Under review as a conference paper at ICLR 2025

EVOSCHEMA: TOWARDS TEXT-TO-SQL ROBUSTNESS
AGAINST SCHEMA EVOLUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural text-to-SQL models, which translate natural language questions (NLQs)
into SQL queries given a database schema, have achieved remarkable perfor-
mance. However, database schemas frequently evolve to meet new requirements.
Such schema evolution often leads to performance degradation for models trained
on static schemas. Existing work either mainly focuses on simply paraphras-
ing some syntactic or semantic mappings among NLQ, DB and SQL or lacks
a comprehensive and controllable way to investigate the model robustness issue
under the schema evolution. In this work, we approach this crucial problem by
introducing a novel framework, EvoSchema, to systematically simulate diverse
schema changes that occur in real-world scenarios. EvoSchema builds on our
newly defined schema evolution taxonomy, which encompasses a comprehensive
set of eight perturbation types, covering both column-level and table-level modifi-
cations. We utilize this framework to build an evaluation benchmark to assess the
models’ robustness against different schema evolution types. Meanwhile, we pro-
pose a new training paradigm, which augments existing training data with diverse
schema designs and forces the model to distinguish the schema difference for the
same questions to avoid learning spurious patterns. Our experiments demonstrate
that the existing models are more easily affected by table-level perturbations than
column-level perturbations. In addition, the models trained under our paradigm
exhibit significantly improved robustness, achieving up to 33 points improvement
on the evaluation benchmark compared to models trained on unperturbed data.
This work represents a significant step towards building more resilient text-to-
SQL systems capable of handling the dynamic nature of database schemasE]

1 INTRODUCTION

Text-to-SQL parsing aims to translate natural language questions (NLQs) into SQL queries given a
database schema, enabling the development of natural language interfaces that allow users to query
data and invoke services without requiring programming skills (Wang et al., [2020; Zhang et al.,
2024a; |Yu et al) 2018} Zhang et al.| 2023} [Li et al.l 2024} Tai et al., 2023). Existing neural text-
to-SQL models have achieved remarkable performance on existing benchmarks (Li et al., 2024;
Yu et al.| 2018), which play an important role in empowering different platforms such as business
and marketing platforms (Song et al., 2024} Zhang et al., 2024b) and being integrated into virtual
assistants to enable real-time data query and analysis (Deksne & Skadins, [2022)).

However, database schemas are not static; they frequently evolve to accommodate new use cases and
improve efficiency (Hillenbrand & Storll 2021} (Cleve et al.| 2015)). For instance, depending on the
scenario, a large patient table might be merged from or split into two tables: a patient information
table and a patient diagnosis table (Figure[I}c), to reduce redundancy, enhance data integrity, and
optimize performance (Kumar & Azad, 2017). Such schema evolution occurs frequently, which
often leads to distribution shifts (Quionero-Candela et al., [2009; [Koh et al., 2021]) such as nomen-
clature shifts, data granularity shifts, table and column relation shifts and schema complexity shifts.
These distribution shifts can cause significant performance degradation when the model trained on
old database schema is adapting to new schema designs.

'Our code and data will be publicly available.

Under review as a conference paper at ICLR 2025

Q: What was the gender of the first AORTITIS diagnosed patient?

(b) Column-level Schema Evolution
(a) Framework (Patient (Patient A
pspmmra AR o | oo | Doto | Diogrosis | ke[1o | ox [Bithday
— olumn-level
NL
| DDQL oo AORTITIS | RemoveColumns | AORTITIS
Remove
Gold SQL Rename
SELECT Sex FROM Patient WHERE Diagnosis = ‘AORTITIS’ AND Date IS NOT NULL ORDER BY Date ASC LIMIT 1
o
" . N
(c) Table-level Schema Evolution
Schema | |
Change 4 Patient \ f Patient_Info \ Patient_Diagnosis N
moverpru MR T 5o] Dot] Disgrosis | birtndoy JMkkdibiadudll s | Sox | Bivinay JI[1a] Devo | Disgrnosis
o —— . .
R AORTITIS Merge Tables AORTITIS
sQL — Rename i
Change Split SELECT Sex FROM Patient SELECT T1.Sex FROM I_'-’atlent__lnfo AST1
Merge N L. " INNER JOIN Patient_Diagnosis AST2ON T1.ld = T2.Id
WHERE Diagnosis = ‘AORTITIS . . N
WHERE T2.Diagnosis = ‘AORTITIS

AND Date IS NOT NULL AND T2.Date IS NOT NULL
ORDER BY Date ASC LIMIT 1 ’

ORDER BY T2.Date ASC LIMIT 1
& %

Figure 1: The left (a) is the overview of the EvoSchema framework. The top right (b) is a column-
level schema evolution example; the bottom right (c) is a table-level schema evolution example.

This challenge highlights a crucial issue in model robustness: how well can a text-to-SQL model
adapt to changes in the database schema? Recent studies introduce evaluation benchmarks designed
to expose robustness issues by perturbing NLQs, databases or SQL queries (Chang et al., 2023;
Deng et al., 2021} P1 et al.| [2022; [Ma & Wang},2021)). However, these studies have at least one of the
following limitations: 1) mainly focus on the syntactic paraphrasing or simple semantic mappings
among NLQ, DB and SQL (Chang et al., 2023 Deng et al.,|2021); (2) lack a taxonomy of compre-
hensive schema evolution types (P1 et al.| 2022)); (3) only focus on schema evolution that does not
lead to SQL changes (Ma & Wang| |2021). These efforts are insufficient in the face of increasingly
complex and rich database schema changes found in reality. Meanwhile, while it is natural to con-
sider collecting new data after schema evolution for retraining a model, repeating the entire model
training life cycle frequently can be costly in terms of both time and resources.

Under this background, we seek to answer the following two questions: (1) How sensitive are exist-
ing text-to-SQL models to various types of database schema changes? (2) How can we train a more
robust text-to-SQL model that not only performs well on existing database schemas but also adapts
effectively to schema changes? Towards this end, we propose a novel schema evolution synthesis
framework, EvoSchema, which can simulate a wide range of realistic schema design changes by
perturbations. Our framework can augment the existing datasets with more comprehensive and real-
istic schema change types in a systematic way, which not only builds the foundation to evaluate the
robustness against different granularities of schema evolution, but also improves models’ ability by
forcing models to distinguish the structure difference within the schema so as to avoid learning the
spurious patterns.

