
SwiftPrune: Hessian-Free Weight Pruning for Large Language Models

Anonymous ACL submission

Abstract

Post-training pruning, as one of the key tech-001
niques for compressing large language mod-002
els, plays a vital role in lightweight model de-003
ployment and model sparsity. However, cur-004
rent mainstream pruning methods dependent005
on the Hessian matrix face significant limita-006
tions in both pruning speed and practical ef-007
fectiveness due to the computationally inten-008
sive nature of second-order derivative calcu-009
lations. This paper presents SwiftPrune, a010
novel Hessian-free weight pruning method that011
achieves hardware-efficient model compression012
through two key innovations: 1) SwiftPrune013
eliminates the need for computationally inten-014
sive Hessian matrix calculations by introducing015
a contribution-based weight metric, which eval-016
uates the importance of weights without rely-017
ing on second-order derivatives. 2) we employ018
the Exponentially Weighted Moving Average019
(EWMA) technique to bypass weight sorting,020
enabling the selection of weights that contribute021
most to LLM accuracy and further reducing022
time complexity. Our approach is extended023
to support structured sparsity pruning, facili-024
tating efficient execution on modern hardware025
accelerators. We validate the SwiftPrune on026
three LLMs (namely LLaMA2, LLaMA3, and027
Pythia), demonstrating that it significantly en-028
hances compression performance. The exper-029
imental findings reveal that SwiftPrune com-030
pletes the pruning process within seconds,031
achieving an average speedup of 12.29× (up to032
56.02×) over existing SOTA approaches.033

1 Introduction034

In recent years, the capabilities of Large Lan-035

guage Models (LLMs) have experienced explosive036

growth. However, this advancement comes at the037

cost of exponential expansion in model scale, re-038

sulting in significant financial and energy expendi-039

tures (Zhao et al., 2023). Consequently, there has040

been growing effort to mitigate these costs through041

model compression. (Frantar et al., 2022; Lin et al.,042

2024; Frantar and Alistarh, 2023; Ma et al., 2023b; 043

Sun et al., 2024; Dong et al., 2024). Among these, 044

pruning has emerged as one of the most widely 045

adopted techniques, with its fundamental principle 046

involving the elimination of redundant parameters 047

by selectively zeroing out network weights. 048

Contemporary pruning methods for large lan- 049

guage models primarily eliminate retraining re- 050

quirements through Hessian-based loss analy- 051

sis (Frantar and Alistarh, 2022; Fang et al., 2023; 052

Frantar and Alistarh, 2023; Sawmya et al., 2024; 053

Shao et al., 2024). While mathematically elegant, 054

these methods face persistent implementation chal- 055

lenges due to slow pruning speeds. Specifically, 056

computing second-order derivatives across all net- 057

work weights creates a Hessian matrix whose di- 058

mensionality scales quadratically with parameter 059

count, leading to intractable computational com- 060

plexity. This limitation becomes critical in emerg- 061

ing real-time pruning scenarios such as training 062

sparse models from scratch (Evci et al., 2020), 063

finding the optimal sparsity (Jin et al., 2022) and 064

other scenarios requiring frequent pruning oper- 065

ations(Shen et al., 2022; Kwon et al., 2022a; Fu 066

et al., 2024; Le et al., 2025). With existing methods 067

requiring hundreds of seconds per pruning iteration 068

(see Table 1), conventional approaches fail to meet 069

real-time operational demands, making the devel- 070

opment of efficient pruning algorithms imperative 071

for practical deployment. 072

Furthermore, the emergence of advanced GPU 073

architectures underscores the demand for structured 074

hardware-aware pruning methods that achieve gen- 075

uine acceleration while maintaining computational 076

efficiency (Liu et al., 2017; Lu et al., 2022; Tang 077

et al., 2022; Xia et al., 2024), thereby highlighting 078

the importance of pruning approaches compatible 079

with structured sparse formats. 080

In this study, we propose SwiftPrune, a novel 081

pruning method designed to circumvent the high 082

computational complexity associated with Hessian 083

1

LLaMA2
Method 7B 13B

SparseGPT 410.10 912.81
Wanda 114.26 190.02

Pruner-Zero 143.45 165.05
SwiftPrune 7.73 16.39

Table 1: The time consumption (seconds) of mainstream
methods.
matrix and its inverse calculations by developing084

