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ABSTRACT

Neural text-to-SQL models, which translate natural language questions (NLQs)
into SQL queries given a database schema, have achieved remarkable perfor-
mance. However, database schemas frequently evolve to meet new requirements.
Such schema evolution often leads to performance degradation for models trained
on static schemas. Existing work either mainly focuses on simply paraphras-
ing some syntactic or semantic mappings among NLQ, DB and SQL or lacks
a comprehensive and controllable way to investigate the model robustness issue
under the schema evolution. In this work, we approach this crucial problem by
introducing a novel framework, EvoSchema, to systematically simulate diverse
schema changes that occur in real-world scenarios. EvoSchema builds on our
newly defined schema evolution taxonomy, which encompasses a comprehensive
set of eight perturbation types, covering both column-level and table-level modifi-
cations. We utilize this framework to build an evaluation benchmark to assess the
models’ robustness against different schema evolution types. Meanwhile, we pro-
pose a new training paradigm, which augments existing training data with diverse
schema designs and forces the model to distinguish the schema difference for the
same questions to avoid learning spurious patterns. Our experiments demonstrate
that the existing models are more easily affected by table-level perturbations than
column-level perturbations. In addition, the models trained under our paradigm
exhibit significantly improved robustness, achieving up to 33 points improvement
on the evaluation benchmark compared to models trained on unperturbed data.
This work represents a significant step towards building more resilient text-to-
SQL systems capable of handling the dynamic nature of database schemas.1

1 INTRODUCTION

Text-to-SQL parsing aims to translate natural language questions (NLQs) into SQL queries given a
database schema, enabling the development of natural language interfaces that allow users to query
data and invoke services without requiring programming skills (Wang et al., 2020; Zhang et al.,
2024a; Yu et al., 2018; Zhang et al., 2023; Li et al., 2024; Tai et al., 2023). Existing neural text-
to-SQL models have achieved remarkable performance on existing benchmarks (Li et al., 2024;
Yu et al., 2018), which play an important role in empowering different platforms such as business
and marketing platforms (Song et al., 2024; Zhang et al., 2024b) and being integrated into virtual
assistants to enable real-time data query and analysis (Deksne & Skadiņš, 2022).

However, database schemas are not static; they frequently evolve to accommodate new use cases and
improve efficiency (Hillenbrand & Störl, 2021; Cleve et al., 2015). For instance, depending on the
scenario, a large patient table might be merged from or split into two tables: a patient information
table and a patient diagnosis table (Figure 1-c), to reduce redundancy, enhance data integrity, and
optimize performance (Kumar & Azad, 2017). Such schema evolution occurs frequently, which
often leads to distribution shifts (Quionero-Candela et al., 2009; Koh et al., 2021) such as nomen-
clature shifts, data granularity shifts, table and column relation shifts and schema complexity shifts.
These distribution shifts can cause significant performance degradation when the model trained on
old database schema is adapting to new schema designs.

1Our code and data will be publicly available.
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Figure 1: The left (a) is the overview of the EvoSchema framework. The top right (b) is a column-
level schema evolution example; the bottom right (c) is a table-level schema evolution example.

This challenge highlights a crucial issue in model robustness: how well can a text-to-SQL model
adapt to changes in the database schema? Recent studies introduce evaluation benchmarks designed
to expose robustness issues by perturbing NLQs, databases or SQL queries (Chang et al., 2023;
Deng et al., 2021; Pi et al., 2022; Ma & Wang, 2021). However, these studies have at least one of the
following limitations: 1) mainly focus on the syntactic paraphrasing or simple semantic mappings
among NLQ, DB and SQL (Chang et al., 2023; Deng et al., 2021); (2) lack a taxonomy of compre-
hensive schema evolution types (Pi et al., 2022); (3) only focus on schema evolution that does not
lead to SQL changes (Ma & Wang, 2021). These efforts are insufficient in the face of increasingly
complex and rich database schema changes found in reality. Meanwhile, while it is natural to con-
sider collecting new data after schema evolution for retraining a model, repeating the entire model
training life cycle frequently can be costly in terms of both time and resources.

Under this background, we seek to answer the following two questions: (1) How sensitive are exist-
ing text-to-SQL models to various types of database schema changes? (2) How can we train a more
robust text-to-SQL model that not only performs well on existing database schemas but also adapts
effectively to schema changes? Towards this end, we propose a novel schema evolution synthesis
framework, EvoSchema, which can simulate a wide range of realistic schema design changes by
perturbations. Our framework can augment the existing datasets with more comprehensive and real-
istic schema change types in a systematic way, which not only builds the foundation to evaluate the
robustness against different granularities of schema evolution, but also improves models’ ability by
forcing models to distinguish the structure difference within the schema so as to avoid learning the
spurious patterns.

