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ABSTRACT

The rapid advancement in generative AI models has enabled the creation of photo-
realistic images. At the same time, there are growing concerns about the potential
misuse and dangers of generated content, as well as a pressing need for effec-
tive AI-generated image detectors. However, current training-based detection
techniques are typically computationally costly and can hardly be generalized
to unseen data domains, while training-free methods fall short in detection per-
formance. To bridge this gap, we propose a training-free method employing
data embedding sensitivity in intermediate layers to detect AI-generated images.
Given a set of real and AI-generated images, our method scans through the de-
tection performance in the composite configuration space of intermediate layer,
perturbation type, and severity level to identify the best configuration for de-
tection. We examine the proposed method on two comprehensive benchmarks:
GenImage and DF40. Our method exhibits improved performance across dif-
ferent datasets compared to both training-free and training-based state-of-the-art
methods. On average, our method outperforms the best training-free/training-
based methods on the GenImage benchmark by 16.1%/4.9% and on the DF40
benchmark by 14.5%/8.7% in AUROC score. We release the code at https:
//anonymous.4open.science/r/Intermediate-Public-D256.

1 INTRODUCTION

The advent of image generative models enables the creation of realistic synthetic images. Fueled
by advances in deep learning techniques, generative models such as generative adversarial network
(GAN) (Goodfellow et al., 2020; Metz et al., 2016; Liu & Tuzel, 2016; Mao et al., 2017; Yoon et al.,
2019; Karras et al., 2019), Variational Autoencoder (VAE) (Mescheder et al., 2017; Mishra et al.,
2018; Pinheiro Cinelli et al., 2021; He et al., 2022), diffusion model (Ho et al., 2020; Song et al.,
2020; Saharia et al., 2022; Podell et al., 2023; Blattmann et al., 2023; Peebles & Xie, 2023), etc. have
demonstrated significant progress in image generation. While some image-generation applications
have attracted users to go bananas, generative models pose serious ethical, societal, and security
challenges. The misuse and the associated cost of generated images can cause negative impacts such
as copyright violation, deepfake, and fake content in publications. Furthermore, training datasets for
deep learning models might be corrupted by generated images at scale, leading to unintentional bias
or malicious exploits for future models. These critical challenges underscore the need for reliable
AI-generated image detection.

There are two mainstream approaches to detecting AI-generated images: training-based and training-
free approaches. Current training-based approaches have limited generalization to unseen data
domains, while training-free approaches have inferior detection performance. To bridge the gap, we
propose a simple yet effective training-free detector that exploits a pre-trained image foundation
model to detect AI-generated images. Following prior arts in training-detection (He et al., 2024; Tsai
et al., 2024) that use a similarity score computed by a pair of test image and its perturbed version for
detection, our method firstly considers the exploration of the best configuration to derive the most
discriminative feature between real and AI-generated images, where the space of configurations is a
tuple consisting of (i) the layer index of the model, (ii) the perturbation type, and (iii) the severity
level of the selected perturbation type. Given a set of real and AI-generated images, our method
calculates the similarity scores across all configurations and selects the optimal one for detection.
For example, our implementation uses CLIP (Radford et al., 2021) (ViT-L/14 image encoder) as
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Figure 1: Illustration of the proposed method. (a) Both the original image and the perturbed image
are fed to the feature extractor (a pretrained image foundation model). Embeddings across all layers
are extracted to obtain intermediate representations. The cosine similarity between the embeddings of
the original image and the perturbed image is computed as the metric to make a binary classification
on whether an image is AI-generated. (b) We use a small portion of the training dataset to determine
which perturbation (including perturbation type and severity level) and embedding from which layer
are best to be used to compute the similarity for detection. (c) The configuration search space includes
a combination of the optimal intermediate layer, perturbation type, and severity level.

the backbone model (with 25 layers) together with 8 unique image perturbation functions and 8
different severity levels. This yields a total of 25× 8× 8 = 1600 configurations. Consequently, some
training-free methods such as (He et al., 2024; Tsai et al., 2024) can be viewed as a special case of
our method with a fixed configuration that only leverages the embedding from a designated layer and
considers a limited set of perturbation types (usually less than two). Figure 1 illustrates the overview
of our proposed training-free detector. By scaling up the configuration space, our method exhibits
better performance compared to both training-free approaches and training-based approaches on the
GenImage benchmark (Zhu et al., 2023) and the DF40 benchmark (Yan et al., 2024b).