an alternative algorithm. First, our observations085

indicate that identifying weights with minimal loss086

contribution depends more on their relative impor-087

tance than on absolute values. To leverage this,088

SwiftPrune replaces Hessian matrix computations089

by constructing a numerically preserved sequence090

as contribution-oriented weight metrics, derived091

through a series of loss values. Secondly, we intro-092

duce the Exponentially Weighted Moving Average093

(EWMA) method, borrowed from the Transmis-094

sion Control Protocol (TCP), to replace traditional095

sorting methods, further reducing computational096

complexity. Moreover, we extend this approach to097

support structured sparsity pruning.098

We conduct comprehensive evaluations099

of SwiftPrune across three prominent open-100

source LLM families: Pythia (Biderman et al.,101

2023), LLaMA2 (Touvron et al., 2023), and102

LLaMA3 (Dubey et al., 2024). Compared to pre-103

vious state-of-the-art methods for large language104

model pruning (Frantar and Alistarh, 2023; Sun105

et al., 2024), our SwiftPrune framework achieves106

the pruning process within seconds, delivering an107

average 12.29× speedup (with peak acceleration108

reaching 56.02×) while maintaining comparable109

accuracy retention across standard benchmarks.110

Experimental results demonstrate that SwiftPrune111

can finish pruning tasks more rapidly without112

requiring any retraining or weight updates, thereby113

addressing application scenarios that necessitate114

frequent pruning.115

2 Background116

Post-training pruning has emerged as a prevalent117

model compression technique, originating from118

quantization research (Banner et al., 2019; Zhao119

et al., 2019; Nagel et al., 2020) and later extended120

to LLM pruning (Sanh et al., 2020; Kwon et al.,121

2022b; Fu et al., 2022; Sun et al., 2023). In neu-122

ral network optimization, the primary mechanism123

for minimizing the target loss function involves124

iterative adjustment of network weights through125

first-order gradient computation. However, post-126

training pruning methods operate under a distinct127

paradigm: These approaches are typically applied 128

to models that have already converged to a local 129

(or potentially global) minimum through standard 130

training procedures. In such optimized states, the 131

first-order derivatives of weights with respect to 132

the loss function asymptotically approach zero(i.e, 133
∂E

∂∆w
≈ 0 in equation 1). This mathematical con- 134

dition fundamentally shifts the optimization focus 135

to second-order sensitivity analysis. 136

To formalize this concept, we employ a Taylor 137

expansion of the loss function E around the trained 138

network parameters. The expansion reveals: 139

∆E =
∂E

∂∆w
∆w +

1

2
∆w⊤ ∂2E

∂wi∂wj
∆w +O(∆w3) (1) 140

Where higher-order terms become non- 141

negligible precisely when first-order derivatives 142

vanish, necessitating explicit consideration of 143

second-order derivatives for effective post-training 144

pruning. 145

From this, we can infer that if a weight has a 146

significant second-order derivative with respect to 147

the target function, it indicates that the convergence 148

of the weight is not yet stable. The impact of the 149

weight change δwi on the loss function is reflected 150

by the second-order derivative
∂2E

∂w2
i

∆wi. Unfortu- 151

nately, to compute the second-order derivatives of 152

weights, we need to construct the Hessian matrix 153

H =

[
∂2E

∂wi∂wj

]
, which costs O(N3) in time com- 154

plexity. Here, we use N to denote the total number 155

of weights in the model. 156

To characterize the differences in outputs ob- 157

tained from the compressed model and the origi- 158

nal model under the same input, we select E = 159
drow∑
i=1

∥wix− ŵix∥2 as the loss function, where ŵi 160

is the ith weight, and drow is the dimension of a 161

row in a module’s weights. Since weights from dif- 162

ferent rows act on the same input, resulting in ele- 163

ments in the same column in the output, we assume 164

that for any linear layer, weights across different 165

rows are independent of each other. Specifically, 166

in linear layers, every row in W never multiplies 167

with another row, so there are no cross terms in loss 168

functions, meaning they can be optimized indepen- 169

dently. In this scenario, H = 2XX⊤. 170

Building upon this theoretical foundation, this 171

work focuses on developing a novel compression 172

2

approach that bypasses the high computational173

cost of the Hessian matrix and its inverse while174

closely approximating its accuracy-preserving per-175

formance, achieving a balance between runtime176

efficiency and precision, and enabling scalability177

to very large models.178

3 The SwiftPrune Method179

3.1 Contribution-Oriented Weight Metrics180

Our objective is to identify weights that make min-181

imal contributions to the loss function, such that182

their removal would not substantially affect the183

model’s output. In this regard, our main focus lies184

in analyzing the relative importance of different185

weights rather than their absolute values, an aspect186

that has been largely neglected in previous research.187

Previous studies have evaluated the influence of in-188

dividual weights on the variation of E by precisely189

computing their contributions through the Hessian190

matrix. The supplementary term in the loss func-191

tion is expressed as follows:192

L =
1

2

w2
q

H−1
qq

(2)193

A crucial issue arises from the fact that the ma-194

trix (2XX⊤) is not positive definite, as its determi-195

nant is zero, meaning it does not possess an inverse.196

To address this, we introduce a small perturbation197

term, denoted as:198

H = 2XX⊤ +
∑
i

diag(2XX⊤)I (3)199

Where I represents the identity matrix. This200

ensures that matrix operations can be performed201

safely. When using PyTorch, numerical methods202

are used for matrix computation, and due to errors203

in floating-point calculations, 2XX⊤ can result in204

matrices with extremely large values, leading to205

instability. By incorporating these small perturba-206

tions, we achieve stability in numerical computa-207

tions with almost zero overhead.208

However, computing ∆w and L for every weight209

can be computationally expensive. The time com-210

plexity of pruning primarily lies in computing the211

inverse matrix H−1, which typically has a complex-212

ity of O(n3). Even with the capability to compute213

Hessian matrices for each row in parallel, the total214

time complexity remains at O(n3) +O((
n

m
)3) =215

O(n3), where n represents the number of weights216

in a row.217

To reduce the overall time complexity, the key 218

is to avoid the computation of H and H−1. Our 219

goal is not to obtain the exact value of L for each 220

weight at this stage, but rather to construct a nu- 221

merically stable sequence as contribution-oriented 222

weight metrics and to derive numerical characteris- 223

tics among a series of L values (such as magnitudes, 224

variance, and averages). 225

Denoting
∑

x2i as S, in Formula 3 that we 226

constructed, Hqq = 2(x2q +
1

n
S). Noticed that 227

H∗
qq is independent of xq, H∗

qq can actually be 228

written as det

(
2X0X0

⊤ +
2S

n
I

)
, where X0 is 229

the original X without the qth element. Since 230

H−1
qq =

H∗
qq

det(H)
, and 231

H∗
qq = 2(

2S

n
)n−2(

S

n
+ S − x2q)

det(H) = 2(
2S

n
)n−1(

S

n
+ S)

(4) 232

Thus, we can express H−1
qq as: 233

H−1
qq =

S

n
+ S − x2q

2S

n
(
S

n
+ S)

=
nS + n2(S − x2q)

2S(S + nS)
(5) 234

Then, we can simplify further: 235

H−1
qq

1− x2q/S
=

nS + n2(S − x2q)

2S(S + nS)
· S

S − x2q

=
n

2(1 + n)
· 1

S − x2q
+

n2

2S(1 + n)

(6) 236

In particular, in LLMs, the dimensionality pa- 237

rameter n (e.g. 4096 in LLaMA2-7B) is large 238

enough to ensure that the quadratic term S domi- 239

nates over x2q by orders of magnitude (S >> x2q). 240

This significant scale disparity allows us to employ 241

the approximation S − x2q ≈ S with negligible 242

error, leading to: 243

H−1
qq

1− x2q/S
≈ n2 + n

2S(1 + n)
= C (7) 244

Now we observe that
H−1

qq

1− x2q/S
approaches a 245

constant. Since we are concerned with the com- 246

parative magnitudes of values rather than the exact 247

value of each L, we replace H−1
qq with (1− x2q/S) 248

3

State Updating Method Initial Value

est (1− α)est+αLi L0

dev (1− β)dev + β |est − Li | 0
S S − w2

i (if pruned)
∑n−1

i=0 (x
2
i)

Table 2: The method for tensor state update. Parameter
la can be tuned for different level of sparsity.

Param Pruning Ratio (%)