As illustrated in Figure[I] EvoSchema framework builds upon our newly defined taxonomy, which
encompasses a total of eight types of perturbations over schema, covering both column-level and
table-level changes. Column-level perturbations include adding, removing, and renaming columns,
while table-level perturbations involve adding, removing, renaming, splitting, and merging tables.
We keep the NLQs fixed and examine the robustness of a model under different schema evolutions,
and show that existing models are more easily affected by table-level perturbations than column-
level perturbations. Moreover, we enhance model robustness by training them with the same ques-
tions but coupled with different schema designs to generate the corresponding SQL queries. This
training procedure forces the model to distinguish the schema difference which can help models gain
a stronger ability to recognize the correct table and column relation and map them to the questions.
Our experimental results demonstrate that the perturbation data generated by this framework can
help train better text-to-SQL models, which are more robust to different schema evolution types,
especially on table-level perturbations.

In summary, our main contributions are as follows:

Under review as a conference paper at ICLR 2025

* We formulate a crucial schema evolution adaptive text-to-SQL problem and present a novel
framework, EvoSchema to study this problem. We introduce a comprehensive taxonomy
of the schema evolution types and build the framework based on the taxonomy to synthesize
realistic schema designs by column-level and table-level perturbations.

* We develop an evaluation benchmark that allows for thorough and comprehensive assess-
ment of model robustness against various schema perturbations.

* We propose a new training paradigm: augmenting the existing training data with differ-
ent schema designs, which not only increase the data diversity, but also force the model
to distinguish the schema difference during training. Our approach yields better text-to-
SQL models that achieve up to 33 points gain on different types of schema perturbation
evaluation data, compared to models trained on unperturbed, original training data.

2 METHODOLOGY

2.1 BACKGROUND

In the dynamic landscape of databases, schemas frequently evolve to meet new demands, intro-
ducing significant challenges for text-to-SQL models (Delplanque et al., [2018}; |Cleve et al., [2015)).
These schema changes can vary widely, from minor modifications to complete restructuring, and
can significantly impact the performance of models trained on static schemas. In realistic scenarios,
a database can often contain a large number of tables, and only several related tables are responsi-
ble for a natural language question (NLQ). In our experiment, we represent the relevant database
schema using Data Definition Language (DDL) E] and combine it with the NLQ as input. This input
is then used to prompt the model to generate the corresponding SQL query.

2.2 RATIONALE FOR SCHEMA EVOLUTION TYPES

When a database schema evolves, it can induce distribution shifts in the data that may impact model
performance. We categorize potential distribution shifts into four types: nomenclature shifts, data
granularity shifts, table and column relation shifts, and schema complexity shifts. (1) Nomenclature
shifts occur when tables and columns are renamed, which may alter the convention of the established
terminology within the schema. For example, tables originally named “Products”, “Customers”, and
“Orders” might be renamed to “Items”, “Clients”, and “Purchases”, respectively. Such changes often
reflect updates in business terminology or compliance with new standards. A desired model should
handle those nomenclature shifts to adapt to the new terminology. (2) Data granularity shifts arise
from adding or removing columns or tables, which changes the level of detailedness captured in the
database. For instance, an “Employee” table with a single “ContactNumber” field might involve
another two separate “WorkContact” and “PersonalContact” fields later. This increases the data
granularity to meet new requirements, necessitating models to adapt to more complex and detailed
semantics. (3) Table and column relation shifts and schema complexity shifts mainly result from
restructuring tables through splitting or merging. This process can highly affect how each table
is related to other tables by which column. Both the primary keys and foreign keys may change
along with the table restructure. Besides, the schema complexity may change when multiple tables
merge from or split into one table. A desired model is expected to be robust to such changes. By
categorizing the distribution shifts caused by schema evolution, we can more effectively understand
and evaluate a model’s capacity to adapt to changes in the underlying database schema.

2.3 SCHEMA EVOLUTION SYNTHESIS FRAMEWORK

Our study aims to cover comprehensive potential schema evolution types, which can foster the
robustness evaluation of the existing text-to-SQL models and inspire robust model training. We
synthesize all the schema evolution types through hybrid strategies, which will leverage both the
heuristic rules to guarantee the data quality and LLMs to ensure diversity.

’DDL defines the structure and properties of a database, providing detailed information necessary for
database creation, including column types and primary/foreign keys.

Under review as a conference paper at ICLR 2025

Broad Coverage of Different Schema Evolution Types: We aim to encapsulate a broad range of
schema evolution types, recognizing their prevalence and impact in real-world scenarios. Specif-
ically, our schema evolution taxonomy includes both column-level and table-level perturbations,
which are categorized into eight distinct types. Column-level perturbations comprise three types:
adding, removing, and renaming columns, where modifications are restricted to the columns within
existing tables. Table-level perturbations encompass five types: adding, removing, renaming, split-
ting, and merging tables. These perturbations occur frequently in practice, underscoring the need
for text-to-SQL models that can robustly handle such changes.

Hybrid Data Synthesis Strategies: To ensure both diversity and quality in the generation of schema
perturbations, we employ a combination of heuristics and GPT models to synthesize various pertur-
bation types. For each given seed instance, consisting of a <NLQ, relevant schema, SQL> triple,
we maintain the natural language question (NLQ) fixed across all perturbation types, while only
modifying the relevant schema. The corresponding SQL query is adjusted as necessary to remain
consistent with the changes in the database schema.

2.4 DATA GENERATION

Our proposed schema evolution framework can simulate different types of schema perturbations
in a configurable way. For adding or renaming columns, both the modified column size and the
column position in the tables are set randomly, and we set the original column size in the table as
the maximum number of columns to be changed. For removing columns, we can randomly remove
important or unimportant columns from the existing relevant tables. The important columns are
the columns that appear in the gold SQL, which will inevitably affect the prediction. For adding,
removing, or renaming tables, we randomly add, remove or rename one or multiple tables.

Schema Change: To ensure the diversity and reasonability of the synthesized schema, we leverage
the capabilities of GPT-3.5 and GPT-4 to synthesize realistic and contextually appropriate columns
or tables, which help effectively produce high-quality synthetic data that meets our requirements.
For adding or renaming columns and tables, we input the existing relevant tables to GPT-3.5, and
let the model generate the potential tables or columns that fit the context. For splitting tables or
merging tables, since they are more complex than other perturbations, we use GPT-4 to choose the
tables that can be split or merged and then use the modified tables to replace the original ones.
For adding or renaming columns and tables, we apply heuristics to choose the suitable synthesized
tables or columns, which are not duplicated with the existing ones. Besides, to ensure the correct
relationship among different tables after modifying the schema, we apply heuristics to ensure all the
foreign keys change along with their referenced table names and column names. When removing
columns or tables, any foreign keys in other tables that reference the removed columns or tables will
be removed as well.

