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Abstract

We propose a novel unsupervised keyphrase
extraction approach, called SAMRank, which
uses only a self-attention map in a pre-
trained language model (PLM) to determine
the importance of phrases. Most recent ap-
proaches for unsupervised keyphrase extrac-
tion mainly utilize contextualized embeddings
to capture semantic relevance between words,
sentences, and documents. However, due to the
anisotropic nature of contextual embeddings,
these approaches may not be optimal for se-
mantic similarity measurements. SAMRank
as proposed here computes the importance of
phrases solely leveraging a self-attention map
in a PLM, in this case BERT and GPT-2, elimi-
nating the need to measure embedding similari-
ties. To assess the level of importance, SAM-
Rank combines both global and proportional
attention scores through calculations using a
self-attention map. We evaluate the SAMRank
on three keyphrase extraction datasets: Inspec,
SemEval2010, and SemEval2017. The exper-
imental results show that SAMRank outper-
forms most embedding-based models on both
long and short documents and demonstrating
that it is possible to use only a self-attention
map for keyphrase extraction without relying
on embeddings. Source code is available at
https://github.com/kangnlp/SAMRank.

1 Introduction

Keyphrase extraction refers to process of identify-
ing the words or phrases that signify the primary
themes of a document. It has a wide range of appli-
cations, including document summarization, infor-
mation retrieval, and topic modeling. The method-
ologies used for keyphrase extraction are typically
categorized into supervised and unsupervised ap-
proaches. Although supervised keyphrase extrac-
tion yields excellent performance, it relies heav-
ily on large quantities of labeled data and tends
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to be domain-specific. In contrast, unsupervised
keyphrase extraction uses only the information in-
trinsic to the document. Traditional methods rely
on statistical information, such as TF-IDF (Jones,
2004), and graphs based on the co-occurrence of
words (Mihalcea and Tarau, 2004). However, these
methods often fall short of deciphering latent mean-
ings in the text, resulting in suboptimal perfor-
mance. The introduction of deep learning-based
language models changed this paradigm, by en-
abling the extraction of phrases closely connected
semantically to the document through the calcula-
tion of the degree of similarity between the docu-
ment and phrase embeddings.

However, this paper does not utilize embed-
dings. The rationale behind this is that contex-
tualized representations are not well-suited to tasks
based on similarity. A study that has geometri-
cally analyzed the representations of PLMs such
as ELMo (Peters et al., 2018), BERT (Devlin
et al., 2019), and GPT-2 (Radford et al., 2019),
have postulated that the contextualized representa-
tions of these language models exhibit anisotropy
(Ethayarajh, 2019). These representations tend
to concentrate on specific directions of the vec-
tor space, becoming increasingly anisotropic in
higher layers. Indeed, the average cosine similar-
ity of two word representations randomly chosen
from BERT and GPT-2 markedly increases with
the layer depth. Given that embeddings typically
come from the last layer’s representation of a PLM,
anisotropic embeddings can compromise tasks that
require similarity-based rankings. To counteract
this, BWRank (Wang and Li, 2022) improved the
performance of keyphrase extraction by isotropi-
cally reconstructing BERT’s embeddings by reduc-
ing dimensions through whitening operation.

In an earlier work entitled “What Does BERT
Look At? An Analysis of BERT’s Attention”
(Clark et al., 2019), the authors sought to un-
derstand how BERT’s attention mechanism oper-
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Figure 1: Overview of SAMRank.

ates by determining how much attention a specific
word gives to other words in each head of BERT.
Their findings indicate that certain BERT heads
were skilled in identifying grammatical structures
and coreferences such as direct objects of verbs
and objects of prepositions. This suggests that in
transformer-based PLMs, such as BERT that em-
ploy a multi-head attention mechanism to handle
linguistic complexity, certain heads may specialize
in particular tasks. Building on this research, we
can posit that some heads of a transformer-based
PLM may specialize in capturing keyphrases given
their importance in providing an understanding of
the thematic essence of the text and considering the
likelihood that some heads may have been trained
to detect keyphrases during the pre-training process
of the PLM.

Therefore, this paper shifts the focus from PLM
embeddings to the self-attention map afforded by
each head in the PLM. We propose SAMRank,
a novel approach that leverages only the self-
attention map of a transformer-based PLM to ex-
tract keyphrases. SAMRank calculates a global
attention score by summing the attention weights
received by the token from all tokens within the
document. It also redistributes the global atten-
tion score proportionally to other tokens that are
focusing on globally significant tokens based on
the attention weights they have allocated, yielding
a proportional attention score. The combination of
these two scores determines the final score for to-
kens. By aggregating the final scores of each token
within a candidate phrase, SAMRank calculates the
total score for the phrase and determines its overall
significance. This results in ranking of candidate
phrases based on their total scores, thus allowing
the extraction of phrases that both receive high

Figure 2: Visualization of final token-level scores. The
top figure uses the self-attention map from BERT (2nd
head of the 5th layer), and the bottom one from GPT-
2 (1st head of the 11th layer). Deeper colors indicate
higher scores.

attention and are highly attentive to phrases receiv-
ing global attention. An overview of SAMRank
is presented in Figure 1 and the final token scores
calculated through SAMRank can be visualized, as
depicted in Figure 2.

