

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING FROM ALGORITHM FEEDBACK: ONE-SHOT SAT SOLVER GUIDANCE WITH GNNS

Anonymous authors

Paper under double-blind review

## ABSTRACT

Boolean Satisfiability (SAT) solvers are foundational to computer science, yet their performance typically hinges on hand-crafted heuristics. This work introduces Reinforcement Learning from Algorithm Feedback (RLAF) as a paradigm for learning to guide SAT solver branching heuristics with Graph Neural Networks (GNNS). Central to our approach is a novel and generic mechanism for injecting inferred variable weights and polarities into the branching heuristics of existing SAT solvers. In a single forward pass, a GNN assigns these parameters to all variables. Casting this one-shot guidance as a reinforcement learning problem lets us train the GNN with off-the-shelf policy-gradient methods, such as GRPO, directly using the solver’s computational cost as the sole reward signal. Extensive evaluations demonstrate that RLAF-trained policies significantly reduce the mean solve times of different base solvers across diverse SAT problem distributions, achieving more than a 2x speedup in some cases, while generalizing effectively to larger and harder problems after training. Notably, these policies consistently outperform expert-supervised approaches based on learning handcrafted weighting heuristics, offering a promising path towards data-driven heuristic design in combinatorial optimization.

## 1 INTRODUCTION

Solving computationally hard combinatorial problems, such as Boolean satisfiability (SAT), remains a cornerstone of computer science and is critical to diverse domains such as verification, planning, and cryptography (Biere et al., 2021). Complete search algorithms are of particular importance, as they are guaranteed to find a solution if one exists or prove unsatisfiability otherwise. The runtime of these classical algorithms heavily depends on hand-crafted heuristics to navigate the solution space, for example, by determining variable assignments during the search. Such heuristics are often rigid and hard to adapt to specific instance distributions without extensive expert knowledge and tuning. Machine learning offers a compelling alternative: Augmenting the heuristic components of classical search algorithms with trainable functions allows us to construct adaptable solvers. Specifically, reinforcement learning (RL) can train these extended solvers to learn improved, distribution-specific heuristics in a data-driven manner without direct expert supervision.

In this work, we study how to leverage RL-trained Graph Neural Network (GNNS) to improve branching heuristics of SAT solvers. Our main contributions are as follows: First, we introduce a novel and generic method for integrating variable-wise weights into the branching heuristics of existing SAT solvers. Secondly, we construct a GNN-based policy that assigns a weight and polarity to each variable in one forward pass. This one-shot setting enables a single GNN pass to influence every branching decision, avoiding costly repeat passes. Thirdly, we phrase the task of inferring weights and polarities that reduce the solver’s cost as an RL problem. The reward signal is directly obtained from the observed computational cost of the guided SAT solver, requiring no expert supervision. We refer to this training paradigm as **Reinforcement Learning from Algorithm Feedback (RLAF)**. Finally, we demonstrate empirically that modern RL techniques, such as GRPO (Shao et al., 2024), are capable of training effective RLAF policies for different base solvers. The learned policies substantially reduce solver runtimes, generalize to harder problems after training, outperform supervised baselines, and appear to capture solver-agnostic structural properties of SAT problems.

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

**Algorithm 1** DPLL Solver

```

1: Input: Formula  $\phi$ 
2: function SOLVE( $\phi$ )
3:   # Simplify formula
4:    $\phi \leftarrow \text{UNIT-PROPAGATION}(\phi)$ 
5:    $\phi \leftarrow \text{PURE-LITERAL-ELIMINATION}(\phi)$ 
6:
7:   if  $\phi = \emptyset$ : return SAT
8:   if  $\emptyset \in \phi$ : return UNSAT
9:
10:  # Decide next branching variable
11:   $\ell \leftarrow \text{PICK-LITERAL}(\phi)$ 
12:  return SOLVE( $\phi \wedge \{\ell\}$ )  $\vee$  SOLVE( $\phi \wedge \{\neg\ell\}$ )
13: end function

```

**Algorithm 2** Decision Heuristic

```

1: Input: Formula  $\phi$ 
2: function PICK-LITERAL( $\phi$ )
3:    $\hat{x} \leftarrow \text{argmax}_x \text{SCORE}(x)$ 
4:   return  $\hat{x}$  if PICK-SIGN( $\hat{x}$ ) else  $\neg\hat{x}$ 
5: end function

```

**Algorithm 3** Guided Decision Heuristic

```

1: Input: Formula  $\phi$ , Parameters  $\mathcal{W} = (\mathbf{w}, \mathbf{p})$ 
2: function PICK-LITERAL-GUIDED( $\phi, \mathcal{W}$ )
3:    $\hat{x} \leftarrow \text{argmax}_x \mathbf{w}(\mathbf{x}) \cdot \text{SCORE}(x)$ 
4:   return  $\hat{x}$  if  $p(\hat{x}) = 1$  else  $\neg\hat{x}$ 
5: end function

```

Figure 1: DPLL SAT solver and branching heuristics. Algorithm 1: A DPLL SAT solver performs backtracking search to solve a given CNF formula  $\phi$ . At each search step, the formula is simplified through unit propagation and pure literal elimination before selecting the next branching literal. Algorithm 2: Branching heuristics are often implemented by choosing the variable that maximizes some hand-crafted scoring function. Algorithm 3: We propose to extend existing branching heuristics by incorporating given variable weights into the branching decisions that scale the associated score of each variable. We additionally choose the sign of each literal according to a provided polarity.

## 1.1 BACKGROUND

**SAT Solving** A Boolean formula in Conjunctive Normal Form (CNF) is a conjunction of clauses  $\phi = C_1 \wedge \dots \wedge C_m$ , each clause being a disjunction of one or more literals  $C_j = (\ell_{j,1} \vee \dots \vee \ell_{j,k})$ . We denote by  $\text{Var}(\phi) = \{x_1, \dots, x_n\}$  the set of Boolean variables of  $\phi$ . The Boolean SAT problem is to decide whether or not there exists a satisfying assignment  $\alpha : \text{Var}(\phi) \rightarrow \{0, 1\}$  that satisfies all clauses of a given formula  $\phi$ . This problem is well-known to be NP-complete and naturally arises in a wide range of applications (Biere et al., 2021). Modern SAT solvers predominantly stem from the Davis-Putnam-Logemann-Loveland (DPLL) algorithm, a backtracking search approach enhanced by unit propagation and pure literal elimination. Algorithm 1 provides a pseudocode description of a DPLL SAT solver. Many extensions of this general idea have been proposed to scale SAT solvers to larger, industrial instances. In particular, Conflict-Driven Clause Learning (CDCL) solvers significantly extend the DPLL framework by introducing clause learning and non-chronological backtracking. A common property of DPLL-derived solvers is the importance of the branching heuristic that picks the next branching literal in each search step (line 11 in Algorithm 1). Various branching heuristics have been proposed, and which heuristic performs best often depends on the structure of the given SAT formula  $\phi$  (Kullmann, 2021). Customizing branching heuristics towards a specific distribution of inputs generally requires expert knowledge and significant trial and error.

**Reinforcement Learning** Reinforcement learning (RL) aims to learn policies for sequential decision-making problems where an agent interacts with an environment to learn through trial and error. An RL problem is usually formalized as a Markov Decision Process (MDP), which is defined as a tuple  $(\mathcal{S}, \mathcal{A}, P, R)$ , where  $\mathcal{S}$  is the set of states,  $\mathcal{A}$  is the set of possible actions,  $P$  denotes the transition probabilities between states and  $R$  is the reward function. In probabilistic settings, policies  $\pi$  are stochastic mappings from states to distributions over actions, i.e.,  $\pi(a|s)$  indicates the probability of selecting action  $a$  in state  $s$ . More generally, for continuous action spaces, i.e.  $\mathcal{A} = \mathbb{R}$ ,  $\pi(a|s)$  is the probability *density* that a policy assigns to an action  $a$ . The primary objective in RL is to determine an optimal policy  $\pi^*$  that maximizes the expected cumulative discounted reward  $\mathbb{E}_\pi [\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t)]$ , where  $\gamma \in [0, 1]$  represents a discount factor that emphasizes earlier rewards. This formulation is the basis for various RL algorithms. Recently, RL algorithms based on policy gradients, such as PPO (Schulman et al., 2017) and GRPO (Shao et al., 2024) have been used extensively to fine-tune LLMs from human feedback (RLHF, Christiano et al. (2017); Ouyang et al. (2022)) and from verifiable rewards (RLVR, Lambert et al. (2024); Guo et al. (2025)).

108 1.2 RELATED WORK  
109

110 Leveraging deep learning in the context of combinatorial optimization (CO) problems has emerged  
111 as a major area of research (Cappart et al., 2021) and has been applied to a wide range of problems  
112 such as combinatorial graph problems (Khalil et al., 2017), SAT solving (Selsam et al., 2019), Mixed-  
113 Integer Programming (Khalil et al., 2022), and Constraint Satisfaction Problems (Tönshoff et al.,  
114 2023). Here, we primarily focus on work that aims to enhance SAT solvers with (graph) neural  
115 networks. One line of work suggests using predictions of predefined variable properties to guide  
116 SAT solver branching heuristics. Selsam & Bjørner (2019) train a GNN to predict whether variables  
117 belong to an UNSAT core. The branching heuristic is then guided by periodically resetting the solver’s  
118 VSIDS scores to the GNN’s predictions, thus making the guidance specific to VSIDS-based CDCL  
119 solvers and dependent on careful tuning of the reset frequency. Wang et al. (2024) predict whether  
120 literals occur in the backbone of satisfiable formulas and use these predictions to set the polarity  
121 of variables. Another line of work explores purely RL-based training for enhancing branching  
122 heuristics, eliminating the need for expert supervision. Kurin et al. (2020) uses Q-learning to train  
123 GNNs end-to-end as branching policies to minimize solver runtime, and Cameron et al. (2024)  
124 propose Monte Carlo Forest Search for guiding early branching decisions in SAT Solvers on UNSAT  
125 problems. Both methods require one GNN forward pass per guided branching decision, which  
126 creates a significant bottleneck as the GNN usually requires orders of magnitude more runtime than  
127 classical branching heuristics. As a consequence, both methods only leverage the learned guidance  
128 in a few early solver decisions. Further related work is proposed by Han (2020), who accelerate  
129 cube-and-conquer solvers with supervised learning, Liu et al. (2024), who suggest improving clause  
130 deletion heuristics in CDCL SAT solvers with GNNs, and Zhai & Ge (2025), who use RL to speed up  
131 parallelized divide-and-conquer solvers.