SQL Change: To ensure the consistency of the <NLQ, relevant schema, SQL>, after we change
the relevant table schema, we revise the gold SQL accordingly. Since the NLQs are the same for
adding or removing columns and tables, and the schema evolution here doesn’t affect answering the
questions, we keep the gold SQL unchanged for these perturbation types. For renaming columns or
tables, we revise gold SQL if they appear in the gold SQL. For table splitting or merging, due to the
complexity and variation in the required SQL changes, we use GPT-4 to revise the gold SQL. This
revision is based on the mappings from the original to the new tables and columns, as well as the
necessary adjustments to the JOIN paths. We manually check the edited gold SQL for the evaluation
benchmark to make sure they are correct.

By employing these strategies, EvoSchema offers a comprehensive and diverse set of schema evo-
lution scenarios that mirror the complexities encountered in real-world database management. By
integrating heuristics with LLM-generated perturbations, we maintain both of the diversity and qual-
ity, ensuring that the synthesized data is both realistic and challenging.

2.5 TRAINING PARADIGM

In our work, we propose a new training paradigm to enhance the model’s robustness against different
schema evolution. For each <NLQ, relevant schema, SQL> triple, we fix the NLQ in the training
data, and augment each triple with different schema designs, which may or may not lead to SQL

Under review as a conference paper at ICLR 2025

change. Consequently, we obtain multiple triples that can be derived from each of the original triples.
We train the model by learning multiple schema designs and SQLs to the original question mappings,
which can improve the model’s ability to identify the correct relationships among different tables and
columns to the question, and can better distinguish the difference among different schema designs.
Through this procedure, the model can avoid learning spurious patterns better and therefore enhance
the robustness against different schema evolution types.

3 EXPERIMENT SETUP

3.1 DATASET

For our experiments, we utilize the BIRD (Li et al.| | 2024) and Spider (Yu et al.,[2018) datasets, which
are specifically designed for the text-to-SQL task. Both of them consist of NLQs, corresponding
database schemas, and gold SQL queries. These datasets are diverse, encompassing a wide range of
real-world database scenarios, which provides a robust foundation for evaluating the performance
of models in translating NLQs into SQLs.

Schema Perturbations: To evaluate the robustness of the text-to-SQL models, we use the BIRD and
Spider datasets not only in their original form but also augmented with various column-level and
table-level schema perturbations. We ensure that the NLQs remain fixed, while the schema and SQL
queries are adjusted as necessary to reflect the changes introduced by our perturbations. We follow
the standard train/dev split provided with these datasets, and apply all the perturbations on both
training data and evaluation data. The data statistics are in Table [8[and the examples of different
perturbation types are in Figure[2]in the Appendix.

3.2 TRAINING AND EVALUATION SETTINGS

Training Setting: We choose four open-source models: Code Llama-7B (Roziere et al., [2024),
Mistral-7B (Jiang et al., 2023), Llama 3-8B (Dubey et al., [2024) and SQLCoder-7B [’| and two
closed-source models: GPT-3.5 E] and GPT-4 (OpenAl et al., |2024) for our experiments. For these
four open-source models, we explore two settings: 1) without perturbation types: the model is
trained on the original training data without any perturbation types introduced during training. 2)
with perturbation types: the model is trained by merging both the original training data and the
perturbation training data. For closed-source models, we only use them for evaluation.

Evaluation Setting: For all the closed-source models and the finetuned open-sourced models, we
evaluate them under two settings: 1) without perturbation types: this setting uses the standard,
unaltered original evaluation data to evaluate the model performance. 2) with perturbation types:
the models are evaluated on data where different perturbations are introduced. By comparing the
model performance under these two settings, we can assess how resilient the finetuned models and
GPT models are to schema evolution in text-to-SQL parsing. This setup provides a comprehensive
evaluation of model performance in both standard and perturbed environments, allowing for detailed
analysis of robustness and adaptability across different models and schema evolution types.

3.3 EVALUATION METRICS

1) Table Match F1: this score is a metric to measure how well the model correctly identifies the
relevant tables required to generate a valid SQL query. The F1 score is a harmonic mean of preci-
sion and recall, where the precision is the percentage of tables correctly predicted out of all tables
predicted by the model and the recall is the percentage of tables correctly predicted out of all the
actual tables that should have been selected. The Table Match F1 score combines these two metrics
to provide a balanced evaluation, which can assess the ability of text-to-SQL models to correctly
identify the required tables from the database schema to form accurate queries. A higher Table
Match F1 indicates better performance in selecting the correct tables for the SQL query.

2) Column Match F1: this score is to evaluate how accurately the model identifies the relevant
columns required to generate a valid SQL query from a natural language input. Like the Table

3https://huggingface.co/defog/sqlcoder-7b-2
*https://openai.com/chatgpt/

Under review as a conference paper at ICLR 2025

Match F1, it measures the balance between precision and recall but is applied specifically to the
columns of the database. A higher Column Match F1 score indicates better performance in selecting
the right columns for the SQL query.

3) Execution Accuracy: this metric measures whether the predicted SQL query can return the correct
results as the gold SQL when executing against a database. Since the schema evolution may lead
to database restructure and there are no existing values for the new database after schema change,
we synthesize values to create new databases and execute the new gold SQLs after schema evolu-
tion on them. Due to the complexity of the value synthesis and huge manual efforts to ensure an
executable database for each instance, we filter out the cases where synthesized database is not exe-
cutable by new gold SQL. This procedure can lead to very small size of the evaluation data for some
perturbation types, so we mainly use the other two metrics as the main metrics.

3.4 TRAINING AND EVALUATION DETAILS

We choose Code Llama-7B (Roziere et al., 2024), Mistral-7B (Jiang et al. 2023), Llama 3-8B
(Dubey et al.|,2024) and SQLCoder—7BIZI as our open-source base models. We fine-tune these models
with Huggingface transformers library (Wolf et al.,[2020). For the perturbation training, We merge
all the perturbation data and randomly shuffle them as our final training data. We use a learning rate
of 2e-5 for training Code Llama, Llama 3 and SQLCoder, and 5e-6 for training Mistral. Our batch
size is 4. We train all the models on 4 A100 80GB GPUs and use a cosine scheduler with a 0.03
warm-up period for 6 epochs. We employ FSDP (Zhao et al.| [2023)) to efficiently train the model.
We set the max input length of training as 1024 and the max output length of inference as 500. For
inference, we use vllm (Wolf et al., |2020) for batch evaluation, and we set the batch size as 16. We
do the inference on an 80G A100 GPU. For closed-source LLMs, we use Azure OpenAl AP]E} We
use the 2023-12-01-preview version for GPT-4, and 2023-07-01-preview version for GPT-3.5.

4 RESULTS AND ANALYSIS

4.1 MAIN RESULTS

As TableE] and Table@] shows, we train Codellama, Mistral, Llama3 and SQLCoder on the original
BIRD training data with and without different perturbation types, and evaluate the model on the
original BIRD evaluation data and different perturbation types. We observe that:

The models trained on different perturbation types are more robust to the schema variation.
Adding the perturbation data during training: 1) does not sacrifice the performance of the original
evaluation data; 2) achieves comparable or better results on different perturbation types. Column-
level schema changes are relatively minor compared with table-level schema changes. We can see
the models perform better on both the column-level and table-level perturbation types in general,
which shows the models are robust to both minor schema evolution and major schema evolution.