In this paper, we independently analyze the self-
attention map of each head in each layer to identify
heads that excel in keyphrase extraction. We extract
the self-attention map from all 144 heads in BERT
and GPT-2, using three representative keyphrase
extraction datasets: Inspec, SemEval2010, and Se-
mEval2017. The performance of each head is eval-
uated, with experimental results showing that SAM-
Rank outperforms most embedding-based methods
in specific heads of both BERT and GPT-2.

This paper’s main contributions are three-fold:

• We propose SAMRank, a novel and efficient
approach that extracts keyphrases solely with
self-attention map, eliminating the need for
embeddings and similarity measurements.

• We demonstrate not only the capability of
encoder-based language models like BERT,
but also decoder-based language models such
as GPT-2, for keyphrase extraction. Further-
more, we provide evidence that GPT-2 can out-
perform BERT in keyphrase extraction tasks.

• We discover the existence of heads in
transformer-based PLMs that are more pro-
ficient in keyphrase extraction compared to
baselines.

2 Background

The transformer model proposed in “Attention Is
All You Need” (Vaswani et al., 2017) introduced
the attention mechanism, bringing about a revo-
lution in the field of natural language processing.



In this section, we introduce a self-attention map,
which is the computational output of self-attention,
the core mechanism of the transformer. Addi-
tionally, we discuss two transformer-based PLMs,
BERT and GPT-2, which have demonstrated supe-
rior performance in various natural language pro-
cessing tasks.

2.1 Self-Attention Map

The transformer’s pivotal component is the self-
attention mechanism, which models intricate inter-
dependencies among tokens within a text by quan-
tifying the attention each token pays to the others.
The self-attention mechanism of the transformer
calculates the scaled dot product between each to-
ken’s query vector (Q) and the key vectors (Ks)
of all tokens, then passes this through a softmax
function to compute the attention weights. The
attention weights are multiplied by each token’s
value vector (V ), and these vectors are summed to
generate the final output vector for the query token.

Since each token in a text is served as a query
Q once in self-attention, the aggregation of the
attention weights of all tokens yields a square ma-
trix, known as the self-attention map (SAM). SAM
is a crucial piece of information that provides in-
sights into how tokens relate to each other. The
i-th row of SAM represents the attention weights
of the i-th token of the text when it is served as a
query Q—meaning, how much it ‘attends to’ the
other tokens—with the sum of each row equaling 1.
Conversely, the i-th column of SAM represents the
attention weights received by the i-th token from
the other tokens when it is served as a value K.

While self-attention considers the relationships
with all tokens in the input text, masked self-
attention ‘masks’ or disregards tokens that appear
after the current token. This means that each token
pays attention only to the tokens that appeared be-
fore it. Consequently, a masked self-attention map
is a lower triangular matrix where all values above
the diagonal are 0.

Transformer is an encoder-decoder model, with
the encoder employing the self-attention mech-
anism and the decoder using the masked self-
attention mechanism. The transformer is multi-
layered, with the attention mechanism operating
in parallel across multiple heads within each layer.
Each head has independent Q, K, and V weights,
meaning they process the same input text from var-
ious perspectives. The outputs from each head are

concatenated to form the final layer output.

2.2 BERT

BERT (Devlin et al., 2019) is a model based on
the encoder of the transformer, which utilizes self-
attention, resulting in a square matrix for each
head’s self-attention map. In this paper, we use
the BERT-base model1, which comprises 12 layers,
each equipped with 12 attention heads, yielding
a total of 144 heads. The maximum input token
length for BERT-base is 512.

2.3 GPT-2

GPT-2 (Radford et al., 2019) is a model based on
the decoder of the transformer, which uses masked
self-attention, creating a lower triangular matrix for
each head’s self-attention map. In this paper, we
use the 117M size model of GPT-22. The GPT-2
model, consists of 12 layers, each with 12 attention
heads, totaling 144 heads. The maximum input
token length for GPT-2 is 1024.