132 2 RLAFF-GUIDED SAT SOLVERS  
133134 2.1 GUIDED BRANCHING HEURISTICS  
135

136 We modify existing SAT solvers to incorporate external variable weights into their branching heuristic.  
137 Let some base SAT solver be given. We assume that this solver is a DPLL-derived backtracking  
138 search algorithm. We further assume that the branching heuristic is implemented by first selecting  
139 a variable  $\hat{x} = \text{argmax}_x \text{Score}(x)$  that maximizes some variable scoring function  $\text{Score}$  before  
140 picking a literal sign according to some secondary heuristic, as illustrated in Algorithm 2. Many  
141 existing branching heuristics, such as VSIDS and look-ahead heuristics, fit the generic algorithm  
142 pattern while relying on different definitions of variable scores. Note that these scores usually depend  
143 on the current partial assignment of the search as well as information extracted in previous search  
144 steps, such as encountered conflicts. We can modify this decision heuristic to incorporate additional  
145 variable weights  $w : \text{Var}(\phi) \rightarrow \mathbb{R}_{>0}$  for the given input formula  $\phi$ :

$$\hat{x} = \text{argmax}_x w(x) \cdot \text{Score}(x) \quad (1)$$

146 These weights are passed to the modified solver as additional input and modulate its branching  
147 heuristic by scaling the variable-wise scores. In this manner, we can inject prior knowledge of  
148 variable importance into the solver’s branching decisions without sacrificing its original heuristic.  
149 Naturally, choosing a useful variable weighting  $w$  by hand is difficult. Instead, our focus is on  
150 learning to infer effective variable weights from the input formula’s structure using a deep neural  
151 network.

152 In addition to these weights, we may also specify a mapping  $p : \text{Var}(\phi) \rightarrow \{0, 1\}$  that assigns a  
153 polarity  $p(x)$  to each variable  $x$ . When  $x$  is chosen as a decision variable, the polarity determines  
154 which value is assigned to  $x$  first. Specifying polarities for variables is a common function for  
155 modern SAT solvers, and well-chosen values can have a significant impact on run time, especially  
156 on satisfiable instances. In this work, we will infer variable-wise polarities alongside the variable  
157 weights  $w$  with a learned GNN model. Overall, the modified solver  $\text{Solve}(\phi, \mathcal{W})$  takes as input a  
158 CNF formula  $\phi$  as well as a variable parameterization  $\mathcal{W} = (w, p)$  that assigns a weight  $w(x) \in \mathbb{R}_{>0}$   
159 and polarity  $p(x) \in \{0, 1\}$  to each variable  $x \in \text{Var}(\phi)$ .



Figure 2: **a)** The input formula  $\phi$  is modeled as a graph  $G(\phi)$ . **b)** The graph is processed by a trainable GNN and outputs a parameterization policy  $\pi_\theta(\phi)$ . **c)** The policy  $\pi_\theta(\phi)$  consists of independent variable-wise weight (LogNormal) and polarity (Bernoulli) distributions. **d)** A variable parameterization  $\mathcal{W} = (w, p)$  is sampled from  $\pi_\theta(\phi)$ , mapping each variable  $x$  in  $\phi$  to a weight  $w(x) \in \mathbb{R}_{>0}$  and polarity  $p(x) \in \{0, 1\}$ . **e)** A guided SAT solver incorporates the parameterization  $\mathcal{W}$  to guide its branching heuristic.

## 2.2 GRAPH REPRESENTATION AND ARCHITECTURE

Our goal is to map an instance  $\phi$  to advantageous variable weights and polarities with a neural network. A natural approach is to map  $\phi$  to a suitable graph representation  $G(\phi) = (V(\phi), E(\phi))$  that captures the instance’s structure. This graph can then be processed by a GNN that extracts structural information in a trainable manner. We represent  $\phi$  as a standard “Literal-Clause Graph” proposed in prior work Selsam et al. (2019). Note that this choice is modular; other graph representations have also been suggested in the literature and could also be used. We process this graph with a trainable GNN model  $N_\theta$  that performs message passing to extract latent structural embeddings for every vertex. Here,  $\theta$  represents the vector that contains all trainable model parameters. The output of  $N_\theta$  is a mapping  $y : \text{Var}(\phi) \rightarrow \mathbb{R}^2$  that assigns two real numbers to each variable in the input formula  $\phi$ . The full model details are provided in Section A.

## 2.3 GUIDANCE POLICY

For a given input formula  $\phi$ , we map the output of the GNN  $N_\theta$  to a policy  $\pi_\theta(\phi)$  from which a variable parameterization  $\mathcal{W} \sim \pi_\theta(\phi)$  can be sampled. Recall that for a given SAT instance the GNN  $N_\theta$  outputs a mapping  $y : \text{Var}(\phi) \rightarrow \mathbb{R}^2$  that associates every variable  $x \in \text{Var}(\phi)$  with two real numbers  $\mu(x), \rho(x) \in \mathbb{R}$ ,  $[\mu(x), \rho(x)] = y(x)$ . These outputs are used to parameterize variable-wise weight and polarity distributions, respectively. Concretely, for each variable  $x$  in  $\phi$  we define its weight policy  $\pi_\theta^w(x)$  as a Log-Normal distribution over positive real weights:

$$\pi_\theta^w(x) = \text{LogNormal}(\mu(x), \sigma^w) \quad (2)$$

Here, the inferred parameter  $\mu(x) \in \mathbb{R}$  is used as the log-mean of the distribution, and  $\sigma^w \in \mathbb{R}_{>0}$  is a hyperparameter. We employ the Log-Normal distribution because it naturally models unimodal distributions over strictly positive real numbers, ensuring that the sampled weights remain valid multiplicative scaling factors without requiring artificial clipping or constraints. While we observed reasonable training convergence with alternative parameterizations, such as Truncated Normal and Poisson distributions, the Log-Normal formulation proved simpler and more robust.

Analogously, we define a variable’s polarity policy  $\pi_\theta^p(x)$  as a Bernoulli distribution where the probability is obtained by applying a sigmoid function to  $\rho(x)$ :

$$\pi_\theta^p(x) = \text{Bernoulli}(\text{Sigmoid}(\rho(x))). \quad (3)$$

The complete variable parameterization policy  $\pi_\theta$  is then defined as the joint distribution of  $\pi_\theta^w(x)$  and  $\pi_\theta^p(x)$  over all variables:

$$\pi_\theta(\phi) = \pi_\theta^w(x_1) \times \pi_\theta^p(x_1) \times \dots \times \pi_\theta^w(x_n) \times \pi_\theta^p(x_n). \quad (4)$$

We sample a variable parameterization  $\mathcal{W} = (w, p) \sim \pi_\theta$  from this distribution in one shot by independently sampling a weight  $w(x) \sim \pi_\theta^w(x)$  and polarity  $p(x) \sim \pi_\theta^p(x)$  for each variable  $x$  in parallel. The probability density  $\pi_\theta(\mathcal{W}|\phi)$  of  $\mathcal{W}$  can then be factorized as

$$\pi_\theta(\mathcal{W}|\phi) = \prod_x \pi_\theta^w(w(x)|\phi) \cdot \pi_\theta^p(p(x)|\phi). \quad (5)$$



223      Figure 3: Learning to accelerate a SAT solver with GRPO: **a)** For a given training formula  $\phi$  sample  
 224      multiple variable parameterizations i.i.d. from the current policy  $\pi_{\theta}(\phi)$ . **b)** Run the SAT solver on  $\phi$   
 225      with each parameterization. **c)** Map the cost of each solver run (i.e. the number of decisions) to the  
 226      normalized group-relative advantage  $\hat{A}(\phi, \mathcal{W})$ . **d)** Optimize the model weights  $\theta$  to maximize  $\mathcal{L}_{\text{PPO}}$   
 227      to shift the policy towards faster parameterizations.

230      Note that all trainable weights of the GNN model have a partial derivative with respect to  $\pi_{\theta}(\mathcal{W} | \phi)$   
 231      for a given  $\mathcal{W}$ , which enables us to train with policy-gradient methods such as GRPO. During training,  
 232      we sample multiple  $\mathcal{W}$  i.i.d. from  $\pi_{\theta}(\phi)$  and use the variance of the observed solver runtimes to  
 233      compute our training signal, as explained in Section 2.4. At test time, we do not sample randomly  
 234      from  $\pi_{\theta}(\phi)$  but simply use the mode  $\hat{\mathcal{W}}$ , which deterministically chooses the most probable weight  
 235      and polarity for each variable  $x$ . This eliminates a source of variance when testing and, on average,  
 236      yields better results than sampling at random from the learned policy.

## 237      2.4 POLICY OPTIMIZATION

239      Our aim is to learn a policy GNN that guides the SAT solver towards lower computational costs on a  
 240      given distribution of SAT instances. Formally, let  $\Omega$  be some training distribution of SAT problems.  
 241      The objective is to learn model weights  $\theta$  that minimize the expected solver cost when applying the  
 242      learned policy to instances sampled from  $\Omega$ :

$$244 \quad \theta^* = \arg \min_{\theta} \mathbb{E}_{\phi \sim \Omega, \mathcal{W} \sim \pi_{\theta}(\phi)} [\text{Cost}(\phi, \mathcal{W})]. \quad (6)$$

246      Here,  $\text{Cost}(\phi, \mathcal{W})$  is defined as the number of decisions required when running  $\text{Solve}(\phi, \mathcal{W})$ ,  
 247      which is the primary target metric we aim to minimize. We can view this objective as an RL problem  
 248      by modeling the process of choosing  $\mathcal{W}$  as a single-step Markov Decision Process (MDP) where  
 249      the input formula  $\phi$  is viewed as the state, and a single-step episode unfolds by choosing a variable  
 250      parameterization  $\mathcal{W}$  as the action. Once the action is taken, the environment transitions immediately  
 251      to a terminal state, yielding a reward  $R(\phi, \mathcal{W}) = -\text{Cost}(\phi, \mathcal{W})$  that is the negative of the solver’s  
 252      cost (e.g., number of decisions). Note that we also experimented with directly using CPU time as a  
 253      cost measure, but found this to yield less stable training due to the performance variance caused by  
 254      noisy CPU utilization.

