu et al., 2023) and the DF40 benchmark (Yan et al., 2024b).

2 RELATED WORK

AI-Generated Image Detection Frequency domain analysis is found to be effective to detect AI-generated images (Frank et al., 2020; Chandrasegaran et al., 2021; Corvi et al., 2023a). In addition to handcrafted features, learning-based methods are proposed to exploit the strength of neural networks (Corvi et al., 2023b; Cozzolino et al., 2021; Gragnaniello et al., 2021; Ojha et al., 2023). UniDetector (Ojha et al., 2023) uses both nearest neighbor (training-free) and linear probing (training-based) on the image embedding space to detect AI-generated images. NPR (Tan et al., 2024) trains a detector that is generalizable to detect images generated by both GANs and diffusion models. The detector relies on neighboring pixel relationships based on the observation that local independence among image pixels exhibits generalized forgery artifacts in generated images. AIDE (Yan et al., 2024a) captures both low-level pixel statistics and high-level global semantics to detect anomalies in AI-generated images such as white noise in the image (low level) and unreasonable image components in the context (high level). SPAI (Karageorgiou et al., 2025) uses spectral learning to distinguish AI-generated images based on the spectral reconstruction similarity.

108 In addition to learning-based methods, training-free methods, not limited to the training dataset, are
 109 proposed. AeroBlade (Ricker et al., 2024) assumes that the reconstruction of AI-generated images is
 110 easier than that of real images. Hence, the reconstruction error can be used as the metric to detect
 111 AI-generated images. RIGID (He et al., 2024) assumes that AI-generated images are less robust to
 112 perturbations in the embedding space of neural architectures. MINDER (Tsai et al., 2024) improves
 113 the prediction of the RIGID method by introducing contrastive perturbation.
 114

115 **Exploiting Intermediate Layers** Intermediate layers are found to be able to enhance the prediction
 116 and assist in the analysis of neural architectures. They are used to predict generalization gaps
 117 (Jiang et al., 2018), elucidate training dynamics through linear classifier probes (Alain & Bengio,
 118 2016), improve transfer learning (Evci et al., 2022), enhance the adversarial example transferability
 119 (Huang et al., 2019), and ameliorate the performance of fine-tuned models (Lee et al., 2022). A
 120 fundamental geometric property of the data representation in over-parameterized neural networks
 121 is the *intrinsic dimension*, *i.e.* the minimal number of coordinates necessary to describe data points
 122 without significant information loss. It is found that the intrinsic dimension increases in earlier layers
 123 (expansion) and decreases in later layers (compression) (Ansini et al., 2019; Recanatesi et al., 2019).
 124

3 INTERMEDIATE REPRESENTATIONS AS AI-GENERATED IMAGE DETECTORS

125 The overall flow of this section is as follows: First, we formally define the task formulation of
 126 our **search-based** detection framework. Then, we present our proposed method and the algorithm.
 127 Next, we provide motivating examples to articulate the importance of selecting the right layer to
 128 obtain discriminative features for detection. Finally, we explain why intermediate representations are
 129 powerful features for AI-generated image detection through the lens of intrinsic dimension analysis.
 130

131 **Task Formulation** Given a set of labeled images $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ with $\mathbf{x}_i \in \mathcal{X}$ denoting an
 132 image and $y_i \in \{0, 1\}$ denoting its label. $y_i = 1$ indicates AI-generated image while $y_i = 0$ indicates
 133 real image. Using a pretrained image feature extractor $\mathcal{F}(\cdot)$, the goal is to assign a predicted label \hat{y}
 134 for a test image \mathbf{x} . The aim of this paper is to explore the potential of intermediate representations
 135 for **search-based** AI-generated image detection. This will be accomplished by studying the effect of
 136 expanding the configuration search space (see Figure 1 (c)), which consists of the intermediate layers
 137 of $\mathcal{F}(\cdot)$, perturbation types, and severity levels. **The search-based detection process does not modify**
 138 **the weights or structure of the pretrained image feature extractor.** Labeled images are used only to
 139 determine the optimal configuration in the search space.
 140

3.1 PROPOSED METHOD

141 Figure 1 shows the illustration of the proposed method. We feed both the original image \mathbf{x} and the
 142 perturbed image $\epsilon(\mathbf{x})$ to the model $\mathcal{F} = f_L \circ \dots \circ f_\ell \dots \circ f_1$, where f_ℓ denotes the ℓ -th layer of \mathcal{F} .
 143 Both \mathbf{x} and $\epsilon(\mathbf{x})$ constitute a pair to compute the cosine similarity that characterizes the drift in the
 144 embedding space caused by a perturbation. Eight perturbation types and eight severity levels are
 145 applied. Perturbation types include Gaussian noise, shot noise, impulse noise, defocus blur, zoom blur,
 146 contrast, elastic transform and JPEG compression. Those perturbations are algorithmically generated
 147 corruptions following (Hendrycks & Dietterich, 2019). Details on perturbations are reported in
 148 Appendix B. For each perturbation type, a severity level is used to control the level of corruption on
 149 \mathbf{x} . We use $\epsilon(\mathbf{x}|s)$ to denote the perturbed version of \mathbf{x} under the perturbation $\epsilon(\cdot|s)$ with a severity
 150 level of s . We extract embeddings in the l -th intermediate layer $\mathcal{F}_{\text{sub}} = f_l \circ \dots \circ f_1$, $1 \leq l \leq L$,
 151 and compute the cosine similarity between the embeddings of the original image and the perturbed
 152 image. Let $\text{emb}(\cdot)$ denote the function to extract the class embedding $\mathbf{E}_l \in \mathbb{R}^d$ as the intermediate
 153 representation for each layer. For example, in DINOv2 and CLIP, $\text{emb}(\cdot)$ extracts [CLASS] token
 154 embedding. The cosine similarity of given a configuration tuple (ϵ, s, l) is defined as
 155