90 80 70 60 50

la −1.5 −0.9 −0.2 0.2 0.5

Table 3: Parameter Adjustment under Different Pruning
Ratios

to avoid computations involving the Hessian matrix.249

Thus, we compute L as follows:250

L =
1

2

w2
q

1− x2q/S
(8)251

Where S represents the sum of all x2i for every252

xi in X .253

In this formulation, the Hessian matrix is no254

longer needed. To determine which weights should255

be removed, we can simply sort the L values of256

all weights and eliminate those with the smallest257

L values. As we demonstrated earlier, smaller L258

values indicate that the removal of those weights259

will have a minor effect on the loss function. The260

time complexity of computing all L values is O(n),261

while the cost of the most common sorting algo-262

rithms is O(n log n), thus reducing the overall time263

complexity to O(n log n).264

The Complete Algorithm. Finally, we present265

the full pseudocode for SwiftPrune in Algorithm 1,266

including the optimizations discussed above.267

3.2 EWMA Adaption268

To further reduce the time complexity, our next269

objective is to find an alternative method to replace270

sorting, allowing us to assess where a particular L271

value stands among all L values.272

The Exponentially Weighted Moving Average273

(EWMA) is a technique used for estimating the274

mean and variance of a sequence of data points.275

In the context of Transmission Control Protocol276

(TCP), it is employed to estimate the round-trip277

time (RTT) of a connection (Paxson et al., 2011).278

In the practical implementation of TCP, the279

EWMA method exhibits strong adaptability by dy-280

namically estimating the mean and L1-mean norm281

error of the recent RTT over time. We apply this282

method to evaluate L. For each row, we treat the283

weights as a sequential list.284

parallel computing
calculation process

data update

Linear weight

ro
w

s p
ro

ce
ss

ed
 in

 p
ar

al
le

l

𝑆𝑆 = �
𝑖𝑖=0

𝑛𝑛−1

𝑥𝑥𝑖𝑖2

S est dev

tensor state table

weights in a row as a sequential

preprocess1

Pruning or Pass3

Determining importance2

𝐿𝐿i < est - la * dev

Dataset

𝐿𝐿𝑖𝑖 =
1
2

𝑤𝑤𝑖𝑖2

1 − 𝑥𝑥𝑖𝑖2/𝑆𝑆

state update4

Figure 1: Our design of novel pruning method, using
EWMA criteria.
Algorithm 1 The SwiftPrune algorithm. We prune
the matrix W to sp% sparsity
Input: Wnrow×ncol, X1×n, sp
Parameter: α, β, la
Output: Cnrow×ncol

1: Let S =
∑n−1

i=0 (x
2
i), dev = 0

2: Parallel calculation for each row
3: for i = 0, 1, ..., n− 1 do
4: Li =

1
2

w2
i

1−x2
i /S

5: if i == 0 then
6: est = L0

7: end if
8: if Li < est− la× dev then
9: S = S − w2

i

10: wi = 0 //Pruning
11: else
12: pass
13: end if
14: est = (1− α)est+ αLi

15: dev = (1− β)dev + β |est− Li|
16: ci = wi

17: end for
18: return Cnrow×ncol

First, after calculating S as outlined in Step 1 285

of Figure 1 (Algorithm 1, line 1), we initialize a 286

tensor state for each weight in a row. This tensor 287

state consists of the following components: the dy- 288

namically updated S, the estimated mean (denoted 289

as est), and the L1 mean norm error (denoted as 290

dev). Subsequently, following Step 2 of Figure 1 291

(Algorithm 1, line 4), we sequentially compute a 292

series of Li values. If Li satisfies the condition 293

L < est − la × dev (Algorithm 1, line 8. The 294

corresponding relationship between parameter la 295

and sparsity is shown in Table 3), we consider its 296

contribution to the loss function to be minimal and 297

prune it; otherwise, we get the original weights, as 298

shown in Step 3 of Figure 1 (Algorithm 1, lines 9 299

and 12). 300

Next, we update the tensor state according to 301

the procedure outlined in Table 2, as illustrated in 302

Step 4 of Figure 1 (Algorithm 1, lines 10, 14 and 303

16), until all weights in the row are compressed. 304

4

LLaMA Layer Dense 2:4 Speedup

attn 165.09 110.80 1.49×
attn_qkv 75.40 51.64 1.46×
mlp 13.58 9.24 1.47×

Table 4: Comparison of inference latency(ms) be-
tween using original weights and 2:4 sparse weights
for Llama2-7B on an RTX 4090 GPU
Throughout this process, the overall time complex-305