2 RELATED WORK

AI-Generated Image Detection Frequency domain analysis is found to be effective to detect AI-
generated images (Frank et al., 2020; Chandrasegaran et al., 2021; Corvi et al., 2023a). In addition to
handcrafted features, learning-based methods are proposed to exploit the strength of neural networks
(Corvi et al., 2023b; Cozzolino et al., 2021; Gragnaniello et al., 2021; Ojha et al., 2023). UniDetector
(Ojha et al., 2023) uses both nearest neighbor (training-free) and linear probing (training-based) on the
image embedding space to detect AI-generated images. NPR (Tan et al., 2024) trains a detector that is
generalizable to detect images generated by both GANs and diffusion models. The detector relies on
neighboring pixel relationships based on the observation that local independence among image pixels
exhibits generalized forgery artifacts in generated images. AIDE (Yan et al., 2024a) captures both
low-level pixel statistics and high-level global semantics to detect anomalies in AI-generated images
such as white noise in the image (low level) and unreasonable image components in the context (high
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level). SPAI (Karageorgiou et al., 2025) uses spectral learning to distinguish AI-generated images
based on the spectral reconstruction similarity.

In addition to learning-based methods, training-free methods, not limited to the training dataset, are
proposed. AeroBlade (Ricker et al., 2024) assumes that the reconstruction of AI-generated images is
easier than that of real images. Hence, the reconstruction error can be used as the metric to detect
AI-generated images. RIGID (He et al., 2024) assumes that AI-generated images are less robust to
perturbations in the embedding space of neural architectures. MINDER (Tsai et al., 2024) improves
the prediction of the RIGID method by introducing contrastive perturbation.

Exploiting Intermediate Layers Intermediate layers are found to be able to enhance the prediction
and assist in the analysis of neural architectures. They are used to predict generalization gaps
(Jiang et al., 2018), elucidate training dynamics through linear classifier probes (Alain & Bengio,
2016), improve transfer learning (Evci et al., 2022), enhance the adversarial example transferability
(Huang et al., 2019), and ameliorate the performance of fine-tuned models (Lee et al., 2022). A
fundamental geometric property of the data representation in over-parameterized neural networks
is the intrinsic dimension, i.e. the minimal number of coordinates necessary to describe data points
without significant information loss. It is found that the intrinsic dimension increases in earlier layers
(expansion) and decreases in later layers (compression) (Ansuini et al., 2019; Recanatesi et al., 2019).

3 INTERMEDIATE REPRESENTATIONS AS AI-GENERATED IMAGE DETECTORS

The overall flow of this section is as follows: First, we formally define the task formulation of
our training-free detection framework. Then, we present our proposed method and the algorithm.
Next, we provide motivating examples to articulate the importance of selecting the right layer to
obtain discriminative features for detection. Finally, we explain why intermediate representations are
powerful features for AI-generated image detection through the lens of intrinsic dimension analysis.

Task Formulation Given a set of labeled images D = {(xi, yi)}ni=1 with xi ∈ X denoting an
image and yi ∈ {0, 1} denoting its label. yi = 1 indicates AI-generated image while yi = 0 indicates
real image. Using a pretrained image feature extractor F(·), the goal is to assign a predicted label ŷ
for a test image x. The aim of this paper is to explore the potential of intermediate representations
for training-free AI-generated image detection. This will be accomplished by studying the effect of
expanding the configuration search space (see Figure 1 (c)), which consists of the intermediate layers
of F(·), perturbation types, and severity levels.