$$S(\mathbf{x}, \epsilon(\mathbf{x}|s), l) = \text{sim}(\text{emb}(f_l \circ \dots \circ f_1(\mathbf{x})), \text{emb}(f_l \circ \dots \circ f_1(\epsilon(\mathbf{x}|s)))), \quad (1)$$

$$\text{sim}(\mathbf{v}_1, \mathbf{v}_2) = \frac{\langle \mathbf{v}_1, \mathbf{v}_2 \rangle}{\|\mathbf{v}_1\| \|\mathbf{v}_2\|},$$

156 where $\langle \cdot, \cdot \rangle$ denotes the inner product of two vectors, and $\|\cdot\|$ is the Euclidean norm. d is the hidden
 157 dimension defined in the feature extractor.
 158

The label prediction for an input image is a threshold-based approach defined as

$$\hat{y} = \psi(\mathbb{I}\{S(\mathbf{x}, \epsilon(\mathbf{x}|s), l) \leq \tau\}), \quad (2)$$

where τ is a threshold to distinguish AI-generated and real images. $\mathbb{I}\{\cdot\}$ is the indicator function and $\mathbb{I}\{\mathcal{A}\} = 1$ if and only if an event \mathcal{A} happens. $\psi(\cdot)$ indicates the relative robustness to perturbations, and is determined by the training dataset. Given a configuration, if real images exhibit higher similarity than AI-generated ones in the embedding space, then $\psi(x) = x$. Otherwise, $\psi(x) = 1 - x$.

Algorithm 1 depicts the pipeline for detecting AI-generated images. There are two stages: in stage I, we determine the optimal configuration using a subset of the training dataset. The best configuration is selected based on the Area Under the Receiver Operating Characteristic Curve (AUROC) score, and it comprises the optimal intermediate layer, perturbation type, and severity level. We empirically find that only a small portion of the training dataset (by default, we use 30% of the test dataset size) is sufficient to deliver stable detection performance. In stage II, a test image undergoes detection using the best configuration selected by stage I.

Algorithm 1 Using intermediate representations to detect AI-generated images

Require: Randomly sampled training dataset $\mathcal{D}_{\text{tr}} = \{(\tilde{\mathbf{x}}_i, \tilde{y}_i)\}_{i=1}^{N_{\text{tr}}}$, a test image \mathbf{x} , a pretrained foundation model $\mathcal{F} = f_L \circ \dots \circ f_1$, M perturbation types, and S severity levels

- 1: # Stage I: determine the best configuration
- 2: Initialize an empty list $\mathcal{P} \leftarrow \{\}$.
- 3: **for** $i = 1$ to N_{tr} **do**
- 4: **for** $\epsilon \in \{\epsilon_1, \dots, \epsilon_M\}$ **do** ▷ Iterate over different perturbation types
- 5: **for** $s \in \{1, \dots, S\}$ **do** ▷ Iterate over different perturbation levels
- 6: $\hat{p} \leftarrow S(\tilde{\mathbf{x}}_i, \epsilon(\tilde{\mathbf{x}}_i|s), l)$ as shown in Equation 1 ▷ Compute cosine similarity
- 7: $\mathcal{P} \leftarrow \mathcal{P} \cup \{\hat{p}\}$
- 8: **end for**
- 9: **end for**
- 10: **end for**
- 11: $(\epsilon_*(\cdot|s_*), l_*) \leftarrow \underset{\epsilon, s, l}{\text{argmax}} \text{AUROC}(\mathcal{P}, \{\tilde{y}_i\})$
- 12: # Stage II: inference with the best configuration
- 13: Make a prediction using \mathbf{x} , $\epsilon_*(\mathbf{x}|s_*)$ and l_* as shown in Equation 2

3.2 REVISITING IMAGE EMBEDDINGS FOR AI-GENERATED IMAGE DETECTION

Prior training-free methods, such as RIGID (He et al., 2024) and MINDER (Tsai et al., 2024), postulate that AI-generated images are less robust than real images in the embedding space. We empirically find that this postulation holds true in most cases. However, there are exceptions. For example, in Figure 2, we calculate the average of cosine similarity between original and perturbed embeddings in different layers for AI-generated and real images, respectively. The DDIM dataset in the DF40 benchmark reveals that real images are less robust compared to AI-generated images. Exceptions are not limited to the feature extractor we use, *i.e.* CLIP image encoder. Other models such as DINOv2 also exhibit exceptions of robustness in the embedding space (details are reported in Appendix B.2). The result indicates that the postulation might require scrutiny. Hence, in our proposed method, we eliminate the assumption that the embeddings of real images are more robust than those of AI-generated images. In other words, the former might not necessarily have higher cosine similarity between original and perturbed embeddings than the latter. We design the $\psi(\cdot)$ function in Equation 2 to capture the relative robustness for real and AI-generated images to a perturbation. In addition, different layers exhibit different sensitivity to a perturbation, which motivates us to pursue an optimal intermediate layer to detect AI-generated images.

