
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

THE RELEVANCY METRIC: UNDERSTANDING THE

IMPACT OF TRAINING DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep learning models are central to many critical decision-making processes,
making it imperative to gain deeper insights into their behavior to improve perfor-
mance, transparency, interpretability, and fairness. A key challenge is understand-
ing how training data shapes model predictions on unseen test data. In this paper,
we introduce a novel metric, Relevancy, which quantifies the impact of individual
training samples on inference predictions. Our proposed metric is calculated by
observing the learning dynamics of the model during training, and it is compu-
tationally efficient and applicable across a wide range of tasks. We demonstrate
that it is between 80× and 100, 000× more efficient than existing metrics for cap-
turing the train-test relationship. Using relevancy, we enable the identification of
coresets — compact datasets that represent the essence of the training distribution.
Quantitative evaluations show that coresets selected using our metric outperform
state-of-the-art methods by up to 5.2% on CIFAR-100. Additionally, we qualita-
tively demonstrate how relevancy can be extended to assess various training data
properties, such as identifying mislabeled samples in widely used datasets like
ImageNet, CIFAR-100, and Fashion-MNIST. These examples illustrate just a few
of the many potential uses of relevancy, highlighting its versatility in promoting
more interpretable, efficient, and fair deep learning systems across diverse tasks.

1 INTRODUCTION

Deep learning (DL) has achieved significant success in various domains, including classification
tasks (Krizhevsky et al., 2009), reinforcement learning (Shakya et al., 2023), diffusion-based image
generation (Ho et al., 2020), and text generation (Radford et al., 2019). As tasks grow more complex,
both the size and quality of training data play a crucial role in determining model performance. It
is widely acknowledged that deep models often overfit, leading to the memorization of training
data (Zhang et al., 2017; Arpit et al., 2017). Rather than learning generalized representations, these
models may capture specific patterns or memorize individual examples from the training set, which
reduces their ability to generalize to unseen data (Brown et al., 2021). Additionally, mislabeled
or noisy samples in large-scale datasets further complicate the learning process by encouraging
memorization of irrelevant or incorrect patterns, thereby hindering generalization (Northcutt et al.,
2021).

To tackle these challenges, it is essential to address two key questions: “Which subsets of data con-
tribute most to effective generalization?” and “How can we identify samples that are memorized?”
Answering these questions requires a deeper understanding of the relationship between training data
and model predictions on unseen examples, focusing on balancing memorization and generalization.
Recent studies suggest that the learning dynamics of neural networks can provide valuable insights
into how models memorize data and generalize to new examples (Toneva et al., 2018; Mangalam &
Prabhu, 2019; Jiang et al., 2021; Garg et al., 2024). Building on these insights, we introduce a novel
metric, Relevancy, to quantify the impact of individual training samples on generalization.

Relevancy measures the influence of a training sample on a model’s prediction for any sample of
interest. This is achieved by tracking the evolution of the sample losses as the model’s weights
are updated during training. Specifically, we compute the correlation between the loss trajectories
of the two samples over time, using checkpoints saved during training to access these trajectories.
When the sample of interest is an unseen data point (e.g., a test sample), this metric enables us to

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: Overview of relevancy, showing how individual training samples (rows) affect the predic-
tions of inference samples (columns). Each matrix element represents the relevancy score, revealing
the contribution of a specific training instance to a given test prediction.

observe how individual training samples contribute to generalization. Conversely, when the sam-
ples of interest are from the training set, the metric provides insights into important data properties
such as memorization and mislabeled instances (explained in detail in Section 4.2). Figure 1 illus-
trates the core functionality of relevancy, detailing how individual training samples impact inference
predictions.

Existing methods for analyzing the train-test relationship, such as influence functions (Weisberg &
Cook, 1982; Yeh et al., 2018; Pruthi et al., 2020) and input curvature approaches (Garg & Roy, 2023;
Garg et al., 2024; Ravikumar et al., 2024a), provide valuable insights but have limitations in both
scope and computational efficiency. Influence functions, for instance, often fail to capture certain
types of information (Basu et al., 2021), such as the influence of prototypical samples, due to their
bi-modal nature (most scores being approximately 0 or 1) (Lukasik et al., 2024). Additionally, input
curvature methods tend to be computationally expensive and do not scale well to large datasets.

In contrast, relevancy is designed to be both computationally efficient and scalable. It leverages
data collected during training without introducing significant overhead, making it up to 100, 000×
more computationally efficient than the existing approaches. This makes our method practical for
real-world, large-scale applications. By analyzing the correlation over time between the losses of
training samples and those of particular samples of interest, whether they are from the test set (un-
seen examples) or the training set (previously seen examples), relevancy offers deeper insights into
model behavior.

Our approach addresses the key question: “Which samples contribute most to model generaliza-
tion?” By providing richer information on the relationships between data points, relevancy allows
for more informed data usage, leading to better model performance and reduced overfitting. Addi-
tionally, we demonstrate that relevancy can be extended to capture the same information as popular
memorization and curvature-based metrics while maintaining superior efficiency and interpretabil-
ity.

We validate our proposed metric through both quantitative and qualitative evaluations. First, we
demonstrate that relevancy enables the creation of coresets, compact subsets of the training data that
effectively represent the entire dataset. Coresets generated using relevancy improve classification
accuracy by up to 5.2% on CIFAR-100 (Alex, 2009) with ResNet-18 (He et al., 2016), outperforming
state-of-the-art methods. Additionally, we qualitatively show that relevancy can be extended to
efficiently identify mislabeled samples across various datasets, including ImageNet (Deng et al.,
2009), CIFAR-100, and Fashion-MNIST (Xiao et al., 2017), making them powerful tools for data
debugging and curation.

In summary, our contributions are as follows:

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

• Relevancy: We introduce relevancy, a novel metric that quantifies the influence of individ-
ual training samples on model predictions. By tracking changes in loss throughout training,
relevancy provides fine-grained insights into how specific training samples shape a model’s
behavior, while offering significant computational efficiency gains over existing methods.