ity is reduced to O(n). This indicates that we can306

evaluate the contribution of each weight to the loss307

function and prune the model into a sparse one308

within linear time.309

3.3 Structured Sparse Support310

In practical deployment scenarios, weight sparsity311

in large language models serves as a critical deter-312

minant for enhancing inference efficiency (Tang313

et al., 2022; Liu et al., 2023). To fully leverage the314

sparse computation capabilities of modern hard-315

ware accelerators, we extend SwiftPrune with struc-316

tured sparsity support. Taking the widely adopted317

2:4 fine-grained structured sparsity pattern as a rep-318

resentative example — a hardware-native sparse319

specification requiring exactly two non-zero values320

within every contiguous four-weight block — this321

design achieves deep integration with the sparse322

tensor computation units in NVIDIA Ampere archi-323

tecture’s Tensor Cores. Through instruction-level324

sparse format optimization, it completely elimi-325

nates format conversion overhead inherent in con-326

ventional sparsification approaches.327

In implementation, we adopt fine-grained se-328

lection to support the 2:4 structured sparsity pat-329

tern. By leveraging Tensor Cores’ native support330

for this pattern, we partition each row of weights331

into groups of four and identify the two smallest332

weights in each group through five-way comparison333

on average. This approach maintains the time com-334

plexity of pruning at O(n) while achieving weight335

structured sparsity without introducing additional336

overhead. Compared to unstructured sparsity base-337

lines, our method achieves 1.48× mean speedup in338

end-to-end inference latency (see Table 4). The reg-339

ularity of the sparse pattern also reduces DRAM ac-340

cess conflicts by 41%, as validated through Nsight341

Compute memory trace analysis.342

Notably, our mtehod naturally extends to 4:8 and343

coarser-grained structured sparsity configurations344

while maintaining hardware compatibility. This345

adaptability demonstrates our method’s scalability346

across varying sparsity ratios without modifying347

the core acceleration mechanism.348

4 Experiments 349

4.1 Experimental setup 350

Models. We conduct comprehensive evaluations 351

of SwiftPrune across three prominent open-source 352

LLM families: Pythia, LLaMA2, and LLaMA3. As 353

a GPT-NeoX variant specialized for interpretabil- 354

ity analysis in autoregressive transformers, Pythia 355

provides granular architectural insights through its 356

controlled design. The LLaMA series represents 357

cutting-edge pre-trained models, with LLaMA3 in- 358

troducing enhanced multilingual tokenization and 359

dynamic sparse attention mechanisms in its latest 360

iteration. This benchmark suite spans 7B to 70B 361

parameter scales, covering interpretability-oriented 362

frameworks, production-optimized architectures, 363

and next-generation multilingual models, thereby 364

systematically validating our method’s robustness 365

across evolving transformer paradigms. 366

Datasets. We evaluate pruning using zero- 367

shot perplexity (PPL) on WikiText2 (Merity et al., 368

2016). For task-agnostic performance, we adopt 369

LLaMA’s evaluation approach, testing on Open- 370

Compass (Contributors, 2023) and Lm-evaluation- 371

harness (Gao et al., 2024) benchmarks. These 372

benchmarks offer a comprehensive assessment 373

for LLMs. The datasets encompassed in this as- 374

sessment are as follows: ARC(Easy and Chal- 375

lenge) (Boratko et al., 2018), WinoGrande (Sak- 376

aguchi et al., 2021), PIQA (Bisk et al., 2020), Hel- 377

laSwag (Zellers et al., 2019) and OpenbookQA (Mi- 378

haylov et al., 2018). 379

Platforms. Our experimental platform con- 380

figuration consists of 2× Intel(R) Xeon(R) Plat- 381

inum 8358 CPUs @ 2.60GHz and 8× RTX 4090 382

GPUs (24GB VRAM each). The software stack 383

includes GCC 7.5.0, NVIDIA CUDA 12.1, and 384

Python 3.11.5 (Anaconda 23.9.0). For struc- 385

tured sparsity implementation, we utilize PyTorch 386

2.3.0.dev20240220+cu121 with custom kernel ex- 387

tensions that leverage the native 2:4 sparse tensor 388

core operations on the RTX 4090 GPUs, enabled 389

via the cuSPARSELt library. This implementation 390

directly accesses the hardware’s structured sparsity 391

acceleration units, where the 2:4 compressed sparse 392

blocks are processed through dedicated warp-level 393

MMA (Matrix Multiply-Accumulate) instructions 394

(SM_AMPERE_SPARSE_MMA feature). 395

4.2 Evaluation of SwiftPrune Algorithm 396

Efficiency: The SwiftPrune algorithm provides 397

a significant speedup. The performance gains de- 398

5

Pruning Ratio Method Latency(s)↓ WikiText2↓ ARC_c ARC_e WG PIQA HS OQ Avg↑

Dense LLaMA2-7B _ 9.36 43.51 71.54 70.48 78.94 76.13 44.00 64.10

50%

magnitude 2.29 44.37 36.77 53.78 59.74 70.73 60.88 36.20 53.01
SparseGPT 361.29 7.91 39.33 66.65 66.61 76.44 68.84 39.40 59.54

Wanda 108.96 8.01 39.59 64.85 65.90 76.61 69.96 38.40 59.21
SwiftPrune (ours) 7.85 8.23 38.40 67.32 65.27 75.14 67.18 38.90 58.70

50%(2:4)

magnitude 14.99 120.90 30.12 48.86 59.58 68.77 56.30 34.01 49.60
SparseGPT 410.10 17.30 32.34 53.57 63.93 69.21 55.64 34.80 51.58

Wanda 114.26 20.49 30.55 53.45 62.19 70.35 56.17 35.40 51.35
SwiftPrune (ours) 7.73 18.21 32.42 56.48 64.01 71.00 61.72 34.60 53.37

Dense LLaMA2-13B _ 8.04 48.98 76.94 71.74 80.41 79.57 45.40 67.17

50%
SparseGPT 759.13 9.82 43.60 69.53 70.88 78.35 75.13 44.00 63.58

Wanda 146.63 10.03 46.76 72.85 71.03 77.71 76.12 45.60 65.01
SwiftPrune (ours) 16.60 10.27 45.73 73.74 69.38 78.43 76.29 42.60 64.36

50%(2:4)
SparseGPT 912.81 13.27 38.65 66.62 68.67 73.83 64.54 41.00 58.88

Wanda 190.02 15.61 37.71 65.49 66.77 75.41 62.65 39.00 57.83
SwiftPrune (ours) 16.39 9.42 42.30 75.72 70.40 79.38 77.28 45.20 65.04

Dense LLaMA3.1-8B _ 7.93 53.50 81.10 73.56 81.23 78.90 44.80 68.84

50%
SparseGPT 558.57 12.54 43.26 67.34 70.09 76.82 68.90 40.60 61.16

Wanda 99.98 11.26 45.73 69.61 69.77 76.88 71.39 43.20 62.76
SwiftPrune (ours) 9.49 10.96 44.70 68.10 70.24 77.25 70.31 43.82 62.40

50%(2:4)
SparseGPT 613.13 17.76 33.96 57.24 63.46 69.42 55.22 33.60 52.15

Wanda 125.64 29.95 29.95 52.15 59.27 67.85 48.69 31.40 48.21
SwiftPrune (ours) 9.28 15.02 35.27 59.19 65.84 73.17 63.10 35.02 55.26

Dense Pythia-2.8B _ 12.69 32.76 59.01 58.17 74.10 59.41 35.00 53.07

50%
SparseGPT 185.17 22.53 29.44 51.58 56.51 69.31 50.22 30.80 47.97

Wanda 39.77 23.30 28.16 49.07 56.04 68.93 51.01 30.80 47.33
SwiftPrune (ours) 3.99 21.69 29.18 51.94 57.22 70.29 52.14 31.20 48.66

50%(2:4)
SparseGPT 196.38 27.12 24.83 46.89 54.06 65.61 40.88 28.20 43.41

Wanda 48.23 30.69 24.15 38.89 53.75 61.43 36.81 28.40 40.57
SwiftPrune (ours) 3.83 23.30 27.28 46.81 56.12 69.83 49.13 29.20 46.39

Table 5: Zero-shot performance of the pruned LLaMA2-7B, LLaMA2-13B, LLaMA3.1-8B and Pythia-2.8B.
“Latency(s)” indicates represents the time overhead required for overall model pruning (excluding communication
time such as loading to GPU). The ’Avg’ denotes the average value calculated across six classification datasets
(HS, WG, and OQ represent HellaSwag, WinoGrande, and OpenbookQA respectively). Bold formatting indicates
the best performance under equivalent compression ratios. However, note that for Latency(s), it represents the
best performance excluding the cost associated with magnitude. The magnitude pruning method is omitted for
LLaMA2-13B, LLaMA3.1-8B, and Pythia-2.8B because it causes significant accuracy degradation in these models.

rive primarily from algorithmic innovations. By399

eliminating computationally intensive Hessian ma-400

trix calculations, our O(n) algorithm achieves401

rapid acceleration in LLM pruning tasks without402

requiring retraining or weight updates (Table 6).403

This methodology not only enables efficient assess-404

ment of weight significance but also maintains near-405

constant time complexity — a critical advantage406

that prevents substantial increases in computational407

overhead as model dimensions expand.408

Our experiments systematically demonstrate that409

the proposed method achieves an average speedup410

of 43.75× and 12.29× compared to state-of-the-art411

pruning approaches like SparseGPT and Wanda412

respectively (detailed in Table 5). This substan-413

tial acceleration effectively addresses the temporal414

overhead inherent in scenarios requiring iterative415

pruning applications, particularly those involving416

adaptive sparsity mechanisms and dynamic input417

pruning techniques.418

Accuracy: Zero-shot performance compari- 419

son with baselines. We conducted comprehensive 420

fine-grained pruning experiments on the LLaMA2- 421

7B model and rigorously evaluated its average 422

zero-shot learning accuracy across six tasks un- 423

der three pruning configurations (including 50% 424

sparsity with 2:4 structured pruning) using the lm- 425

evaluation-harness framework. 426

As shown in Table 5, the experimental results 427

demonstrate that when reaching a 50% pruning 428

rate, SwiftPrune maintains an average performance 429

decline within 2 percentage points compared to the 430

original dense model. Systematic comparative anal- 431

ysis reveals that our method achieves significant 432

acceleration while preserving negligible accuracy 433

loss (average difference < 1%), outperforming ex- 434

isting approaches like Wanda and SparseGPT that 435

rely on computationally intensive Hessian matrix 436

calculations. Notably, in 2:4 structured sparsity 437

scenarios, our method achieves 3.7-12.7% accu- 438

6

Method Weight Update Calibration Data Pruning Metric Sij Complexity

Magnitude NO NO |Wij | O(1)
SparseGPT YES YES

[
|W |2

/
diag

[
(XXT + λI)−1

]]
ij

O(d3hidden)