The models trained on different perturbation types demonstrate high robustness on the table-
level schema evolution. Adding the perturbation data during training achieves significantly better
results on table-level perturbation types (i.e., major schema change types). By comparing these four
models’ performance with and without the perturbation data, we observe that for adding tables, the
model trained with perturbation data can achieve up to 33 points improvement for table match F1 and
18 points improvement for column match F1; for splitting tables, the model trained with perturbation
data can achieve up to 14 points improvement for table match F1 and 4.2 points improvement for
column match F1; for merging tables, the model trained on perturbation data can achieve up to 4
points improvement on table match F1 and 3 points improvement for column match F1.

Closed-source models are robust to different scheme evolution types in general. As table
shows, we compare the model performance on GPT models and four open-source models trained
with and without perturbation types. We observe that: the GPT models are robust to different
schema evolution types in general, which can have much better results than the models trained
without perturbation types. Besides, even for those major schema change types such as adding,
splitting and merging tables, the GPT results are still very close to the performance compared with

>https://learn.microsoft.com/en-us/azure/ai-services/openai/reference

Under review as a conference paper at ICLR 2025

Table 1: Evaluation on BIRD. “w/”: the model is trained by merging the original data and all the
perturbation training types together; “w/o0”: the model is only trained on the original training data.
The best performance for each model is in bold, and red shows a larger gain. “-”’: some of the

relevant tables are removed so there should be no gold SQL used to calculate the metrics here.

. Code Llama Mistral Llama 3 SQLCoder GPT-3.5 GPT4
Perturbation Type
w/o w/ | wilo w/ | wlo w/ | wlo w/ |
Table Match F1
Original \ 89.77 90.42 \ 89.58 90.62 \ 89.96 89.53 \ 89.69 90.64 \ 87.28 88.98
Add Columns 89.73 90.27 | 89.65 90.03 | 89.08 89.70 | 89.30 90.52 86.35 88.12

Remove Columns | 89.82 90.24 | 89.89 90.66 | 90.09 89.82 | 89.81 90.54 87.18 88.87
Rename Columns | 85.28 85.07 | 84.32 8427 | 83.74 8292 | 85.32 84.93 81.73 83.20

Add Tables 57.88 89.50 | 57.67 89.30 | 55.11 88.51 | 57.44 89.38 83.54 85.79
Remove Tables - - - - - - - - - -
Rename Tables 88.84 90.32 | 89.40 90.56 | 87.18 89.14 | 89.40 90.48 87.02 88.45

Split Tables 71.99 81.55 | 66.12 80.87 | 71.08 80.12 | 72.52 81.92 77.52 80.68
Merge Tables 87.52 88.95 | 8552 88.50 | 83.88 87.82 | 86.70 88.13 84.88 87.09
Column Match F1
Original | 80.66 81.64 | 81.10 82.36 | 79.13 7872 | 81.52 8197 | 7828 80.78
Add Columns 78.26 80.27 | 79.16 80.18 | 75.79 76.87 | 79.09 80.46 75.03 78.58

Remove Columns | 82.67 82.75 | 83.09 84.00 | 81.56 80.69 | 83.20 83.18 80.33 82.55
Rename Columns | 76.50 76.94 | 76.35 76.73 | 72.24 71.07 | 76.84 77.38 73.40 75.90

Add Tables 63.81 81.14 | 6539 81.09 | 5936 77.96 | 6291 81.23 76.45 79.32
Remove Tables - - - - - - - - - -
Rename Tables 79.60 8091 | 80.32 81.29 | 7749 77.46 | 80.77 81.79 77.78 80.04
Split Tables 7530 78.45 | 73.87 78.11 | 73.81 73.95 | 75.83 78.59 74.89 77.41
Merge Tables 67.73 68.98 | 66.27 69.39 | 65.60 65.79 | 67.55 69.09 65.07 69.13

the original evaluation data. However, comparing the model performance on the open-source LLMs
and closed-source LLMs, the models trained with perturbation data have better performance than
GPT models on both column-level perturbation and column-level perturbation evaluation data. This
indicates that our models trained with perturbation data are more robust than GPT models.

Table-level perturbation has a larger impact than column-level perturbation on the model
performance. As Table|I|shows, comparing with the performance on the original evaluation data:
adding tables and splitting tables will lead to a significant table match F1 drop; adding tables, split-
ting tables and merging tables will lead to a significant column match F1 drop. This phenomenon
indicates that adding tables or splitting tables easily confuses the models in choosing the correct
tables to generate the SQL query. For merging tables, even though the model can correctly choose
tables, it’s a bit hard for the model to pick up the correct columns when the columns from different
tables go into the same table. While for the column-level performance, there are limited differences
with the performance on the original data.

Reducing table schema complexity is beneficial for model performance. Compare the model per-
formance on column-level perturbation evaluation and the original evaluation data, adding columns
results in a decrease in column match F1, whereas removing columns leads to an increase in column
match F1. It indicates simpler table schema is beneficial for models to select columns, as removing
columns simplifies the table schema while adding columns makes the table schema more complex.

4.2 INFLUENCE OF IRRELEVANT TABLES

We observed that the model trained with perturbation types demonstrates significant robustness to
table-level perturbations, such as adding and splitting tables. Upon analyzing the errors, we found
that models trained without perturbation types tend to predict SQL queries that join all available
tables, even when some tables are irrelevant to the NLQs and SQLs. We hypothesize that this occurs
because during training without perturbations, the model only sees relevant table schemas, causing
it to learn spurious patterns that always try to join all the input tables.