255      We leverage Group Relative Policy Optimization (GRPO) (Shao et al., 2024) to learn a policy for  
 256      this RL problem. GRPO is a simplification of Proximal Policy Optimization (PPO) (Schulman  
 257      et al., 2017) that eliminates the need for learning an additional value network. The initial model  
 258      weights  $\theta_0$  are sampled at random. GRPO updates these model weights in iterations  $k \in \{1, \dots, K\}$ .  
 259      In iteration  $k$ , we first sample a batch of training instances from  $\mathcal{F} = \{\phi_1, \dots, \phi_N\} \sim \Omega^N$  from  
 260      the given training distribution. For each such formula  $\phi_i$  we sample  $M$  variable parameterizations  
 261       $\mathcal{W}_{i,1}, \dots, \mathcal{W}_{i,M} \sim \pi_{\theta_{k-1}}(\phi_i)$  i.i.d. from the current policy. We then run  $\text{Solve}(\phi_i, \mathcal{W}_{i,j})$  for all  
 262       $i, j \in [N] \times [M]$  and measure the corresponding cost and reward. The group-relative advantage is  
 263      then defined as

$$264 \quad \hat{A}_{i,j} = \frac{R(\phi_i, \mathcal{W}_{i,j}) - \text{mean}(\mathbf{R}_i)}{\text{std}(\mathbf{R}_i)} \quad (7)$$

265      where  $\mathbf{R}_i = \{R(\phi_i, \mathcal{W}_{i,j}) \mid j \in \{1, \dots, M\}\}$  is the set of all rewards collected for the same instance  
 266       $\phi_i$ . The main objective is to maximize the clipped policy update function for each training instance  
 267       $\phi_i$ :

$$268 \quad \mathcal{L}_{\text{PPO}}(\theta \mid \phi_i) = \frac{1}{M} \sum_j \left[ \min \left( r_{i,j}(\theta) \hat{A}_{i,j}, \text{clip}(r_{i,j}(\theta), 1-\epsilon, 1+\epsilon) \hat{A}_{i,j} \right) \right]. \quad (8)$$

270 Here,  $\epsilon \in (0, 1)$  is a hyperparameter, and  $r_{i,j}(\theta)$  is defined as the probability ratio of the new policy  
 271 and the policy learned in the previous GRPO iteration:

$$273 \quad r_{i,j}(\theta) = \frac{\pi_\theta(\mathcal{W}_{i,j}|\phi_i)}{\pi_{\theta_{k-1}}(\mathcal{W}_{i,j}|\phi_i)} \quad (9)$$

275 This objective aims to adjust the policy such that actions (e.g., variable parameterizations) with  
 276 high advantage become more likely while avoiding excessively large distribution shifts by clipping  
 277 the objective at a probability ratio determined by  $\epsilon$ . The full training objective combines  $\mathcal{L}_{\text{PPO}}$  with  
 278 an additional term that penalizes the KL divergence relative to the previous model weights  $\theta_{k-1}$  to  
 279 stabilize training further:

$$280 \quad \mathcal{L}(\theta | \phi_i) = \mathcal{L}_{\text{PPO}}(\theta | \phi_i) - \beta \cdot \text{KL}(\pi_\theta(\phi_i), \pi_{\theta_{k-1}}(\phi_i)). \quad (10)$$

282 Here, the weight  $\beta \geq 0$  is an additional hyperparameter. Starting from the previous model weights  
 283  $\theta_{k-1}$ , we learn updated model weights  $\theta_k$  by performing stochastic gradient ascent for a fixed number  
 284 of steps to maximize this objective function for all training instances. This overall process repeats in  
 285 the next round of GRPO. In the appendix, Algorithm 4 provides a complete formal specification of  
 286 our training.

## 288 2.5 TRAINING SETUP

289 We are utilizing GRPO as an online RL algorithm to learn the parameters of our policy GNN directly  
 290 from observed solver costs. As a consequence, we train with the SAT solver in-the-loop and make  
 291  $M \cdot N$  calls to the solver per GRPO iteration. With our default parameters ( $N = 100, M = 40$ ) we  
 292 make 4000 SAT solver calls in each iteration. This imposes the practical constraint to train on a  
 293 distribution  $\Omega$  of SAT problems where this number of solver calls is possible in an acceptable time on  
 294 the underlying hardware. The work presented here intends to be a small-scale demonstration of RLA  
 295 as a training paradigm, and all training is performed on machines with one (multi-core) CPU and one  
 296 GPU. Therefore, the training data in our experiments is chosen so that each instance is solvable by the  
 297 given base solvers within a fraction of a second. In future work, the hardness and size of the training  
 298 problems can be scaled up substantially by leveraging a distributed compute cluster for collecting the  
 299 SAT solver feedback. Crucially, we demonstrate in Section 3 that after training, the learned policies  
 300 do generalize to significantly harder and larger problems. The reliance on comparatively easy training  
 301 problems is therefore not a significant limitation for learning effective GNN-guidance with RLA.

## 302 3 EXPERIMENTS

303 In our experiments, we aim to answer two primary research questions: (i) Can RLA train GNN-  
 304 based guidance policies that shorten solver runtimes and generalize to harder formulas? (ii) How  
 305 do RLA-trained policies fare against guidance based on learning predefined notions of variable  
 306 importance in a supervised manner? Furthermore, we want to understand whether the learned policies  
 307 capture known variable properties after training and whether the policies learned with different solvers  
 308 are related or solver-specific.

309 **Solvers** We conduct experiments with two distinct base solvers: The well-known CDCL solver  
 310 Glucose (Audemard & Simon, 2017) and the DPLL solver March (Heule et al., 2005). Glucose uses  
 311 the EVSIDS branching heuristic and is comparatively strong on structured problems, while March  
 312 uses a look-ahead branching heuristic and is among the best-known solvers for random instances.  
 313 Full details on the extended solvers are provided in Section A.3. As our focus is a prototype-scale  
 314 demonstration of RLA as a training paradigm, we leave integration with state-of-the-art CDCL  
 315 solvers for future work aimed at large-scale industrial settings.

316 **Data** We consider three well-known classes of SAT problems with significantly different structures  
 317 to study how well RLA can adapt the base solvers to each of them. In Section B.1 we provide  
 318 full details on the data generation and dataset statistics. **Random 3SAT**: We define  $3\text{SAT}(n)$  as the  
 319 distribution of uniformly random 3SAT instances with  $n$  variables and clause-to-variable ratio of 4.26,  
 320 which is approximately the critical density where the instances transition from SAT to UNSAT. The  
 321 training data consists of 20K instances sampled from  $3\text{SAT}(200)$ . We test on larger instances with

324  
 325 Table 1: Results on test instances. All metrics are averaged across the respective test sets. The mean  
 326 number of decisions is rounded to the nearest whole number. For results with RLAf, we include the  
 327 time required for the GNN forward pass in the total runtime. We highlight numbers in bold when  
 328 they are the best value achieved for the respective base solver.

| 329 330 Distribution | 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 77710 77711 77712 77713 77714 77715 77716 77717 77718 77719 77720 77721 77722 77723 77724 77725 77726 77727 77728 77729 77730 77731 77732 77733 77734 77735 77736 77737 77738 77739 77740 77741 77742 77743 77744 77745 77746 77747 77748 77749 77750 77751 77752 77753 77754 77755 77756 77757 77758 77759 77760 77761 77762 77763 77764 77765 77766 77767 77768 77769 77770 77771 77772 77773 77774 77775 77776 77777 77778 77779 77780 77781 77782 77783 77784 77785 77786 77787 77788 77789 77790 77791 77792 77793 77794 77795 77796 77797 77798 77799 777100 777101 777102 777103 777104 777105 777106 777107 777108 777109 777110 777111 777112 777113 777114 777115 777116 777117 777118 777119 777120 777121 777122 777123 777124 777125 777126 777127 777128 777129 777130 777131 777132 777133 777134 777135 777136 777137 777138 777139 777140 777141 777142 777143 777144 777145 777146 777147 777148 777149 777150 777151 777152 777153 777154 777155 777156 777157 777158 777159 777160 777161 777162 777163 777164 777165 777166 777167 777168 777169 777170 777171 777172 777173 777174 777175 777176 777177 777178 777179 777180 777181 777182 777183 777184 777185 777186 777187 777188 777189 777190 777191 777192 777193 777194 777195 777196 777197 777198 777199 777200 777201 777202 777203 777204 777205 777206 777207 777208 777209 777210 777211 777212 777213 777214 777215 777216 777217 777218 777219 777220 777221 777222 777223 777224 777225 777226 777227 777228 777229 777230 777231 777232 777233 777234 777235 777236 777237 777238 777239 777240 777241 777242 777243 777244 777245 777246 777247 777248 777249 777250 777251 777252 777253 777254 777255 777256 777257 777258 777259 777260 777261 777262 777263 777264 777265 777266 777267 777268 777269 777270 777271 777272 777273 777274 777275 777276 777277 777278 777279 777280 777281 777282 777283 777284 777285 777286 777287 777288 777289 777290 777291 777292 777293 777294 777295 777296 777297 777298 777299 777300 777301 777302 777303 777304 777305 777306 777307 777308 777309 777310 777311 777312 777313 777314 777315 777316 777317 777318 777319 777320 777321 777322 777323 777324 777325 777326 777327 777328 777329 777330 777331 777332 777333 777334 777335 777336 777337 777338 777339 777340 777341 777342 777343 777344 777345 777346 777347 777348 777349 777350 777351 777352 777353 777354 777355 777356 777357 777358 777359 777360 777361 777362 777363 777364 777365 777366 777367 777368 777369 777370 777371 777372 777373 777374 777375 777376 777377 777378 777379 777380 777381 777382 777383 777384 777385 777386 777387 777388 777389 777390 777391 777392 777393 777394 777395 777396 777397 777398 777399 777400 777401 777402 777403 777404 777405 777406 777407 777408 777409 777410 777411 777412 777413 777414 777415 777416 777417 777418 777419 777420 777421 777422 777423 777424 777425 777426 777427 777428 777429 777430 777431 777432 777433 777434 777435 777436 777437 777438 777439 777440 777441 777442 777443 777444 777445 777446 777447 777448 777449 777450 777451 777452 777453 777454 777455 777456 777457 777458 777459 777460 777461 777462 777463 777464 777465 777466 777467 777468 777469 777470 777471 777472 777473 777474 777475 777476 777477 777478 777479 777480 777481 777482 777483 777484 777485 777486 777487 777488 777489 777490 777491 777492 777493 777494 777495 777496 777497 777498 777499 777500 777501 777502 777503 777504 777505 777506 777507 777508 777509 777510 777511 777512 777513 777514 777515 777516 777517 777518 777519 777520 777521 777522 777523 777524 777525 777526 777527 777528 777529 777530 777531 777532 777533 777534 777535 777536 777537 777538 777539 777540 777541 777542 777543 777544 777545 777546 777547 777548 777549 777550 777551 777552 777553 777554 777555 777556 777557 777558 777559 777560 777561 777562 777563 777564 777565 777566 777567 777568 777569 777570 777571 777572 777573 777574 777575 777576 777577 777578 777579 777580 777581 777582 777583 777584 777585 777586 777587 777588 777589 777590 777591 777592 777593 777594 777595 777596 777597 777598 777599 777600 777601 777602 777603 777604 777605 777606 777607 777608 777609 777610 777611 777612 777613 777614 777615 777616 777617 777618 777619 777620 777621 777622 777623 777624 777625 777626 777627 777628 777629 777630 777631 777632 777633 777634 777635 777636 777637 777638 777639 777640 777641 777642 777643 777644 777645 777646 777647 777648 777649 777650 777651 777652 777653 777654 777655 777656 777657 777658 777659 777660 777661 777662 777663 777664 777665 777666 777667 777668 777669 777670 777671 777672 777673 777674 777675 777676 777677 777678 777679 777680 777681 777682 777683 777684 777685 777686 777687 777688 777689 777690 777691 777692 777693 777694 777695 777696 777697 777698 777699 777700 777701 777702 777703 777704 777705 777706 777707 777708 777709 777710 777711 777712 777713 777714 777715 777716 777717 777718 777719 777720 777721 777722 777723 777724 777725 777726 777727 777728 777729 777730 777731 777732 777733 777734 777735 777736 777737 777738 777739 777740 777741 777742 777743 777744 777745 777746 777747 777748 777749 777750 777751 777752 777753 777754 777755 777756 777757 777758 777759 777760 777761 777762 777763 777764 777765 777766 777767 777768 777769 777770 777771 777772 777773 777774 777775 777776 777777 777778 777779 777780 777781 777782 777783 777784 777785 777786 777787 777788 777789 777790 777791 777792 777793 777794 777795 777796 777797 777798 777799 777800 777801 777802 777803 777804 777805 777806 777807 777808 777809 777810 777811 777812 777813 777814 777815 777816 777817 777818 777819 777820 777821 777822 777823 777824 777825 777826 777827 777828 777829 777830 777831 777832 777833 777834 777835 777836 777837 777838 777839 777840 777841 777842 777843 777844 777845 777846 777847 777848 777849 777850 777851 777852 777853 777854 777855 777856 777857 777858 777859 777860 777861 777862 777863 777864 777865 777866 777867 777868 777869 777870 777871 777872 777873 777874 777875 777876 777877 777878 777879 777880 777881 777882 777883 777884 777885 777886 777887 777888 777889 777890 777891 777892 777893 777894 777895 777896 777897 777898 777899 777900 777901 777902 777903 777904 777905 777906 777907 777908 777909 777910 777911 777912 777913 777914 777915 777916 777917 777918 777919 777920 777921 777922 777923 777924 777925 777926 777927 777928 777929 777930 777931 777932 777933 777934 777935 777936 777937 777938 777939 777940 777941 777942 777943 777944 777945 777946 777947 777948 777949 777950 777951 777952 777953 777954 777955 777956 777957 777958 777959 777960 777961 777962 777963 777964 777965 777966 777967 777968 777969 777970 777971 777972 777973 777974 777975 777976 777977 777978 777979 777980 777981 777982 777983 777984 777985 777986 777987 777988 777989 777990 777991 777992 777993 777994 777995 777996 777997 777998 777999 7771000 7771001 7771002 7771003 7771004 7771005 7771006 7771007 7771008 7771009 7771010 7771011 7771012 7771013 7771014 7771015 7771016 7771017 7771018 7771019 7771020 7771021 7771022 7771023 7771024 7771025 7771026 7771027 7771028 7771029 7771030 7771031 7771032 7771033 7771034 7771035 7771036 7771037 7771038 7771039 7771040 7771041 7771042 7771043 7771044 7771045 7771046 7771047 7771048 7771049 7771050 7771051 7771052 7771053 7771054 7771055 7771056 7771057 7771058 7771059 7771060 7771061 7771062 7771063 7771064 7771065 7771066 7771067 7771068 7771069 7771070 7771071 7771072 |
| --- | --- |