• Coreset selection: We showcase the utility of relevancy in real-world tasks, particularly
in coreset generation, which identifies compact subsets of the original training data that
effectively represent the overall data distribution. Our experiments demonstrate that rele-
vancy-based coresets outperform state-of-the-art methods by up to 5.2% in classification
accuracy on CIFAR-100, while offering interpretable sample selection.

• Data debugging and interpretability: We first quantitatively show that we can extend
relevancy to provide the same insights as existing popular memorization and curvature
metrics. We then qualitatively demonstrate that these metrics efficiently identify mislabeled
samples across multiple datasets, including ImageNet, CIFAR-100, and Fashion-MNIST,
providing actionable insights for data debugging and improving model performance and
dataset quality.

• Scalability and efficiency: Our method is between 80× to 100, 000× more efficient than
existing approaches that attempt to measure the relationship between training data and
model performance on test data. The computational efficiency makes relevancy viable for
use in large-scale real-world applications.

These contributions highlight the versatility and practicality of relevancy, demonstrating their po-
tential to improve the interpretability, efficiency, and fairness of deep learning systems across a wide
range of tasks and can serve as foundational tools for both research and applied machine learning.

2 RELATED WORK

Recent research has focused on understanding the influence and memorization of data points in deep
learning (DL) models, particularly their implications for model training and generalization. Memo-
rized data refers to samples that a model can only predict accurately when trained on those specific
samples, while generalized data leverages knowledge from other samples. Various studies have
explored memorization vs. generalization, proposing different definitions and applications, often
involving retraining multiple models on different subsets of data or computing expensive Hessian
calculations (Zhang et al., 2017; Arpit et al., 2017; Feldman, 2020; Toneva et al., 2018; Brown et al.,
2021). Some algorithms, such as those proposed by Garg & Roy (2023); Garg et al. (2024); Raviku-
mar et al. (2024a;b) leverage input loss curvature to alleviate the computational burden of capturing
memorization tendencies but still incur significant computational overheads.

Influence functions, initially introduced by Weisberg & Cook (1982) for regression-based tasks, have
been extended to deep learning to measure the influence of training samples on model predictions
for unseen data (Koh & Liang, 2017). Methods such as RandSelect (Wojnowicz et al., 2016)
and Arnoldi iterations (Schioppa et al., 2022) improve computational efficiency by approximating
influence scores. Our work is most closely related to TracIn (Pruthi et al., 2020), which estimates
influence through gradient steps, though it incurs a higher overhead than our proposed metric.

Recent works on training data attributions (TDA), such as Datamodels (Ilyas et al., 2022) and TRAK
with its linear datamodeling score (LDS) (Park et al., 2023), evaluate the influence of training data
through counterfactual impacts on model outputs. While these approaches provide valuable insights,
they often rely on computationally intensive surrogate models or specific assumptions about model
linearity. In contrast, our work directly leverages the learning dynamics during training, offering a
scalable and assumption-free alternative for understanding train-test relationships.

Our metric also has applications in dataset optimization and mislabel detection. Coreset generation,
which selects representative data subsets (Johnson & Guestrin, 2018; Killamsetty et al., 2021a; Paul
et al., 2021), addresses computational demands in tasks like Neural Architecture Search (Na et al.,
2021; Shim et al., 2021) and continual learning (Aljundi et al., 2019; Borsos et al., 2020). Prior meth-
ods include clustering-based Herding (Chen et al., 2010), gradient-based GraNd (Paul et al., 2021),
and bi-level optimization (Killamsetty et al., 2021b). SloCurves (Garg & Roy, 2023) highlighted
input curvature as a critical factor in identifying impactful samples; however, its computation can
be prohibitively costly for large datasets due to repeated Hessian calculations. Mislabel detection is

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

critical for data quality, and prior work has used pruning and detection tools to identify mislabeled
or duplicated samples (Northcutt et al., 2021; Barz & Denzler, 2020). While these methods struggle
to scale, our approach, with minimal computational overhead, efficiently handles mislabeled data in
large datasets. Our proposed metric, relevancy, offers a more computationally efficient approach,
achieving state-of-the-art performance with enhanced explainability and minimal overhead.

3 THE RELEVANCY METRIC

To ensure that our proposed metric is clearly understood and its significance is effectively conveyed,
we now introduce the relevant notations and define our metric with precision and simplicity. Our
focus is on capturing nuanced interactions within the training process of neural networks, leading to
meaningful insights about sample relationships.

3.1 NOTATION

We begin by establishing key notations used throughout this paper for clarity and consistency. Ran-
dom variables will be represented in bold (e.g., V), with scalar instances denoted by lowercase
letters (e.g., v), and vectors by arrowed letters (e.g., �v).

In this study, we consider a supervised learning task in which a randomized algorithm A, such as
Stochastic Gradient Descent (SGD) (Bottou, 2010), is used to learn a mapping f : �x → y, where
�x ∼ X ∈ R

d and y ∼ Y ∈ R. The algorithm A is used to train a model on a dataset S ∼ Zm,
where Z = X × Y represents a joint distribution of input-output pairs. S contains m samples:
S = [�z1, · · · , �zm], where each sample �zi = (�xi, yi) ∼ Z. After t epochs of training, algorithm A
produces a model hφ,t

S , where φ ∼ Φ represents the randomness in the learning process. During
training, the model’s performance is optimized using a loss function �, evaluated on each sample �zi.

The loss at epoch t for sample �zi is denoted as �(hφ,t
S , �zi).

3.2 OVERVIEW

We propose a novel metric, relevancy, denoted as Rel, to quantify the impact of a training sample �zi
on a sample of interest �zj (which can be in the training set S or be an unseen sample). This metric
reflects the relationship between the evolving learning patterns of the samples within neural networks
throughout the training process. For a randomized algorithm A trained on a dataset S ∼ Zm over T
epochs, the relevancy score is defined as the Pearson correlation (Pearson, 1895) between the loss
trajectories of �zi and �zj across the training epochs.