3 Methodology

Our proposed methodology involves ranking
phrases based on the self-attention map (SAM) of
transformer-based language models, in this case
BERT and GPT-2. Each row of SAM, which is a
self-attention weights vector, is perceived as each
token allotting its attention according to its rele-
vance with other tokens. The tokens that are seman-
tically connected to many other tokens are more
likely to receive this ‘attention’. Hence, the global
attention score of each token is computed by sum-
ming the attention weight it received from all the
tokens in the text. Then, similar to the attention op-
eration (multiplying the V vector by the attention
weight), the global attention score is distributed in
proportion to the attention weight assigned by the
token. This results in the calculation of the propor-
tional attention score, where tokens strongly asso-
ciated with globally significant tokens are assigned
high scores. The final score for a token is calculated
by combining the global attention score and the pro-
portional attention score. For phrases, their scores
are computed as the accumulated sum of the scores
of their constituent tokens across all occurrences in
the document. Based on these phrase-level scores,
the phrases are then ranked to determine their over-
all importance. Table 1 provides an instance of

1https://huggingface.co/bert-base-uncased
2https://huggingface.co/gpt2
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these extraction results for a specific text.

3.1 Candidate Generation

We use the module implemented in EmbedRank
(Bennani-Smires et al., 2018) to extract keyphrase
candidates. This module employs the Stanford-
CoreNLP tool3 to tokenize and POS tag the doc-
uments and then uses NLTK4’s RegexpParser to
extract noun phrases, which are defined as words or
series of words tagged with ‘NN’, ‘NNS’, ‘NNP’,
‘NNPS’, and ‘JJ’. These extracted noun phrases
become candidate phrases.

3.2 Self-Attention Map Extraction

In this paper, we extract self-attention maps
(SAMs) from each layer and head of BERT and
GPT-2 using Hugging Face’s transformers library5.
We input the entire document into the PLM at once,
as opposed to inputting each sentence separately.
This enables us to capture the correlations between
tokens that reflect the overall context of the doc-
ument. If the number of tokens in the document
exceeds the model’s maximum number of input
tokens, we divide the entire document into sev-
eral segments with the same number of tokens and
extract SAM for each. For BERT, we input text
without [PAD] tokens in the structure of the [CLS]
text [SEP]. GPT-2 is input directly without any
special tokens.

3.3 Global Attention Score Calculation

SAMRank initially calculates the score at the token-
level and later aggregates it at the phrase-level.

We calculate each token’s global attention score
as the total sum of attention weights it received
from all the tokens in the document. The self-
attention map is a matrix A, its size determined
as follows: input token number (n) × input token
number (n). Therefore, we can calculate each to-
ken’s global attention score (Gti) by determining
the column sum for each column of SAM.

A = [A]n×n (1)

Gti =
n∑

j=1

Aji (2)

However, BERT’s [SEP] tokens receive very
high attention weights from other tokens from

3https://stanfordnlp.github.io/CoreNLP
4https://github.com/nltk
5https://github.com/huggingface/transformers

the middle layer (Clark et al., 2019). Also, the
first token of GPT-2, which performs masked self-
attention, receives very high attention weights from
the beginning of the document. We set the global
attention score for BERT’s [SEP] tokens and GPT-
2’s first input tokens to 0 because their global at-
tention scores can be excessively high, which can
hinder the understanding of correlation between
each token.

3.4 Proportional Attention Score Calculation
If a token is not globally important but has a very
high correlation with an important token, the token
should also be considered an important token. If
a token assigns a very high attention weight to an
important token, it can be interpreted as having a
high correlation with the important token. We allow
such tokens to be ranked high by redistributing the
global attention score in proportion to the attention
weight they assigned to the important token.

B = A · diag(G) (3)

This can be calculated by multiplying each token’s
global attention score by each element in the corre-
sponding column of SAM.

B′
ji =

Bji∑n
j=1Bji

(4)

Then, we normalize the values of each column by
dividing them by the sum of the column to make
each column have values between 0 and 1, thus
obtaining matrix B′.

Pti =
n∑

j=1

B′
ij (5)

The proportional attention score, which is calcu-
lated proportional to each token’s global impor-
tance and its attention weight, is calculated by per-
forming a row sum operation for each row of the
updated SAM (B′).

3.5 Phrase-level Score Aggregation
The final score at the token-level is determined by
the sum of the global attention score (Gti) and the
proportional attention score (Pti) of each token:

Sti = Gti + Pti (6)

The score at the phrase-level is calculated as the
sum of the final importance scores of the tokens
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that make up the phrase:

SPk
=

∑
i∈Pk

Sti (7)

The final score at the phrase-level is calculated as
the sum of the phrase scores calculated at each
location where the phrase appears in the document:

SP =
∑
k∈P

SPk
(8)

If a phrase consists of a single word, and if that
word is used as a subword of another candidate
phrase, the score at that location is not included in
the calculation because the score of the subword is
calculated in the context of the phrase to which the
subword belongs, and this score should be added
to the score of the phrase. Therefore, a single word
is only scored at positions where it is used inde-
pendently and not as a subword of other candidate
phrases. Also, single words are often most likely
to receive higher scores simply because they are
more frequent in the document than other candidate
phrases. To correct this, the final score of a single
word is calculated as the average score by dividing
the total score of the word by the frequency of the
word.