As illustrated in Figure 1, EvoSchema framework builds upon our newly defined taxonomy, which
encompasses a total of eight types of perturbations over schema, covering both column-level and
table-level changes. Column-level perturbations include adding, removing, and renaming columns,
while table-level perturbations involve adding, removing, renaming, splitting, and merging tables.
We keep the NLQs fixed and examine the robustness of a model under different schema evolutions,
and show that existing models are more easily affected by table-level perturbations than column-
level perturbations. Moreover, we enhance model robustness by training them with the same ques-
tions but coupled with different schema designs to generate the corresponding SQL queries. This
training procedure forces the model to distinguish the schema difference which can help models gain
a stronger ability to recognize the correct table and column relation and map them to the questions.
Our experimental results demonstrate that the perturbation data generated by this framework can
help train better text-to-SQL models, which are more robust to different schema evolution types,
especially on table-level perturbations.

In summary, our main contributions are as follows:
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• We formulate a crucial schema evolution adaptive text-to-SQL problem and present a novel
framework, EvoSchema to study this problem. We introduce a comprehensive taxonomy
of the schema evolution types and build the framework based on the taxonomy to synthesize
realistic schema designs by column-level and table-level perturbations.

• We develop an evaluation benchmark that allows for thorough and comprehensive assess-
ment of model robustness against various schema perturbations.

• We propose a new training paradigm: augmenting the existing training data with differ-
ent schema designs, which not only increase the data diversity, but also force the model
to distinguish the schema difference during training. Our approach yields better text-to-
SQL models that achieve up to 33 points gain on different types of schema perturbation
evaluation data, compared to models trained on unperturbed, original training data.

2 METHODOLOGY

2.1 BACKGROUND

In the dynamic landscape of databases, schemas frequently evolve to meet new demands, intro-
ducing significant challenges for text-to-SQL models (Delplanque et al., 2018; Cleve et al., 2015).
These schema changes can vary widely, from minor modifications to complete restructuring, and
can significantly impact the performance of models trained on static schemas. In realistic scenarios,
a database can often contain a large number of tables, and only several related tables are responsi-
ble for a natural language question (NLQ). In our experiment, we represent the relevant database
schema using Data Definition Language (DDL) 2 and combine it with the NLQ as input. This input
is then used to prompt the model to generate the corresponding SQL query.

2.2 RATIONALE FOR SCHEMA EVOLUTION TYPES

When a database schema evolves, it can induce distribution shifts in the data that may impact model
performance. We categorize potential distribution shifts into four types: nomenclature shifts, data
granularity shifts, table and column relation shifts, and schema complexity shifts. (1) Nomenclature
shifts occur when tables and columns are renamed, which may alter the convention of the established
terminology within the schema. For example, tables originally named “Products”, “Customers”, and
“Orders” might be renamed to “Items”, “Clients”, and “Purchases”, respectively. Such changes often
reflect updates in business terminology or compliance with new standards. A desired model should
handle those nomenclature shifts to adapt to the new terminology. (2) Data granularity shifts arise
from adding or removing columns or tables, which changes the level of detailedness captured in the
database. For instance, an “Employee” table with a single “ContactNumber” field might involve
another two separate “WorkContact” and “PersonalContact” fields later. This increases the data
granularity to meet new requirements, necessitating models to adapt to more complex and detailed
semantics. (3) Table and column relation shifts and schema complexity shifts mainly result from
restructuring tables through splitting or merging. This process can highly affect how each table
is related to other tables by which column. Both the primary keys and foreign keys may change
along with the table restructure. Besides, the schema complexity may change when multiple tables
merge from or split into one table. A desired model is expected to be robust to such changes. By
categorizing the distribution shifts caused by schema evolution, we can more effectively understand
and evaluate a model’s capacity to adapt to changes in the underlying database schema.

2.3 SCHEMA EVOLUTION SYNTHESIS FRAMEWORK

Our study aims to cover comprehensive potential schema evolution types, which can foster the
robustness evaluation of the existing text-to-SQL models and inspire robust model training. We
synthesize all the schema evolution types through hybrid strategies, which will leverage both the
heuristic rules to guarantee the data quality and LLMs to ensure diversity.

2DDL defines the structure and properties of a database, providing detailed information necessary for
database creation, including column types and primary/foreign keys.
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Broad Coverage of Different Schema Evolution Types: We aim to encapsulate a broad range of
schema evolution types, recognizing their prevalence and impact in real-world scenarios. Specif-
ically, our schema evolution taxonomy includes both column-level and table-level perturbations,
which are categorized into eight distinct types. Column-level perturbations comprise three types:
adding, removing, and renaming columns, where modifications are restricted to the columns within
existing tables. Table-level perturbations encompass five types: adding, removing, renaming, split-
ting, and merging tables. These perturbations occur frequently in practice, underscoring the need
for text-to-SQL models that can robustly handle such changes.

Hybrid Data Synthesis Strategies: To ensure both diversity and quality in the generation of schema
perturbations, we employ a combination of heuristics and GPT models to synthesize various pertur-
bation types. For each given seed instance, consisting of a <NLQ, relevant schema, SQL> triple,
we maintain the natural language question (NLQ) fixed across all perturbation types, while only
modifying the relevant schema. The corresponding SQL query is adjusted as necessary to remain
consistent with the changes in the database schema.