Rel(A, S, i, j) := corr
(
�(hφ,t

S , �zi)
∣∣T
t=0

, �(hφ,t
S , �zj)

∣∣T
t=0

)
(1)

This measures how closely the model’s loss on the sample of interest �zj correlates with the loss
incurred on training sample �zi. The loss trajectory of unseen samples of interest can be extracted by
using checkpoints of the model saved during training. More formally, it is computed as:

Rel(A, S, i, j) =

∑T
t=1

(
�(hφ,t

S , �zi)− �̂(hφ
S , �zi)

)
·
(
�(hφ,t

S , �zj)− �̂(hφ
S , �zj)

)
√∑T

t=1

(
�(hφ,t

S , �zi)− �̂(hφ
S , �zi)

)2

·
√∑T

t=1

(
�(hφ,t

S , �zj)− �̂(hφ
S , �zj)

)2

where �̂(hφ
S , �zi) represents the mean loss of sample �zi over all training epochs. This metric evaluates

the alignment between the losses of �zi and �zj during training, reflecting how learning �zi impacts the
prediction of �zj .

A positive relevancy value indicates that the training sample �zi and the sample �zj exhibit similar
learning dynamics. If the loss for both samples decreases together during training, it suggests that
�zi positively influences the model’s performance on �zj , implying that their features are aligned and
learning from �zi helps in predicting �zj more confidently. Figure 2 (top) shows this scenario, where
visually similar samples have correlated loss reductions.

Conversely, a negative relevancy value indicates opposing learning dynamics, where minimizing
the loss on �zi increases the loss on �zj , suggesting dissimilar or conflicting features between the

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Figure 2: Visualization of the relevancy metric for two pairs of samples from Class 0 in ImageNet
(Deng et al., 2009). The samples of interest (�zj) are from the test dataset. The top plot shows
the pair with the maximum Rel value, where both samples have similar loss trajectories, indicating
positive correlation. The bottom plot shows the pair with the minimum Rel value, with opposing loss
trajectories, indicating a negative correlation. Corresponding images highlight the visual similarity
or dissimilarity between the samples.

samples. Figure 2 (bottom) illustrates this with visually dissimilar samples whose losses diverge
during training.

These patterns, positive correlation for similar samples and negative correlation for dissimilar ones,
make relevancy a powerful tool for understanding inter-sample influence during learning. A high
relevancy score reflects a positive impact, while a negative score captures conflicting signals.

Figure 3 shows examples of the training samples with the highest and lowest relevancy scores (from
the same class) for randomly selected unseen samples of interest (test samples) in two popular
computer vision datasets. Additional visualizations are provided in Appendix B.

4 COMPARISON TO POPULAR METRICS

In this section, we compare our proposed metrics to popular methods used for evaluating train-
ing sample influence and identifying memorized samples, demonstrating that our approach is both
comprehensive and computationally efficient.

4.1 INFLUENCE FUNCTIONS

Influence functions are widely used to quantify the impact of individual training samples on model
predictions. One of the most recognized metrics in this class is infl, introduced by Feldman
& Zhang (2020), which is particularly notable due to precomputed influence scores available for
datasets like ImageNet. However, infl has significant limitations in capturing the influence of
highly representative (prototypical) samples, as highlighted by Lukasik et al. (2024).

Figure 4a shows a heatmap of the 2D infl matrix (train sample ID × test sample ID) for class 0 in
the ImageNet dataset. Most values are zero, with fewer than 33% of train-test pairs having non-zero
infl values, occurring for only 16 out of 50 test samples. This occurs because infl measures
the change in prediction probability for a test sample �zj when inferred by a model trained with the

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

(a) ImageNet (b) CIFAR100

Figure 3: Examples of randomly selected unseen samples of interest (selected from the test set) and
the corresponding training samples (from the same class) with the highest and lowest Rel scores in
popular computer vision datasets.

(a) infl scores (b) Rel scores

Figure 4: Comparison of infl and Rel scores for class 0 of the ImageNet dataset. Note that all
test samples have at least one non-zero Rel score with a training sample, indicating which training
samples impact which test samples. In contrast, most infl scores are zero, revealing limited insight
into the influence of the training samples. (Best viewed in color).

training sample �zi, compared to a model trained without �zi. The full definition is provided in Ap-
pendix F. “Prototypical” test samples, like j = 0, share features with many training samples and are
less affected by the removal of a single sample, leading to limited insight from infl scores. In con-
trast, Rel provides a more comprehensive view by capturing the influence between every train-test
pair, even for prototypical samples. Figure 4b illustrates this, where Rel scores reveal meaning-
ful relationships across all test samples, offering a richer understanding of influence dynamics and
highlighting a broader range of impactful interactions compared to infl.

TracIn (Pruthi et al., 2020) is another popular metric for measuring train-test relationships. This re-
quires gradient calculations for both train and test samples at each epoch, making it computationally
expensive. In contrast, relevancy utilizes readily available loss values, making it computationally
efficient. This is further discussed in Section 4.3.

4.2 MEMORIZATION AND CURVATURE

Memorization occurs when a model over-relies on specific training examples instead of generalizing
to unseen data. While some memorization is necessary, it is crucial to identify overly memorized
samples to understand model behavior. The most common memorization metric, mem, introduced
by Feldman (2020), calculates memorization similarly to infl by retraining models with excluded

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

(a) ImageNet (b) CIFAR-100

Figure 5: Comparison of RelMem scores of ImageNet and CIFAR-100 samples to their corresponding
mem and Curv scores. Samples were sorted by RelMem, grouped into bins, and the average mem and
Curv scores for each bin were plotted. Samples with higher mem or Curv scores tend to have higher
RelMem scores, while those with lower scores generally correspond to lower RelMem scores.

samples. However, retraining models for every sample excluded is computationally expensive. An
alternative, Curv (Garg et al., 2024), estimates memorization using input curvature, but this requires
approximating the Hessian, which is also inefficient. Although, practical implementations of Curv
utilize Hutchinson’s Trace Estimator (Hutchinson, 1989) for calculating a proxy for the Hessian, it
still incurs significant computational overhead.

To identify memorized samples in a computationally efficient manner, we must identify how unique
a sample is (i.e., “Does it possess features that can be generalized?”) and how much other training
samples impact the prediction of this sample (i.e., “If this sample were not in the training set S,
would the other training samples assist in its accurate prediction?”). The latter can be estimated by
observing the average relevancy of other training samples on the given sample.