For long documents that exceed the maximum
number of input tokens, first we divide them into
multiple segments and apply SAMRank indepen-
dently to each segment, after which we integrate
each result. That is, the final score of the phrase
is ranked by calculating it as the sum of the scores
that the phrase obtained in each segment.

4 Experiments

4.1 Datasets and Evaluation Metrics
We evaluate the proposed method using three com-
monly used datasets: Inspec (Hulth, 2003), Se-
mEval2010 (Kim et al., 2010), and SemEval2017
(Augenstein et al., 2017). Both Inspec and Se-
mEval2017 datasets consist of scientific paper ab-
stracts, and no document in these datasets exceeds
BERT’s maximum input length of 512 tokens. In
contrast, the SemEval2010 dataset comprises full-
length ACM papers, most of which exceed GPT-
2’s maximum input token count of 1024. In line
with previous studies (Saxena et al., 2020; Liang
et al., 2021), we use the test set composed of 100
documents and their annotated set of keyphrases.
Table 2 presents the statistical information of each
dataset.

Teaching management science with spreadsheets: From decision models to decision support. The 1990s
were a decade of enormous change for management science (MS) educators. While the outlook at the
beginning of the decade was somewhat bleak, the renaissance in MS education brought about by the
use of spreadsheets as the primary delivery vehicle for quantitative modeling techniques has resulted in
a much brighter future. This paper takes inventory of the current state of MS education and suggests
some promising new directions in the area of decision support systems for MS educators to consider for
the future.
Ground Truth management science; spreadsheets; quantitative modeling; MS education; deci-

sion support systems
JointGL management science; decision models; enormous change; MS education; deci-

sion support
SAMRank (BERT) spreadsheets; quantitative modeling techniques; management science; decision

support; decision support systems
SAMRank (GPT-2) spreadsheets; management science; promising new directions; decision support

systems; decision support

Table 1: An example of top 5 keyphrase extraction re-
sults by JointGL and SAMRank from the Inspec dataset.

Datasets Inspec SemEval2010 SemEval2017
Docs 500 100 493
Avg. Words 135 1589 194
Avg. Sents 6 68 7
Avg. Keys 9 12 17
Unigram 13.47% 19.52% 24.59%
Bigram 52.66% 54.57% 33.61%
Trigram 24.86% 19.02% 17.40%

Table 2: Statistics of datasets.

To evaluate the performance of keyphrase ex-
traction, we calculate the F1 measure for the top
5, top 10, and top 15 keyphrases predicted by the
model. This is done after ranking the predicted
keyphrases, applying NLTK’s PorterStemmer for
stemming, and eliminating duplicates.

4.2 Baselines and Implementation Details

We compare SAMRank with statistics-based meth-
ods: TF-IDF (Jones, 2004), YAKE (Campos et al.,
2018); the graph-based methods: TextRank (Mi-
halcea and Tarau, 2004), SingleRank (Wan and
Xiao, 2008), TopicRank (Bougouin et al., 2013),
PositionRank (Florescu and Caragea, 2017); static
embedding-based methods: EmbedRank (Bennani-
Smires et al., 2018), and contextual embedding-
based methods: SIFRank (Sun et al., 2020), At-
tentionRank (Ding and Luo, 2021), MDERank
(Zhang et al., 2022), JointGL (Liang et al., 2021).
Most of these methods evaluate performance out-
comes by stemming the predicted phrases and the
ground truth phrases and then removing duplicates.
However, JointGL, which shows the highest per-
formance among the existing methods, does not
remove duplicates after stemming. This may have
inflated the reported performance. To ensure a fair
comparison, we reproduce JointGL’s performance
by removing duplicates after stemming. We use the
optimal hyperparameters reported in the JointGL
paper. For SemEval2017, we use the same hyper-
parameters used with Inspec.



Model Inspec SemEval2010 SemEval2017
F1@5 F1@10 F1@15 F1@5 F1@10 F1@15 F1@5 F1@10 F1@15

Statistics-based Models
TF-IDF 11.28 13.88 13.83 2.81 3.48 3.91 12.70 16.26 16.73
YAKE 18.08 19.62 20.11 11.76 14.4 15.19 11.84 18.14 20.55

Graph-based Models
TextRank 27.04 25.08 36.65 3.80 5.38 7.65 16.43 25.83 30.50
SingleRank 27.79 34.46 36.05 5.90 9.02 10.58 18.23 27.73 31.73
TopicRnak 25.38 28.46 29.49 12.12 12.90 13.54 17.10 22.62 24.87
PositionRank 28.12 32.87 33.32 9.84 13.34 14.33 18.23 26.30 30.55