Figure 4: Runtimes relative to the base solver Glucose for RLAf and supervised approaches based on Backbones and UNSAT cores. **Less is better.**

### 3.2 COMPARISON TO SUPERVISED APPROACHES

Prior work suggests predicting predefined variable properties, such as UNSAT core Selsam & Bjørner (2019) or backbone Wang et al. (2024) membership, in a supervised manner, and then transforming model predictions into variable weights and polarities for solver guidance. Here, we aim to compare how guidance learned with RLAf compares to this approach. Note that the notions of UNSAT cores and backbones are only sensible training targets for some instance distributions. Backbones can only be non-empty on satisfiable instances, and even for satisfiable graph coloring problems, all backbones are empty due to the permutation symmetry of the vertex colors. Furthermore, on our UNSAT 3SAT training instances, we observed that the UNSAT core extracted by SAT solvers contained all variables on almost all instances, yielding a training target that is effectively constant. Due to these limitations, we use the 3SAT instances to evaluate the effectiveness of predicting the backbone, while we use the graph coloring and cryptographic instances to compare RLAf to core-based solver guidance. For a fair comparison, we use the same GNN architecture used to train with RLAf and train a separate model for each instance distribution. The transformation that maps the backbone/core predictions to variable weights is tuned separately for each instance distribution on the corresponding validation set. Full details about the setup of this comparison are provided in Section B.5. We also provide an additional comparison of RLAf to Graph-Q-SAT Kurin et al. (2020), an unsupervised baseline using Q-Learning, in Section B.6.

Figure 4 compares the results for Glucose in terms of the relative wall-clock runtime compared to the base solver. Overall, the policy learned with RLAf significantly outperforms solver guidance based on both UNSAT core and backbone predictions by achieving a smaller relative runtime. The backbone-based heuristic outperforms RLAf only on satisfiable 3SAT instances with 300 variables, but not on larger problems. On unsatisfiable 3SAT problems, the backbone-guided heuristic performs substantially worse. RLAf also outperforms core-based guidance for both graph coloring and cryptographic SAT problems. Overall, these results demonstrate that pure RL-based learning with RLAf can yield more effective solver guidance than predicting handcrafted notions of variable importance in a supervised manner.

### 3.3 EXPLORING LEARNED VARIABLE WEIGHTS

We further aim to gain insights into the weight distributions learned through RLAf. In particular, we investigate whether the policies learned with different base solvers are related and whether they capture predefined variable properties, such as backbone and UNSAT core membership. To this end, Figure 5 compares the weights for 5000 randomly selected variables from the corresponding validation sets. Specifically, we plot the expected variable weight  $\mathbb{E}[w(x)]$  for the Glucose-trained policy on the x-axis and plot the corresponding value for the March-trained policy on the y-axis. We also report the Pearson correlation coefficient ( $r$ ) for these weights to quantify their correlation. For 3SAT, we only plot variables from satisfiable instances and additionally indicate whether each variable belongs to its instance's backbone. Likewise, we focus on unsatisfiable instances for 3COL and CRYPTO and indicate if a variable occurs in the UNSAT core extracted for the experiment in Section 3.2.



Figure 5: Weight correlation between policies learned with different solvers. For each instance distribution, we randomly sample 5,000 variables  $x$  from the corresponding validation set and plot the expected variable weight  $E[w(x)]$  for the policies learned with either base solver. The color further indicates the backbone or UNSAT core membership of each variable.

We observe that the variable weights of the two policies are generally correlated, with a Pearson correlation coefficient  $r$  between 0.73 and 0.85. This indicates that the learned weightings capture structural properties that are inherent to the variables and accelerate the search across different solvers. We further observe that for the 3COL and CRYPTO instances, the variables with high weights are predominantly members of the UNSAT core. For these problem instances, the RLAFF-based training therefore self-discovered weight policies that correlate to existing handcrafted heuristics while performing better, as demonstrated in Section 3.2. For the 3SAT instances, we do not observe a clear correlation between the learned weight policies and backbone membership, showing that in this case, the trained models express functions that, while effective, do not resemble this particular handcrafted heuristic.

## 4 DISCUSSION

We introduced RLAFF as a paradigm for training GNN-based policies that guide the branching heuristics of SAT solvers. Our work contributes (i) a generic mechanism for injecting variable weights into branching heuristics, (ii) a formulation of weight selection as a one-shot RL problem, (iii) a way to leverage GNNs as trainable policies in this setting, and (iv) experimental evidence that GRPO can learn policies that reduce the computational cost of different base solvers. In our empirical studies, the learned policies generalize to larger and harder instances, and consistently surpass supervised baselines that rely on handcrafted variable properties. Moreover, policies trained with different base solvers converge toward similar structural signals, suggesting that RLAFF is capturing inherent information about SAT instance structure that is not specific to the underlying base solver.

The current implementation is designed as a small-scale prototype optimized for training on relatively simple formulas using moderate hardware. This constraint allows for only comparatively simple problems to be solved quickly enough to collect sufficient solver feedback on local CPU cores in each GRPO iteration. Expanding the system to leverage distributed computing resources would enable the incorporation of larger and harder SAT problems during training, potentially leading to better guidance policies. GNN scalability also remains a bottleneck, particularly during training, as processing large industrial instances imposes significant memory and computational demands. At the same time, the expressive power of our network, a standard message-passing GNN, is bounded by color refinement (Morris et al., 2019; Xu et al., 2019). Combining higher expressivity and scalability remains a critical challenge for applying GNNs to large, structured problem instances.

Finally, the proposed methodology is not strictly limited to SAT solvers. Branching heuristics are critical components not only in SAT solving but also for Mixed-Integer Programming (MIPs) and Constraint Satisfaction Problems (CSPs). More broadly, implementing any kind of selection heuristic as the argmax of some scoring function is a generic pattern of algorithm design found across many domains. For any such algorithm, one can introduce external multiplicative weights that guide the heuristic and then phrase the task of inferring effective weights as an RL problem. In this work, we have demonstrated that this general methodology can be leveraged in the context of SAT solving. Translating it to other domains and algorithms remains as future work.