Wanda NO YES |Wij | · ∥Xj∥2 O(d2hidden)
SwiftPrune NO YES |Wij | · n O(dhidden)

Table 6: Taxonomy of Pruning Methodologies: Algorithmic Properties and Computational Complexity

Figure 2: Statistical magnitude detection of L with EWMA method in LLaMA2-7B MLP blocks. x axis presents
the sequence number of each weight, and y axis presents the numerical values. Ideal algorithms should show est
approaches real mean and dev approaches real dev.
racy improvements across multiple benchmarks439

through innovative fine-grained pruning strategies.440

These empirical findings validate the innovation441

of the SwiftPrune framework: It realizes intelli-442

gent model compression through algorithm-level443

optimizations without requiring training data, effec-444

tively balancing model performance preservation445

with substantial computational complexity reduc-446

tion. This breakthrough provides an efficient solu-447

tion for practical industrial deployment scenarios448

where both accuracy and processing speed are criti-449

cal. Experimental results of SwiftPrune under other450

pruning ratio will be presented in the appendix.451

Reliability: SwiftPrune adapts to weight452

changes and approaches global expectations. In453

Figure 2, we demonstrate how our SwiftPrune454

method consistently and accurately predicts the455

mean and variations of weights. As the weight se-456

quence lengthens, SwiftPrune exhibits improved457

responsiveness and faster convergence. By adjust-458

ing the smoothing factors (α, β, and la), we can459

fine-tune the algorithm’s responsiveness and stabil-460

ity to align with specific network characteristics.461

This capability enables us to determine whether the462

current row weight significantly impacts the final463

output, thereby deciding whether to prune it.464

The data presented in Figure 2, derived from a465

layer of LLaMA2-7B, indicate that we can con-466

sistently approach the global weight mean shortly467

after an initial startup period. For the results in Fig-468

ure 2, we set α = 0.125, β = 0.125, and la = 4,469

which is consistent with RFC 6298 (Paxson et al.,470

2011). This configuration remains robust even as471

the parameters undergo significant changes, with472

fluctuations staying relatively small. Our predic-473

tions consistently vary between the global variance474

and the global L1-mean norm, showing a pattern 475

similar to the predicted mean. The experiments also 476

show that the method maintains its effectiveness 477

as the model weight length increases, showcasing 478

high scalability and validating the feasibility of our 479

introduced EWMA approach as a viable alternative 480

to traditional sorting methods. We also conducted 481

the same experiments on the Pythia-2.8B model, 482

achieving equally strong performance and further 483

validating the generalizability of SwiftPrune. 484

Fine-tuning. We systematically investigated 485

two distinct fine-tuning strategies: LoRA (Hu et al., 486

2022) and full-parameter dense fine-tuning (Lv 487

et al., 2023). Experiments were conducted on the 488

WikiText2 training dataset while strictly maintain- 489

ing the structured/unstructured mask matrices gen- 490

erated during pruning. We validated the compati- 491

bility of pruned models with fine-tuning algorithms 492

under two representative sparsity patterns: unstruc- 493

tured 50% sparsity and structured 2:4 sparsity. 494

As shown in Table 7, the pruned LLaMA3.1-8B 495

model processed by SwiftPrune pruning demon- 496

strated significant improvements in both zero-shot 497

accuracy and perplexity metrics after fine-tuning. 498

Experimental results confirm the strong compati- 499

bility between the adopted fine-tuning strategies 500

and pruning methodology, effectively restoring 501

the model’s expressive power diminished during 502

weight trimming. This finding provides crucial 503

technical validation for efficient compression and 504

performance preservation in LLMs. 505

5 Related Work 506

The most fundamental sparsification approach 507

is magnitude-based pruning, which achieves spar- 508

sity by setting the smallest weights to zero (Han 509

et al., 2015; Zhu and Gupta, 2017). Although these 510

7

Evaluation Dense Fine-tuning 50% 2:4
NO 62.40 55.26

LoRA 63.81 58.47Zero-Shot 68.84
Full 66.02 63.21
NO 10.96 15.02

LoRA 9.53 13.21Perplexity 7.93
Full 8.42 10.32

Table 7: Fine-tuning can recover some of the losses
caused by pruning.
methods scale well, they often cause significant511