3.1 PROPOSED METHOD

Figure 1 shows the illustration of the proposed method. We feed both the original image x and the
perturbed image ϵ(x) to the model F = fL ◦ . . . fℓ . . . ◦ f1, where fℓ denotes the ℓ-th layer of F .
Both x and ϵ(x) constitute a pair to compute the cosine similarity that characterizes the drift in the
embedding space caused by a perturbation. Eight perturbation types and eight severity levels are
applied. Perturbation types include Gaussian noise, shot noise, impulse noise, defocus blur, zoom blur,
contrast, elastic transform and JPEG compression. Those perturbations are algorithmically generated
corruptions following (Hendrycks & Dietterich, 2019). Details on perturbations are reported in
Appendix B. For each perturbation type, a severity level is used to control the level of corruption on
x. We use ϵ(x|s) to denote the perturbed version of x under the perturbation ϵ(·|s) with a severity
level of s. We extract embeddings in the l-th intermediate layer Fsub = fl ◦ . . . f1, 1 ≤ l ≤ L,
and compute the cosine similarity between the embeddings of the original image and the perturbed
image. Let emb(·) denote the function to extract the class embedding El ∈ Rd as the intermediate
representation for each layer. For example, in DINOv2 and CLIP, emb(·) extracts [CLASS] token
embedding. The cosine similarity of given a configuration tuple (ϵ, s, l) is defined as

S(x, ϵ(x|s), l) = sim
(
emb(fl ◦ . . . ◦ f1(x)), emb(fl ◦ . . . ◦ f1(ϵ(x|s)))

)
,

sim(v1,v2) =
⟨v1,v2⟩
∥v1∥∥v2∥

,
(1)

where ⟨·, ·⟩ denotes the inner product of two vectors, and ∥ · ∥ is the Euclidean norm. d is the hidden
dimension defined in the feature extractor.
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The label prediction for an input image is a threshold-based approach defined as

ŷ = ψ(I{S(x, ϵ(x|s), l) ≤ τ)}), (2)

where τ is a threshold to distinguish AI-generated and real images. I{·} is the indicator function and
I{A} = 1 if and only if an event A happens. ψ(·) indicates the relative robustness to perturbations,
and is determined by the training dataset. Given a configuration, if real images exhibit higher
similarity than AI-generated ones in the embedding space, then ψ(x) = x. Otherwise, ψ(x) = 1− x.

Algorithm 1 depicts the pipeline for detecting AI-generated images. There are two stages: in stage I,
we determine the optimal configuration using a subset of the training dataset. The best configuration
is selected based on the Area Under the Receiver Operating Characteristic Curve (AUROC) score,
and it comprises the optimal intermediate layer, perturbation type, and severity level. We empirically
find that only a small portion of the training dataset (by default, we use 30% of the test dataset size) is
sufficient to deliver stable detection performance. In stage II, a test image undergoes detection using
the best configuration selected by stage I.

Algorithm 1 Using intermediate representations to detect AI-generated images

Require: Randomly sampled training dataset Dtr = {(x̃i, ỹi)}Ntr
i=1, a test image x, a pretrained

foundation model F = fL ◦ . . . ◦ f1, M perturbation types, and S severity levels
1: # Stage I: determine the best configuration
2: Initialize an empty list P ← {}.
3: for i = 1 to Ntr do
4: for ϵ ∈ {ϵ1, . . . , ϵM} do ▷ Iterate over different perturbation types
5: for s ∈ {1, . . . , S} do ▷ Iterate over different perturbation levels
6: p̂← S(x̃i, ϵ(x̃i|s), l) as shown in Equation 1 ▷ Compute cosine similarity
7: P ← P ∪ {p̂}
8: end for
9: end for

10: end for
11: (ϵ∗(·|s∗), l∗)← argmax

ϵ,s,l
AUROC(P, {ỹi})

12: # Stage II: inference with the best configuration
13: Make a prediction using x, ϵ∗(x|s∗) and l∗ as shown in Equation 2

3.2 REVISITING IMAGE EMBEDDINGS FOR AI-GENERATED IMAGE DETECTION

Prior training-free methods, such as RIGID (He et al., 2024) and MINDER (Tsai et al., 2024),
postulate that AI-generated images are less robust than real images in the embedding space. We
empirically find that this postulation holds true in most cases. However, there are exceptions. For
example, in Figure 2, we calculate the average of cosine similarity between original and perturbed
embeddings in different layers for AI-generated and real images, respectively. The DDIM dataset
in the DF40 benchmark reveals that real images are less robust compared to AI-generated images.
Exceptions are not limited to the feature extractor we use, i.e. CLIP image encoder. Other models
such as DINOv2 also exhibit exceptions of robustness in the embedding space (details are reported in
Appendix B.2). The result indicates that the postulation might require scrutiny. Hence, in our proposed
method, we eliminate the assumption that the embeddings of real images are more robust than those of
AI-generated images. In other words, the former might not necessarily have higher cosine similarity
between original and perturbed embeddings than the latter. We design the ψ(·) function in Equation
2 to capture the relative robustness for real and AI-generated images to a perturbation. In addition,
different layers exhibit different sensitivity to a perturbation, which motivates us to pursue an optimal
intermediate layer to detect AI-generated images.