Static Embedding-based Models
EmbedRank d2v 31.51 37.94 37.96 3.02 5.08 7.23 20.21 29.59 33.94
EmbedRank s2v 29.88 37.09 38.40 5.40 8.91 10.06 - - -

Contextual Embedding-based Models
SIFRank 29.11 38.80 39.59 - - - 22.59 32.85 38.10
AttentionRank 24.45 32.15 34.49 11.39 15.12 16.66 23.59 34.37 38.21
MDERank 27.85 34.36 36.40 13.05 18.27 20.35 20.37 31.21 36.63
JointGL 30.82 36.28 36.67 10.78 13.67 14.64 20.49 29.63 34.05

Self-Attention Map-based Models (Ours)
SAMRank (BERT) 33.96 39.35 39.73 15.28 18.36 18.03 24.08 33.40 37.53
SAMRank (GPT-2) 33.92 39.44 39.72 15.88 19.49 19.03 24.80 34.75 38.78

Table 3: Performance comparison of baselines and SAMRank on F1@5, F1@10, and F1@15. The bold indicates
cases where SAMRank showed improved performance compared to the baseline models. The underline indicates
the best performance model.

4.3 Results

In Table 3, the experimental results for SAMRank
are presented. We select the head that achieved the
highest F1@15 score from a total of 144 heads. In
Inspec, the eleventh head of the third layer of BERT
and the first head of the eleventh layer of GPT-
2 performed best. Both SAMRank using BERT
and GPT-2 surpass the F1@5, F1@10, and F1@15
scores of existing baselines. In SemEval2010, the
sixth head of the twelfth layer of BERT and the
eleventh head of the eleventh layer of GPT-2 obtain
the highest performance. Our model achieves state-
of-the-art (SOTA) performance on F1@5, F1@10,
and outperforms all other baselines on F1@15, ex-
cept for MDERank. These results demonstrate
that SAMRank also performs well when extracting
keyphrases from long documents. In SemEval2017,
the second head of the fifth layer of BERT and the
first head of the eleventh layer of GPT-2 show the
highest performance, achieving SOTA results on
F1@5, F1@10, and F1@15.

Our proposed SAMRank outperforms almost all
existing baselines across all datasets. We note that
the performance of GPT-2 is slightly higher than
BERT, except for the Inspec dataset. An earlier
work that analyzed the embeddings of BERT and

GPT-2 pointed out that the average intra-sentence
similarity, the cosine similarity between each word
representation within a sentence in GPT-2, is lower
than it is in BERT (Ethayarajh, 2019). We also
conjecture that while BERT encodes the context
by making each word in a sentence share mean-
ing, GPT-2 maintains the unique meaning of each
word while encoding the context. Therefore, it can
be hypothesized that the characteristic of GPT-2,
which preserves the unique meaning of each word
during contextualization without dilution, worked
favorably, resulting in GPT-2 showing higher per-
formance than BERT.

4.4 Ablation Study

4.4.1 Contribution of Global and
Proportional Attention Score

Table 4 presents the performance evaluation when
the global attention score and proportional attention
score, components of SAMRank, are used indepen-
dently for the head showing the highest F1@15
performance. Even when using only the global at-
tention score, both BERT and GPT-2 showed fairly
high performance outcomes across all datasets.
However, the F1@5, F1@10, and F1@15 scores
are approximately 1% lower on average across all



Model Inspec SemEval2010 SemEval2017
F1@5 F1@10 F1@15 F1@5 F1@10 F1@15 F1@5 F1@10 F1@15

SAMRank (BERT) 33.96 39.35 39.73 15.28 18.36 18.03 24.08 33.40 37.53
only Global 33.43 38.04 38.36 14.95 16.26 17.41 23.39 33.29 36.89
only Proportional 32.63 38.54 39.04 14.77 17.65 17.39 23.46 32.98 36.89
SAMRank (GPT-2) 33.92 39.44 39.72 15.88 19.49 19.03 24.80 34.75 38.78
only Global 33.66 39.24 38.33 14.96 18.01 18.76 24.07 33.82 37.13
only Proportional 25.02 32.74 34.23 11.27 14.29 14.87 19.76 28.72 32.98

Table 4: Experimental results on the impact of each attention score: global and proportional attention score.
Comparison of performances using only the global attention score (only Global) and only the proportional attention
score (only Proportional). The bold indicates the best performance within each group (BERT and GPT-2).