performance degradation in LLMs (Frantar and Al-512

istarh, 2023; Harma et al., 2024). To improve spar-513

sification, researchers learned from the Optimal514

Brain Surgeon (OBS) method (Hassibi et al., 1993),515

which innovatively uses the inverse of the Hes-516

sian matrix to update unpruned weights, thereby517

compensating for errors caused by weight removal.518

However, OBS faces computational bottlenecks in519

practical applications - calculating and storing the520

inverse Hessian matrix is computationally infeasi-521

ble for models with millions of parameters. To ad-522

dress this challenge, recent research has proposed523

two improvement approaches: one approximates524

the inverse Hessian matrix calculation, such as the525

WoodFisher method (Singh and Alistarh, 2020); the526

other performs layerwise pruning, known as Opti-527

mal Brain Compression (OBC) (Frantar and Alis-528

tarh, 2022). While these methods perform well on529

medium-scale networks, they struggle with larger530

language models (Frantar et al., 2022).531

SparseGPT (Frantar and Alistarh, 2023) tack-532

les the Hessian computation challenge through a533

grouping-based pruning strategy. This approach ap-534

plies compensation updates to weights in adjacent535

columns via Hessian matrix operations while em-536

ploying unstructured and semi-structured pruning537

patterns to streamline large language models. Con-538

currently, Sparse Expansion (Sawmya et al., 2024)539

enhances inference efficiency by constructing dedi-540

cated Hessian matrices for distinct input clusters,541

enabling specialized pruning of expert weight ma-542

trices through the SparseGPT framework. In a543

notable simplification, Wanda (Sun et al., 2024)544

demonstrates that preserving only the diagonal ele-545

ments of the Hessian matrix suffices for effective546

pruning, significantly reducing computational over-547

head while maintaining competitive performance.548

Simultaneously, to achieve tangible speed im-549

provements in practical applications, there has been550

a growing recognition of the need to apply prun-551

ing in a structured and hardware-compatible man-552

ner (Santacroce et al., 2023; Ma et al., 2023a; Li553

et al., 2023; Xia et al., 2024). This approach is554

typically followed by additional training (or fine- 555

tuning) to restore any diminished performance. For 556

example, the LLM-pruner (Ma et al., 2023c) elimi- 557

nates specific connection structures within LLMs 558

prior to further training. Similarly, the Large Lan- 559

guage Model Surgeon (van der Ouderaa et al., 560

2024) interleaves recovery fine-tuning with prun- 561

ing. 562

6 Conclusion 563

In this paper, we propose SwiftPrune, a 564

hardware-friendly approach for pruning of LLMs. 565

The core innovation of our study is the devel- 566

opment of a novel Hessian-Free LLM pruning 567

method, which significantly reduces time complex- 568

ity from O(n3) to O(n) compared to mainstream 569

algorithms. This theoretical breakthrough ensures 570

that our method consistently outperforms existing 571

approaches in terms of both computational effi- 572

ciency and scalability. Built on a rigorous mathe- 573

matical foundation, SwiftPrune demonstrates ex- 574

ceptional effectiveness and relevance, particularly 575

as the scale of future LLMs continues to expand. 576

By significantly reducing computational resource 577

demands and energy consumption. 578

7 Limitations 579

While this study achieves promising results and 580

makes notable contributions to the field, we ac- 581

knowledge several limitations requiring further 582

investigation. Although our method optimizes 583

memory usage compared to existing approaches 584

(SwiftPrune’s 20.01 GB, Wanda’s 22.79 GB and 585

SparseGPT’s 30.82 GB for LLaMA2-7B), the im- 586

provements remain constrained. Consequently, 587

further optimization of memory consumption to 588

enable deployment of larger models on resource- 589

constrained devices constitutes a critical focus for 590

future research. 591

This study addresses critical challenges in large 592

language model (LLM) compression, aiming to 593

facilitate broader adoption and practical implemen- 594

tation of LLM technologies. In light of growing 595

concerns regarding ethical implications associated 596

with LLMs, particularly the potential presence of la- 597

tent biases embedded within these models, we have 598

conducted comprehensive investigations to ensure 599

the integrity of our proposed methodology. Our 600

findings demonstrate that the developed pruning 601

approach not only maintains model performance 602

but also adheres to ethical standards by preventing 603

the amplification of existing biases or introduction 604

8

of new discriminatory patterns.605

References606

Ron Banner, Yury Nahshan, and Daniel Soudry. 2019.607
Post training 4-bit quantization of convolutional net-608
works for rapid-deployment. Advances in Neural609
Information Processing Systems, 32.610

Stella Biderman, Hailey Schoelkopf, Quentin G. An-611
thony, Herbie Bradley, Kyle O’Brien, Eric Halla-612
han, Mohammad Aflah Khan, Shivanshu Purohit,613
USVSN Sai Prashanth, Edward Raff, Aviya Skowron,614
Lintang Sutawika, and Oskar van der Wal. 2023.615
Pythia: A suite for analyzing large language models616
across training and scaling. ArXiv, abs/2304.01373.617

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,618
et al. 2020. Piqa: Reasoning about physical com-619
monsense in natural language. In Proceedings of the620
AAAI conference on artificial intelligence, volume 34,621
pages 7432–7439.622

Michael Boratko, Harshit Padigela, Divyendra Mikki-623
lineni, Pritish Yuvraj, Rajarshi Das, Andrew McCal-624
lum, Maria Chang, Achille Fokoue-Nkoutche, Pa-625
van Kapanipathi, Nicholas Mattei, et al. 2018. A626
systematic classification of knowledge, reasoning,627
and context within the arc dataset. arXiv preprint628
arXiv:1806.00358.629

OpenCompass Contributors. 2023. Opencompass:630
A universal evaluation platform for foundation631
models. https://github.com/open-compass/632
opencompass.633

Peijie Dong, Lujun Li, Zhenheng Tang, Xiang Liu,634
Xinglin Pan, Qiang Wang, and Xiaowen Chu. 2024.635
Pruner-zero: evolving symbolic pruning metric from636
scratch for large language models. In Proceedings of637
the 41st International Conference on Machine Learn-638
ing, ICML’24. JMLR.org.639

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,640
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,641
Akhil Mathur, Alan Schelten, Amy Yang, Angela642
Fan, et al. 2024. The llama 3 herd of models. arXiv643
preprint arXiv:2407.21783.644

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel645
Castro, and Erich Elsen. 2020. Rigging the lottery:646
Making all tickets winners. In International confer-647
ence on machine learning, pages 2943–2952. PMLR.648

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi649
Mi, and Xinchao Wang. 2023. Depgraph: Towards650
any structural pruning. The IEEE/CVF Conference651
on Computer Vision and Pattern Recognition.652

Elias Frantar and Dan Alistarh. 2022. Optimal brain653
compression: A framework for accurate post-training654
quantization and pruning. Advances in Neural Infor-655
mation Processing Systems, 35:4475–4488.656

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas- 657
sive language models can be accurately pruned in 658
one-shot. In International Conference on Machine 659
Learning, pages 10323–10337. PMLR. 660

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and 661
Dan Alistarh. 2022. Gptq: Accurate post-training 662
quantization for generative pre-trained transformers. 663
ArXiv, abs/2210.17323. 664

Qichen Fu, Minsik Cho, Thomas Merth, Sachin Mehta, 665
Mohammad Rastegari, and Mahyar Najibi. 2024. 666
Lazyllm: Dynamic token pruning for efficient long 667
context llm inference. Preprint, arXiv:2407.14057. 668

Yonggan Fu, Haichuan Yang, Jiayi Yuan, Meng Li, 669
Cheng Wan, Raghuraman Krishnamoorthi, Vikas 670
Chandra, and Yingyan Lin. 2022. Depthshrinker: a 671
new compression paradigm towards boosting real- 672
hardware efficiency of compact neural networks. 673
In International Conference on Machine Learning, 674
pages 6849–6862. PMLR. 675

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, 676
Sid Black, Anthony DiPofi, Charles Foster, Laurence 677
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, 678
Kyle McDonell, Niklas Muennighoff, Chris Ociepa, 679
Jason Phang, Laria Reynolds, Hailey Schoelkopf, 680
Aviya Skowron, Lintang Sutawika, Eric Tang, An- 681
ish Thite, Ben Wang, Kevin Wang, and Andy Zou. 682
2024. A framework for few-shot language model 683
evaluation. 684

Song Han, Huizi Mao, and William J Dally. 2015. Deep 685
compression: Compressing deep neural networks 686
with pruning, trained quantization and huffman cod- 687
ing. arXiv preprint arXiv:1510.00149. 688