It is worth noting that both RIGID and MINDER focus on limited perturbation types: only Gaussian
noise and Gaussian blur are considered. To give a comprehensive examination of intermediate repre-
sentations as features, we use eight different perturbation types and eight severity levels, including
Gaussian noise, shot noise, impulse noise, defocus blur, zoom blur, contrast, elastic transform and
JPEG compression. Details on various perturbation types are reported in Appendix B.
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Figure 2: Average cosine similarity profile over model depth. We randomly sampled images in the
train dataset with a size of 30% test dataset size to represent the training dataset in the plot. We use
the CLIP model (ViT-L/14) as the feature extractor.
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Figure 3: Intrinsic Dimension (ID) analysis of data representation manifolds in the image foundation
models: DINOv2 (Oquab et al., 2023) and CLIP (ViT-L/14) (Radford et al., 2021). A typical
hunchback shape of the profile of the intrinsic dimension is observed, which indicates more diverse
features in intermediate layers.

3.3 UNDERSTANDING THE VERSATILITY OF INTERMEDIATE REPRESENTATIONS VIA
INTRINSIC DIMENSION

Intrinsic dimension (ID) is a fundamental geometric property of the data representation manifold in an
over-parameterized neural network. It represents the minimal number of coordinates to describe data
points without significant information loss. In the learning theory, ID plays a vital role in learning
function approximations and non-linear decision boundary determination. The number of required
data points grows exponentially with the manifold’s ID for learning a manifold (Narayanan & Mitter,
2010). ID is found to be correlated with adversarial training of neural networks (Ma et al., 2018;
Amsaleg et al., 2017). A theoretical analysis indicates that an increase in ID effectively reduces the
severity level of the perturbation to move a normal example into the adversarial region (Amsaleg
et al., 2017). By employing ID estimator (Facco et al., 2017; Ansuini et al., 2019), we examine ID
across layers of the feature extractor. ID is calculated based on the ratio between the distances to the
second and first nearest neighbor of each data point (Facco et al., 2017). Figure 3 shows the variation
of ID for feature extractors used in this study. There is ID expansion in earlier layers and compression
in later layers. The hunchback shape of ID as a function of model depth is interpreted as the feature
generation in earlier layers (Olshausen & Field, 1997; Babadi & Sompolinsky, 2014) and feature
selection in later layers (Hinton & Salakhutdinov, 2006; Tishby, 2018).

The dimensionality analysis indicates that there are more diverse features in intermediate layers than
in output layers. Different layers can have different levels of sensitivity to a perturbation. The output
layer might not be the most sensitive layer, rendering it sub-optimal in detecting AI-generated images.
As shown in Figure 2, there is a pronounced variation in cosine similarity across model layers. It
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Table 1: Comparison of AUROC score on GenImage (Zhu et al., 2023) and DF40 (Yan et al., 2024b)
benchmarks. The best performance is highlighted using bold font. The second best performance is
highlighted using underline. Our method shows better generalization compared to both training-based
and training-free baselines.

Method GenImage benchmark
BigGAN SD v4 VQDM ADM Glide Midjourney SD v5 Wukong Avg

Training-free method
AeroBlade 0.9352 0.6287 0.8965 0.8371 0.8207 0.7128 0.5342 0.6134 0.7473

RIGID 0.9882 0.6508 0.9390 0.9146 0.9779 0.7422 0.6502 0.6391 0.8128
MINDER 0.9270 0.6579 0.9377 0.8919 0.8372 0.7386 0.6568 0.6482 0.7869

Ours 0.9982 0.9240 0.9475 0.9825 0.9996 0.9031 0.9209 0.8739 0.9437
Training-based method

UniDetector 0.9700 0.7346 0.9412 0.8707 0.7870 0.5147 0.7285 0.8103 0.7946
NPR 0.9642 0.8944 0.8691 0.8430 0.9388 0.8069 0.8996 0.7901 0.8758
AIDE 0.9811 0.8292 0.9721 0.9639 0.9826 0.8373 0.8329 0.7949 0.8992
SPAI 0.8710 0.6467 0.6823 0.7005 0.8858 0.5424 0.6379 0.7074 0.7093