To quantify uniqueness, we introduce the measure atypicality (Atyp). We define Atyp as the ratio
of the sample’s mean loss to the average mean loss across all samples of the same class:

Atyp(A, S, i) :=
�̂(hφ

S , �zi)
1
c ·∑c

i′=0
�̂(hφ

S , �zi′)

where c is the number of training samples from the same class as �zi. Atypicality captures how
much a sample deviates from the average behavior of its class. Samples that closely follow the
learning patterns of their class are considered “prototypical” and have Atyp values close to 1, while
more difficult or unique samples (“atypical”) exhibit Atyp values greater than 1. Visual examples
of prototypical and atypical samples are provided in Appendix B.

Utilizing the above two factors (average relevancy and atypicality), we can then extend relevancy to
estimate the degree of memorization for a training sample �zi.

For a randomized algorithm A trained on the dataset S ∼ Z for T epochs, we define the memoriza-
tion score (RelMem) of a sample �zi as the average relevancy score of all other training samples �zi′
(i′ = 0, 1, 2, · · · , c; i′ �= i) of the same class, scaled by the sample’s atypicality Atyp(A, S, i).
More formally,

RelMem(A, S, i) :=
1

c− 1

⎛
⎜⎜⎝

c∑
i′=0
i′ �=i

Rel(A, S, i, i′)

⎞
⎟⎟⎠ · Atyp(A, S, i) (2)

A high RelMem score indicates that the model is likely memorizing the sample, as it is unique and
receives little influence from other training examples. A low RelMem score suggests the sample is
more generalizable, as it is better supported by other samples in the dataset.

Figure 5 compares the RelMem scores of ImageNet and CIFAR-100 samples with their respective
mem and Curv scores. First, we sorted the samples by their RelMem values and grouped them into
bins. For each bin, we calculated the average mem and Curv scores and plotted these averages. As
shown in the plot, samples with with higher mem or Curv scores tend to have higher RelMem scores,
while those with lower mem and Curv scores generally correspond to lower RelMem scores. This
suggests that samples flagged as memorized or mislabeled by RelMem (ones with higher scores) tend
to overlap with those identified by mem and Curv.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 1: Comparison of the computational overhead of popular relational and training data metrics

Metric
Additional
Compute

Example Scenario

Number of FLOPS Comp. Overhead

infl (T · s ·m · 3f +m′ · f) · r 8.807× 1020 107640.25×
TracIn T · (m′ +m) · 3f 6.535× 1017 79.87×
mem (T · s ·m · 3f) · r 8.805× 1020 107618.03×
Curv T · (1 + r) ·m · 3f 6.918× 1018 845.57×

Ours (Rel) T ·m′ · f 8.182× 1015 1×

4.3 COMPUTATIONAL OVERHEAD OF THE PROPOSED METRICS

The computational overhead of relevancy is minimal. The loss trajectories of training samples are
available as a by-product of training and can be obtained directly. To compute the relevancy for
training samples on unseen samples of interest, we only need to obtain the loss trajectories for the
unseen samples. Metrics such as infl (Feldman & Zhang, 2020), TracIn (Pruthi et al., 2020),
mem (Feldman, 2020), and Curv (Garg et al., 2024) discussed in Sections 4.1 and 4.2 require ex-
pensive gradient calculations or retraining multiple models. Table 1 compares the computational
costs of relevancy with these metrics, highlighting its efficiency. A detailed explanation of how the
computation of these metrics is calculated is provided in Appendix F.

Notation and Setup: We denote the number of training samples as m (S ∼ Zm) and the number
of samples of interest as m′. The model is trained for T epochs, and for certain methods, there are
hyperparameters (denoted as r) that further influence the computational cost. The computational
complexity of each method is expressed in terms of floating point operations per second (FLOPS),
denoted as f , which represent the cost of a single forward pass for a model with p parameters. The
cost of a backward pass is approximately 2f FLOPs. For infl, TracIn, and Rel, we consider the
scenario of estimating the impact of every training sample on every test sample. For mem and Curv,
we consider the scenario of estimating the memorization of every training sample. RelMem is not
included in this table as it only adds an insignificant overhead (due to the calculation of correlation
and atypicality) as the loss values of training samples are readily available.

Example with Imagenet and ResNet-18: To further illustrate the computational efficiency of rele-
vancy , we provide an example using the ImageNet dataset (m = 1, 281, 167 training samples and
m′ = 50, 000 test samples of interest) and a ResNet-18 model with p = 11, 689, 128 parameters
and f = 1, 818, 228, 160 FLOPS per forward pass. We considered the training recipe provided by
the popular Bearpaw library (Yang, 2017), where T = 90. For the Curv metric, we used r = 10 as
recommended by the authors. Additionally, we trained r = 2000 models using training subsets of
size s = 0.7 to calculate the expected values for mem, and infl, as suggested by the authors.

5 CORESET GENERATION

Coreset generation is crucial for reducing the size of training datasets while retaining the most infor-
mative samples, enabling efficient training, and maintaining high model performance. Coresets are
particularly valuable in real-time applications with limited resources or when rapid model updates
are necessary. They also contribute to model interpretability by focusing on the most influential data
points.

To construct coresets, we select training samples based on their average relevancy scores relative to
the validation set, denoted as RelAvg. This metric identifies the samples that have the greatest impact
on model generalization:

RelAvg(A, S, i) :=
1

mv

⎛
⎝mv∑

j=0

Rel(A, S, i, j)

⎞
⎠ (3)

where mv represents the number of available validation samples. This approach effectively reduces
training time while preserving model performance by focusing on high-impact samples.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Figure 6: Comparison of various coreset generation techniques for CIFAR-100 using ResNet-18.
Each line represents the mean accuracy over five runs (with different random seeds), and the shaded
regions show the standard deviation. Additional results for various coreset sizes are provided in
Appendix C.