486 5 REPRODUCIBILITY STATEMENT  
487488 All experimental code is included in the supplementary material, including scripts for data generation  
489 and preprocessing. We also provide detailed information on the hyperparameters required to reproduce  
490 our results in Section B in the appendix.  
491492 REFERENCES  
493494 Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern sat solvers. In  
495 *IJCAI*, volume 9, pp. 399–404. Citeseer, 2009.  
496497 Gilles Audemard and Laurent Simon. Glucose and syrup in the sat’17. *Proceedings of SAT  
498 Competition*, pp. 16–17, 2017.  
499500 Armin Biere, Marijn Heule, and Hans van Maaren (eds.). *Handbook of satisfiability*, volume 185.  
501 IOS press, 2nd edition, 2021.  
502503 Armin Biere, Tobias Faller, Katalin Fazekas, Mathias Fleury, Nils Froleyks, and Florian Pollitt.  
504 CaDiCaL 2.0. In Arie Gurfinkel and Vijay Ganesh (eds.), *Computer Aided Verification - 36th  
505 International Conference, CAV 2024, Montreal, QC, Canada, July 24-27, 2024, Proceedings,  
Part I*, volume 14681 of *Lecture Notes in Computer Science*, pp. 133–152. Springer, 2024. doi:  
506 10.1007/978-3-031-65627-9\\_7.  
507508 Chris Cameron, Jason Hartford, Taylor Lundy, Tuan Truong, Alan Milligan, Rex Chen, and Kevin  
509 Leyton-Brown. Unsat solver synthesis via monte carlo forest search. In *International Conference  
510 on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research*,  
pp. 170–189. Springer, 2024.  
511512 Quentin Cappart, Didier Chételat, Elias B. Khalil, Andrea Lodi, Christopher Morris, and Petar  
513 Veličković. Combinatorial optimization and reasoning with graph neural networks. In Zhi-Hua  
514 Zhou (ed.), *Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence,  
IJCAI-21*, pp. 4348–4355. International Joint Conferences on Artificial Intelligence Organization, 8  
515 2021. doi: 10.24963/ijcai.2021/595. URL <https://doi.org/10.24963/ijcai.2021/595>. Survey Track.  
516517 Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario  
518 Amodei. Deep reinforcement learning from human preferences. In I. Guyon, U. Von  
519 Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Ad-  
520 vances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.,  
521 2017. URL [https://proceedings.neurips.cc/paper\\_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf).  
522523 Nicolas Courtois, Sean O’Neil, and Jean-Jacques Quisquater. Practical algebraic attacks on the  
524 hitag2 stream cipher. volume 5735, pp. 167–176, 09 2009. ISBN 978-3-642-04473-1. doi:  
525 10.1007/978-3-642-04474-8\_14.  
526527 James M Crawford and Larry D Auton. Experimental results on the crossover point in random 3-sat.  
528 *Artificial intelligence*, 81(1-2):31–57, 1996.  
529530 Niklas Eén and Niklas Sörensson. An extensible sat-solver. In *International conference on theory  
531 and applications of satisfiability testing*, pp. 502–518. Springer, 2003.  
532533 Daya Guo, Dejian Yang, Huawei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,  
534 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms  
via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.  
535536 Jesse Michael Han. Learning cubing heuristics for sat from drat proofs. 2020.  
537538 Marijn Heule, Mark Dufour, Joris Van Zwieten, and Hans Van Maaren. March\_eq: Implementing  
539 additional reasoning into an efficient look-ahead sat solver. In *Theory and Applications of Satisfia-  
bility Testing: 7th International Conference, SAT 2004, Vancouver, BC, Canada, May 10-13, 2004,  
Revised Selected Papers* 7, pp. 345–359. Springer, 2005.  
540

540 Marijn JH Heule and Hans Van Maaren. March\_dl: Adding adaptive heuristics and a new branching  
 541 strategy. *Journal on Satisfiability, Boolean Modelling and Computation*, 2(1-4):47–59, 2006.  
 542

543 Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial  
 544 optimization algorithms over graphs. *Advances in neural information processing systems*, 30,  
 545 2017.

546 Elias B Khalil, Christopher Morris, and Andrea Lodi. Mip-gnn: A data-driven framework for guiding  
 547 combinatorial solvers. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36,  
 548 pp. 10219–10227, 2022.

549 Oliver Kullmann. Fundaments of branching heuristics. In *Handbook of Satisfiability*, pp. 351–390.  
 550 IOS Press, 2021.

552 Vitaly Kurin, Saad Godil, Shimon Whiteson, and Bryan Catanzaro. Can q-learning  
 553 with graph networks learn a generalizable branching heuristic for a sat solver? In  
 554 H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neu-  
 555 ral Information Processing Systems*, volume 33, pp. 9608–9621. Curran Associates, Inc.,  
 556 2020. URL [https://proceedings.neurips.cc/paper\\_files/paper/2020/  
 557 file/6d70cb65d15211726dcce4c0e971e21c-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2020/file/6d70cb65d15211726dcce4c0e971e21c-Paper.pdf).

558 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,  
 559 Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers in  
 560 open language model post-training. *arXiv preprint arXiv:2411.15124*, 2024.

561

562 Hongduo Liu, Peng Xu, Yuan Pu, Lihao Yin, Hui-Ling Zhen, Mingxuan Yuan, Tsung-Yi Ho, and  
 563 Bei Yu. Neuroselect: Learning to select clauses in sat solvers. In *Proceedings of the 61st  
 564 ACM/IEEE Design Automation Conference*, DAC ’24, New York, NY, USA, 2024. Association  
 565 for Computing Machinery. ISBN 9798400706011. doi: 10.1145/3649329.3656250. URL  
 566 <https://doi.org/10.1145/3649329.3656250>.

567 Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav  
 568 Rattan, and Martin Grohe. Weisfeiler and Leman go neural: Higher-order graph neural networks. In  
 569 *Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI)*, pp. 4602–4609,  
 570 2019.

571 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong  
 572 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow  
 573 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–  
 574 27744, 2022.

575

576 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea  
 577 Finn. Direct preference optimization: Your language model is secretly a reward model. In A. Oh,  
 578 T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural  
 579 Information Processing Systems*, volume 36, pp. 53728–53741. Curran Associates, Inc., 2023.

580 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy  
 581 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

582

583 Daniel Selsam and Nikolaj Bjørner. Guiding high-performance sat solvers with unsat-core predictions.  
 584 In *Theory and Applications of Satisfiability Testing—SAT 2019: 22nd International Conference,  
 585 SAT 2019, Lisbon, Portugal, July 9–12, 2019, Proceedings* 22, pp. 336–353. Springer, 2019.

586

587 Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and David L.  
 588 Dill. Learning a SAT solver from single-bit supervision. In *International Conference on Learning  
 589 Representations*, 2019. URL [https://openreview.net/forum?id=HJMC\\_iA5tm](https://openreview.net/forum?id=HJMC_iA5tm).

590

591 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,  
 592 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical  
 593 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

594

595 M. Soos. Grain of salt — an automated way to test stream ciphers through sat solvers. 2010. URL  
 596 <https://api.semanticscholar.org/CorpusID:61885252>.

594 Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending sat solvers to cryptographic problems.  
 595 In Oliver Kullmann (ed.), *Theory and Applications of Satisfiability Testing - SAT 2009*, pp. 244–257,  
 596 Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ISBN 978-3-642-02777-2.

597

598 Jan Tönshoff, Berke Kisin, Jakob Lindner, and Martin Grohe. One model, any csp: Graph neural  
 599 networks as fast global search heuristics for constraint satisfaction. In *Proceedings of the Thirty-*  
 600 *Second International Joint Conference on Artificial Intelligence, IJCAI-23*, pp. 4280–4288, 8 2023.  
 601 doi: 10.24963/ijcai.2023/476. URL <https://doi.org/10.24963/ijcai.2023/476>.

602

603 Wenxi Wang, Yang Hu, Mohit Tiwari, Sarfraz Khurshid, Kenneth McMillan, and Risto Miikkulainen.  
 604 Neuroback: Improving CDCL SAT solving using graph neural networks. In *The Twelfth  
 605 International Conference on Learning Representations*, 2024.

606

607 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural  
 608 networks? In *Proceedings of the Seventh International Conference on Learning Representations  
 (ICLR)*, 2019.

609

610 Lenka Zdeborová and Florent Krzakala. Phase transitions in the coloring of random graphs. *Phys.  
 611 Rev. E*, 76:031131, Sep 2007. doi: 10.1103/PhysRevE.76.031131. URL <https://link.aps.org/doi/10.1103/PhysRevE.76.031131>.

612

613 Shumao Zhai and Ning Ge. Learning splitting heuristics in divide-and-conquer SAT solvers with  
 614 reinforcement learning. In *The Thirteenth International Conference on Learning Representations*,  
 615 2025. URL <https://openreview.net/forum?id=uUsL07BsMA>.

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648  
649

## A METHOD DETAILS

650  
651

## A.1 GRAPH REPRESENTATION AND ARCHITECTURE

652  
653  
654  
655

We represent a formula  $\phi$  as a graph  $G(\phi) = (V(\phi), E(\phi))$ . This is a standard ‘‘Literal-Clauses Graph’’ used in prior work, such as NeuroSAT Selsam et al. (2019). Formally, the vertices of this graph  $V(\phi) = \text{Lit}(\phi) \cup \text{Cls}(\phi)$  are the literals and clauses of  $\phi$ . The edges  $E(\phi) = E_{LC}(\phi) \cup E_{LL}(\phi)$  connect literals with the clauses they occur in and with the opposing literal of the same variable:

656  
657  
658  
659

$$E_{LL}(\phi) = \{(x, \neg x) \mid x \in \mathcal{X}(\phi)\} \quad (11)$$

$$E_{LC}(\phi) = \bigcup_{C \in \text{Cls}(\phi)} \{(C, \ell) \mid \ell \in C\} \quad (12)$$

660  
661

## A.2 MESSAGE-PASSING NEURAL NETWORK

662  
663  
664

For each vertex  $v \in \text{Lit}(\phi) \cup \text{Cls}(\phi)$  we obtain an initial embedding  $h^0(v) \in \mathbb{R}^d$ :

$$h^0(v) = \text{Enc}(\log(\deg(v) + 1)). \quad (13)$$

665  
666

Here  $d$  is the latent embedding dimension of the model, and **Enc** is a trainable 2-layer MLP that is applied to the log-normalized degree of  $v$ .

667  
668  
669  
670

The GNN model then stacks  $L \in \mathbb{N}$  message passing layers. For  $t \in \{1, \dots, L\}$ , the  $t$ -th layer takes as input the previous embedding  $h^{t-1}$  and outputs a refined embedding  $h^t$  by performing a message pass. This message pass is split into two phases. First, each clause  $c \in \text{Cls}$  aggregates information from its associated literals:

671  
672  
673

$$h^{t+1}(c) = \mathbf{U}_{\text{Cls}} \left( h^t(c), \bigoplus_{\ell \in c} h^t(\ell) \right). \quad (14)$$

674  
675  
676

Here,  $\mathbf{U}_{\text{Cls}}$  is a trainable MLP, and  $\bigoplus$  is an order-invariant aggregation. Throughout all experiments, we use element-wise mean for aggregation. In the second phase, each literal  $\ell \in \text{Lit}$  aggregates the updated embeddings from the clauses it occurs in:

677  
678  
679

$$h^{t+1}(\ell) = \mathbf{U}_{\text{Lit}} \left( h^t(\ell), h^t(\neg \ell), \bigoplus_{c, \ell \in c} h^{t+1}(c) \right). \quad (15)$$

680  
681  
682  
683  
684  
685  
686

Here,  $\mathbf{U}_{\text{Lit}}$  is another trainable MLP that additionally also takes the embedding of the opposing literal  $\neg \ell$  as input. This model architecture is conceptually similar to that of NeuroSAT. One major difference is that we use a more standard fixed-depth feed-forward GNN instead of a recurrent model. Note that all MLPs used in our model have two layers, and the hidden layer is always SiLU-activated and has hidden dimension  $2d$ . The final output is a variable embedding  $y : \text{Var}(\phi) \rightarrow \mathbb{R}^2$ , which is obtained by concatenating the two literal embeddings associated with each variable  $x$  and then applying a final 2-layer MLP **Dec**:

687

$$y(x) = \text{Dec}([h^L(x), h^L(\neg x)]). \quad (16)$$

688  
689  
690  
691  
692  
693  
694

Note that we choose **Dec** as a 2-layer MLP with input dimension  $2d$ , hidden dimension  $2d$ , and output dimension 2. No activation is applied to the output, and the weights and biases of the final layer of **Dec** are initialized as zeros. This ensures that at the beginning of training, the initial GNN  $N_{\theta_0}$  assigns  $\mu(x) = 0$  and  $\rho(x) = 0$  to all variables. We found this to be a stable configuration for initializing training. In particular,  $\mu(x) = 0$  ensures that the log-normally distributed weight policy  $\pi_{\theta_0}^w(x)$  has a mode of approximately 1 for all variables while  $\rho(x) = 0$  ensures that the polarity of each variable is initially distributed uniformly.