2.4 DATA GENERATION

Our proposed schema evolution framework can simulate different types of schema perturbations
in a configurable way. For adding or renaming columns, both the modified column size and the
column position in the tables are set randomly, and we set the original column size in the table as
the maximum number of columns to be changed. For removing columns, we can randomly remove
important or unimportant columns from the existing relevant tables. The important columns are
the columns that appear in the gold SQL, which will inevitably affect the prediction. For adding,
removing, or renaming tables, we randomly add, remove or rename one or multiple tables.

Schema Change: To ensure the diversity and reasonability of the synthesized schema, we leverage
the capabilities of GPT-3.5 and GPT-4 to synthesize realistic and contextually appropriate columns
or tables, which help effectively produce high-quality synthetic data that meets our requirements.
For adding or renaming columns and tables, we input the existing relevant tables to GPT-3.5, and
let the model generate the potential tables or columns that fit the context. For splitting tables or
merging tables, since they are more complex than other perturbations, we use GPT-4 to choose the
tables that can be split or merged and then use the modified tables to replace the original ones.
For adding or renaming columns and tables, we apply heuristics to choose the suitable synthesized
tables or columns, which are not duplicated with the existing ones. Besides, to ensure the correct
relationship among different tables after modifying the schema, we apply heuristics to ensure all the
foreign keys change along with their referenced table names and column names. When removing
columns or tables, any foreign keys in other tables that reference the removed columns or tables will
be removed as well.

SQL Change: To ensure the consistency of the <NLQ, relevant schema, SQL>, after we change
the relevant table schema, we revise the gold SQL accordingly. Since the NLQs are the same for
adding or removing columns and tables, and the schema evolution here doesn’t affect answering the
questions, we keep the gold SQL unchanged for these perturbation types. For renaming columns or
tables, we revise gold SQL if they appear in the gold SQL. For table splitting or merging, due to the
complexity and variation in the required SQL changes, we use GPT-4 to revise the gold SQL. This
revision is based on the mappings from the original to the new tables and columns, as well as the
necessary adjustments to the JOIN paths. We manually check the edited gold SQL for the evaluation
benchmark to make sure they are correct.

By employing these strategies, EvoSchema offers a comprehensive and diverse set of schema evo-
lution scenarios that mirror the complexities encountered in real-world database management. By
integrating heuristics with LLM-generated perturbations, we maintain both of the diversity and qual-
ity, ensuring that the synthesized data is both realistic and challenging.

2.5 TRAINING PARADIGM

In our work, we propose a new training paradigm to enhance the model’s robustness against different
schema evolution. For each <NLQ, relevant schema, SQL> triple, we fix the NLQ in the training
data, and augment each triple with different schema designs, which may or may not lead to SQL
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change. Consequently, we obtain multiple triples that can be derived from each of the original triples.
We train the model by learning multiple schema designs and SQLs to the original question mappings,
which can improve the model’s ability to identify the correct relationships among different tables and
columns to the question, and can better distinguish the difference among different schema designs.
Through this procedure, the model can avoid learning spurious patterns better and therefore enhance
the robustness against different schema evolution types.

3 EXPERIMENT SETUP

3.1 DATASET

For our experiments, we utilize the BIRD (Li et al., 2024) and Spider (Yu et al., 2018) datasets, which
are specifically designed for the text-to-SQL task. Both of them consist of NLQs, corresponding
database schemas, and gold SQL queries. These datasets are diverse, encompassing a wide range of
real-world database scenarios, which provides a robust foundation for evaluating the performance
of models in translating NLQs into SQLs.

Schema Perturbations: To evaluate the robustness of the text-to-SQL models, we use the BIRD and
Spider datasets not only in their original form but also augmented with various column-level and
table-level schema perturbations. We ensure that the NLQs remain fixed, while the schema and SQL
queries are adjusted as necessary to reflect the changes introduced by our perturbations. We follow
the standard train/dev split provided with these datasets, and apply all the perturbations on both
training data and evaluation data. The data statistics are in Table 8 and the examples of different
perturbation types are in Figure 2 in the Appendix.

3.2 TRAINING AND EVALUATION SETTINGS

Training Setting: We choose four open-source models: Code Llama-7B (Rozière et al., 2024),
Mistral-7B (Jiang et al., 2023), Llama 3-8B (Dubey et al., 2024) and SQLCoder-7B 3 and two
closed-source models: GPT-3.5 4 and GPT-4 (OpenAI et al., 2024) for our experiments. For these
four open-source models, we explore two settings: 1) without perturbation types: the model is
trained on the original training data without any perturbation types introduced during training. 2)
with perturbation types: the model is trained by merging both the original training data and the
perturbation training data. For closed-source models, we only use them for evaluation.