Experimental Setup: We conducted experiments on the CIFAR-100 dataset, which contains
50, 000 training samples and 10, 000 test samples distributed across 100 classes. We evaluated
coresets of varying sizes (ranging from 0.2% to 10% of the full dataset) using a ResNet-18 archi-
tecture. Our method was compared against several state-of-the-art coreset generation techniques,
including Glister (Killamsetty et al., 2021b), Forgetting (Toneva et al., 2018), GraphCut (Iyer
et al., 2021), Cal (Margatina et al., 2021), GraNd (Paul et al., 2021), Herding (Chen et al., 2010),
and SloCurves (Garg & Roy, 2023), using implementations from the Deepcore library (Guo et al.,
2022). All methods were trained with identical hyperparameters and no additional fine-tuning, en-
suring a fair comparison. For methods requiring training for coreset selection, we ran the training
for 40 epochs to ensure convergence. Further details of the setup are provided in Appendix C. To en-
sure a fair comparison, no additional techniques such as regularization were applied during learning
(suggested in SloCurves), as this can be applied uniformly across all methods.

Results: As shown in Figure 6, our coreset generation method consistently outperforms other tech-
niques while being computationally efficient. Even when the coreset size exceeds 5% of the dataset,
our approach remains competitive with others. Additional results for various coreset sizes are pro-
vided in Appendix C.

Takeaway: Coresets generated using the average relevancy scores prioritize samples with the high-
est potential for generalization, leading to superior performance over existing methods. Moreover,
this approach is computationally efficient, requiring less computation than other state-of-the-art
techniques.

6 DISCUSSION AND QUALITATIVE ANALYSIS

6.1 IDENTIFYING MISLABELED SAMPLES

Mislabeled samples often compel models to memorize incorrect labels, which can be identified by
high RelMem scores. Figure 7 shows examples of some of the mislabeled samples that were detected
using RelMem from popular datasets, emphasizing the value of relevancy and Atyp for improving
data quality by identifying problematic examples. It is worth mentioning that the samples that are
identified as mislabeled samples by Curv and mem metrics, are also identified by RelMem. This is
becuase, all three metrics exhibit similar trends as explained in Section 4.2.

6.2 CONSISTENCY ACROSS ARCHITECTURES AND RANDOM SEEDS

One of the strengths of relevancy is its consistency across different architectures and random seeds.
Despite variations in model design and initialization, the relative relevancy scores between training
and test samples remain highly stable, ensuring reliable insights into sample influence. To eval-
uate this, we experimented with different architectures, including various ResNet sizes, VGG-19
(Simonyan & Zisserman, 2014), DenseNet (Huang et al., 2017), and AlexNet (Krizhevsky et al.,

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Figure 7: Examples of mislabeled training samples (randomly selected) across classes of popular
computer vision datasets. The (incorrect) labels provided by the dataset are indicated above each
sample.

(a) Different network architectures (b) Different seeds of ResNet-18

Figure 8: Confusion matrices illustrating the mean absolute error (MAE) of Rel scores for train-test
sample pairs. (a) MAE across architectures trained on CIFAR100 (b) MAE across seeds of ResNet-
18 trained on CIFAR100.

2012), as well as different random seeds for ResNet-18 on the CIFAR-100 dataset. The mean abso-
lute error (MAE) between relevancy scores across models and seeds was computed for all train-test
pairs, as shown in Figure 8. It demonstrates that relevancy scores remain highly consistent across
both architectures and random seeds, with MAE as low as 10−5. This makes it a reliable setup
agnostic tool for applications like coreset generation.

7 CONCLUSION

In this paper, we introduced Relevancy, a novel and computationally efficient metric for quantify-
ing the influence of individual training samples on model predictions, focusing on their impact on
unseen test data. By tracking learning dynamics during training, relevancy reduces overhead by
up to 100, 000× compared to existing approaches. We demonstrated its effectiveness in generat-
ing coresets, which improved classification accuracy by up to 5.2% on CIFAR-100, outperforming
state-of-the-art methods. Additionally, we showed that we can extend relevancy to capture the same
information as existing popular and computationally expensive memorization and curvature met-
rics. We qualitatively showed that this extension of relevancy can efficiently detect mislabeled sam-
ples across datasets such as CIFAR-100, ImageNet, and Fashion-MNIST. These results highlight
the versatility and efficiency of our approach, making it applicable to various deep learning tasks
where understanding data influence is crucial. As deep learning models are increasingly used in
critical decision-making systems, metrics like relevancy are essential for ensuring models are both
high-performing and interpretable. Future work will focus on extending these metrics to different
architectures and tasks, advancing their role in promoting more transparent and reliable AI systems.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Krizhevsky Alex. Learning multiple layers of features from tiny images. https://www. cs. toronto.
edu/kriz/learning-features-2009-TR. pdf, 2009.

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection
for online continual learning. Advances in neural information processing systems, 32, 2019.

Devansh Arpit, Stanislaw Jastrzkebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxin-
der S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A closer
look at memorization in deep networks. In International conference on machine learning, pp.
233–242. PMLR, 2017.

Björn Barz and Joachim Denzler. Do we train on test data? purging cifar of near-duplicates. Journal
of Imaging, 6(6):41, 2020.

S Basu, P Pope, and S Feizi. Influence functions in deep learning are fragile. In International
Conference on Learning Representations (ICLR), 2021.

Zalán Borsos, Mojmir Mutny, and Andreas Krause. Coresets via bilevel optimization for continual
learning and streaming. Advances in neural information processing systems, 33:14879–14890,
2020.

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of
COMPSTAT’2010: 19th International Conference on Computational StatisticsParis France, Au-
gust 22-27, 2010 Keynote, Invited and Contributed Papers, pp. 177–186. Springer, 2010.

Gavin Brown, Mark Bun, Vitaly Feldman, Adam Smith, and Kunal Talwar. When is memorization
of irrelevant training data necessary for high-accuracy learning? In Proceedings of the 53rd
annual ACM SIGACT symposium on theory of computing, pp. 123–132, 2021.

Yutian Chen, Max Welling, and Alex Smola. Super-samples from kernel herding. In Proceedings of
the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, pp. 109–116, 2010.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Vitaly Feldman. Does learning require memorization? a short tale about a long tail. In Proceedings
of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pp. 954–959, 2020.

Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering the
long tail via influence estimation. Advances in Neural Information Processing Systems, 33:2881–
2891, 2020.