Model Inspec SemEval2010 SemEval2017
F1@5 F1@10 F1@15 F1@5 F1@10 F1@15 F1@5 F1@10 F1@15

Backward Redistribution
SAMRank (BERT) 33.96 39.35 39.73 15.28 18.36 18.03 24.08 33.40 37.53
SAMRank (GPT-2) 33.92 39.44 39.72 15.88 19.49 19.03 24.80 34.75 38.78

Forward Redistribution
SAMRank (BERT) 33.96 39.67 39.78 16.08 18.77 18.27 23.04 32.49 37.18
SAMRank (GPT-2) 33.50 38.80 39.04 17.17 18.40 18.90 25.18 34.60 38.22

Table 5: Experimental results on the comparison of global attention score redistribution directions for computing
the proportional attention score. Evaluation with different distribution directions, both backward and forward.

datasets compared to when both the global and pro-
portional attention scores are used. Additionally,
performance degradation is more evident when
only the proportional attention score is used. Es-
pecially for SAMRank (GPT-2), when only the
proportional attention score was used, the F1@5,
F1@10, and F1@15 scores decreased by an aver-
age of approximately 8% across all datasets. These
results indicate that the global attention score is a
factor that more crucially affects the performance
of SAMRank. However, as the best performance
was found when both the proportional attention
score and global attention score were used in all
cases, both scores are essential in SAMRank, and a
more accurate keyphrase extraction is possible by
combining them.

4.4.2 Direction of the Global Attention Score
Redistribution

Table 5 presents the results of the experiments for
both the backward and forward approaches. In
Section 3.4, we propose a method of redistributing
the global attention score in proportion to the at-
tention weight each token receives (the backward
approach). Conversely, each token could also redis-
tribute the global attention score in proportion to
the attention weights it allocates to other tokens as
a query Q (the forward approach). We conduct ex-

periments with the forward approach as well. The
results show that different heads exhibit the highest
performance in the forward approach and the back-
ward approach. SAMRank based on BERT heads
performs better with the forward approach on the
Inspec and SemEval2010 datasets. However, on
the SemEval2017 dataset, the original backward ap-
proach achieves better performance. On the other
hand, SAMRank based on GPT-2 heads mostly
shows better performance with the original back-
ward approach, with the forward approach only
showing better performance on F1@5 of the Se-
mEval2010 and SemEval2017 datasets. Therefore,
the performance based on the distribution direction
of the global attention score varied depending on
the dataset and the model.

We conclude that the backward and forward ap-
proaches evaluate the importance of tokens from
different perspectives. However, the average per-
formance difference based on the distribution direc-
tion is not significant. This shows that the overall
approach of SAMRank, which calculates the global
attention score and redistributes it based on the rel-
evance of each token individually, is effective.

5 Analysis of Heads

To identify heads that specialized in keyphrase ex-
traction, we evaluate the performance of each of



PLM Inspec SemEval2010 SemEval2017
F1@5 F1@10 F1@15 F1@5 F1@10 F1@15 F1@5 F1@10 F1@15

BERT 33.96 39.35 39.73 15.28 18.36 18.03 24.08 33.40 37.53
GPT-2 33.92 39.44 39.72 15.88 19.49 19.03 24.80 34.75 38.78

Llama 2 7B 33.28 39.57 39.27 16.69 18.66 18.51 23.22 33.38 37.63
Llama 2 13B 34.07 39.75 39.51 16.11 18.47 19.12 23.94 33.97 38.04
Llama 2 70B 35.06 40.01 39.76 17.03 19.02 18.90 24.88 35.32 38.30

Table 6: Performance of SAMRank on LLMs: Llama 2 7B, Llama 2 13B, and Llama 2 70B.

the 144 heads in BERT and GPT-2. The F1@15
performance of each head across all layers for the
three datasets is detailed in Appendix A. We find
that the performance of specific heads shows con-
sistent patterns across all three datasets. In BERT,
heads mainly located in the third and fifth layers
demonstrate high performance, whereas in GPT-2,
heads in the eleventh layer are particularly per-
formant. However, the head yielding the highest
performance varies across the datasets. This in-
dicates that specific heads in transformer-based
PLMs do pay substantial attention to phrases per-
ceived as keyphrases by humans, but their perfor-
mance varies depending on the type and length of
the text, suggesting that each head might adopt
different perspectives or attention patterns when
identifying keyphrases.

Moreover, we observe that the intra-layer perfor-
mance variance in BERT is larger than in GPT-2.
This might suggest that some heads in BERT spe-
cialize in tasks unrelated to semantic keyphrase
extraction, possibly focusing on syntactic or other
non-semantic tasks. Despite the relatively small
performance differences among the top-performing
heads across different layers in BERT, we identify
some particular heads (first and eleventh head) in
the eleventh layer of GPT-2 that significantly out-
performs all other heads, including those in BERT.
This suggests the possibility of certain heads in
GPT-2 being highly specialized for keyphrase iden-
tification.