Under review as a conference paper at ICLR 2025

Table 2: Evaluation on BIRD. Table 3: Irrelevant tables effect. “w/”: the model is trained with
“w/”: the model is trained with all the perturbation types; “w/0”: the model is only trained on the
all the perturbation types; “w/0”: original training data; “w/o+": the model is only trained on the
the model is only trained on the original training data, but for the input table schema, we also add

original training data. irrelevant tables.
Exec Acc on BIRD Add Irrelevant Tables Effect
. Exec Acc . Table Match F1 Column Match F1
Perturbation Type w/o w/ Perturbation Type wlo w/o+ w/ | wlo wlo+ w/
Original | 6236 61.47 Original | 89.77 87.65 90.42 | 80.66 79.24 81.64
Add Columns 60.99 6031 AddColumns 89.73 86.35 90.27 | 7826 7531 80.27

Remove Columns | 62.61 60.67 Remove Columns | 89.82 87.30 90.24 | 82.67 80.74 82.75
Rename Columns | 58.75 58.90 Rename Columns | 85.28 8190 85.07 | 76.50 73.28 76.94

Add Tables 4950 62.54 Add Tables 57.88 88.01 89.50 | 63.81 79.51 81.14
Remove Tables - - Remove Tables - - - - - -

Rename Tables 58.64 59.05 Rename Tables 88.84 86.84 90.32 | 79.60 78.47 80.91
Split Tables 50.00 60.67 Split Tables 7199 67.27 81.55 | 7530 70.39 7845
Merge Tables 48.76 52.88 Merge Tables 87.52 8536 88.95 | 67.73 65.78 68.98

To explore whether simply adding irrelevant tables could yield similar performance to models
trained with perturbation data, we conducted an experiment where we trained Code Llama on BIRD.
As shown in Table [3] adding irrelevant tables led to similar performance on the ”Add Tables” per-
turbation type. However, it caused a performance drop on other perturbation types. This suggests
that combining all perturbation data is necessary to train a more robust model.

4.3 INFLUENCE OF PERTURBATION TYPES

We explore the effect of the column-level perturbation types and table-level perturbation types. As
Table 4| shows, we train the model with both column-level and table-level perturbation types, and
compare it with the model trained without column-level perturbation types and without table-level
perturbation types. From our experiments, we found that without training on table-level perturba-
tions, the model performance can be slightly better than the model trained with both column-level
and table-level perturbation types on column-level perturbation types, while can lead to a significant
performance drop on the table-level perturbation types. This indicates that the table-level perturba-
tion data has a limited effect on the column-level perturbation types while having a huge impact on
the table-level perturbation types. When looking at the model trained only on table-level perturba-
tion types, we found that the model performance on both column-level and table-level perturbation
types dropped. This indicates that the column-level perturbation types can still benefit the training.

4.4 INFLUENCE OF OUT-OF-SCOPE TYPES

In our experiments, we investigate both in-scope and out-of-scope scenarios. For in-scope exper-
iments, the gold SQL query may or may not change in response to modifications in the database
schema. In contrast, out-of-scope experiments involve two special perturbation types: 1) Removing
columns that appeared in gold SQL: columns that are present in the gold SQL are removed from the
schema. 2) Removing tables that appeared in gold SQL: tables that are referenced in the gold SQL
are removed from the schema. Here, we anticipate that the model refuses to generate SQL because
the provided column information (the former) and table information (the latter) are insufficient.

To evaluate the impact of these perturbations, we incorporate the two out-of-scope perturbation
types into the training data, along with the original training data and all other in-scope perturbation
types. We then compare the performance of a model trained on this combined dataset against models
trained solely on the original training data and models trained only with in-scope perturbation data.
From Table 5] we can see that with out-of-scope perturbation training data, the model performance
drops on the original evaluation data and all the other in-scope perturbation evaluation data. By
analyzing the errors, we found that the model tends to make more conservative predictions, which
will refuse to predict SQL sometimes for the cases where the gold SQL exists. We further analyze
the false positive (FP) and true positive (TP) under the model trained with out-of-scope perturbation

Under review as a conference paper at ICLR 2025

Table 4: Perturbation type ablation on BIRD. The base model is Code Llama. “both”: the model
is trained with both column-level perturbation and table-level perturbation types; “w/o table-p”:
the model is trained without table-level perturbation types; “w/o column-p”: the model is trained
without column-level perturbation types.

Perturbation Type Ablation

Table Match F1 Column Match F1
both w/o table-p ~ w/o column-p \ both w/o table-p w/o column-p

Original 90.73 90.80 +0.07) 90.04 -069) | 81.09 82.15(+1.06) 80.49 (-0.60)

Add Columns 90.86 90.80 (-0.06) 89.75 (-1.11) 79.63 80.81 (+1.18) 77.29 (-2.34)
Remove Columns | 90.72 90.83 (+0.11) 90.48 (-0.24) 83.28 83.85 (+0.57) 82.61 (-0.67)
Rename Columns | 85.35 85.38 (+0.03) 84.57 (-0.78) 76.49 77.53 (+1.04) 75.17 (-1.32)

Add Tables 88.95 58.94 (-30.01) 88.57 (-0.38) 79.87 64.11 (-15.76) 79.33 (-0.54)
Remove Tables - - - - -
Rename Tables 90.54 90.77 (+0.23) 89.29 (-1.25) 81.13 81.51 (+0.38) 79.33 (-1.80)
Split Tables 80.71 73.28 (-7.43) 79.05 (-1.66) 77.41 75.95 (-1.46) 76.30 (-1.11)
Merge Tables 88.72 87.87 (-0.85) 86.83 (-1.89) | 68.40 68.26 (-0.14) 67.08 (-1.32)

Perturbation Type

Table 5: Out of Scope Effect on BIRD. The base model is Code Llama. “w/0”: the model is trained
without perturbation types; “w/”: the model is trained on the original data and all the perturbation
types; “+ OOS”: the model is trained on the original data, perturbation types and two out-of-scope
(O0S) perturbation types; “+ OOS FP”: The model trained with two out-of-scope perturbation types
makes an incorrect prediction on the original data and in-scope perturbation data; “+ OOS TP”: The
model trained with two out-of-scope perturbation types makes the correct prediction on the two
out-of-scope perturbation data; “Tab”: the model refuses to predict SQL due to the lack of table
information; “Col”: the model refuses to predict SQL due to the lack of column information.

Out of Scope Effect
Perturbation Type Table Match F1 Column Match F1 + O0S FP + O0S TP
P wlo wl +00S | wo w +00S | Tab | Col | Tab | Col
Original | 89.77 90.42 8298 (744) | 80.66 81.64 7543621 | 7.11 | 065 | - | -
Add Columns 89.73 90.27 86.07 (-420) | 78.26 80.27 77.00 (:3.27) | 4.25 | 0.40 - -
Remove Columns 89.82 90.24 82.24 (-8.00) | 82.67 82.75 75.90(-6.85 | 7.56 | 0.72 - -
Remove Col in SQL - - - - - - 5.02 - - 84.03
Rename Columns 8528 85.07 80.20 (-487) | 76.50 76.94 73.04 (:3.90) | 4.44 | 0.20 - -
Add Tables 57.88 89.50 88.78 -0.72) | 63.81 81.14 80.71 (-0.37) | 0.33 | 0.07 - -
Remove Tables - - - - - -- - 1.62 | 83.86 -
Rename Tables 88.84 90.32 86.36(-3.96) | 79.60 80.91 78.06 (-2.85 | 3.52 | 0.39 - -
Split Tables 7199 8155 81.07 048 | 7530 78.45 78.02(-043) | 0.26 | 0.07 - -
Merge Tables 87.52 8895 83.85(5.10) | 67.73 68.98 6542 (356 | 4.65 | 0.35 - -

types, the FP is very close to the gap between the model trained with and without out-of-scope
perturbation types, which can help verify that the model becomes more conservative to the response
is the major reason to lead the performance drop. Besides, we found that by removing columns in
gold SQL and removing tables, the TP is only around 84%, which indicates that the model still has
a 16% chance to make a prediction even when there should not be an SQL.