It is worth noting that both RIGID and MINDER focus on limited perturbation types: only Gaussian noise and Gaussian blur are considered. To give a comprehensive examination of intermediate representations as features, we use eight different perturbation types and eight severity levels, including Gaussian noise, shot noise, impulse noise, defocus blur, zoom blur, contrast, elastic transform and JPEG compression. Details on various perturbation types are reported in Appendix B.

Figure 2: Average cosine similarity profile over model depth. We randomly sampled images in the train dataset with a size of 30% test dataset size to represent the training dataset in the plot. We use the CLIP model (ViT-L/14) as the feature extractor.

Figure 3: Intrinsic Dimension (ID) analysis of data representation manifolds in the image foundation models: DINOv2 (Oquab et al., 2023) and CLIP (ViT-L/14) (Radford et al., 2021). A typical hunchback shape of the profile of the intrinsic dimension is observed, which indicates more diverse features in intermediate layers.

3.3 UNDERSTANDING THE VERSATILITY OF INTERMEDIATE REPRESENTATIONS VIA INTRINSIC DIMENSION

Intrinsic dimension (ID) is a fundamental geometric property of the data representation manifold in an over-parameterized neural network. It represents the minimal number of coordinates to describe data points without significant information loss. In the learning theory, ID plays a vital role in learning function approximations and non-linear decision boundary determination. The number of required data points grows exponentially with the manifold's ID for learning a manifold (Narayanan & Mitter, 2010). ID is found to be correlated with adversarial training of neural networks (Ma et al., 2018; Amsaleg et al., 2017). A theoretical analysis indicates that an increase in ID effectively reduces the severity level of the perturbation to move a normal example into the adversarial region (Amsaleg et al., 2017). By employing ID estimator (Facco et al., 2017; Ansuini et al., 2019), we examine ID across layers of the feature extractor. ID is calculated based on the ratio between the distances to the second and first nearest neighbor of each data point (Facco et al., 2017). Figure 3 shows the variation of ID for feature extractors used in this study. There is ID expansion in earlier layers and compression in later layers. The hunchback shape of ID as a function of model depth is interpreted as the feature generation in earlier layers (Olshausen & Field, 1997; Babadi & Sompolinsky, 2014) and feature selection in later layers (Hinton & Salakhutdinov, 2006; Tishby, 2018).

The dimensionality analysis indicates that there are more diverse features in intermediate layers than in output layers. Different layers can have different levels of sensitivity to a perturbation. The output layer might not be the most sensitive layer, rendering it sub-optimal in detecting AI-generated images. As shown in Figure 2, there is a pronounced variation in cosine similarity across model layers. It indicates that different model layers might have different sensitivity to a perturbation. Besides, the

Table 1: Comparison of AUROC and AP scores on the GenImage benchmark (Zhu et al., 2023). Ours (CC) uses a consistent configuration across the benchmark.

Method	Metric	BigGAN	SD v4	VQDM	ADM	Glide	Midjourney	SD v5	Wukong	Avg
Training-free method										
AeroBlade	AUROC	0.9352	0.6287	0.8965	0.8371	0.8207	0.7128	0.5342	0.6134	0.7473
	AP	0.9013	0.6034	0.9060	0.8227	0.8211	0.6974	0.5137	0.6078	0.7342
RIGID	AUROC	0.9882	0.6508	0.9390	0.9146	0.9779	0.7422	0.6502	0.6391	0.8128
	AP	0.9860	0.6230	0.9424	0.9162	0.9774	0.7244	0.6295	0.6154	0.8018
MINDER	AUROC	0.9270	0.6579	0.9377	0.8919	0.8372	0.7386	0.6568	0.6482	0.7869
	AP	0.9156	0.6360	0.9412	0.8885	0.8372	0.7149	0.6423	0.6347	0.7763
Training-based method										
UniDetector	AUROC	0.9700	0.7346	0.9412	0.8707	0.7870	0.5147	0.7285	0.8103	0.7946
	AP	0.9613	0.7007	0.9423	0.8631	0.7756	0.5164	0.6905	0.7942	0.7805
NPR	AUROC	0.9642	0.8944	0.8691	0.8430	0.9388	0.8069	0.8996	0.7901	0.8758
	AP	0.9585	0.8947	0.8508	0.8499	0.9488	0.8146	0.9005	0.7965	0.8768
AIDE	AUROC	0.9811	0.8292	0.9721	0.9639	0.9826	0.8373	0.8329	0.7949	0.8992
	AP	0.9836	0.8308	0.9797	0.9697	0.9887	0.8684	0.8382	0.7966	0.9070
SPAI	AUROC	0.8710	0.6467	0.6823	0.7005	0.8858	0.5424	0.6379	0.7074	0.7093
	AP	0.8735	0.6005	0.6858	0.6891	0.8873	0.5269	0.5959	0.6533	0.6890
Search-based method										
Ours	AUROC	0.9982	0.9240	0.9475	0.9825	0.9996	0.9031	0.9209	0.8739	0.9437
	AP	0.9980	0.9118	0.9289	0.9813	0.9996	0.9136	0.9081	0.8569	0.9373
Ours (CC)	AUROC	0.9985	0.9257	0.9609	0.9933	0.9990	0.8303	0.9294	0.7997	0.9296
	AP	0.9973	0.8883	0.9278	0.9849	0.9975	0.8083	0.8920	0.7659	0.9078

Table 2: Comparison of AUROC and AP scores on the Forensic Small benchmark (Park & Owens, 2025). Ours (CC) uses a consistent configuration across the benchmark.