6 SAMRank on LLMs

SAMRank is based on the self-attention mecha-
nism, so it can be used in transformer models other
than BERT or GPT-2. We conduct keyphrase ex-
traction experiments applying SAMRank on the
large language models (LLMs) that have recently
attracted significant attention in the field of natural
language processing. We utilize Llama 2, recently
released by Meta (Touvron et al., 2023). We per-

form experiments on: Llama 2 7B 6, Llama 2 13B
7, and Llama 2 70B 8. Llama 2 7B consists of 32
layers, each with 32 heads. Llama 2 13B consists
of 40 layers, each with 40 heads. Llama 2 70B con-
sists of 80 layers, each with 64 heads. The results
are presented in Table 6.

In our experiments, Llama 2 models mostly
show comparable performance to BERT and GPT-
2. However, the Llama 2 70B model surpasses both
BERT and GPT-2 in the Inspec and SemEval2017
datasets, achieving the highest scores in F1@5
across all datasets. These superior performances in
F1@5 are also observed in our experiments with
BERT and GPT-2, indicating a consistent trend
across different PLM-based models. Importantly,
among the Llama 2 models, there is a clear trend
that an increase in the number of parameters leads
to better performance. This observation supports
the prevalent notion in LLM research that increas-
ing model size can lead to improved performance.

7 Related Work

Traditional unsupervised keyphrase extraction
(UKE) approaches broadly divided into two cat-
egories: statistical-based and graph-based methods.
Statistical approaches, like TF-IDF (Jones, 2004)
and YAKE (Campos et al., 2018), use information
such as word frequency and distribution. Graph-
based methods, like TextRank (Mihalcea and Tarau,
2004), SingleRank (Wan and Xiao, 2008), Topi-
cRank (Bougouin et al., 2013), and PositionRank
(Florescu and Caragea, 2017), represent a docu-
ment as a graph and rank phrases based on the
graph’s characteristics.

Traditional unsupervised keyphrase extraction
approaches that rely solely on surface-level fea-
tures often fail to extract semantically significant

6https://huggingface.co/meta-llama/Llama-2-7b
7https://huggingface.co/meta-llama/

Llama-2-13b
8https://huggingface.co/meta-llama/

Llama-2-70b

https://huggingface.co/meta-llama/Llama-2-7b
https://huggingface.co/meta-llama/Llama-2-13b
https://huggingface.co/meta-llama/Llama-2-13b
https://huggingface.co/meta-llama/Llama-2-70b
https://huggingface.co/meta-llama/Llama-2-70b


keyphrases. To address these limitations, meth-
ods utilizing embeddings emerged. EmbedRank
(Bennani-Smires et al., 2018) is an example that
employs static embeddings such as Sent2Vec and
Doc2Vec. Subsequently, a new trend in keyphrase
extraction emerged with the advent of PLMs.
SIFRank (Sun et al., 2020) utilizes ELMo, a PLM
capable of generating contextual embeddings.

More recently, transformer-based models like
BERT have been widely adopted. AttentionRank
(Ding and Luo, 2021) applies BERT’s self-attention
and cross-attention mechanisms to keyphrase iden-
tification, examining the relevance of a candi-
date keyphrase within its sentence and the en-
tire document. Masked Document Embedding
Rank (MDERank) (Zhang et al., 2022) introduces
a masking strategy, ranking keyphrases by com-
paring the similarity of the source and masked
document embeddings. This approach benefits
from a customized BERT model trained via a self-
supervised contrastive learning method. JointGL
(Liang et al., 2021) merges local and global con-
texts for keyphrase extraction, creating a graph
structure to capture local information and calculat-
ing semantic similarity for a global perspective.

8 Conclusion

In this paper, we present a new perspective on
keyphrase extraction that moves away from the
conventional embedding-based approach and solely
leverages the information from the self-attention
map of PLM. The proposed SAMRank extracts
keyphrases based on a combination of the global at-
tention score, which identifies tokens that attract at-
tention within a document, and the proportional at-
tention score, which finds tokens deeply associated
with important tokens. Experimental results on
three representative keyphrase extraction datasets
demonstrate that SAMRank consistently outper-
forms embedding-based models, improving F1@5
and F1@10 scores by approximately 11.5% and
3% on average, respectively.

These results suggest that some heads in PLMs,
particularly BERT and GPT-2, could be specialized
in capturing keyphrases. We also demonstrate that
the self-attention map of these heads can provide
more useful information for keyphrase extraction
than embeddings. Future work could potentially
utilize the SAMRank approach to enhance the in-
terpretability by thoroughly analyzing the specific
roles and functionality of each head in transformer-

based PLMs, beyond the scope of keyphrase ex-
traction.

Limitations

SAMRank utilizes just a single self-attention map
(SAM) from one out of 144 heads. As evidenced
by the results in the Appendix, certain heads consis-
tently exhibit high performance across all datasets,
but the best performing head does not always re-
main the same. Moreover, a trade-off in perfor-
mance is observed among the heads. Some heads
demonstrate high performance on F1@5 but low
on F1@15, while others show the opposite pattern.
This variability indicates that the optimal head se-
lection may vary depending on the type and length
of the text and the specific evaluation metric, neces-
sitating additional human exploration for optimal
results. Therefore, rather than solely relying on a
single self-attention map, combining outputs from
multiple high-performing heads could be expected
to yield not only more stable, but also more gen-
eralized performance applicable to various types
of text. The method of combining multiple SAMs
would make a good topic for future research.