4.5 INFLUENCE OF INTRA-DATABASE AND CROSS-DATABASE

We hypothesize that a model trained on the same databases may not only learn schema evolution
patterns but also become familiar with specific table and column names. To test this, we split the
BIRD training data into train/test sets to ensure that each database in the test set also appears in
the training set. We use Code Llama as the base model. The results in Table @ show that, for most
perturbation types, the model’s performance improves more compared to the cross-database scenario
in Section which verifies our hypothesis.

Under review as a conference paper at ICLR 2025

Table 6: Intra-database Effect. This experi- Table 7: Evaluation on Spider. “w/”: the
ment emphasizes that the training and evalu- model is trained by merging the original data
ation occur within the same database, instead and all perturbation types; “w/0”: the model
of across databases. is only trained on the original training data.
Intra-database Effect Spider Evaluation

. Table Match F1 ~ Column Match F1 . Table Match F1 ~ Column Match F1
Perturbation Type wlo w/ | wio w/ Perturbation Type w/o w/ ‘ wlo w/
Original | 8724 8743 | 79.54 80.89 Original | 9972 99.65 | 90.54 9135
Add Columns 87.14 8743 | 76.36 78.92 Add Columns 99.73 99.66 | 88.81 90.94
Remove Columns | 87.29 87.27 | 81.14 81.29 Remove Columns | 99.35 99.65 | 86.13 88.59
Rename Columns | 85.71 86.43 | 77.45 79.09 Rename Columns | 99.68 99.74 | 86.55 89.13
Add Tables 61.13 8395 | 66.11 78.57 Add Tables 6246 98.80 | 66.49 90.54
Remove Tables - - - - Remove Tables - - - -
Rename Tables 86.33 86.67 79.44 79.96 Rename Tables 99.24 99.25 89.71 90.99
Split Tables 71.82 7852 | 75.09 7742 Split Tables 7327 9024 | 76.76 86.93
Merge Tables 85.11 87.44 71.43 74.72 Merge Tables 96.03 98.34 78.03 83.43

4.6 GENERALIZABILITY TO OTHER DATASETS

To evaluate the generalizability of EvoSchema to other text-to-SQL datasets, we conducted exper-
iments on the Spider dataset and used Mistral as the base model. As shown in Table /| we reached
conclusions consistent with those in Section 4.1} which further demonstrates the effectiveness and
utility of our proposed framework and training methods.

5 RELATED WORK

Existing research on text-to-SQL robustness is mainly two-fold: robustness evaluation and robust-
ness training. Recent studies introduce evaluation benchmarks designed to expose robustness issues
by perturbing NLQs, databases or SQL queries. However, these studies tend to focus on syntactic
paraphrasing or simple semantic mappings, such as different representations of numbers or name
abbreviations across NLQ, DB, and SQL (Chang et al.| 2023} Deng et al., 2021)). While some work
analyzes schema changes, they mainly focus on irrelevant column modifications that do not affect
SQL (Ma & Wang, 2021) or with limited perturbation types (Pi et al.| 2022). These efforts are in-
sufficient in the face of increasingly complex and rich database schemas found in modern datasets.
Moreover, the advent of LLMs has mitigated many linguistic challenges, further emphasizing the
need for robust adaptation to structural changes in database schemas. For robust training, existing
methods employ strategies like decomposing tasks so that models generate each sub-clause indi-
vidually before merging them (Gao et al., 2022), or using execution-guided decoding to eliminate
incorrect sub-clauses (Wang et al., 2018). While these approaches focus on enhancing various as-
pects of text-to-SQL robustness, our work specifically addresses the challenge of schema evolution.

6 CONCLUSION

In conclusion, we formulate the critical challenge of schema evolution in adaptive text-to-SQL sys-
tems and introduce EvoSchema, a novel framework designed to study and mitigate this problem.
We developed a comprehensive taxonomy of schema evolution types, enabling the synthesis of real-
istic schema designs through column-level and table-level perturbations. Leveraging this taxonomy,
we constructed an evaluation benchmark that facilitates thorough and comprehensive assessment of
model robustness against various schema perturbations. Furthermore, we proposed a new training
paradigm that augments existing training data with diverse schema designs, enhancing data diversity
and compelling models to recognize schema differences during training. Our approach significantly
improves text-to-SQL models, achieving up to a 33-point gain on various schema perturbation eval-
uation types compared to models trained on the original, unperturbed data. These findings highlight
the effectiveness of our methods in building more robust text-to-SQL models capable of adapting to
evolving schemas, paving the way for future advancements in the field.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Shuaichen Chang, Jun Wang, Mingwen Dong, Lin Pan, Henghui Zhu, Alexander Hanbo Li, Wuwei
Lan, Sheng Zhang, Jiarong Jiang, Joseph Lilien, Steve Ash, William Yang Wang, Zhiguo Wang,
Vittorio Castelli, Patrick Ng, and Bing Xiang. Dr.spider: A diagnostic evaluation benchmark
towards text-to-SQL robustness. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=Wc5bmZZzU9cy.

Anthony Cleve, Maxime Gobert, Loup Meurice, Jerome Maes, and Jens Weber. Understanding
database schema evolution: A case study. Science of Computer Programming, 97:113-121, 2015.

Daiga Deksne and Raivis Skadins. Virtual assistant for querying databases in natural language. In
Proceedings of the Future Technologies Conference, pp. 555-564. Springer, 2022.

Julien Delplanque, Anne Etien, Nicolas Anquetil, and Olivier Auverlot. Relational database schema
evolution: An industrial case study. In 2018 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME), pp. 635-644, 2018. doi: 10.1109/ICSME.2018.00073.