Evaluation Setting: For all the closed-source models and the finetuned open-sourced models, we
evaluate them under two settings: 1) without perturbation types: this setting uses the standard,
unaltered original evaluation data to evaluate the model performance. 2) with perturbation types:
the models are evaluated on data where different perturbations are introduced. By comparing the
model performance under these two settings, we can assess how resilient the finetuned models and
GPT models are to schema evolution in text-to-SQL parsing. This setup provides a comprehensive
evaluation of model performance in both standard and perturbed environments, allowing for detailed
analysis of robustness and adaptability across different models and schema evolution types.

3.3 EVALUATION METRICS

1) Table Match F1: this score is a metric to measure how well the model correctly identifies the
relevant tables required to generate a valid SQL query. The F1 score is a harmonic mean of preci-
sion and recall, where the precision is the percentage of tables correctly predicted out of all tables
predicted by the model and the recall is the percentage of tables correctly predicted out of all the
actual tables that should have been selected. The Table Match F1 score combines these two metrics
to provide a balanced evaluation, which can assess the ability of text-to-SQL models to correctly
identify the required tables from the database schema to form accurate queries. A higher Table
Match F1 indicates better performance in selecting the correct tables for the SQL query.

2) Column Match F1: this score is to evaluate how accurately the model identifies the relevant
columns required to generate a valid SQL query from a natural language input. Like the Table

3https://huggingface.co/defog/sqlcoder-7b-2
4https://openai.com/chatgpt/
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Match F1, it measures the balance between precision and recall but is applied specifically to the
columns of the database. A higher Column Match F1 score indicates better performance in selecting
the right columns for the SQL query.

3) Execution Accuracy: this metric measures whether the predicted SQL query can return the correct
results as the gold SQL when executing against a database. Since the schema evolution may lead
to database restructure and there are no existing values for the new database after schema change,
we synthesize values to create new databases and execute the new gold SQLs after schema evolu-
tion on them. Due to the complexity of the value synthesis and huge manual efforts to ensure an
executable database for each instance, we filter out the cases where synthesized database is not exe-
cutable by new gold SQL. This procedure can lead to very small size of the evaluation data for some
perturbation types, so we mainly use the other two metrics as the main metrics.

3.4 TRAINING AND EVALUATION DETAILS

We choose Code Llama-7B (Rozière et al., 2024), Mistral-7B (Jiang et al., 2023), Llama 3-8B
(Dubey et al., 2024) and SQLCoder-7B 3 as our open-source base models. We fine-tune these models
with Huggingface transformers library (Wolf et al., 2020). For the perturbation training, We merge
all the perturbation data and randomly shuffle them as our final training data. We use a learning rate
of 2e-5 for training Code Llama, Llama 3 and SQLCoder, and 5e-6 for training Mistral. Our batch
size is 4. We train all the models on 4 A100 80GB GPUs and use a cosine scheduler with a 0.03
warm-up period for 6 epochs. We employ FSDP (Zhao et al., 2023) to efficiently train the model.
We set the max input length of training as 1024 and the max output length of inference as 500. For
inference, we use vllm (Wolf et al., 2020) for batch evaluation, and we set the batch size as 16. We
do the inference on an 80G A100 GPU. For closed-source LLMs, we use Azure OpenAI API5. We
use the 2023-12-01-preview version for GPT-4, and 2023-07-01-preview version for GPT-3.5.

4 RESULTS AND ANALYSIS

4.1 MAIN RESULTS

As Table 1 and Table 2 shows, we train Codellama, Mistral, Llama3 and SQLCoder on the original
BIRD training data with and without different perturbation types, and evaluate the model on the
original BIRD evaluation data and different perturbation types. We observe that:

The models trained on different perturbation types are more robust to the schema variation.
Adding the perturbation data during training: 1) does not sacrifice the performance of the original
evaluation data; 2) achieves comparable or better results on different perturbation types. Column-
level schema changes are relatively minor compared with table-level schema changes. We can see
the models perform better on both the column-level and table-level perturbation types in general,
which shows the models are robust to both minor schema evolution and major schema evolution.

The models trained on different perturbation types demonstrate high robustness on the table-
level schema evolution. Adding the perturbation data during training achieves significantly better
results on table-level perturbation types (i.e., major schema change types). By comparing these four
models’ performance with and without the perturbation data, we observe that for adding tables, the
model trained with perturbation data can achieve up to 33 points improvement for table match F1 and
18 points improvement for column match F1; for splitting tables, the model trained with perturbation
data can achieve up to 14 points improvement for table match F1 and 4.2 points improvement for
column match F1; for merging tables, the model trained on perturbation data can achieve up to 4
points improvement on table match F1 and 3 points improvement for column match F1.

Closed-source models are robust to different scheme evolution types in general. As table 1
shows, we compare the model performance on GPT models and four open-source models trained
with and without perturbation types. We observe that: the GPT models are robust to different
schema evolution types in general, which can have much better results than the models trained
without perturbation types. Besides, even for those major schema change types such as adding,
splitting and merging tables, the GPT results are still very close to the performance compared with

5https://learn.microsoft.com/en-us/azure/ai-services/openai/reference
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Table 1: Evaluation on BIRD. “w/”: the model is trained by merging the original data and all the
perturbation training types together; “w/o”: the model is only trained on the original training data.
The best performance for each model is in bold, and red shows a larger gain. “-”: some of the
relevant tables are removed so there should be no gold SQL used to calculate the metrics here.