Method DF40 benchmark
DDIM SiT StyleGAN2 StyleGAN3 StyleGAN-XL VQGAN MobileSwap BlendFace Avg

Training-free method
AeroBlade 0.5230 0.9479 0.5337 0.7847 0.4687 0.5021 0.3855 0.4978 0.5804

RIGID 0.8235 0.6781 0.9217 0.9892 0.8631 0.9494 0.5110 0.5157 0.7815
MINDER 0.9222 0.7806 0.9144 0.9318 0.8311 0.9930 0.5436 0.5509 0.8085

Ours 0.9998 0.9144 0.9995 1.0000 0.8880 0.9897 0.7066 0.9056 0.9255
Training-based method

UniDetector 0.9861 0.6596 0.9998 0.9908 0.9310 0.9964 0.6188 0.5761 0.8448
NPR 0.9760 0.9679 1.0000 1.0000 0.9999 0.9973 0.3403 0.5271 0.8511
AIDE 0.6190 0.8972 0.8894 0.9093 0.7589 0.9120 0.5809 0.4349 0.7502
SPAI 0.4175 0.5009 0.4425 0.5507 0.5280 0.7374 0.4728 0.4941 0.5180

indicates that different model layers might have different sensitivity to a perturbation. Besides, the
largest difference in cosine similarity between real and AI-generated image embeddings occurs in
intermediate layers.

The variation of cosine similarity in the randomly sampled training dataset follows a highly similar
trend to that in the test dataset. Hence, we can use the training dataset as the prior knowledge to
determine the optimal setting, including the intermediate layer, for detecting AI-generated images.

4 EXPERIMENTS

4.1 EXPERIMENTAL DETAILS

Datasets We evaluate the proposed method on two deepfake benchmarks: GenImage (Zhu et al.,
2023) and DF40 (Yan et al., 2024b). GenImage consists of a broad range of image classes generated
by advanced image generators, including BigGAN (Brock et al., 2018), Stable Diffusion v1.4 and v1.5
(Rombach et al., 2022), VQDM (Gu et al., 2022), GLIDE (Nichol et al., 2021), ADM (Dhariwal &
Nichol, 2021), Midjourney (Midjourney, 2022) and Wukong (Wukong, 2022). The DF40 benchmark
contains real images from Celeb-DF (CDF) (Li et al., 2020), FFHQ (Karras et al., 2019) and CelebA
(Liu et al., 2018), as well as AI-generated images by deepfake generation techniques. Models used
to yield AI-generated images include DDIM (Song et al., 2020), SiT (Ma et al., 2024), StyleGAN2
(Karras et al., 2020), StyleGAN3 (Karras et al., 2021), StyleGAN-XL (Sauer et al., 2022), VQGAN
(Gu et al., 2022), MobileSwap (Li et al., 2021) and BlendFace (Shiohara et al., 2023).

Baselines and Metrics Both training-based and training-free approaches are selected as baselines
to examine the proposed method. For training-based methods, UniDetector (Ojha et al., 2023) uses
linear probing on the output of the foundational model to detect AI-generated images. NPR (Tan et al.,
2024), based on the observation that up-sampling operations produce generalized forgery artifacts, is
an artifact representation approach that captures structural artifacts. AIDE (Yan et al., 2024a) utilizes
multiple experts to extract visual artifacts and noise patterns for detecting AI-generated images.
SPAI (Karageorgiou et al., 2025) employs the spectral learning to learn the spectral distribution
of real images. Generated images are considered out-of-distribution. For training-free methods,
RIGID (He et al., 2024) compares the representation similarity between original images and Gaussian
noise-perturbed images for detecting AI-generated images. MINDER (Tsai et al., 2024) improves

6
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a) b)

Figure 4: AUROC scores across layers. (a) DF40 DDIM dataset. (b) GenImage BigGAN dataset.
Distributions of the cosine similarities between the embeddings of input images and perturbed
images for the first layer, intermediate layer and last layer are shown for comparison. Dashed
curves are distributions of embeddings of AI-generated images while solid curves are distributions
of embeddings of real images. We use the CLIP model to extract features. Elastic transformation is
applied for the DDIM dataset and zoom blur for the BigGAN dataset. Severity level 2 is used for
both cases.
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Figure 5: Distribution of cosine similarity between embeddings of AI-generated and real images.
Using intermediate layers improves the separation between AI-generated and real images compared
to using the last layer. We use the CLIP model as the feature extractor.