Xiang Deng, Ahmed Hassan Awadallah, Christopher Meek, Oleksandr Polozov, Huan Sun, and
Matthew Richardson. Structure-grounded pretraining for text-to-sql. In Proceedings of the
2021 Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies. Association for Computational Linguistics, 2021. doi:
10.18653/v1/2021.naacl-main.105. URL |http://dx.doi.org/10.18653/v1/2021.
naacl-main.105.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
son, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah
Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,
Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-
wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini,
Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Man-
nat Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova,
Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal,
Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur
Celebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhar-
gava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sum-
baly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa,
Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang,
Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende,
Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney
Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom,
Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta,
Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang,
Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur,

11

https://openreview.net/forum?id=Wc5bmZZU9cy
http://dx.doi.org/10.18653/v1/2021.naacl-main.105
http://dx.doi.org/10.18653/v1/2021.naacl-main.105

Under review as a conference paper at ICLR 2025

Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre
Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aaron Grattafiori, Abha
Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay
Menon, Ajay Sharma, Alex Boesenberg, Alex Vaughan, Alexei Baevski, Allie Feinstein, Amanda
Kallet, Amit Sangani, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew
Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Franco, Aparajita
Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De
Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Bran-
don Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina
Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai,
Chris Tindal, Christoph Feichtenhofer, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li,
Danny Wyatt, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana
Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Erik Brinkman, Esteban Ar-
caute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco
Caggioni, Francisco Guzman, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella
Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang,
Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Gold-
man, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman,
James Geboski, James Kohli, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer
Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie
Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik Prasad, Kartikay Khandelwal, Katayoun
Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kun Huang, Kunal
Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva,
Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan Hasson,
Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Ke-
neally, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel
Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mo-
hammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navy-
ata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, Ning Dong,
Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli,
Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux,
Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao,
Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li,
Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott,
Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Sa-
tadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lind-
say, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shiva Shankar, Shugiang Zhang, Shuqgiang
Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen
Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sungmin Cho,
Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser,
Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Tim-
othy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan,
Vinay Satish Kumar, Vishal Mangla, Vitor Albiero, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu
Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Con-
stable, Xiaocheng Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu,
Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef
Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd of models, 2024.
URLhttps://arxiv.org/abs/2407.21783.

Chang Gao, Bowen Li, Wenxuan Zhang, Wai Lam, Binhua Li, Fei Huang, Luo Si, and Yongbin Li.
Towards generalizable and robust text-to-SQL parsing. In Yoav Goldberg, Zornitsa Kozareva, and
Yue Zhang (eds.), Findings of the Association for Computational Linguistics: EMNLP 2022, pp.
2113-2125, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational

12

https://arxiv.org/abs/2407.21783

Under review as a conference paper at ICLR 2025

Linguistics. doi: 10.18653/v1/2022 findings-emnlp.155. URL https://aclanthology.
org/2022.findings—emnlp.155.

Andrea Hillenbrand and Uta St6rl. Managing schema migration in nosql databases: Advisor heuris-
tics vs. self-adaptive schema migration strategies. In International Conference on Model-Driven
Engineering and Software Development, pp. 230-253. Springer, 2021.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A
benchmark of in-the-wild distribution shifts. In International conference on machine learning,
pp. 5637-5664. PMLR, 2021.

Kunal Kumar and S. K. Azad. Database normalization design pattern. In 2017 4th IEEE Uttar
Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON),
pp. 318-322,2017. doi: 10.1109/UPCON.2017.8251067.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Ruiying Geng, Nan Huo, et al. Can llm already serve as a database interface? a big bench for
large-scale database grounded text-to-sqls. Advances in Neural Information Processing Systems,
36, 2024.

Pingchuan Ma and Shuai Wang. Mt-teql: evaluating and augmenting neural nlidb on real-world
linguistic and schema variations. Proc. VLDB Endow., 15(3):569-582, nov 2021. ISSN 2150-
8097. doi: 10.14778/3494124.3494139. URL https://doi.org/10.14778/3494124.
34941309.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simén Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Lukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Lukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,

13

https://aclanthology.org/2022.findings-emnlp.155
https://aclanthology.org/2022.findings-emnlp.155
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://doi.org/10.14778/3494124.3494139
https://doi.org/10.14778/3494124.3494139

Under review as a conference paper at ICLR 2025

Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cer6én Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Xinyu Pi, Bing Wang, Yan Gao, Jiaqi Guo, Zhoujun Li, and Jian-Guang Lou. Towards robustness
of text-to-SQL models against natural and realistic adversarial table perturbation. In Smaranda
Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2007-2022,
Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
acl-long.142. URL https://aclanthology.org/2022.acl-1long.142,

Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D. Lawrence.
Dataset Shift in Machine Learning. The MIT Press, 2009. ISBN 0262170051.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Ev-
timov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong,
Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024.
URLhttps://arxiv.org/abs/2308.12950.

Yewei Song, Saad Ezzini, Xunzhu Tang, Cedric Lothritz, Jacques Klein, Tegawendé Bissyandé,
Andrey Boytsov, Ulrick Ble, and Anne Goujon. Enhancing text-to-sql translation for financial
system design. In Proceedings of the 46th International Conference on Software Engineering:
Software Engineering in Practice, pp. 252-262, 2024.

Chang-Yu Tai, Ziru Chen, Tianshu Zhang, Xiang Deng, and Huan Sun. Exploring chain of thought
style prompting for text-to-SQL. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceed-
ings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 5376—
5393, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/
2023.emnlp-main.327. URL https://aclanthology.org/2023.emnlp-main.327.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew Richardson. RAT-
SQL: Relation-aware schema encoding and linking for text-to-SQL parsers. In Dan Jurafsky,
Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics, pp. 7567-7578, Online, July 2020. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.677. URL https:
//aclanthology.org/2020.acl-main.677.

Chenglong Wang, Kedar Tatwawadi, Marc Brockschmidt, Po-Sen Huang, Yi Mao, Oleksandr Polo-
zov, and Rishabh Singh. Robust text-to-sql generation with execution-guided decoding, 2018.
URLhttps://arxiv.org/abs/1807.03100.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick

14

https://arxiv.org/abs/2303.08774
https://aclanthology.org/2022.acl-long.142
https://arxiv.org/abs/2308.12950
https://aclanthology.org/2023.emnlp-main.327
https://aclanthology.org/2020.acl-main.677
https://aclanthology.org/2020.acl-main.677
https://arxiv.org/abs/1807.03100

Under review as a conference paper at ICLR 2025

von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-of-
the-art natural language processing, 2020. URL https://arxiv.org/abs/1910.03771.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene
Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing and text-to-SQL task.
In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 3911-3921,
Brussels, Belgium, October-November 2018. Association for Computational Linguistics. doi:
10.18653/v1/D18-1425. URL https://aclanthology.org/D18-1425.

Bin Zhang, Yuxiao Ye, Guoqing Du, Xiaoru Hu, Zhishuai Li, Sun Yang, Chi Harold Liu, Rui Zhao,
Ziyue Li, and Hangyu Mao. Benchmarking the text-to-sql capability of large language models:
A comprehensive evaluation, 2024a. URL https://arxiv.org/abs/2403.02951l

Chao Zhang, Yuren Mao, Yijiang Fan, Yu Mi, Yunjun Gao, Lu Chen, Dongfang Lou, and Jinshu Lin.
Finsql: Model-agnostic llms-based text-to-sql framework for financial analysis. arXiv preprint
arXiv:2401.10506, 2024b.