Perturbation Type Code Llama Mistral Llama 3 SQLCoder GPT-3.5 GPT-4
w/o w/ w/o w/ w/o w/ w/o w/

Table Match F1

Original 89.77 90.42 89.58 90.62 89.96 89.53 89.69 90.64 87.28 88.98

Add Columns 89.73 90.27 89.65 90.03 89.08 89.70 89.30 90.52 86.35 88.12
Remove Columns 89.82 90.24 89.89 90.66 90.09 89.82 89.81 90.54 87.18 88.87
Rename Columns 85.28 85.07 84.32 84.27 83.74 82.92 85.32 84.93 81.73 83.20

Add Tables 57.88 89.50 57.67 89.30 55.11 88.51 57.44 89.38 83.54 85.79
Remove Tables - - - - - - - - - -
Rename Tables 88.84 90.32 89.40 90.56 87.18 89.14 89.40 90.48 87.02 88.45
Split Tables 71.99 81.55 66.12 80.87 71.08 80.12 72.52 81.92 77.52 80.68
Merge Tables 87.52 88.95 85.52 88.50 83.88 87.82 86.70 88.13 84.88 87.09

Column Match F1

Original 80.66 81.64 81.10 82.36 79.13 78.72 81.52 81.97 78.28 80.78

Add Columns 78.26 80.27 79.16 80.18 75.79 76.87 79.09 80.46 75.03 78.58
Remove Columns 82.67 82.75 83.09 84.00 81.56 80.69 83.20 83.18 80.33 82.55
Rename Columns 76.50 76.94 76.35 76.73 72.24 71.07 76.84 77.38 73.40 75.90

Add Tables 63.81 81.14 65.39 81.09 59.36 77.96 62.91 81.23 76.45 79.32
Remove Tables - - - - - - - - - -
Rename Tables 79.60 80.91 80.32 81.29 77.49 77.46 80.77 81.79 77.78 80.04
Split Tables 75.30 78.45 73.87 78.11 73.81 73.95 75.83 78.59 74.89 77.41
Merge Tables 67.73 68.98 66.27 69.39 65.60 65.79 67.55 69.09 65.07 69.13

the original evaluation data. However, comparing the model performance on the open-source LLMs
and closed-source LLMs, the models trained with perturbation data have better performance than
GPT models on both column-level perturbation and column-level perturbation evaluation data. This
indicates that our models trained with perturbation data are more robust than GPT models.

Table-level perturbation has a larger impact than column-level perturbation on the model
performance. As Table 1 shows, comparing with the performance on the original evaluation data:
adding tables and splitting tables will lead to a significant table match F1 drop; adding tables, split-
ting tables and merging tables will lead to a significant column match F1 drop. This phenomenon
indicates that adding tables or splitting tables easily confuses the models in choosing the correct
tables to generate the SQL query. For merging tables, even though the model can correctly choose
tables, it’s a bit hard for the model to pick up the correct columns when the columns from different
tables go into the same table. While for the column-level performance, there are limited differences
with the performance on the original data.

Reducing table schema complexity is beneficial for model performance. Compare the model per-
formance on column-level perturbation evaluation and the original evaluation data, adding columns
results in a decrease in column match F1, whereas removing columns leads to an increase in column
match F1. It indicates simpler table schema is beneficial for models to select columns, as removing
columns simplifies the table schema while adding columns makes the table schema more complex.

4.2 INFLUENCE OF IRRELEVANT TABLES

We observed that the model trained with perturbation types demonstrates significant robustness to
table-level perturbations, such as adding and splitting tables. Upon analyzing the errors, we found
that models trained without perturbation types tend to predict SQL queries that join all available
tables, even when some tables are irrelevant to the NLQs and SQLs. We hypothesize that this occurs
because during training without perturbations, the model only sees relevant table schemas, causing
it to learn spurious patterns that always try to join all the input tables.
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Table 2: Evaluation on BIRD.
“w/”: the model is trained with
all the perturbation types; “w/o”:
the model is only trained on the
original training data.

Exec Acc on BIRD

Perturbation Type Exec Acc
w/o w/

Original 62.36 61.47

Add Columns 60.99 60.31
Remove Columns 62.61 60.67
Rename Columns 58.75 58.90

Add Tables 49.50 62.54
Remove Tables - -
Rename Tables 58.64 59.05
Split Tables 50.00 60.67
Merge Tables 48.76 52.88

Table 3: Irrelevant tables effect. “w/”: the model is trained with
all the perturbation types; “w/o”: the model is only trained on the
original training data; “w/o+”: the model is only trained on the
original training data, but for the input table schema, we also add
irrelevant tables.