Isha Garg and Kaushik Roy. Samples with low loss curvature improve data efficiency. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20290–
20300, 2023.

Isha Garg, Deepak Ravikumar, and Kaushik Roy. Memorization through the lens of curvature of
loss function around samples. In Proceedings of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine Learning Research, pp. 15083–15101. PMLR,
21–27 Jul 2024.

Chengcheng Guo, Bo Zhao, and Yanbing Bai. Deepcore: A comprehensive library for coreset selec-
tion in deep learning. In International Conference on Database and Expert Systems Applications,
pp. 181–195. Springer, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian
smoothing splines. Communications in Statistics-Simulation and Computation, 18(3):1059–1076,
1989.

Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Aleksander Madry. Data-
models: Predicting predictions from training data. In Proceedings of the 39th International Con-
ference on Machine Learning, 2022.

Rishabh Iyer, Ninad Khargoankar, Jeff Bilmes, and Himanshu Asanani. Submodular combinatorial
information measures with applications in machine learning. In Algorithmic Learning Theory,
pp. 722–754. PMLR, 2021.

Ziheng Jiang, Chiyuan Zhang, Kunal Talwar, and Michael C Mozer. Characterizing structural
regularities of labeled data in overparameterized models. In Marina Meila and Tong Zhang
(eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pp. 5034–5044. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/jiang21k.html.

Tyler B Johnson and Carlos Guestrin. Training deep models faster with robust, approximate impor-
tance sampling. Advances in Neural Information Processing Systems, 31, 2018.

Krishnateja Killamsetty, Sivasubramanian Durga, Ganesh Ramakrishnan, Abir De, and Rishabh
Iyer. Grad-match: Gradient matching based data subset selection for efficient deep model training.
In International Conference on Machine Learning, pp. 5464–5474. PMLR, 2021a.

Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and Rishabh Iyer. Glister:
Generalization based data subset selection for efficient and robust learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pp. 8110–8118, 2021b.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pp. 1885–1894. PMLR, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images,
2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012.

Michal Lukasik, Vaishnavh Nagarajan, Ankit Singh Rawat, Aditya Krishna Menon, and Sanjiv Ku-
mar. What do larger image classifiers memorise? Transactions on Machine Learning Research,
2024. ISSN 2835-8856. URL https://openreview.net/forum?id=Ew73inSyhG.

Karttikeya Mangalam and Vinay Uday Prabhu. Do deep neural networks learn shallow learnable
examples first? In ICML 2019 Workshop on Identifying and Understanding Deep Learning
Phenomena, 2019.

Katerina Margatina, Giorgos Vernikos, Loı̈c Barrault, and Nikolaos Aletras. Active learning by
acquiring contrastive examples. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pp. 650–663, 2021.

Byunggook Na, Jisoo Mok, Hyeokjun Choe, and Sungroh Yoon. Accelerating neural architecture
search via proxy data. In Proceedings of the Thirtieth International Joint Conference on Artificial
Intelligence, IJCAI-21. International Joint Conferences on Artificial Intelligence Organization,
2021.

Curtis Northcutt, Lu Jiang, and Isaac Chuang. Confident learning: Estimating uncertainty in dataset
labels. Journal of Artificial Intelligence Research, 70:1373–1411, 2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry. Trak:
attributing model behavior at scale. In Proceedings of the 40th International Conference on
Machine Learning, pp. 27074–27113, 2023.

Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet:
Finding important examples early in training. Advances in neural information processing systems,
34:20596–20607, 2021.

Karl Pearson. Vii. note on regression and inheritance in the case of two parents. proceedings of the
royal society of London, 58(347-352):240–242, 1895.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data
influence by tracing gradient descent. Advances in Neural Information Processing Systems, 33:
19920–19930, 2020.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Deepak Ravikumar, Efstathia Soufleri, Abolfazl Hashemi, and Kaushik Roy. Unveiling privacy,
memorization, and input curvature links. In Forty-first International Conference on Machine
Learning, 2024a. URL https://openreview.net/forum?id=4dxR7awO5n.

Deepak Ravikumar, Efstathia Soufleri, and Kaushik Roy. Curvature clues: Decoding deep learning
privacy with input loss curvature. arXiv preprint arXiv:2407.02747, 2024b.

Andrea Schioppa, Polina Zablotskaia, David Vilar, and Artem Sokolov. Scaling up influence func-
tions. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 8179–
8186, 2022.

Ashish Kumar Shakya, Gopinatha Pillai, and Sohom Chakrabarty. Reinforcement learning algo-
rithms: A brief survey. Expert Systems with Applications, 231:120495, 2023.

Jae-hun Shim, Kyeongbo Kong, and Suk-Ju Kang. Core-set sampling for efficient neural architecture
search. arXiv preprint arXiv:2107.06869, 2021.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning. In International conference on machine learning, pp.
1139–1147. PMLR, 2013.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio,
and Geoffrey J Gordon. An empirical study of example forgetting during deep neural network
learning. In International Conference on Learning Representations, 2018.

Sanford Weisberg and R Dennis Cook. Residuals and influence in regression. Chapman & Hall,
1982.

Mike Wojnowicz, Ben Cruz, Xuan Zhao, Brian Wallace, Matt Wolff, Jay Luan, and Caleb Crable.
“influence sketching”: Finding influential samples in large-scale regressions. In 2016 IEEE In-
ternational Conference on Big Data (Big Data), pp. 3601–3612. IEEE, 2016.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Wei Yang. Pytorch-classification. https://github.com/bearpaw/
pytorch-classification, 2017.

Chih-Kuan Yeh, Joon Kim, Ian En-Hsu Yen, and Pradeep K Ravikumar. Representer point selection
for explaining deep neural networks. Advances in neural information processing systems, 31,
2018.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In International Conference on Learning Rep-
resentations, 2017. URL https://openreview.net/forum?id=Sy8gdB9xx.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A LIMITATIONS

While the relevancy metric provides a scalable and effective approach to quantifying the influence
of training samples on test performance, it has certain limitations. First, the metric relies on the
loss function’s behavior, and its effectiveness is diminished when using discontinuous or highly
non-smooth losses, such as 0-1 loss, which do not provide meaningful gradients. Second, relevancy
captures correlations in learning dynamics but does not explicitly infer causal relationships between
training and test samples, which may lead to misinterpretations in scenarios with complex indirect
interactions. Lastly, the metric assumes the availability of sufficient training checkpoints to track loss
dynamics, which could impose storage constraints in resource-limited environments. Addressing
these challenges is an exciting avenue for future research to further enhance the robustness and
applicability of the metric.