RIGID by contrastive blurring to increase the distance between perturbed embeddings. Aeroblade
(Ricker et al., 2024) considers the difference in the difficulty of reconstructing AI-generated and
real images and uses it as the detection metric. We evaluate the performance of AI-generated image
detection methods using the AUROC score.

4.2 COMPARISON WITH BASELINES

Table 1 shows the performance comparison for the AI-generated image detection task. The optimal
perturbation type, severity level, and intermediate layer are determined by a randomly sampled subset
of the training dataset to obtain the performance of using intermediate representations. Our method
performs favorably against both training-free and training-based methods.

For training-based methods, we use pretrained weights to test the performance on the GenImage
benchmark and the DF40 benchmark. Model weights are frozen during the entire inference process.
The drawback of training-based methods is the limited generalization to unseen datasets. For example,
AIDE is trained on the GenImage benchmark and exhibits good performance on that benchmark.
Nevertheless, a performance degradation is observed on the DF40 benchmark. Our method exhibits
superior performance than both training-based and training-free methods. On average, our method
outperforms the best baseline on the GenImage benchmark by 4.9% and on the DF40 benchmark by
8.7% in AUROC score.
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Table 2: Comparison of using different pretrained image foundation models in our method: DINOv2
(Oquab et al., 2023) and CLIP (ViT-L/14) (Radford et al., 2021).

Foundation GenImage benchmark
model BigGAN SD v4 VQDM ADM Glide Midjourney SD v5 Wukong Avg

CLIP 0.9982 0.9240 0.9475 0.9825 0.9996 0.9031 0.9209 0.8739 0.9437
DINOv2 0.9876 0.8655 0.9466 0.9423 0.9987 0.8416 0.8474 0.8454 0.9094

Foundation DF40 benchmark
model DDIM SiT StyleGAN2 StyleGAN3 StyleGAN-XL VQGAN MobileSwap BlendFace Avg

CLIP 0.9998 0.9144 0.9995 1.0000 0.8880 0.9897 0.7066 0.9056 0.9255
DINOv2 0.9904 0.8431 0.9959 1.0000 0.9620 0.9918 0.6402 0.9097 0.9166

Training-free methods can generalize well across different datasets but have limited performance. Our
method remarkably improves the performance of training-free methods by considering an expanded
configuration space. Our method improves the best training-free method by 16.1% on the GenImage
benchmark and 14.5% on the DF40 benchmark. Using the optimal configuration, our method can
surpass training-based methods.

4.3 INTERMEDIATE LAYER ANALYSIS

Here, we provide a detailed analysis to study the effect of the intermediate layers on AI-generated
image detection. We extracted embeddings in all layers (i.e. 1 ≤ l ≤ ℓ). The cosine similarity is
computed to predict whether an image is AI-generated as indicated in Equation 2. The AUROC
score is used as the metric to examine the prediction performance. Figure 4 shows examples of the
AUROC score as a function of model depth. In general, the representations of earlier layers do not
provide good separation between real and AI-generated images. While the embedding of the final
layer is often used in vision tasks such as image classification, our observation indicates that using
an intermediate layer (layers in the middle) in our method usually achieves the optimal detection
performance when fixing a perturbation type and a severity level.

In Figure 4, we visualize the distribution of cosine similarity of the first layer, the optimal intermediate
layer, and the last layer. Dashed curves correspond to AI-generated images while solid curves
correspond to real images. When using the first layer and the last layer, it is difficult to accurately
differentiate real and AI-generated images due to the overlap in the distribution. Using intermediate
layers, however, improves the separation between distributions of AI-generated and real images.

Figure 5 shows examples of the distribution of cosine similarities for intermediate layers in comparison
to final layers. The representations from intermediate layers can yield more separable similarity
metrics between real and AI-generated images than the final layers. Hence, using a threshold τ can
well differentiate AI-generated images from real images with the best configuration. We analyze
the effect of perturbations (perturbation type and severity level) on the detection performance in
Appendix B.1.