Tianshu Zhang, Changchang Liu, Wei-Han Lee, Yu Su, and Huan Sun. Federated learning for
semantic parsing: Task formulation, evaluation setup, new algorithms, 2023. URL |https:
//arxiv.org/abs/2305.17221l

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright,
Hamid Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Pritam Damania,
Bernard Nguyen, Geeta Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. Pytorch fsdp: Experi-
ences on scaling fully sharded data parallel, 2023. URL https://arxiv.org/abs/2304.
11277

15

https://arxiv.org/abs/1910.03771
https://aclanthology.org/D18-1425
https://arxiv.org/abs/2403.02951
https://arxiv.org/abs/2305.17221
https://arxiv.org/abs/2305.17221
https://arxiv.org/abs/2304.11277
https://arxiv.org/abs/2304.11277

Under review as a conference paper at ICLR 2025

A APPENDIX

Table 8: Data statistics of original data and perturbation data. “*”: the evaluation data for calculating

execution accuracy. We synthesize values to reconstruct the database after schema evolution, and

filter out those not executable by gold SQL, which results in the smaller size of the evaluation data.
Data Statistics

. BIRD Spider
Perturbation Type Train Eval Eval* | Train Eval
Original \ 9426 1534 789 \ 7000 1034
Add Columns 9219 1506 582 6999 1034
Remove Columns 9426 1534 773 7000 1034
Remove Col in SQL | 9424 1534 - 7000 1034
Rename Columns 9385 1533 674 6979 1034
Add Tables 9387 1530 606 6977 1033
Remove Tables 7212 1171 - 3069 1034
Rename Tables 9392 1534 735 7000 1034
Split Tables 9254 1515 178 6903 1029
Merge Tables 6930 1139 402 2999 437

Q: For patient with albumin level lower than 3.5, list their ID, sex and diagnosis.

DDL: create table patient(ID integer primary key, SEX text, Birthday date, ..)

Original create table laboratory(foreign key(ID) references Patient(ID) integer, ALB real, WBC real..)
SQL: SELECT DISTINCT T1.ID, T1.SEX, T1l.Diagnosis FROM Patient AS T1 INNER JOIN Laboratory AS T2 ON T1.ID = T2.ID WHERE
T2.ALB < 3.5
Add DDL: create table patient(ID integer primary key, SEX text, Birthday date, 5 =)
create table laboratory(foreign key(ID) references Panent(ID) integer, ALB real, =)
Columns SQL: SELECT DISTINCT T1.ID, T1.SEX, T1.Diagnosis FROM Patient AS T1 INNER JOIN Laboratory AS T2 ON T1.ID = T2. ID WHERE
T2.ALB < 3.5

DDL: create table patient(ID integer primary key,

SEX-text, Birthday date, ..)
Remove create table laboratory(foreign key(ID) references Patient(ID) J.nteger, ALB real, WBC—real, ..)
Columns SQL: SELECT DISTINCT T1.ID, T1.SEX, T1l.Diagnosis FROM Patient AS T1 INNER JOIN Laboratory AS T2 ON T1.ID = T2.ID WHERE
T2.ALB < 3.5
DDL: create table patient(ID—integer—primary—key, SEX text, Birthday date, ..)
CRTT“OSVSL create table laboratory(£ igh—key(ID) fo Patient(ID)int ,' , ALB. 1, WBC real, ..)
otin SQL: -
DDL: create table patient(integer primary key, text, date, ..)
Rename create table laboratory(forelgn key() references Patient(ID) integer, ALB real, WBC real, ..)
Columns SQL: SELECT DISTINCT T1. T1.Diagnosis FROM Patient AS T1 INNER JOIN Laboratory AS T2 ON
T1. = T2. WHERE T2. ALB < 3.5

DDL: create table patient(ID integer primary key, SEX text, Birthday date, ..)

Add create table laboratory(foreign key(ID) references Patient(ID) integer, ALB real, WBC real, ..)
create table appointment(foreign key(ID) references Patient(ID) integer, Date date, Time text, Doctor text, ..)
Tables create table doctor(ID integer primary key, Name text, Specialty text, License date, Hospital text, ..)
SQL: SELECT DISTINCT T1.ID, T1.SEX, T1l.Diagnosis FROM Patient AS T1 INNER JOIN Laboratory AS T2 ON T1.ID = T2.ID WHERE
T2.ALB < 3.5
DDL: create table patient(ID integer primary key, SEX text, Birthday date, ..)
Remove e
Tables SQL: -
Rename DDL: create table medical_record(ID integer primary key, SEX text, Birthday date, ..)

create table test_result(foreign key(ID) references Medical_record(ID) integer, ALB real, WBC real, ..)
SELECT DISTINCT T1.ID, T1.SEX, Tl.Diagnosis FROM Medical_record AS T1 INNER JOIN Test_result AS T2 ON T1.ID = T2.ID
WHERE T2.ALB < 3.5

=2

Tables sQL:

DDL: create table patient(ID integer primary key, SEX text, Birthday date, ..)
create table LabTestl(foreign key(ID) references Patient(ID) integer, ALB real, ..)

Spllt create table LabTest2(foreign key(ID) references Patient(ID) integer, WBC real, ..)
Tables create table LabTest3(foreign key(ID) references Patient(ID) integer, CRP text, ..)
SQL: SELECT DISTINCT T1.ID, T1.SEX, T1.Diagnosis FROM Patient AS T1 INNER JOIN LabTestl AS T2 ON T1.ID = T2.ID WHERE
T2.ALB < 3.5
Merge DDL: create table Patient_Laboratory(ID integer primary key, SEX text, Birthday date, ALB real, WBC real, ..)
SQL: SELECT DISTINCT T1.ID, T1.SEX, Tl.Diagnosis FROM Patient_Laboratory AS T1 WHERE T1.ALB < 3.5
Tables

Figure 2: An overview of different perturbation types generated by EvoSchema. The top is an
unperturbed example; the middle is the column-level perturbation; the bottom is the table-level
perturbation. “Remove Col in SQL”: remove columns that appear in gold SQL; “Remove Tables”:
the relevant tables appear in gold SQL are removed. Thus there is no gold SQL for these two cases.

16

	introduction
	Methodology
	background
	Rationale for Schema Evolution Types
	Schema Evolution Synthesis Framework
	Data Generation
	Training Paradigm

	Experiment Setup
	Dataset
	Training and Evaluation Settings
	Evaluation Metrics
	Training and Evaluation Details

	Results and Analysis
	Main Results
	Influence of Irrelevant Tables
	Influence of Perturbation Types
	Influence of Out-of-scope Types
	Influence of Intra-database and Cross-database
	Generalizability to Other Datasets

	Related Work
	Conclusion
	appendix