695  
696  
697

## A.3 SAT SOLVER DETAILS

698

## GLUCOSE

699  
700  
701

Glucose (Audemard & Simon, 2009) is a popular CDCL solver based on Minisat (Eén & Sörensson, 2003). Our modification is based on Glucose 4.2.1 (Audemard & Simon, 2017)<sup>1</sup>. Like many other

<sup>1</sup><https://github.com/audemard/glucose>

702 CDCL solvers, Glucose uses the Variable State Independent Decaying Sum (VSIDS) heuristic for  
 703 branching. Each variable  $x$  is assigned an activity score  $\text{activity}(x)$  that reflects its involvement in  
 704 conflicts. When a conflict occurs, the activity scores of variables involved are increased by a constant  
 705  $\Delta$ , i.e.,

$$\text{activity}(x) \leftarrow \text{activity}(x) + \Delta. \quad (17)$$

707 Periodically, all activity scores are multiplied by a decay factor  $\beta$  (where  $0 < \beta < 1$ ):

$$\text{activity}(x) \leftarrow \beta \cdot \text{activity}(x). \quad (18)$$

710 The activity then effectively serves as the SCORE function from Algorithm 2. Note that in practice,  
 711 CDCL solvers commonly use *exponential* VSIDS (EVSIDS), which is a variation that yields identical  
 712 decisions but avoids a costly loop over all variables to compute Equation (18). Rather than decaying  
 713 the activity, the increment  $\Delta$  is instead scaled up:

$$\Delta \leftarrow \frac{1}{\beta} \Delta. \quad (19)$$

717 The cumulative values of the activity scores then yield the same decisions. To incorporate our variable  
 718 weights  $w$  into this process, we simply modify Equation (17) by scaling the increment with the  
 719 variable weight:

$$\text{activity}(x) \leftarrow \text{activity}(x) + w(x) \cdot \Delta. \quad (20)$$

721 This ensures that the total activity score of each variable is scaled by a factor of  $w(x)$  at each step  
 722 of the search while still preventing loops over all variables. We found that the runtime overhead  
 723 of the additional multiplication in Equation (20) is negligible. We use the provided polarities  $p(x)$   
 724 to initialize the polarity (or phase) of each variable. Note that we leave phase saving on, so this  
 725 initial polarity may be overwritten by the solver in later search steps. We run all experiments without  
 726 randomized decisions (rnd-freq = 0). We further set the parameter  $K = 0.1$  to minimize solver  
 727 restarts, which we found to improve performance on the three instance distributions considered in our  
 728 experiments. Apart from this, we use the default parameters of Glucose.

## 729 MARCH

731 March (Heule et al., 2005; Heule & Van Maaren, 2006) is a DPLL-based solver that uses a branching  
 732 heuristic based on look-ahead (Biere et al., 2021).<sup>2</sup> It is among the best-known solvers for purely  
 733 random SAT instances. Look-ahead branching heuristics estimate how each variable’s selection as a  
 734 branching variable would affect the instance. In March, the scoring function SCORE( $X$ ) essentially  
 735 quantifies how many new binary clauses would occur if  $x$  is picked for branching in the current search  
 736 step. Computing this score is relatively expensive when compared to activity-based approaches, and  
 737 look-ahead solvers usually make fewer decisions per time. To decrease the cost of each branching  
 738 step, March first applies a pre-selection step before each branching decision, where a reduced set  
 739 of candidate variables is selected according to a second scoring function SCORE-PRESELECT( $x$ ).  
 740 This score aims to approximate the expected look-ahead score but is cheaper to compute. In the  
 741 modified solver, we also apply the variable weight  $w$  in pre-selection, i.e. the weighted scores  
 742  $w(x) \cdot \text{SCORE-PRESELECT}(x)$  are used to select the candidate variables. The ratio of pre-selected  
 743 candidates is fixed at 10%. The same weights  $w$  are then applied again to the actual look-ahead  
 744 scores to obtain the branching variable. Afterwards, we use the given polarities  $p$  in each branching  
 745 to determine the sign of the branching literal. Aside from these changes, we run March in its default  
 746 configuration.

747

748

749

750

751

752

753

754

755

<sup>2</sup><https://github.com/marijnheule/march-SAT-solver>

756  
757  
758  
759  
760  
761  
762  
763

---

**Algorithm 4** GRPO Training for SAT Solver Guidance
 

---

764  
765  
766 1: **Input:**  
767 2: Training formulas  $\mathcal{F} = \{\phi_1, \dots, \phi_N\}$   
768 3: Number of GRPO iterations  $K \in \mathbb{N}$   
769 4: Number of samples per instance  $M \in \mathbb{N}$   
770 5: Number of optimizer steps per GRPO iteration  $S \in \mathbb{N}$   
771 6: Clip ratio  $\epsilon \in (0, 1)$ , KL penalty weight  $\beta \geq 0$ , learning rate  $\eta > 0$   
772 7: **Initialize:** Random weights  $\theta_0$   
773 8: **for**  $k = 1, 2, \dots, K$  **do**  
774 9:   **for**  $i = 1, 2, \dots, N$  **do**  
775 10:     **for**  $j = 1, 2, \dots, M$  **do**  
776 11:          $\mathcal{W}_{i,j} \sim \pi_{\theta_{k-1}}(\phi_i)$   
777 12:          $C_{i,j} \leftarrow \text{Cost}(\phi_i, \mathcal{W}_{i,j})$   
778 13:          $R(\phi_i, \mathcal{W}_{i,j}) \leftarrow -C_{i,j}$   
779 14:     **end for**  
780 15:      $\mathbf{R}_i \leftarrow \{R(\phi_i, \mathcal{W}_{i,j}) \mid j \in \{1, \dots, M\}\}$   
781 16:     **for**  $j = 1, 2, \dots, M$  **do**  
782 17:          $\hat{A}_{i,j} \leftarrow \frac{R(\phi_i, \mathcal{W}_{i,j}) - \text{mean}(\mathbf{R}_i)}{\text{std}(\mathbf{R}_i)}$   
783 18:     **end for**  
784 19:   **end for**  
785 20:    $\theta \leftarrow \theta_{k-1}$   
786 21:   **for**  $s = 1, 2, \dots, S$  **do**  
787 22:     **for**  $i = 1, 2, \dots, N$  **do**  
788 23:         **for**  $j = 1, 2, \dots, M$  **do**  
789 24:              $r_{i,j}(\theta) \leftarrow \frac{\pi_\theta(\mathcal{W}_{i,j} \mid \phi_i)}{\pi_{\theta_{k-1}}(\mathcal{W}_{i,j} \mid \phi_i)}$   
790 25:         **end for**  
791 26:          $\mathcal{L}_{\text{PPO}}(\theta \mid \phi_i) \leftarrow \frac{1}{M} \sum_j \left[ \min \left( r_{i,j}(\theta) \hat{A}_{i,j}, \text{clip}(r_{i,j}(\theta), 1-\epsilon, 1+\epsilon) \hat{A}_{i,j} \right) \right]$   
792 27:          $\mathcal{L}(\theta \mid \phi_i) \leftarrow \mathcal{L}_{\text{PPO}}(\theta \mid \phi_i) - \beta \cdot \text{KL}(\pi_\theta(\phi_i), \pi_{\theta_{k-1}}(\phi_i))$   
793 28:         **end for**  
794 29:          $\theta \leftarrow \theta + \eta \nabla_\theta \sum_i \mathcal{L}(\theta \mid \phi_i)$   
795 30:     **end for**  
796 31:      $\theta_k \leftarrow \theta$ .  
797 32: **end for**  
801 33: **Output:** Final model weights  $\theta_K$ .

---

802  
803  
804  
805  
806  
807  
808  
809

810 **B EXPERIMENT DETAILS**  
811812 **B.1 DATA**  
813814 Table 2 provides full dataset statistics for all data distributions and splits. In the following, we provide  
815 further details on how each instance distribution is generated.  
816817 **Random 3SAT** Uniformly random 3SAT instances are commonly used to benchmark SAT solvers.  
818 Here, each clause is sampled by choosing three distinct variables uniformly at random and negating  
819 each with a probability of 50%. Hard instances are known to occur when the number of clauses  
820 is around  $m = 4.258n + 58.26n^{-\frac{2}{3}}$  where  $n$  is the number of variables (Crawford & Auton,  
821 1996). This is approximately the critical density where the instances transition from SAT to UNSAT.  
822 We define  $3SAT(n)$  as the distribution of uniformly random 3SAT instances with  $n$  variables and  
823  $\lceil 4.258n + 58.26n^{-\frac{2}{3}} \rceil$  clauses. For training, we use 20K instances sampled from  $3SAT(200)$ , which  
824 are filtered such that exactly 10K instances are SAT and UNSAT, respectively. Our test sets contain  
825 larger instances with  $n \in \{300, 350, 400\}$ , where we sample 200 instances for each size  $n$ .  
826827 **Graph Coloring** Combinatorial problems on graphs are commonly solved by reducing them to  
828 Boolean SAT instances. Here, we consider the problem of finding a 3-coloring for Erdős-Rényi graphs.  
829 We define  $3COL(n)$  as the distribution of SAT problems that are obtained by sampling an Erdős-Rényi  
830 graph with  $n$  vertices and then encoding the problem of deciding 3-colorability as a SAT instance.  
831 We set the edge probability such that the expected vertex degree is 4.67, which is approximately the  
832 critical density for 3-colorability where hard instances commonly occur (Zdeborová & Krzakała,  
833 2007). We train on 20K instances sampled from  $3COL(300)$ . Again, these are filtered such that  
834 exactly 10K instances are SAT and UNSAT, respectively. Our test sets consist of larger problems with  
835  $n \in \{400, 500, 600\}$ .  
836837 **Cryptographic** Hard, structured SAT problems commonly arise in the context of cryptoanalysis,  
838 for example, for SAT-based decryption attacks (Soos et al., 2009). To generate data in this domain,  
839 we use Grain-of-Salt (Soos, 2010) to generate SAT instances for decrypting stream ciphers. We define  
840  $CRYPTO(n)$  as the distribution of SAT instances generated for decrypting the HiTag2 cipher (Courtois  
841 et al., 2009) with  $n$  given help bits. We use the recommended generation parameters (`-outputs`  
842 56 `-base-shift` 8 `-karnaugh` 8). Note that these instances are harder for smaller values of  
843  $n$  and are mostly UNSAT. We train on 20K instances from  $CRYPTO(22)$  and test on harder problems  
844 with  $n \in \{20, 15, 10\}$ .  
845846 For each of these three instance classes we formally define the corresponding training distribution  $\Omega$   
847 from Equation (6) as the uniform distribution over the set of training instances.  
848849 **Table 2: Dataset Statistics**