Add Irrelevant Tables Effect

Perturbation Type Table Match F1 Column Match F1
w/o w/o+ w/ w/o w/o+ w/

Original 89.77 87.65 90.42 80.66 79.24 81.64
Add Columns 89.73 86.35 90.27 78.26 75.31 80.27
Remove Columns 89.82 87.30 90.24 82.67 80.74 82.75
Rename Columns 85.28 81.90 85.07 76.50 73.28 76.94
Add Tables 57.88 88.01 89.50 63.81 79.51 81.14
Remove Tables - - - - - -
Rename Tables 88.84 86.84 90.32 79.60 78.47 80.91
Split Tables 71.99 67.27 81.55 75.30 70.39 78.45
Merge Tables 87.52 85.36 88.95 67.73 65.78 68.98

To explore whether simply adding irrelevant tables could yield similar performance to models
trained with perturbation data, we conducted an experiment where we trained Code Llama on BIRD.
As shown in Table 3, adding irrelevant tables led to similar performance on the ”Add Tables” per-
turbation type. However, it caused a performance drop on other perturbation types. This suggests
that combining all perturbation data is necessary to train a more robust model.

4.3 INFLUENCE OF PERTURBATION TYPES

We explore the effect of the column-level perturbation types and table-level perturbation types. As
Table 4 shows, we train the model with both column-level and table-level perturbation types, and
compare it with the model trained without column-level perturbation types and without table-level
perturbation types. From our experiments, we found that without training on table-level perturba-
tions, the model performance can be slightly better than the model trained with both column-level
and table-level perturbation types on column-level perturbation types, while can lead to a significant
performance drop on the table-level perturbation types. This indicates that the table-level perturba-
tion data has a limited effect on the column-level perturbation types while having a huge impact on
the table-level perturbation types. When looking at the model trained only on table-level perturba-
tion types, we found that the model performance on both column-level and table-level perturbation
types dropped. This indicates that the column-level perturbation types can still benefit the training.

4.4 INFLUENCE OF OUT-OF-SCOPE TYPES

In our experiments, we investigate both in-scope and out-of-scope scenarios. For in-scope exper-
iments, the gold SQL query may or may not change in response to modifications in the database
schema. In contrast, out-of-scope experiments involve two special perturbation types: 1) Removing
columns that appeared in gold SQL: columns that are present in the gold SQL are removed from the
schema. 2) Removing tables that appeared in gold SQL: tables that are referenced in the gold SQL
are removed from the schema. Here, we anticipate that the model refuses to generate SQL because
the provided column information (the former) and table information (the latter) are insufficient.

To evaluate the impact of these perturbations, we incorporate the two out-of-scope perturbation
types into the training data, along with the original training data and all other in-scope perturbation
types. We then compare the performance of a model trained on this combined dataset against models
trained solely on the original training data and models trained only with in-scope perturbation data.
From Table 5, we can see that with out-of-scope perturbation training data, the model performance
drops on the original evaluation data and all the other in-scope perturbation evaluation data. By
analyzing the errors, we found that the model tends to make more conservative predictions, which
will refuse to predict SQL sometimes for the cases where the gold SQL exists. We further analyze
the false positive (FP) and true positive (TP) under the model trained with out-of-scope perturbation
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Table 4: Perturbation type ablation on BIRD. The base model is Code Llama. “both”: the model
is trained with both column-level perturbation and table-level perturbation types; “w/o table-p”:
the model is trained without table-level perturbation types; “w/o column-p”: the model is trained
without column-level perturbation types.

Perturbation Type Ablation

Perturbation Type Table Match F1 Column Match F1
both w/o table-p w/o column-p both w/o table-p w/o column-p

Original 90.73 90.80 (+0.07) 90.04 (-0.69) 81.09 82.15 (+1.06) 80.49 (-0.60)

Add Columns 90.86 90.80 (-0.06) 89.75 (-1.11) 79.63 80.81 (+1.18) 77.29 (-2.34)
Remove Columns 90.72 90.83 (+0.11) 90.48 (-0.24) 83.28 83.85 (+0.57) 82.61 (-0.67)
Rename Columns 85.35 85.38 (+0.03) 84.57 (-0.78) 76.49 77.53 (+1.04) 75.17 (-1.32)

Add Tables 88.95 58.94 (-30.01) 88.57 (-0.38) 79.87 64.11 (-15.76) 79.33 (-0.54)
Remove Tables - - - - - -
Rename Tables 90.54 90.77 (+0.23) 89.29 (-1.25) 81.13 81.51 (+0.38) 79.33 (-1.80)
Split Tables 80.71 73.28 (-7.43) 79.05 (-1.66) 77.41 75.95 (-1.46) 76.30 (-1.11)
Merge Tables 88.72 87.87 (-0.85) 86.83 (-1.89) 68.40 68.26 (-0.14) 67.08 (-1.32)

Table 5: Out of Scope Effect on BIRD. The base model is Code Llama. “w/o”: the model is trained
without perturbation types; “w/”: the model is trained on the original data and all the perturbation
types; “+ OOS”: the model is trained on the original data, perturbation types and two out-of-scope
(OOS) perturbation types; “+ OOS FP”: The model trained with two out-of-scope perturbation types
makes an incorrect prediction on the original data and in-scope perturbation data; “+ OOS TP”: The
model trained with two out-of-scope perturbation types makes the correct prediction on the two
out-of-scope perturbation data; “Tab”: the model refuses to predict SQL due to the lack of table
information; “Col”: the model refuses to predict SQL due to the lack of column information.