Method	GAN		LatDiff		PixDiff		Other		Comb	
	AUROC	AP	AUROC	AP	AUROC	AP	AUROC	AP	AUROC	AP
Training-free method										
AeroBlade	0.4582	0.4623	0.4171	0.4072	0.6738	0.6037	0.5163	0.5221	0.4213	0.4176
RIGID	0.7102	0.7274	0.5362	0.5493	0.8241	0.8602	0.8687	0.8719	0.6106	0.6240
MINDER	0.7000	0.7131	0.5275	0.5413	0.6532	0.6559	0.8355	0.8367	0.5944	0.5995
Training-based method										
UniDetector	0.8824	0.9024	0.6417	0.6868	0.7489	0.7375	0.9210	0.9191	0.7879	0.7023
NPR	0.8581	0.8494	0.7825	0.7851	0.8834	0.9017	0.9025	0.9003	0.8192	0.7669
AIDE	0.8040	0.8052	0.7500	0.7305	0.9113	0.8810	0.9455	0.9270	0.7747	0.8034
SPA1	0.6265	0.6170	0.6910	0.6799	0.8126	0.8200	0.6686	0.6761	0.6643	0.4761
Search-based method										
Ours (CC)	0.8801	0.8838	0.8655	0.8663	0.9149	0.9415	0.9539	0.9403	0.8726	0.9123

largest difference in cosine similarity between real and AI-generated image embeddings occurs in intermediate layers.

The variation of cosine similarity in the randomly sampled training dataset follows a highly similar trend to that in the test dataset. Hence, we can use the training dataset as the prior knowledge to determine the optimal setting, including the intermediate layer, for detecting AI-generated images.

4 EXPERIMENTS

4.1 EXPERIMENTAL DETAILS

Datasets We evaluate the proposed method on [three](#) deepfake benchmarks: GenImage (Zhu et al., 2023), DF40 (Yan et al., 2024b) and [Forensic Small](#) (Park & Owens, 2025). GenImage consists of a broad range of image classes generated by advanced image generators, including BigGAN (Brock et al., 2018), Stable Diffusion [v1.4](#) and [v1.5](#) (Rombach et al., 2022), VQDM (Gu et al., 2022), GLIDE (Nichol et al., 2021), ADM (Dhariwal & Nichol, 2021), Midjourney (Midjourney, 2022) and Wukong (Wukong, 2022). The DF40 benchmark contains real images from Celeb-DF (CDF) (Li et al., 2020), FFHQ (Karras et al., 2019) and CelebA (Liu et al., 2018), as well as AI-generated images by deepfake generation techniques. Models used to yield AI-generated images include DDIM (Song et al., 2020), SiT (Ma et al., 2024), StyleGAN2 (Karras et al., 2020), StyleGAN3 (Karras et al., 2021), StyleGAN-XL (Sauer et al., 2022), VQGAN (Gu et al., 2022), MobileSwap (Li et al., 2021) and BlendFace (Shiohara et al., 2023). [Forensic Small](#) contains 2.78×10^5 AI-generated images from 4803 generator models and 2.78×10^5 real images.

Figure 4: AUROC scores across layers. (a) DF40 DDIM dataset. (b) GenImage BigGAN dataset. Distributions of the cosine similarities between the embeddings of input images and perturbed images for the first layer, intermediate layer and last layer are shown for comparison. Dashed curves are distributions of embeddings of AI-generated images while solid curves are distributions of embeddings of real images. We use the CLIP model to extract features. Elastic transformation is applied for the DDIM dataset and zoom blur for the BigGAN dataset. Severity level 2 is used for both cases.

Baselines and Metrics Both training-based and training-free approaches are selected as baselines to examine the proposed method. For training-based methods, UniDetector (Ojha et al., 2023) uses linear probing on the output of the foundational model to detect AI-generated images. NPR (Tan et al., 2024), based on the observation that up-sampling operations produce generalized forgery artifacts, is an artifact representation approach that captures structural artifacts. AIDE (Yan et al., 2024a) utilizes multiple experts to extract visual artifacts and noise patterns for detecting AI-generated images. SPAI (Karageorgiou et al., 2025) employs the spectral learning to learn the spectral distribution of real images. Generated images are considered out-of-distribution. For training-free methods, RIGID (He et al., 2024) compares the representation similarity between original images and Gaussian noise-perturbed images for detecting AI-generated images. MINDER (Tsai et al., 2024) improves RIGID by contrastive blurring to increase the distance between perturbed embeddings. Aeroblade (Ricker et al., 2024) considers the difference in the difficulty of reconstructing AI-generated and real images and uses it as the detection metric. We evaluate the performance of AI-generated image detection methods using the AUROC score.