|    | Distribution | Split | Number | #SAT   | #UNSAT | Var( $\phi$ ) |       | Cls( $\phi$ ) |           |
|----|--------------|-------|--------|--------|--------|---------------|-------|---------------|-----------|
|    |              |       |        |        |        | mean          | min   | max           | mean      |
| 0  | $3SAT(200)$  | Train | 20,000 | 10,000 | 10,000 | 200.00        | 200   | 200           | 853.00    |
| 1  | $3SAT(200)$  | Val   | 200    | 100    | 100    | 200.00        | 200   | 200           | 853.00    |
| 2  | $3SAT(300)$  | Test  | 200    | 103    | 97     | 300.00        | 300   | 300           | 1,278.00  |
| 3  | $3SAT(350)$  | Test  | 200    | 108    | 92     | 350.00        | 350   | 350           | 1,491.00  |
| 4  | $3SAT(400)$  | Test  | 200    | 89     | 111    | 400.00        | 400   | 400           | 1,704.00  |
| 5  | $3Col(300)$  | Train | 20,000 | 10,000 | 10,000 | 900.00        | 900   | 900           | 3,284.75  |
| 6  | $3Col(300)$  | Val   | 200    | 100    | 100    | 900.00        | 900   | 900           | 3,288.63  |
| 7  | $3Col(400)$  | Test  | 200    | 77     | 123    | 1,200.00      | 1,200 | 1,200         | 4,392.31  |
| 8  | $3Col(500)$  | Test  | 200    | 91     | 108    | 1,500.00      | 1,500 | 1,500         | 5,488.56  |
| 9  | $3Col(600)$  | Test  | 200    | 87     | 113    | 1,800.00      | 1,800 | 1,800         | 6,597.24  |
| 10 | $Crypto(22)$ | Train | 20,000 | 0      | 20,000 | 529.41        | 518   | 544           | 8,420.71  |
| 11 | $Crypto(22)$ | Val   | 200    | 0      | 200    | 529.24        | 523   | 537           | 8,413.41  |
| 12 | $Crypto(20)$ | Test  | 100    | 0      | 100    | 533.43        | 526   | 544           | 8,767.57  |
| 13 | $Crypto(15)$ | Test  | 100    | 0      | 100    | 542.89        | 537   | 552           | 9,622.04  |
| 14 | $Crypto(10)$ | Test  | 100    | 0      | 100    | 550.99        | 544   | 568           | 10,497.63 |

864  
865

## B.2 HYPERPARAMETERS

866 Table 3 provides an overview of all RLAf training runs from our main experiments. We tuned the  
 867 learning rate in  $\eta \in \{0.0001, 0.00005, 0.00001\}$  and schedule it to warm up over the first 5 GRPO  
 868 iterations. After warm up the the learning rate stays constant throughout training. The clip ratio was  
 869 tuned in  $\epsilon \in \{0.1, 0.2\}$  and the KL-penalty  $\beta \in \{0.1, 1.0\}$ . All other hyperparameters were given  
 870 constant default values, which we found to be stable based on preliminary experiments. Each training  
 871 run uses a machine equipped with a single H100 GPU, an Intel Xeon 8468 CPU with 48 cores, and  
 872 128GB of RAM. The total runtime of all training runs is between 24h and 48h.  
 873

Table 3: Hyperparameters

|                       | 3SAT   | Glucose<br>3COL | CRYPTO  | 3SAT    | March<br>3COL | CRYPTO |
|-----------------------|--------|-----------------|---------|---------|---------------|--------|
| $K$                   | 2000   | 2000            | 2000    | 2000    | 2000          | 2000   |
| $M$                   | 40     | 40              | 40      | 40      | 40            | 40     |
| $N$                   | 100    | 100             | 100     | 100     | 100           | 100    |
| $S$                   | 50     | 50              | 50      | 50      | 50            | 50     |
| $\sigma^w$            | 0.1    | 0.1             | 0.1     | 0.1     | 0.1           | 0.1    |
| clip ratio $\epsilon$ | 0.2    | 0.2             | 0.2     | 0.1     | 0.2           | 0.2    |
| KL-penalty $\beta$    | 0.1    | 1.0             | 0.1     | 1.0     | 0.1           | 0.1    |
| batch size            | 20     | 20              | 20      | 20      | 20            | 20     |
| learning rate $\eta$  | 0.0001 | 0.00005         | 0.00005 | 0.00005 | 0.00001       | 0.0001 |
| weight decay          | 0.0    | 0.0             | 0.0     | 0.0     | 0.0           | 0.0    |
| hidden dim $d$        | 256    | 256             | 256     | 256     | 256           | 256    |
| model depth $L$       | 10     | 10              | 10      | 10      | 10            | 10     |

887

## B.3 TRAINING

888

889 Figure 6 provides the learning curves for the 6 RLAf-trained models in our main experiments. For  
 890 all models, the cost decreases throughout training. We found that training with the March base solver  
 891 tends to yield noisier training, particularly on 3SAT instances, where the policy does not improve  
 892 further after 700 GRPO iterations. Exploring effective strategies for reducing this noise remains  
 893 future work. Nonetheless, we can learn guidance policies that reduce the solver cost of both base  
 894 solvers across all three problem instances.  
 895

896

897 We further note that, in principle, any RL method based on policy gradients can be applied to learn a  
 898 GNN policy for our MDP formulation. During development we briefly experimented with using DPO  
 899 Rafailov et al. (2023) instead of GRPO and observed that training with DPO also converges effectively.  
 900 However, the learned policies were less effective on test problems compared to GRPO-learned  
 901 policies, which is why we opted for GRPO as our default training methodology.

902

## B.4 EXTENDED RESULTS

903

904 In Table 4 we provide the results from our main experiments and additionally report the mean wall-  
 905 clock runtime of the GNN forward pass. For all instance distributions, this GNN overhead is between  
 906 0.02 and 0.1 seconds, which is negligible when compared to SAT solver runtimes on non-trivial  
 907 instances. However, we note that classical SAT solvers commonly perform over  $10^4$  branching  
 908 decisions per second. In a setting where every guided branching decision requires a separate forward  
 909 pass, as in prior RL-based work (Kurin et al., 2020; Cameron et al., 2024), it is therefore not possible  
 910 to guide every branching decision without incurring a massive runtime overhead. Our one-shot setup  
 911 avoids this problem as it incorporates multiplicative weights obtained in a single GNN pass in every  
 912 branching decision with minimal runtime overhead.

913

914 Figure 7 further provides survival plots that plot the cumulative number of solved problems against  
 915 the wall-clock runtime on each instance distribution. With the exception of March on UNSAT 3SAT  
 916 instances, RLAf constantly improves the speed of the guided base solver.  
 917



936 Figure 6: GRPO training curves of the RLAFF models from our main experiment. We plot the mean  
937 number of decisions on the validation set against the GRPO iteration.  
938

941 Table 4: Full results on test instances, including the main time spent for the GNN forward pass. All  
942 metrics are averaged across the respective test sets. The mean number of decisions is rounded to the  
943 nearest whole number. For results with RLAFF, we include the time required for the GNN forward  
944 pass in the total runtime.  
945

| 946 | Data<br>Distribution | Result | Glucose    |          |            | Glucose + RLAFF |              |           | March    |           |          | March + RLAFF |          |              |
|-----|----------------------|--------|------------|----------|------------|-----------------|--------------|-----------|----------|-----------|----------|---------------|----------|--------------|
|     |                      |        | Decisions  | Time (s) | Decisions  | Time (s)        | GPU time (s) | Decisions | Time (s) | Decisions | Time (s) | Decisions     | Time (s) | GPU time (s) |
| 947 | 3SAT(300)            | SAT    | 341,418    | 6.67     | 121,184    | 1.85            | 0.0210       | 2,893     | 0.25     | 2,389     | 0.23     | 0.0205        |          |              |
| 948 | 3SAT(300)            | UNSAT  | 725,812    | 15.49    | 508,676    | 8.21            | 0.0209       | 11,783    | 1.01     | 11,757    | 1.04     | 0.0205        |          |              |
| 949 | 3SAT(350)            | SAT    | 1,568,289  | 48.76    | 805,035    | 18.88           | 0.0238       | 16,546    | 1.64     | 11,702    | 1.19     | 0.0233        |          |              |
| 950 | 3SAT(350)            | UNSAT  | 3,628,268  | 132.28   | 3,136,552  | 82.84           | 0.0237       | 52,287    | 5.14     | 51,846    | 5.16     | 0.0233        |          |              |
| 951 | 3SAT(400)            | SAT    | 9,638,668  | 598.35   | 4,447,304  | 186.70          | 0.0265       | 64,296    | 7.27     | 47,992    | 5.51     | 0.0272        |          |              |
| 952 | 3SAT(400)            | UNSAT  | 22,130,692 | 1,895.62 | 20,808,043 | 1,112.71        | 0.0265       | 245,064   | 27.49    | 242,499   | 27.51    | 0.0270        |          |              |
| 953 | 3Col(400)            | SAT    | 15,519     | 0.36     | 6,988      | 0.22            | 0.0662       | 926       | 0.22     | 598       | 0.21     | 0.0661        |          |              |
| 954 | 3Col(400)            | UNSAT  | 70,692     | 1.99     | 34,920     | 0.81            | 0.0662       | 10,563    | 2.61     | 5,954     | 1.57     | 0.0661        |          |              |
| 955 | 3Col(500)            | SAT    | 82,758     | 2.61     | 35,901     | 1.05            | 0.0853       | 7,689     | 2.55     | 4,754     | 1.68     | 0.0848        |          |              |
| 956 | 3Col(500)            | UNSAT  | 460,881    | 17.47    | 363,278    | 12.24           | 0.0855       | 100,811   | 33.34    | 60,321    | 20.52    | 0.0849        |          |              |
| 957 | 3Col(600)            | SAT    | 606,598    | 25.03    | 339,378    | 11.59           | 0.0984       | 63,512    | 27.16    | 42,862    | 18.71    | 0.0988        |          |              |
| 958 | 3Col(600)            | UNSAT  | 3,092,344  | 193.96   | 2,811,133  | 155.23          | 0.0984       | 754,720   | 313.57   | 461,639   | 197.12   | 0.0990        |          |              |
| 959 | Crypto(20)           | UNSAT  | 51,294     | 1.16     | 3,541      | 0.15            | 0.0974       | 1,203     | 0.82     | 390       | 0.41     | 0.0973        |          |              |
| 960 | Crypto(15)           | UNSAT  | 225,447    | 5.74     | 64,150     | 1.40            | 0.1075       | 52,282    | 34.56    | 8,257     | 6.40     | 0.1073        |          |              |
| 961 | Crypto(10)           | UNSAT  | 3,753,850  | 162.45   | 1,520,075  | 64.95           | 0.1148       | 679,864   | 467.38   | 230,905   | 169.22   | 0.1174        |          |              |