B ADDITONAL VISUALIZATIONS

B.1 HIGH AND LOW RELEVANCY PAIRS

Figures 9 and 10 shows additional examples visualizing samples with high and low Rel values.

(a) ImageNet (b) CIFAR100

Figure 9: Additional examples: Test samples with the highest and lowest Rel values for randomly
selected train samples from randomly selected classes in popular computer vision datasets.

B.2 PROTOTYPICAL AND ATYPICAL EXAMPLES

Figure 11 shows the most prototypical and most atypical samples of randomly selected classes.
These are selected based on the Atyp scores.

B.3 MEMORIZED SAMPLES DETECTED

Figure 12 shows examples of highly memorized samples (samples with the highest RelMem scores)
from ImageNet, CIFAR-100, and Fashion-MNIST datasets. These samples tend to be atypical or
have hidden features that make them hard to generalize, leading the model to memorize them instead.
As discussed in Section 4.2, samples with high mem and Curv scores have high RelMem scores as well.
Hence samples identified as memorized by those metrics, are identified by our metric as well.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

(a) Random Test Samples (b) Random Train Samples

Figure 10: Additional examples: Samples with the highest and lowest Rel values for randomly
selected train/test samples from randomly selected classes in the Fashion-MNIST dataset.

Figure 11: The 5 most “prototypical” (lowest Atyp) and 5 most “atypical” (highest Atyp samples
of randomly selected classes in popular computer vision datasets

Figure 12: Examples of highly memorized samples (randomly selected) across classes from the
training splits of popular computer vision datasets. The corresponding labels are indicated above
each sample.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

C DETAILED RESULTS FOR CORESET GENERATION EXPERIMENTS

All networks were trained using an SGD optimizer (Bottou, 2010) for 164 epochs with a learning
rate of 0.1, scaled by 0.1 at epochs 81 and 121. Nesterov momentum (Sutskever et al., 2013), with
momentum of 0.9, was turned on and a weight decay of 5e-4 was used. We used the following
sequence of data augmentations for training: resize to (32 × 32), random crop with padding = 4,
random horizontal flip, and normalization. 5 randomly seeded runs were run and the mean and
variance of these runs are reported in Table 2.

No additional finetuning or regularizing was utilized for any of the coreset generation techniques
(including ours). This was done to ensure complete fairness in comparison. All methods used the
entire test set as the validation set to choose samples for the coreset.

How our coresets were selected: We first compute RelAvg for all training samples using the test set
available. Then samples per class were selected based on these scores.

Note that at higher coreset sizes, our method performs comparably to existing methods despite being
computationally inexpensive.

Table 2: Performance summary of various coreset generation techniques on CIFAR-100 with
ResNet-18. The mean values are shown in the first line and the standard deviations are shown
in the second.

Samples
per Class Random Cal GraphCut Glister GraNd Forgetting Herding SloCurves Ours

RelAvg

1
3.48

±0.5

5.24

±0.4

4.80

±0.2

3.43

±0.3

2.49

±0.2

3.52

±0.2

3.33

±0.5

2.65

±0.3

5.28

±0.3

2
5.52

±0.5

7.47

±0.3

7.76

±0.4

4.91

±0.4

2.67

±0.3

5.12

±0.5

4.73

±0.5

4.42

±0.1

7.81

±0.3

3
7.12

±0.21

9.12

±0.3

8.96

±0.3

5.49

±0.6

3.01

±0.1

6.02

±0.2

4.97

±0.4

5.51

±0.2

9.14

±0.3

4
6.40

±0.7

5.96

±0.8

6.89

±0.8

4.65

±0.5

3.03

±0.5

5.42

±0.4

4.78

±0.7

5.19

±0.8

9.40

±0.3

5
8.19

±0.3

10.19

±0.4

10.86

±0.5

6.04

±0.4

3.68

±0.2

7.60

±0.4

6.28

±0.3

7.68

±0.2

12.10

±0.4

10
12.45

±0.5

13.72

±0.3

13.95

±0.6

8.11

±0.4

4.67

±0.1

9.90

±0.2

8.98

±0.5

12.66

±0.3

17.66

±0.7

15
16.14

±0.9

15.45

±1.0

14.98

±0.6

9.52

±0.3

5.71

±0.3

12.30

±0.3

9.42

±0.5

16.84

±0.9

22.10

±0.6

20
19.10

±1.1

17.05

±1.0

16.21

±0.7

10.57

±0.6

6.33

±0.5

13.83

±0.9

11.64

±1.2

20.68

±0.6

24.75

±0.5

25
22.60

±1.0

17.97

±0.5

17.33

±1.6

11.47

±0.7

7.11

±0.5

14.38

±0.8

12.00

±1.4

26.01

±0.6

28.10

±0.5

30
25.77

±1.1

19.93

±0.5

19.31

±0.7

12.99

±0.7

8.01

±0.2

15.46

±0.6

15.10

±0.9

26.91

±1.4

30.81

±0.6

35
27.82

±1.2

21.37

±0.8

21.35

±0.7

13.83

±0.8

8.40

±0.5

15.65

±0.7

14.93

±0.6

33.07

±0.9

34.03

±1.2

40
31.57

±1.3

22.32

±1.1

22.63

±1.5

14.77

±0.8

8.47

±0.5

17.25

±1.2

16.45

±0.4

34.55

±0.9

35.69

±1.3

45
33.93

±0.9

23.64

±1.5

26.22

±0.8

14.54

±1.3

9.66

±0.4

19.45

±0.9

18.18

±1.0

38.23

±1.4

38.09

±0.9

50
34.09

±0.8

23.19

±1.0

22.41

±2.0

15.22

±0.3

10.45

±0.5

18.45

±0.6

16.80

±0.9

37.57

±1.5

37.63

±0.9

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

D SYNTHETIC NOISE EXPERIMENTS

To evaluate the robustness of the relevancy metric (RelMem) in detecting noisy or irrelevant samples,
we conducted an experiment by introducing 10% synthetically corrupted noisy samples into the
training dataset. These noisy samples were designed to simulate mislabeled or irrelevant data, testing
the metric’s ability to distinguish them from regular samples.