4.2 COMPARISON WITH BASELINES

Table 1 and Table 2 shows the performance comparison for the AI-generated image detection task. Our approach uses a dataset-dependent configuration while our approach (CC) uses a consistent configuration across the benchmark. The consistent configuration used for the Genimage and Forensic benchmarks is reported in Appendix Section A.2. The configuration is determined by the combination of the randomly sampled training dataset from GenImage and Forensic small benchmarks. The optimal perturbation type, severity level, and intermediate layer are determined by a randomly sampled subset of the training dataset to obtain the performance of using intermediate representations. Our method performs favorably against both training-free and training-based methods.

Model weights of training-based baselines are frozen during the entire inference process. The drawback of training-based methods is the limited generalization to unseen datasets. Training-free methods can generalize well across different datasets but have limited performance. Our method remarkably improves the performance of training-free methods by considering an expanded configuration space.

Figure 5: Distribution of cosine similarity between embeddings of AI-generated and real images. Using intermediate layers improves the separation between AI-generated and real images compared to using the last layer. We use the CLIP model as the feature extractor.

4.3 INTERMEDIATE LAYER ANALYSIS

Here, we provide a detailed analysis to study the effect of the intermediate layers on AI-generated image detection. We extracted embeddings in all layers (*i.e.* $1 \leq l \leq \ell$). The cosine similarity is computed to predict whether an image is AI-generated as indicated in Equation 2. The AUROC score is used as the metric to examine the prediction performance. Figure 4 shows examples of the AUROC score as a function of model depth. In general, the representations of earlier layers do not provide good separation between real and AI-generated images. While the embedding of the final layer is often used in vision tasks such as image classification, our observation indicates that using an intermediate layer (layers in the middle) in our method usually achieves the optimal detection performance when fixing a perturbation type and a severity level.

In Figure 4, we visualize the distribution of cosine similarity of the first layer, the optimal intermediate layer, and the last layer. Dashed curves correspond to AI-generated images while solid curves correspond to real images. When using the first layer and the last layer, it is difficult to accurately differentiate real and AI-generated images due to the overlap in the distribution. Using intermediate layers, however, improves the separation between distributions of AI-generated and real images.

Figure 5 shows examples of the distribution of cosine similarities for intermediate layers in comparison to final layers. The representations from intermediate layers can yield more separable similarity metrics between real and AI-generated images than the final layers. Hence, using a threshold τ can well differentiate AI-generated images from real images with the best configuration. We analyze the effect of perturbations (perturbation type and severity level) on the detection performance in Appendix B.1.

5 ABLATION STUDY

Feature extractor We examine the performance of our proposed method using different image foundation models as feature extractors. Table 3 shows the performance comparison on the GenImage benchmark and the DF40 benchmark. Instead of the CLIP model (ViT-L/14), when using DINOv2 to extract features, there is a performance degradation. The improvement of the CLIP model over the DINOv2 model can be attributed to the intrinsic dimension analysis in Section 3.3, where we show CLIP has a higher intrinsic dimension than DINOv2, offering more versatile intermediate representations for AI-generated image detection. [When using ConvNeXtv2 as the feature extractor, we observe a pronounced performance degradation.](#)

Subset size We use a randomly sampled subset of the training dataset to determine the optimal configuration: intermediate layer, perturbation type, and severity level. We test the effect of different subset sizes on the prediction performance. Figure 6 shows the result on the GenImage benchmark. As the subset size decreases, the prediction performance degrades. We do not observe a significant performance improvement when using a subset that is larger than 30% of the test dataset size.

432 Table 3: Comparison of using different pretrained image foundation models in our method: DINOv2
 433 (Oquab et al., 2023), CLIP (ViT-L/14) (Radford et al., 2021). and ConvNeXtv2 Woo et al. (2023)
 434

435 Foundation 436 model	BigGAN	SD v1.4	VQDM	ADM	GenImage benchmark				Avg
AUROC									
437 CLIP	0.9982	0.9240	0.9475	0.9825	0.9996	0.9031	0.9209	0.8739	0.9437
438 DINOv2	0.9876	0.8655	0.9466	0.9423	0.9987	0.8416	0.8474	0.8454	0.9094
439 ConvNeXtv2	0.9845	0.8079	0.8263	0.7645	0.9703	0.7468	0.8125	0.8146	0.8409
AP									
440 CLIP	0.9980	0.9118	0.9289	0.9813	0.9996	0.9136	0.9081	0.8569	0.9373
441 DINOv2	0.9858	0.8202	0.9448	0.9538	0.9988	0.8672	0.7975	0.8246	0.8991
442 ConvNeXtv2	0.9696	0.7678	0.8156	0.7696	0.9574	0.7185	0.7774	0.7550	0.8164
443 Foundation 444 model	DF40 benchmark								Avg
445	DDIM	SiT	StyleGAN2	StyleGAN3	StyleGAN-XL	VQGAN	MobileSwap	BlendFace	Avg
AUROC									
446 CLIP	0.9998	0.9144	0.9995	1.0000	0.8880	0.9897	0.7066	0.9056	0.9255
447 DINOv2	0.9904	0.8431	0.9959	1.0000	0.9620	0.9918	0.6402	0.9097	0.9166
448 ConvNeXtv2	0.9215	0.6255	0.9751	0.9946	0.9096	0.8710	0.5704	0.6761	0.8180
AP									
449 CLIP	1.0000	0.9787	0.9999	1.0000	0.9728	0.9979	0.944	0.9727	0.9833
450 ConvNeXtv2	0.9835	0.8974	0.9950	0.9990	0.9805	0.9733	0.9123	0.8932	0.9543