5 ABLATION STUDY

Feature extractor We examine the performance of our proposed method using different image
foundation models as feature extractors. Table 2 shows the performance comparison on the GenImage
benchmark and the DF40 benchmark. Instead of the CLIP model (ViT-L/14), when using DINOv2
to extract features, there is a performance degradation. The improvement of the CLIP model over
the DINOv2 model can be attributed to the intrinsic dimension analysis in Section 3.3, where we
show CLIP has a higher intrinsic dimension than DINOv2, offering more versatile intermediate
representations for AI-generated image detection.

Subset size We use a randomly sampled subset of the training dataset to determine the optimal
configuration: intermediate layer, perturbation type, and severity level. We test the effect of different
subset sizes on the prediction performance. Figure 6 shows the result on the GenImage benchmark
while Figure 7 shows the result for the DF40 benchmark. As the subset size decreases, the prediction
performance degrades. We do not observe a significant performance improvement when using a
subset that is larger than 30% of the test dataset size.
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Figure 6: Variation of AUROC score on the GenImage benchmark as a function of different randomly
sampled subset sizes. The randomly sampled subset of the training dataset is used to determine the
optimal configuration.
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Figure 7: Variation of AUROC score on the GenImage benchmark as a function of different randomly
sampled subset sizes. The randomly sampled subset of the training dataset is used to determine the
optimal configuration.

6 CONCLUSION

In this paper, we propose a novel training-free approach for detecting AI-generated images. By
searching for the optimal configuration to obtain the most separable similarity features in the compos-
ite space of layer index, perturbation type, and severity level, our approach improves the detection
performance over state-of-the-art training-based and training-free methods by a large margin. We
also provide comprehensive analysis and intrinsic dimension evaluation to explain how the versatility
of the intermediate representations derived from a pretrained image foundation model can be used
to design powerful AI-generated image detectors. Our method can be used with any off-the-shelf
image foundation model to extract intermediate representations. Hence, we believe the detection
performance can scale with the representation learning capability of future image foundation models.

Ethic Statement This work focuses on developing a reliable method to address the problem of
detecting AI-generated images, with the aim of mitigating risks posed by generative models. Our
work can be applied to enhance the reliability of media forensics and support trustworthy information
dissemination. The proposed approach does not involve the generation of harmful or offensive
content. It employs a publicly available image foundation model without modifying its weights or
architecture.
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A IMPLEMENTATION DETAILS

We use pretrained CLIP to extract features. Besides, we test the performance of using DINOv2 as the
feature extractor. Both models use ViT-L/14 as the backbone model. Images are resized to 224× 224
and then used as the input to the foundational vision model.

A.1 BASELINE IMPLEMENTATION

In RIGID and MINDER baselines, the DINOv2 model is used to detect AI-generated images. We use
model weights fine-tuned on the GenImage benchmark in the model inference process for NPR and
AIDE baselines. UniDetector trains a classification layer using the curated dataset (Wang et al., 2020).
The model weight of SPAI is obtained by training on the curated dataset, where AI-generated images
are generated by latent diffusion model (Rombach et al., 2022) while real images are collected from
the publicly available dataset (Corvi et al., 2023b).

A.2 OPTIMAL CONFIGURATION

Using a randomly sampled subset of the training dataset, we are able to determine the optimal
configuration, including the intermediate layer index l, perturbation function ϵ(·) and severity level s.
Table 4 shows the optimal configuration when using DINOv2 as the feature extractor while Table 3
for CLIP as the feature extractor. The performance for using the optimal configuration is shown in
Table 1.

Table 3: Optimal configuration for detecting AI-generated images using CLIP as the feature extractor.
Benchmark Dataset s ϵ(·) l Benchmark Dataset s ϵ(·) l

GenImage

BigGAN 2 Zoom blur 14

DF40

DDIM 2 Elastic trans 13
SD v4 7 Elastic trans 13 SiT 1 JPEG compress 3

VQDM 2 Elastic trans 13 StyleGAN2 1 Defocus blur 9
ADM 3 Elastic trans 13 StyleGAN3 1 Defocus blur 9
Glide 2 Elastic trans 13 StyleGAN-XL 5 Zoom blur 11

Midjourney 2 Zoom blur 13 VQGAN 8 Impulse noise 24
SD v5 8 Elastic trans 13 MobileSwap 5 Elastic trans 10

Wukong 8 Elastic trans 14 BlendFace 4 Contrast 10

Table 4: Optimal configuration for detecting AI-generated images using DINOv2 as the feature
extractor.