Setup We randomly corrupted 10% of the training samples by assigning them incorrect labels. The
training process was carried out as usual, and the (RelMem) scores were computed for all training
samples based on the model’s learning dynamics.

Results Figure 13 shows the histogram of RelMem scores for the dataset. The synthetically cor-
rupted noisy samples are marked as red crosses. As observed, these noisy samples exhibit signifi-
cantly higher RelMem scores compared to the majority of regular samples. This strong separation
demonstrates the metric’s ability to identify noisy samples effectively.

Discussion These results confirm that the relevancy metric reliably assigns higher scores to noisy
or mislabeled samples, reflecting their memorization behavior during training. This highlights the
metric’s robustness in detecting irrelevant samples that may hinder model generalization. This

Figure 13: Histogram of RelMem scores with 10% synthetically corrupted noisy samples. The
noisy samples (red crosses) exhibit significantly higher scores compared to the majority of regular
samples.

experiment demonstrates the utility of the relevancy metric in identifying noisy samples and supports
its application to diverse datasets.

E ABLATION STUDY - SKIPPING EPOCHS DURING RELEVANCY

CALCULATION

The core principle of relevancy lies in observing the dynamics of the loss of samples during training.
Hence it is important to utilize the loss values at each epoch for a more nuanced Rel metric. It
is however possible to downsample the number of loss values (by only considering some of the
epochs) to still get a meaningful relevancy score. Figure 14 illustrates the effect of downsampling,
by plotting the histograms of the Rel scores of all classes. As the downsampling factor increases,
the Rel values move towards 1.0. This is because there is not enough information to differentiate
the learning dynamics of various samples, and all samples will appear to be learned (loss values
decrease) at the same time.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Figure 14: Histogram of Rel scores (of all classes) of ImageNet illustrating the effect of downsam-
pling loss values (by skipping epochs).

F DETAILED COMPARISON WITH EXISTING METRICS

Recap on Notation: We denote the number of training samples as m (S ∼ Zm) and the number
of test samples as m′. The model is trained for T epochs, and for certain methods, there are hyperpa-
rameters (denoted as r) that further influence the computational cost. The computational complexity
of each method is expressed in terms of floating point operations per second (FLOPs), denoted as
f , which represent the cost of a single forward pass for a model with p parameters. The cost of a
backward pass is approximately 2f FLOPs.

Infl & mem Scores: These scores were proposed by Feldman & Zhang (2020) and Feldman
(2020) respectively.

The influence score Infl of a training sample �zi on a test sample �zj is given by:

infl(A, S, i, j) = Pr
A(S,T )

[hφ,T
S (�xj) = yj ]− Pr

A(S\i,T )
[hφ,T

S\i (�xj) = yj ]

Here, PrA(S,T ) represents the confidence in the prediction for �zj , and S\i is the training set with
sample �zi removed. This expression measures the change in the prediction probability for the test
sample �zj when the training sample �zi is included in the training set compared to when it is ex-
cluded. The underlying intuition is that if sample �zi significantly influences the prediction for �zj ,
its exclusion will lead to a notable reduction in prediction accuracy for �zj , resulting in a higher
influence score.

Similarly, mem scores are defined as

mem(A, S, i) = Pr
A(S,T )

[hφ,T
S (�xi) = yi]− Pr

A(S\i,T )
[hφ,T

S\i (�xj) = yi]

Both these metrics ideally require retraining m+ 1 models to calculate the memorization scores of
all m samples of the training dataset S. To reduce the retraining costs, the authors of these metrics
suggest training a smaller number (r) of models with a fraction (s) of the training dataset. Each of

these subsets is selected randomly. They then estimate PrA(S,T )[h
φ,T
S (�xi) = yi] to be the average

prediction probability of �zi of all models that were trained with a subset S′ that included the sample

i (i ∈ S′), and PrA(S\i,T )[h
φ,T
S\i (�xi) = yi] to be the average prediction probability of �zi of all models

that were trained with a subset S′′ that excluded the sample i (i /∈ S′′).

Hence the total computational overhead would be to train r models for T epochs (run forward
and backward passes for each sample T · r times ), and for each model, we need to calculate the
prediction probability (or run a forward pass) for s ·m train samples and m′ test samples. The total
computational overhead for Infl scores are (T · s ·m · 3f +m′ · f) · r.

Similarly, the computational overhead for mem scores are T · s ·m · 3f · r, as no additional forward
passes are required for the test samples.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

TracIn Score: This metric was proposed by Pruthi et al. (2020). It computes the influence as:

TracIn(A, S, i, j) =
T∑

t=0

∇�(hφ,t
S , �zi) · ∇�(hφ,t

S , �zj)

This metric requires computing the gradient (one forward and one backward pass) for each sample
in the train set of size m, and test set of size m′ for each epoch (T times). Hence the computational
overhead is T · (m′ +m) · 3f .

Curv Score: This metric was proposed by Garg et al. (2024). It computes the input curvature, a
proxy for memorization as :

Curv(A, S, i) =
1

rT

T∑
t=0

r∑
e=1

∥∥∥∥∥∥
∂
(
�(hφ,t

S , �zi + hv)− �(hφ,t
S , �zi)

)
∂�zi

∥∥∥∥∥∥
2

2

Here, the hyperparameters r represent the number of “repeats” done to get an empirical expectation
of the randomly generated hv which represents the Rademacher random variables used in Hutchin-
son’s trace estimator (Hutchinson, 1989).

For each epoch T , each training sample (m), and each repeat r, 2 forward passes and 1 backward

pass are required. Assuming that �(hφ,t
S , �zi)) can be estimated only once, this requires a total of

r + 1 forward and r + 1backward passes for each sample per epoch. Hence the total computational
overhead is T · (1 + r) ·m · 3f

19