451
 452 Figure 6: Variation of AUROC score on the GenImage benchmark as a function of different randomly
 453 sampled subset sizes. The randomly sampled subset of the training dataset is used to determine the
 454 optimal configuration.

468 6 CONCLUSION

471 In this paper, we propose a novel **search-based** approach for detecting AI-generated images. By
 472 searching for the optimal configuration to obtain the most separable similarity features in the composite
 473 space of layer index, perturbation type, and severity level, our approach improves the detection
 474 performance over state-of-the-art training-based and training-free methods by a large margin. We
 475 also provide comprehensive analysis and intrinsic dimension evaluation to explain how the versatility
 476 of the intermediate representations derived from a pretrained image foundation model can be used
 477 to design powerful AI-generated image detectors. Our method can be used with any off-the-shelf
 478 image foundation model to extract intermediate representations. Hence, we believe the detection
 479 performance can scale with the representation learning capability of future image foundation models.

481 **Ethic Statement** This work focuses on developing a reliable method to address the problem of
 482 detecting AI-generated images, with the aim of mitigating risks posed by generative models. Our
 483 work can be applied to enhance the reliability of media forensics and support trustworthy information
 484 dissemination. The proposed approach does not involve the generation of harmful or offensive
 485 content. It employs a publicly available image foundation model without modifying its weights or
 486 architecture.

486 REFERENCES
487

488 Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier probes.
489 *arXiv preprint arXiv:1610.01644*, 2016.

490 Laurent Amsaleg, James Bailey, Dominique Barbe, Sarah Erfani, Michael E Houle, Vinh Nguyen,
491 and Miloš Radovanović. The vulnerability of learning to adversarial perturbation increases with
492 intrinsic dimensionality. In *2017 ieee workshop on information forensics and security (wifs)*, pp.
493 1–6. IEEE, 2017.

494 Alessio Ansuini, Alessandro Laio, Jakob H Macke, and Davide Zoccolan. Intrinsic dimension of
495 data representations in deep neural networks. *Advances in Neural Information Processing Systems*,
496 32, 2019.

497 Baktash Babadi and Haim Sompolinsky. Sparseness and expansion in sensory representations.
498 *Neuron*, 83(5):1213–1226, 2014.

499 Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler,
500 and Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion
501 models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
502 pp. 22563–22575, 2023.

503 Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
504 image synthesis. *arXiv preprint arXiv:1809.11096*, 2018.

505 Keshigeyan Chandrasegaran, Ngoc-Trung Tran, and Ngai-Man Cheung. A closer look at fourier
506 spectrum discrepancies for cnn-generated images detection. In *Proceedings of the IEEE/CVF
507 conference on computer vision and pattern recognition*, pp. 7200–7209, 2021.

508 Riccardo Corvi, Davide Cozzolino, Giovanni Poggi, Koki Nagano, and Luisa Verdoliva. Intriguing
509 properties of synthetic images: from generative adversarial networks to diffusion models. In
510 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 973–
511 982, 2023a.

512 Riccardo Corvi, Davide Cozzolino, Giada Zingarini, Giovanni Poggi, Koki Nagano, and Luisa
513 Verdoliva. On the detection of synthetic images generated by diffusion models. In *ICASSP
514 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*,
515 pp. 1–5. IEEE, 2023b.

516 Davide Cozzolino, Diego Gragnaniello, Giovanni Poggi, and Luisa Verdoliva. Towards universal gan
517 image detection. In *2021 International conference on visual communications and image processing
518 (VCIP)*, pp. 1–5. IEEE, 2021.

519 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
520 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
521 pp. 248–255. Ieee, 2009.

522 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances
523 in neural information processing systems*, 34:8780–8794, 2021.

524 Utku Evci, Vincent Dumoulin, Hugo Larochelle, and Michael C Mozer. Head2toe: Utilizing
525 intermediate representations for better transfer learning. In *International Conference on Machine
526 Learning*, pp. 6009–6033. PMLR, 2022.

527 Elena Facco, Maria d’Errico, Alex Rodriguez, and Alessandro Laio. Estimating the intrinsic di-
528 mension of datasets by a minimal neighborhood information. *Scientific reports*, 7(1):12140,
529 2017.

530 Joel Frank, Thorsten Eisenhofer, Lea Schönherr, Asja Fischer, Dorothea Kolossa, and Thorsten Holz.
531 Leveraging frequency analysis for deep fake image recognition. In *International conference on
532 machine learning*, pp. 3247–3258. PMLR, 2020.

533 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
534 Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the
535 ACM*, 63(11):139–144, 2020.