Out of Scope Effect

Perturbation Type Table Match F1 Column Match F1 + OOS FP + OOS TP
w/o w/ + OOS w/o w/ + OOS Tab Col Tab Col

Original 89.77 90.42 82.98 (-7.44) 80.66 81.64 75.43 (-6.21) 7.11 0.65 - -

Add Columns 89.73 90.27 86.07 (-4.20) 78.26 80.27 77.00 (-3.27) 4.25 0.40 - -
Remove Columns 89.82 90.24 82.24 (-8.00) 82.67 82.75 75.90 (-6.85) 7.56 0.72 - -
Remove Col in SQL - - - - - - 5.02 - - 84.03
Rename Columns 85.28 85.07 80.20 (-4.87) 76.50 76.94 73.04 (-3.90) 4.44 0.20 - -

Add Tables 57.88 89.50 88.78 (-0.72) 63.81 81.14 80.71 (-0.37) 0.33 0.07 - -
Remove Tables - - - - - - - - 1.62 83.86 -
Rename Tables 88.84 90.32 86.36 (-3.96) 79.60 80.91 78.06 (-2.85) 3.52 0.39 - -
Split Tables 71.99 81.55 81.07 (-0.48) 75.30 78.45 78.02 (-0.43) 0.26 0.07 - -
Merge Tables 87.52 88.95 83.85 (-5.10) 67.73 68.98 65.42 (-3.56) 4.65 0.35 - -

types, the FP is very close to the gap between the model trained with and without out-of-scope
perturbation types, which can help verify that the model becomes more conservative to the response
is the major reason to lead the performance drop. Besides, we found that by removing columns in
gold SQL and removing tables, the TP is only around 84%, which indicates that the model still has
a 16% chance to make a prediction even when there should not be an SQL.

4.5 INFLUENCE OF INTRA-DATABASE AND CROSS-DATABASE

We hypothesize that a model trained on the same databases may not only learn schema evolution
patterns but also become familiar with specific table and column names. To test this, we split the
BIRD training data into train/test sets to ensure that each database in the test set also appears in
the training set. We use Code Llama as the base model. The results in Table 6 show that, for most
perturbation types, the model’s performance improves more compared to the cross-database scenario
in Section 4.1, which verifies our hypothesis.
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Table 6: Intra-database Effect. This experi-
ment emphasizes that the training and evalu-
ation occur within the same database, instead
of across databases.

Intra-database Effect

Perturbation Type Table Match F1 Column Match F1
w/o w/ w/o w/

Original 87.24 87.43 79.54 80.89

Add Columns 87.14 87.43 76.36 78.92
Remove Columns 87.29 87.27 81.14 81.29
Rename Columns 85.71 86.43 77.45 79.09

Add Tables 61.13 83.95 66.11 78.57
Remove Tables - - - -
Rename Tables 86.33 86.67 79.44 79.96
Split Tables 71.82 78.52 75.09 77.42
Merge Tables 85.11 87.44 71.43 74.72

Table 7: Evaluation on Spider. “w/”: the
model is trained by merging the original data
and all perturbation types; “w/o”: the model
is only trained on the original training data.

Spider Evaluation

Perturbation Type Table Match F1 Column Match F1
w/o w/ w/o w/

Original 99.72 99.65 90.54 91.35

Add Columns 99.73 99.66 88.81 90.94
Remove Columns 99.35 99.65 86.13 88.59
Rename Columns 99.68 99.74 86.55 89.13

Add Tables 62.46 98.80 66.49 90.54
Remove Tables - - - -
Rename Tables 99.24 99.25 89.71 90.99
Split Tables 73.27 90.24 76.76 86.93
Merge Tables 96.03 98.34 78.03 83.43

4.6 GENERALIZABILITY TO OTHER DATASETS

To evaluate the generalizability of EvoSchema to other text-to-SQL datasets, we conducted exper-
iments on the Spider dataset and used Mistral as the base model. As shown in Table 7, we reached
conclusions consistent with those in Section 4.1, which further demonstrates the effectiveness and
utility of our proposed framework and training methods.