Additionally, when processing long documents,
we divide the text into segments with equal to-
ken counts, extract keyphrases from each segment,
and then integrate the results to draw out the final
keyphrases. The motivation behind this approach
of equal segmentation is to reveal the importance
of tokens under identical conditions across all seg-
ments. However, this method can lead to a loss
of context from the original long text, potentially
reducing accuracy. Thus, applying the SAMRank
approach to models that can handle more extended
token inputs, such as BigBird (Zaheer et al., 2020)
or Longformer (Beltagy et al., 2020), could be an
interesting topic for future research.
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A Performance of All Heads in BERT
and GPT-2

We evaluate the keyphrase extraction performance
of all the heads in BERT and GPT-2 for three
datasets (Inspec, SemEval2010, SemEval2017) us-
ing the SAMRank. Figures 3 and 4 represent the
F1@15 score results of the heads of each layer of
BERT and GPT-2 respectively in a graph form. The
horizontal axis of the graph signifies the layer or-
der, and the heads from 1 to 12 in each layer are
denoted by different symbols. The graph at the top
shows the performance for the Inspec dataset, the
one in the middle for SemEval2010, and the one at
the bottom for the SemEval2017 dataset.

Figure 3: Performance (F1@15) of BERT’s heads in
each layer for three datasets.
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Figure 4: Performance (F1@15) of GPT-2’s heads in
each layer for three datasets.

B Visualization of Actual Self-Attention
Maps and Token-level Scores

Figures 5 and 6 visualize the self-attention map
(SAM) obtained by inputting example documents
from SemEval2017, and the token-level scores cal-
culated through the SAM. The SAM in Figure 5 is
extracted from the 5-2 (layer-head) of BERT, which
shows the highest performance in SemEval2017.
The SAM in Figure 6 is extracted from the 11-1
head of GPT-2, which shows the highest perfor-
mance in SemEval2017. The figures below the
SAM visualize the final token-level scores obtained
by combining the proposed global attention score
and proportional attention score in the paper.

Model Krapivin
F1@5 F1@10 F1@15

TextRank 6.04 9.43 9.95
SingleRank 8.12 10.53 10.42
TopicRnak 8.94 9.01 8.30
MultipartiteRank 9.29 9.35 9.16
YAKE 8.09 9.35 11.05
EmbedRank(Sent2Vec)+MMR 8.44 10.47 10.71
SIFRank(ELMo) 1.62 2.52 3.00
EmbedRank(BERT) 4.05 6.60 7.84
MDERank(BERT) 11.78 12.93 12.58
MDERank(KPEBERTab) 12.91 14.36 13.58
MDERank(KPEBERTre) 12.35 14.31 13.31
SAMRank (BERT) 16.35 15.91 14.52
SAMRank (GPT-2) 17.49 16.46 14.92

Table 7: Performance of SAMRank on the Krapivin
dataset for very long documents.

C SAMRank on Long Documents

Transformer-based Pre-trained Language Models
(PLMs), which are inherently based on attention
mechanisms, have demonstrated outstanding per-
formance. However, the inherent characteristic of
attention mechanisms is that their computational
cost increases with the length of the input. Mod-
els like BERT and GPT-2 have a token input limit,
typically set at 512 or 1024 tokens. To address this
limitation, SAMRank divides longer documents
into smaller segments. Each segment is processed
separately, and the scores from each segment are ag-
gregated to derive the final keyphrases. To validate
the effectiveness of this approach on very long doc-
uments, we conduct experiments with this method
on the Krapivin dataset (Krapivin and Marchese,
2009), comprised of scientific full papers that aver-
age about 8,500 words. The experimental results
are presented in Table 7. The performance of the
baselines was referenced from the MDERank paper
(Zhang et al., 2022).

SAMRank, when utilizing BERT and GPT-2,
achieves the highest F1 scores across all three met-
rics, demonstrating its effectiveness in handling
very long documents. This suggests that even
when only a part of the entire document is inputted
and the context is compromised, attention weights
still strongly focuses on the keyphrases. Moreover,
the F1@5 shows exceptionally high performance
compared to other metrics, indicating a tendency
for strong attention concentration on a few tokens
within a single attention map.



Figure 5: Visualization of example self-attention map extracted from BERT’s head (5-2) and token-level scores
calculated by combining global attention score and proportional attention score.



Figure 6: Visualization of example self-attention map extracted from GPT-2’s head (11-1) and token-level scores
calculated by combining global attention score and proportional attention score.