540 Diego Gragnaniello, Davide Cozzolino, Francesco Marra, Giovanni Poggi, and Luisa Verdoliva. Are
 541 gan generated images easy to detect? a critical analysis of the state-of-the-art. *arXiv preprint*
 542 *arXiv:2104.02617*, 2021.

543 Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and
 544 Baining Guo. Vector quantized diffusion model for text-to-image synthesis. In *Proceedings of the*
 545 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 10696–10706, 2022.

546 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
 547 autoencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer*
 548 *vision and pattern recognition*, pp. 16000–16009, 2022.

549 Zhiyuan He, Pin-Yu Chen, and Tsung-Yi Ho. Rigid: A training-free and model-agnostic framework
 550 for robust ai-generated image detection. *arXiv preprint arXiv:2405.20112*, 2024.

551 Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
 552 corruptions and perturbations. *arXiv preprint arXiv:1903.12261*, 2019.

553 Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural
 554 networks. *science*, 313(5786):504–507, 2006.

555 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 556 *neural information processing systems*, 33:6840–6851, 2020.

557 Qian Huang, Isay Katsman, Horace He, Zeqi Gu, Serge Belongie, and Ser-Nam Lim. Enhancing
 558 adversarial example transferability with an intermediate level attack. In *Proceedings of the*
 559 *IEEE/CVF international conference on computer vision*, pp. 4733–4742, 2019.

560 Yiding Jiang, Dilip Krishnan, Hossein Mobahi, and Samy Bengio. Predicting the generalization gap
 561 in deep networks with margin distributions. *arXiv preprint arXiv:1810.00113*, 2018.

562 Dimitrios Karageorgiou, Symeon Papadopoulos, Ioannis Kompatsiaris, and Efstratios Gavves. Any-
 563 resolution ai-generated image detection by spectral learning. In *Proceedings of the Computer*
 564 *Vision and Pattern Recognition Conference*, pp. 18706–18717, 2025.

565 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
 566 adversarial networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 567 *recognition*, pp. 4401–4410, 2019.

568 Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing
 569 and improving the image quality of stylegan. In *Proceedings of the IEEE/CVF conference on*
 570 *computer vision and pattern recognition*, pp. 8110–8119, 2020.

571 Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, and
 572 Timo Aila. Alias-free generative adversarial networks. *Advances in neural information processing*
 573 *systems*, 34:852–863, 2021.

574 Yoonho Lee, Annie S Chen, Fahim Tajwar, Ananya Kumar, Huaxiu Yao, Percy Liang, and
 575 Chelsea Finn. Surgical fine-tuning improves adaptation to distribution shifts. *arXiv preprint*
 576 *arXiv:2210.11466*, 2022.

577 Changlong Li, Liang Shi, and Chun Jason Xue. Mobileswap: Cross-device memory swapping for
 578 mobile devices. In *2021 58th ACM/IEEE Design Automation Conference (DAC)*, pp. 115–120.
 579 IEEE, 2021.

580 Yuezun Li, Xin Yang, Pu Sun, Honggang Qi, and Siwei Lyu. Celeb-df: A large-scale challenging
 581 dataset for deepfake forensics. In *Proceedings of the IEEE/CVF conference on computer vision*
 582 *and pattern recognition*, pp. 3207–3216, 2020.

583 Ming-Yu Liu and Oncel Tuzel. Coupled generative adversarial networks. *Advances in neural*
 584 *information processing systems*, 29, 2016.

585 Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Large-scale celebfaces attributes (celeba)
 586 dataset. *Retrieved August*, 15(2018):11, 2018.

594 Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and
 595 Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
 596 transformers. In *European Conference on Computer Vision*, pp. 23–40. Springer, 2024.

597

598 Xingjun Ma, Bo Li, Yisen Wang, Sarah M Erfani, Sudanthi Wijewickrema, Grant Schoenebeck,
 599 Dawn Song, Michael E Houle, and James Bailey. Characterizing adversarial subspaces using local
 600 intrinsic dimensionality. *arXiv preprint arXiv:1801.02613*, 2018.

601 Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen Paul Smolley. Least
 602 squares generative adversarial networks. In *Proceedings of the IEEE international conference on*
 603 *computer vision*, pp. 2794–2802, 2017.

604

605 Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. Adversarial variational bayes: Unifying
 606 variational autoencoders and generative adversarial networks. In *International conference on*
 607 *machine learning*, pp. 2391–2400. PMLR, 2017.

608

609 Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled generative adversarial
 610 networks. *arXiv preprint arXiv:1611.02163*, 2016.

611

612 Midjourney. Midjourney. <https://www.midjourney.com/home>, 2022. Accessed:2022.

613

614 Ashish Mishra, Shiva Krishna Reddy, Anurag Mittal, and Hema A Murthy. A generative model
 615 for zero shot learning using conditional variational autoencoders. In *Proceedings of the IEEE*
 616 *conference on computer vision and pattern recognition workshops*, pp. 2188–2196, 2018.

617

618 Hariharan Narayanan and Sanjoy Mitter. Sample complexity of testing the manifold hypothesis.
 619 *Advances in neural information processing systems*, 23, 2010.

620

621 Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
 622 Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
 623 text-guided diffusion models. *arXiv preprint arXiv:2112.10741*, 2021.