Simla Burcu Harma, Ayan Chakraborty, Elizaveta 689
Kostenok, Danila Mishin, Dongho Ha, Babak Falsafi, 690
Martin Jaggi, Ming Liu, Yunho Oh, Suvinay Sub- 691
ramanian, et al. 2024. Effective interplay between 692
sparsity and quantization: From theory to practice. 693
arXiv preprint arXiv:2405.20935. 694

Babak Hassibi, David G Stork, and Gregory J Wolff. 695
1993. Optimal brain surgeon and general network 696
pruning. In IEEE international conference on neural 697
networks, pages 293–299. IEEE. 698

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 699
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 700
Weizhu Chen, et al. 2022. Lora: Low-rank adap- 701
tation of large language models. ICLR, 1(2):3. 702

Tian Jin, Michael Carbin, Daniel M. Roy, Jonathan Fran- 703
kle, and Gintare Karolina Dziugaite. 2022. Pruning’s 704
effect on generalization through the lens of training 705
and regularization. In Proceedings of the 36th Inter- 706
national Conference on Neural Information Process- 707
ing Systems, NIPS ’22, Red Hook, NY, USA. Curran 708
Associates Inc. 709

Woosuk Kwon, Sehoon Kim, Michael W Mahoney, 710
Joseph Hassoun, Kurt Keutzer, and Amir Gholami. 711
2022a. A fast post-training pruning framework for 712

9

https://arxiv.org/abs/2304.01373
https://arxiv.org/abs/2304.01373
https://arxiv.org/abs/2304.01373
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2407.14057
https://arxiv.org/abs/2407.14057
https://arxiv.org/abs/2407.14057
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://proceedings.neurips.cc/paper_files/paper/2022/file/987bed997ab668f91c822a09bce3ea12-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/987bed997ab668f91c822a09bce3ea12-Paper-Conference.pdf

transformers. In Advances in Neural Information713
Processing Systems, volume 35, pages 24101–24116.714
Curran Associates, Inc.715

Woosuk Kwon, Sehoon Kim, Michael W Mahoney,716
Joseph Hassoun, Kurt Keutzer, and Amir Gholami.717
2022b. A fast post-training pruning framework for718
transformers. Advances in Neural Information Pro-719
cessing Systems, 35:24101–24116.720

Qi Le, Enmao Diao, Ziyan Wang, Xinran Wang, Jie721
Ding, Li Yang, and Ali Anwar. 2025. Probe prun-722
ing: Accelerating LLMs through dynamic pruning723
via model-probing. In The Thirteenth International724
Conference on Learning Representations.725

Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang,726
Pengcheng He, Weizhu Chen, and Tuo Zhao. 2023.727
Losparse: Structured compression of large language728
models based on low-rank and sparse approximation.729
In International Conference on Machine Learning,730
pages 20336–20350. PMLR.731

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-732
Ming Chen, Wei-Chen Wang, Guangxuan Xiao,733
Xingyu Dang, Chuang Gan, and Song Han. 2024.734
Awq: Activation-aware weight quantization for on-735
device llm compression and acceleration. Proceed-736
ings of Machine Learning and Systems, 6:87–100.737

Zhiqiang Liu, Yong Dou, Jingfei Jiang, Jinwei Xu,738
Shijie Li, Yongmei Zhou, and Yingnan Xu. 2017.739
Throughput-optimized fpga accelerator for deep con-740
volutional neural networks. ACM Transactions on741
Reconfigurable Technology and Systems (TRETS),742
10(3):1–23.743

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang744
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,745
Yuandong Tian, Christopher Re, et al. 2023. Deja746
vu: Contextual sparsity for efficient llms at infer-747
ence time. In International Conference on Machine748
Learning, pages 22137–22176. PMLR.749

Kai Lu, Yaohua Wang, Yang Guo, Chun Huang, Sheng750
Liu, Ruibo Wang, Jianbin Fang, Tao Tang, Zhaoyun751
Chen, Biwei Liu, et al. 2022. Mt-3000: a hetero-752
geneous multi-zone processor for hpc. CCF Trans-753
actions on High Performance Computing, 4(2):150–754
164.755

Kai Lv, Yuqing Yang, Tengxiao Liu, Qinghui Gao,756
Qipeng Guo, and Xipeng Qiu. 2023. Full parameter757
fine-tuning for large language models with limited758
resources. arXiv preprint arXiv:2306.09782.759

X Ma, G Fang, and X Wang. 2023a. On the structural760
pruning of large language models. NeurIPS, Llm-761
pruner.762

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023b.763
Llm-pruner: on the structural pruning of large lan-764
guage models. In Proceedings of the 37th Interna-765
tional Conference on Neural Information Processing766
Systems, NIPS ’23, Red Hook, NY, USA. Curran767
Associates Inc.768

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023c. 769
Llm-pruner: On the structural pruning of large lan- 770
guage models. Advances in neural information pro- 771
cessing systems, 36:21702–21720. 772

Stephen Merity, Caiming Xiong, James Bradbury, and 773
Richard Socher. 2016. Pointer sentinel mixture mod- 774
els. arXiv preprint arXiv:1609.07843. 775

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish 776
Sabharwal. 2018. Can a suit of armor conduct elec- 777
tricity? a new dataset for open book question answer- 778
ing. arXiv preprint arXiv:1809.02789. 779

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, 780
Christos Louizos, and Tijmen Blankevoort. 2020. Up 781
or down? adaptive rounding for post-training quan- 782
tization. In International Conference on Machine 783
Learning, pages 7197–7206. PMLR. 784

Vern Paxson, Mark Allman, Jerry Chu, and Matt Sar- 785
gent. 2011. Rfc6298: Computing tcp’s retransmis- 786
sion timer. Technical report. 787

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat- 788
ula, and Yejin Choi. 2021. Winogrande: An adver- 789
sarial winograd schema challenge at scale. Commu- 790
nications of the ACM, 64(9):99–106. 791

Victor Sanh, Thomas Wolf, and Alexander Rush. 2020. 792
Movement pruning: Adaptive sparsity by fine-tuning. 793
Advances in neural information processing systems, 794
33:20378–20389. 795

Michael Santacroce, Zixin Wen, Yelong Shen, and 796
Yuanzhi Li. 2023. What matters in the structured 797
pruning of generative language models? arXiv 798
preprint arXiv:2302.03773. 799

Shashata Sawmya, Linghao Kong, Ilia Markov, Dan 800
Alistarh, and Nir Shavit. 2024. Sparse expan- 801
sion and neuronal disentanglement. arXiv preprint 802
arXiv:2405.15756. 803

Hang Shao, Bei Liu, and Yanmin Qian. 2024. One-shot 804
sensitivity-aware mixed sparsity pruning for large 805
language models. In ICASSP 2024-2024 IEEE Inter- 806
national Conference on Acoustics, Speech and Signal 807
Processing (ICASSP), pages 11296–11300. IEEE. 808