Benchmark Dataset s ϵ(·) l Benchmark Dataset s ϵ(·) l

GenImage

BigGAN 3 Gaussian noise 12

DF40

DDIM 8 JPEG compress 17
SD v4 8 Contrast 15 SiT 1 JPEG compress 13

VQDM 1 JPEG compress 24 StyleGAN2 3 JPEG compress 11
ADM 5 Elast transform 8 StyleGAN3 3 JPEG compress 11
Glide 8 Defocus blur 5 StyleGAN-XL 1 JPEG compress 15

Midjourney 1 JPEG compress 12 VQGAN 5 Defocus blur 24
SD v5 7 Zoom blur 13 MobileSwap 1 JPEG compress 11

Wukong 8 Shot noise 15 BlendFace 1 Gaussian noise 12

B PERTURBATIONS

Following (Hendrycks & Dietterich, 2019), we apply different perturbation types with different
severity levels to input images ϕ : x → ϵ(x). Figure 8 shows eight different perturbation types:
Gaussian noise, defocus blur, impulse noise, JPEG compression, contrast, shot noise, zoom blur and
elastic transform. We use exaggerated severity levels to visualize the effect of different perturbations
on original images.
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Perturbation

Figure 8: Algorithmically generated corruptions to apply perturbation to input images. Each per-
turbation type has eight severity levels. We use the cosine similarity between the embeddings of
the original image and the perturbed image to make a binary classification on whether the original
image is an AI-generated image (i.e., AI-generated image). Perturbations are exaggerated for better
visualization purposes.

B.1 EFFECT OF PERTURBATION

Figure 9 shows the effect of model depth and severity on the detection performance. There is no
universal configuration that leads to the best performance. This justifies the practice of using the
training dataset to determine the optimal configuration.
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Figure 9: Variation of AUROC score (Z axis) as a function of model depth and severity level for
different perturbations on the GenImage benchmark and the DF40 benchmark.
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B.2 SENSITIVITY OF INTERMEDIATE LAYERS TO PERTURBATIONS

Figure 10 shows the profile of cosine similarity between the original and perturbed embeddings.
Embeddings are extracted by employing the DINOv2 model as the feature extractor. Similar to
the result of using CLIP model shown in Figure 2, in most cases, real images are more robust than
AI-generated images. However, there are exceptions such as the Midjourney dataset in the GenImage
benchmark.

The training dataset, similar to Figure 2, exhibits a good indicator for the optimal configurations for
the test dataset, even though we only use the number of images in the training dataset equal to 30%
test dataset size. The optimal configuration, including the best intermediate layer, perturbation type
and severity level, is used to detect AI-generated images in the test dataset.
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Figure 10: Cosine similarity profile over model depth. We use features extracted by DINOv2 model
to compute the cosine similarity. Randomly sampled images in the training dataset with a size of
30% test dataset size are used to represent training dataset in the plot.

C AI-GENERATED IMAGE DATASETS

Figure 11 shows examples of AI-generated images in the GenImage benchmark. The GenImage
benchmark collects more than one million pairs of AI-generated images and retrieved real images.
Advanced diffusion models and GAN models are used to produce AI-generated images. 1000 image
labels in the ImageNet dataset (Deng et al., 2009) are leveraged to produce AI-generated images.

Figure 12 shows examples of AI-generated images in the DF40 benchmark. The DF40 benchmark
uses deepfake techniques to produce AI-generated images including face-swapping, face-reenactment,
entire face synthesis, face editing. Real images are collected from Celeb-DF (CDF) (Li et al., 2020),
FFHQ (Karras et al., 2019) and CelebA (Liu et al., 2018). AI-generated images are generated by
models of either diffusion model family or GAN family.
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Figure 11: Display of AI-generated images in the GenImage benchmark. Generation models include
BigGAN, Stable Diffusion v1.4, VQDM, ADM, GLIDE, Midjourney and Wukong.
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Figure 12: Display of AI-generated images in the DF40 benchmark. Generation models include
DDIM, SiT, StyleGAN2, StyleGAN3, styleGAN-XL, VQGAN, MobileSwap and BlendFace.
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