624

625 Utkarsh Ojha, Yuheng Li, and Yong Jae Lee. Towards universal fake image detectors that generalize
 626 across generative models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 627 *Pattern Recognition*, pp. 24480–24489, 2023.

628

629 Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis set: A strategy
 630 employed by v1? *Vision research*, 37(23):3311–3325, 1997.

631

632 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 633 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 634 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

635

636 Jeongsoo Park and Andrew Owens. Community forensics: Using thousands of generators to train
 637 fake image detectors. In *Proceedings of the Computer Vision and Pattern Recognition Conference*,
 638 pp. 8245–8257, 2025.

639

640 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 641 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

642

643 Lucas Pinheiro Cinelli, Matheus Araújo Marins, Eduardo Antônio Barros da Silva, and Sérgio
 644 Lima Netto. Variational autoencoder. In *Variational methods for machine learning with applications*
 645 *to deep networks*, pp. 111–149. Springer, 2021.

646

647 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 648 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 649 synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

650

651 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 652 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 653 models from natural language supervision. In *International conference on machine learning*, pp.
 654 8748–8763. PMLR, 2021.

648 Stefano Recanatesi, Matthew Farrell, Madhu Advani, Timothy Moore, Guillaume Lajoie, and Eric
 649 Shea-Brown. Dimensionality compression and expansion in deep neural networks. *arXiv preprint*
 650 *arXiv:1906.00443*, 2019.

651 Jonas Ricker, Denis Lukovnikov, and Asja Fischer. Aeroblade: Training-free detection of latent diffu-
 652 sion images using autoencoder reconstruction error. In *Proceedings of the IEEE/CVF Conference*
 653 *on Computer Vision and Pattern Recognition*, pp. 9130–9140, 2024.

654 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 655 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-*
 656 *ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

657 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 658 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
 659 text-to-image diffusion models with deep language understanding. *Advances in neural information*
 660 *processing systems*, 35:36479–36494, 2022.

661 Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-xl: Scaling stylegan to large diverse
 662 datasets. In *ACM SIGGRAPH 2022 conference proceedings*, pp. 1–10, 2022.

663 Kaede Shiohara, Xingchao Yang, and Takafumi Taketomi. Blendface: Re-designing identity encoders
 664 for face-swapping. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 665 pp. 7634–7644, 2023.

666 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv*
 667 *preprint arXiv:2010.02502*, 2020.

668 Chuangchuang Tan, Yao Zhao, Shikui Wei, Guanghua Gu, Ping Liu, and Yunchao Wei. Rethinking
 669 the up-sampling operations in cnn-based generative network for generalizable deepfake detection.
 670 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 671 28130–28139, 2024.

672 Naftali Tishby. The information bottleneck theory of deep neural networks. In *APS March Meeting*
 673 *Abstracts*, volume 2018, pp. K58–004, 2018.

674 Chung-Ting Tsai, Ching-Yun Ko, I Chung, Yu-Chiang Frank Wang, Pin-Yu Chen, et al. Understanding
 675 and improving training-free ai-generated image detections with vision foundation models. *arXiv*
 676 *preprint arXiv:2411.19117*, 2024.

677 Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew Owens, and Alexei A Efros. Cnn-generated
 678 images are surprisingly easy to spot... for now. In *Proceedings of the IEEE/CVF conference on*
 679 *computer vision and pattern recognition*, pp. 8695–8704, 2020.

680 Zhendong Wang, Jianmin Bao, Wengang Zhou, Weilun Wang, Hezhen Hu, Hong Chen, and Houqiang
 681 Li. Dire for diffusion-generated image detection. In *Proceedings of the IEEE/CVF International*
 682 *Conference on Computer Vision*, pp. 22445–22455, 2023.

683 Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, and
 684 Saining Xie. Convnext v2: Co-designing and scaling convnets with masked autoencoders. In
 685 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 16133–
 686 16142, 2023.

687 Wukong. Wukong. <https://xihe.mindspore.cn/modelzoo/wukong>, 2022. Accessed:2022.

688 Shilin Yan, Ouxiang Li, Jiayin Cai, Yanbin Hao, Xiaolong Jiang, Yao Hu, and Weidi Xie. A sanity
 689 check for ai-generated image detection. *arXiv preprint arXiv:2406.19435*, 2024a.

690 Zhiyuan Yan, Taiping Yao, Shen Chen, Yandan Zhao, Xinghe Fu, Junwei Zhu, Donghao Luo,
 691 Chengjie Wang, Shouhong Ding, Yunsheng Wu, et al. Df40: Toward next-generation deepfake
 692 detection. *Advances in Neural Information Processing Systems*, 37:29387–29434, 2024b.

693 Jinsung Yoon, Daniel Jarrett, and Mihaela Van der Schaar. Time-series generative adversarial
 694 networks. *Advances in neural information processing systems*, 32, 2019.

702 Mingjian Zhu, Hanting Chen, Qiangyu Yan, Xudong Huang, Guanyu Lin, Wei Li, Zhijun Tu, Hailin
703 Hu, Jie Hu, and Yunhe Wang. Genimage: A million-scale benchmark for detecting ai-generated
704 image. *Advances in Neural Information Processing Systems*, 36:77771–77782, 2023.
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755