Maying Shen, Pavlo Molchanov, Hongxu Yin, and 809
Jose M. Alvarez. 2022. When to prune? a policy 810
towards early structural pruning. In Proceedings of 811
the IEEE/CVF Conference on Computer Vision and 812
Pattern Recognition (CVPR), pages 12247–12256. 813

Sidak Pal Singh and Dan Alistarh. 2020. Woodfisher: 814
Efficient second-order approximation for neural net- 815
work compression. Advances in Neural Information 816
Processing Systems, 33:18098–18109. 817

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico 818
Kolter. 2023. A simple and effective pruning ap- 819
proach for large language models. arXiv preprint 820
arXiv:2306.11695. 821

10

https://proceedings.neurips.cc/paper_files/paper/2022/file/987bed997ab668f91c822a09bce3ea12-Paper-Conference.pdf
https://openreview.net/forum?id=WOt1owGfuN
https://openreview.net/forum?id=WOt1owGfuN
https://openreview.net/forum?id=WOt1owGfuN
https://openreview.net/forum?id=WOt1owGfuN
https://openreview.net/forum?id=WOt1owGfuN
https://www.rfc-editor.org/rfc/rfc6298
https://www.rfc-editor.org/rfc/rfc6298
https://www.rfc-editor.org/rfc/rfc6298

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter.822
2024. A simple and effective pruning approach for823
large language models. In The Twelfth International824
Conference on Learning Representations.825

Minjin Tang, Mei Wen, Yasong Cao, Junzhong Shen,826
Jianchao Yang, Jiawei Fei, Yang Guo, and Sheng827
Liu. 2022. Mentha: Enabling sparse-packing com-828
putation on systolic arrays. In Proceedings of the829
51st International Conference on Parallel Process-830
ing, pages 1–11.831

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter832
Albert, Amjad Almahairi, Yasmine Babaei, Niko-833
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,834
Shruti Bhosale, Daniel M. Bikel, Lukas Blecher, Cris-835
tian Cantón Ferrer, Moya Chen, Guillem Cucurull,836
David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin837
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,838
Naman Goyal, Anthony S. Hartshorn, Saghar Hos-839
seini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor840
Kerkez, Madian Khabsa, Isabel M. Kloumann, A. V.841
Korenev, Punit Singh Koura, Marie-Anne Lachaux,842
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai843
Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,844
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew845
Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan846
Saladi, Alan Schelten, Ruan Silva, Eric Michael847
Smith, R. Subramanian, Xia Tan, Binh Tang, Ross848
Taylor, Adina Williams, Jian Xiang Kuan, Puxin849
Xu, Zhengxu Yan, Iliyan Zarov, Yuchen Zhang, An-850
gela Fan, Melanie Kambadur, Sharan Narang, Aure-851
lien Rodriguez, Robert Stojnic, Sergey Edunov, and852
Thomas Scialom. 2023. Llama 2: Open foundation853
and fine-tuned chat models. ArXiv, abs/2307.09288.854

Tycho F. A. van der Ouderaa, Markus Nagel, Mart Van855
Baalen, and Tijmen Blankevoort. 2024. The LLM856
surgeon. In The Twelfth International Conference on857
Learning Representations.858

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi859
Chen. 2024. Sheared LLaMA: Accelerating lan-860
guage model pre-training via structured pruning. In861
The Twelfth International Conference on Learning862
Representations.863

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali864
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a865
machine really finish your sentence? arXiv preprint866
arXiv:1905.07830.867

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa,868
and Zhiru Zhang. 2019. Improving neural network869
quantization without retraining using outlier channel870
splitting. In International conference on machine871
learning, pages 7543–7552. PMLR.872

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,873
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen874
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A875
survey of large language models. arXiv preprint876
arXiv:2303.18223.877

Michael Zhu and Suyog Gupta. 2017. To prune, or not 878
to prune: exploring the efficacy of pruning for model 879
compression. arXiv preprint arXiv:1710.01878. 880

A More experimental results 881

11

https://openreview.net/forum?id=PxoFut3dWW
https://openreview.net/forum?id=PxoFut3dWW
https://openreview.net/forum?id=PxoFut3dWW
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://openreview.net/forum?id=DYIIRgwg2i
https://openreview.net/forum?id=DYIIRgwg2i
https://openreview.net/forum?id=DYIIRgwg2i
https://openreview.net/forum?id=09iOdaeOzp
https://openreview.net/forum?id=09iOdaeOzp
https://openreview.net/forum?id=09iOdaeOzp

Pruning Ratio Method Latency(s)↓ WikiText2↓ ARC_c ARC_e WG PIQA HS OQ Avg↑

Dense LLaMA2-7B _ 9.36 43.51 71.54 70.48 78.94 76.13 44.00 64.10

10%
SparseGPT 371.83 10.44 43.86 71.42 70.24 77.52 76.19 42.40 63.60

Wanda 103.32 9.38 44.11 71.54 70.63 76.12 78.78 45.00 64.36
SwiftPrune (ours) 9.55 9.88 44.02 71.62 70.53 76.73 78.80 44.31 64.33

20%
SparseGPT 371.34 9.56 43.60 70.79 69.53 78.29 76.12 45.20 63.92

Wanda 103.51 9.57 44.03 71.42 69.29 78.24 76.04 44.80 63.97
SwiftPrune (ours) 9.37 9.67 43.42 70.33 69.37 78.31 76.01 44.88 63.72

30%
SparseGPT 357.03 9.86 43.68 70.07 69.13 78.07 75.17 44.20 63.38

Wanda 100.04 9.90 44.11 70.37 69.29 78.29 75.30 45.00 63.72
SwiftPrune (ours) 9.12 10.02 43.91 70.01 69.11 78.04 75.22 45.01 63.55

40%
SparseGPT 357.03 9.39 43.83 69.69 69.13 78.84 73.15 45.40 63.34

Wanda 100.04 10.55 42.75 69.14 68.74 77.91 73.55 43.00 62.51
SwiftPrune (ours) 8.62 10.34 42.84 69.01 68.09 78.01 73.91 42.69 62.43

Table 8: Zero-shot performance of the pruned LLaMA2-7B. “Pruning Ratio” refers to the proportion of parameters
removed relative to the original number of parameters. “Latency(s)” indicates represents the time overhead required
for overall model pruning (excluding communication time such as loading to GPU). The ’Avg’ denotes the average
value calculated across six classification datasets (HS, WG, and OQ represent HellaSwag, WinoGrande, and
OpenbookQA respectively). Bold formatting indicates the best performance under equivalent compression ratios.

12

	Introduction
	Background
	The SwiftPrune Method
	Contribution-Oriented Weight Metrics
	EWMA Adaption
	Structured Sparse Support

	Experiments
	Experimental setup
	Evaluation of SwiftPrune Algorithm

	Related Work
	Conclusion
	Limitations
	More experimental results