5 RELATED WORK

Existing research on text-to-SQL robustness is mainly two-fold: robustness evaluation and robust-
ness training. Recent studies introduce evaluation benchmarks designed to expose robustness issues
by perturbing NLQs, databases or SQL queries. However, these studies tend to focus on syntactic
paraphrasing or simple semantic mappings, such as different representations of numbers or name
abbreviations across NLQ, DB, and SQL (Chang et al., 2023; Deng et al., 2021). While some work
analyzes schema changes, they mainly focus on irrelevant column modifications that do not affect
SQL (Ma & Wang, 2021) or with limited perturbation types (Pi et al., 2022). These efforts are in-
sufficient in the face of increasingly complex and rich database schemas found in modern datasets.
Moreover, the advent of LLMs has mitigated many linguistic challenges, further emphasizing the
need for robust adaptation to structural changes in database schemas. For robust training, existing
methods employ strategies like decomposing tasks so that models generate each sub-clause indi-
vidually before merging them (Gao et al., 2022), or using execution-guided decoding to eliminate
incorrect sub-clauses (Wang et al., 2018). While these approaches focus on enhancing various as-
pects of text-to-SQL robustness, our work specifically addresses the challenge of schema evolution.

6 CONCLUSION

In conclusion, we formulate the critical challenge of schema evolution in adaptive text-to-SQL sys-
tems and introduce EvoSchema, a novel framework designed to study and mitigate this problem.
We developed a comprehensive taxonomy of schema evolution types, enabling the synthesis of real-
istic schema designs through column-level and table-level perturbations. Leveraging this taxonomy,
we constructed an evaluation benchmark that facilitates thorough and comprehensive assessment of
model robustness against various schema perturbations. Furthermore, we proposed a new training
paradigm that augments existing training data with diverse schema designs, enhancing data diversity
and compelling models to recognize schema differences during training. Our approach significantly
improves text-to-SQL models, achieving up to a 33-point gain on various schema perturbation eval-
uation types compared to models trained on the original, unperturbed data. These findings highlight
the effectiveness of our methods in building more robust text-to-SQL models capable of adapting to
evolving schemas, paving the way for future advancements in the field.
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Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick

14

https://arxiv.org/abs/2303.08774
https://aclanthology.org/2022.acl-long.142
https://arxiv.org/abs/2308.12950
https://aclanthology.org/2023.emnlp-main.327
https://aclanthology.org/2020.acl-main.677
https://aclanthology.org/2020.acl-main.677
https://arxiv.org/abs/1807.03100


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-of-
the-art natural language processing, 2020. URL https://arxiv.org/abs/1910.03771.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene
Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing and text-to-SQL task.
In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 3911–3921,
Brussels, Belgium, October-November 2018. Association for Computational Linguistics. doi:
10.18653/v1/D18-1425. URL https://aclanthology.org/D18-1425.

Bin Zhang, Yuxiao Ye, Guoqing Du, Xiaoru Hu, Zhishuai Li, Sun Yang, Chi Harold Liu, Rui Zhao,
Ziyue Li, and Hangyu Mao. Benchmarking the text-to-sql capability of large language models:
A comprehensive evaluation, 2024a. URL https://arxiv.org/abs/2403.02951.

Chao Zhang, Yuren Mao, Yijiang Fan, Yu Mi, Yunjun Gao, Lu Chen, Dongfang Lou, and Jinshu Lin.
Finsql: Model-agnostic llms-based text-to-sql framework for financial analysis. arXiv preprint
arXiv:2401.10506, 2024b.

Tianshu Zhang, Changchang Liu, Wei-Han Lee, Yu Su, and Huan Sun. Federated learning for
semantic parsing: Task formulation, evaluation setup, new algorithms, 2023. URL https:
//arxiv.org/abs/2305.17221.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright,
Hamid Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Pritam Damania,
Bernard Nguyen, Geeta Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. Pytorch fsdp: Experi-
ences on scaling fully sharded data parallel, 2023. URL https://arxiv.org/abs/2304.
11277.

15

https://arxiv.org/abs/1910.03771
https://aclanthology.org/D18-1425
https://arxiv.org/abs/2403.02951
https://arxiv.org/abs/2305.17221
https://arxiv.org/abs/2305.17221
https://arxiv.org/abs/2304.11277
https://arxiv.org/abs/2304.11277


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A APPENDIX

Table 8: Data statistics of original data and perturbation data. “*”: the evaluation data for calculating
execution accuracy. We synthesize values to reconstruct the database after schema evolution, and
filter out those not executable by gold SQL, which results in the smaller size of the evaluation data.

Data Statistics

Perturbation Type BIRD Spider
Train Eval Eval* Train Eval

Original 9426 1534 789 7000 1034

Add Columns 9219 1506 582 6999 1034
Remove Columns 9426 1534 773 7000 1034
Remove Col in SQL 9424 1534 - 7000 1034
Rename Columns 9385 1533 674 6979 1034

Add Tables 9387 1530 606 6977 1033
Remove Tables 7212 1171 - 3069 1034
Rename Tables 9392 1534 735 7000 1034
Split Tables 9254 1515 178 6903 1029
Merge Tables 6930 1139 402 2999 437

Figure 2: An overview of different perturbation types generated by EvoSchema. The top is an
unperturbed example; the middle is the column-level perturbation; the bottom is the table-level
perturbation. “Remove Col in SQL”: remove columns that appear in gold SQL; “Remove Tables”:
the relevant tables appear in gold SQL are removed. Thus there is no gold SQL for these two cases.
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