970 Figure 7: Survival plots of our main results for different instance distributions.  
971

972 B.5 SUPERVISED UNSAT-CORE AND BACKBONE PREDICTION  
973974 For UNSAT-core and backbone prediction in Section 3.2, we train supervised GNN models that  
975 are identical in architecture and size to the models used for our RLAf-based policies. The used  
976 hyperparameters are specified in Table 5. In the following, we provide a detailed description of how  
977 these models are trained and evaluated.978  
979 UNSAT-CORE  
980981 Selsam & Bjørner (2019) propose to train supervised models that predict the UNSAT-core membership  
982 of variables and then use the model prediction to guide branching heuristics. Following their  
983 methodology, we phrase the task of predicting whether or not a variable occurs in an UNSAT-core as a  
984 variable-level binary classification task and train a GNN for this problem in a supervised manner using  
985 a standard cross-entropy loss. The ground-truth on training and validation instances is computed by  
986 extracting the cores from DRAT UNSAT proofs generated by the CaDiCaL Biere et al. (2024) solver.  
987 Note that these cores are not minimal, as computing such would not be feasible. As discussed in  
988 Section 3.2, the extracted cores on our unsatisfiable 3SAT training instances contain all variables for  
989 almost all instances and are therefore not a meaningful training target. We therefore only train UNSAT-  
990 core prediction models for 3COL and CRYPTO. We train a separate model for each distribution and  
991 restrict training to the unsatisfiable instances.992 Note that Selsam & Bjørner (2019) integrate their prediction by periodically resetting the VSIDS  
993 scores of the guided CDCL-solver to prediction logits of the GNN. This requires careful tuning  
994 of the reset frequency. It is also specific to solvers based on the VSIDS heuristic and would, for  
995 example, not be applicable to the March solver. Furthermore, in later ablation experiments, Selsam  
996 & Bjørner (2019) report that the performance improvement obtained with a trained GNN is barely  
997 distinguishable from when an untrained, randomly initialized model is used, further questioning the  
998 effectiveness of guiding solvers with this strategy. To facilitate a direct and fair comparison with  
999 RLAf-trained policies, we instead combine the UNSAT-core predictions with our own solver guidance  
1000 based on multiplicative weights. For a variable  $x$ , let  $p_{\text{core}}(x)$  be the predicted probability of  $x$  being  
1001 in an UNSAT-core according to the trained GNN model. Then we transform these probabilities to  
1002 variable weights through the following transformation:

1003 
$$w(x) = 1 + \alpha \cdot p_{\text{core}}(x). \quad (21)$$

1004 Here,  $\alpha \geq 0$  is a parameter that determines how the variable weight scales with the raw model  
1005 predictions. For this experiment, we found weights of  $w(x) \geq 1$  to perform better, hence the offset  
1006 of 1 in Equation (21). The value of  $\alpha$  is tuned on the corresponding validation dataset in the  
1007 range  $\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 10^0, 10^1, 10^2, 10^3, 10^4\}$ . We tune  $\alpha$  separately for both Glucose and  
1008 March. The polarities are simply set to  $p(x) = 1$  as the prediction of UNSAT-core membership has  
1009 no clear implication for the sign of the branching literal. Using this methodology, we found that the  
1010 UNSAT-core predictions can significantly accelerate both base solvers, although by a smaller margin  
1011 than RLAf-trained policies.1012 BACKBONE  
10131014 Wang et al. (2024) suggests using the backbone membership of literals as a supervised training target  
1015 and then setting variable polarities using the model predictions. We follow their methodology and  
1016 train a GNN on the literal-level binary classification task using cross-entropy loss. As discussed in  
1017 Section 3.2, we only train a model for the 3SAT instances and only use the satisfiable problems for  
1018 training. The backbone of coloring problems is always empty due to the permutation symmetry of  
1019 the colors, and some distributions, such as CRYPTO, predominantly consist of UNSAT instances.1020 When evaluating, we set the polarity of a variable  $x$  as  $p(x) = 0$  if  $p_{\text{backbone}}(\neg x) > p_{\text{backbone}}(x)$  and  
1021  $p(x) = 1$  otherwise. Here,  $p_{\text{backbone}}(\ell)$  is the predicted probability of literal  $\ell$  belonging to the back-  
1022 bone. We further assign variable weights  $w(x)$  under the assumption that correctly assigning backbone  
1023 literals in early search steps positively affects the runtime. To this end, we apply the transformation  
1024 from Equation (21) to the mean backbone probability  $\bar{p}_{\text{backbone}}(x) = 0.5(p_{\text{backbone}}(\neg x) + p_{\text{backbone}}(x))$   
1025 to obtain a weight for each variable. Again, we tune the transformation parameter  $\alpha$  for both base  
solvers on the validation set.

Table 5: Hyperparameters of the supervised models.

|                      | 3SAT      | 3COL      | CRYPTO    |
|----------------------|-----------|-----------|-----------|
| batch size           | 50        | 50        | 50        |
| learning rate $\eta$ | 0.0001    | 0.0001    | 0.0001    |
| weight decay         | 0.1       | 0.1       | 0.1       |
| epochs               | 200       | 200       | 200       |
| hidden dim $d$       | 256       | 256       | 256       |
| model depth $L$      | 10        | 10        | 10        |
| $\alpha$ Glucose     | $10^1$    | $10^3$    | $10^{-2}$ |
| $\alpha$ March       | $10^{-2}$ | $10^{-2}$ | $10^1$    |



Figure 8: Runtimes relative to the base solver March for RLAf and supervised approaches based on Backbones and UNSAT cores. **Less is better.** We include the time required for the GNN forward pass in the runtime.

#### SUPERVISED COMPARISON WITH MARCH

In Figure 8, we further provide the comparison with supervised baselines from Section 3.2 for the March base solver. On satisfiable 3SAT problems, our RLAf-trained policy and the guidance based on backbone prediction are roughly on par. However, on unsatisfiable 3SAT problems we found that backbone-based guidance *increases* the solver’s runtime by approximately 10%. Backbone predictions are therefore not a useful guidance signal on this instance type when working with a strong base solver, such as March. Our RLAf-based policy does not share this problem. On the 3COL and CRYPTO distributions, the RLAf-trained policy consistently outperforms the guidance based on UNSAT core prediction, as for the Glucose base solver.

#### B.6 COMPARISON TO GRAPH-Q-SAT

A central design choice in RLAf is *one-shot* solver guidance: a single GNN forward pass assigns multiplicative variable weights and polarities that are reused at every branching decision with negligible overhead (Section B.4). Prior RL/GNN methods, such as Graph-Q-SAT (Kurin et al., 2020), couple the GNN tightly to the solver by invoking it at each guided decision, which can introduce substantial runtime costs. Graph-Q-SAT proposes an RL formulation where every solver decision corresponds to one action of an MDP where a GNN is tasked with selecting the next branching variable. The model is then trained with standard Q-learning techniques. Note that Q-learning is not applicable for our RL formulation, which is based on a large, combinatorial, and partially continuous action space that is more suitable for policy-gradient methods such as GRPO.

To facilitate a comparison with RLAf within this landscape, we include an evaluation on 3SAT instances from SATLIB. As the public Graph-Q-SAT codebase did not run in our environment, we compare against the *reported* Graph-Q-SAT MRIR from Kurin et al. (2020) on the same SAT instances. The base solver is MiniSAT (Eén & Sörensson, 2003), which we extended with RLAf guidance in a manner identical to the guided Glucose solver used in our main experiments. Training uses 800 satisfiable 50-variable 3SAT instances from SATLIB. Evaluation covers 3SAT problems

1080  
1081  
1082  
1083  
1084 Table 6: SATLIB comparison with the MiniSAT base solver. We report MRIR metric for the compared  
1085 models (higher is better). We also provide the mean decision counts of the unguided MiniSAT solver  
1086 as a reference.  
1087  
1088  
1089

| Dataset        | MiniSAT #Decisions | Graph-Q-SAT | RLAF-SATLIB | RLAF-Main |
|----------------|--------------------|-------------|-------------|-----------|
| SAT 100-430    | 286                | 3.94        | 3.14        | 3.58      |
| SAT 250-1065   | 76,120             | 3.91        | 11.03       | 7.33      |
| UNSAT 100-430  | 596                | 2.24        | 1.56        | 2.03      |
| UNSAT 250-1065 | 182,799            | 1.54        | 1.30        | 1.94      |

1090  
1091  
1092 with  $n \in \{100, 250\}$  variables, including both SAT and UNSAT splits. We report *MRIR* (Mean  
1093 Relative Improvement in Runtime) as defined by Kurin et al. (2020), averaging over five independent  
1094 RLAF models (denoted as *RLAF-SATLIB*). As a reference, we also evaluate the policy trained for our  
1095 main experiments on mixed SAT/UNSAT data from 3SAT(250), which we denote as *RLAF-Main*.  
1096 Note that this policy was learned with the Glucose solver but is also capable of guiding the closely  
1097 related MiniSAT solver effectively.

1098 All learned policies accelerate MiniSAT. On small 100-variable SAT instances, the reported Graph-Q-  
1099 SAT MRIR exceeds RLAF-SATLIB. On larger 250-variable SAT instances, RLAF-SATLIB attains  
1100 a  $\sim 3 \times$  higher MRIR than the reported Graph-Q-SAT, indicating strong size generalization for  
1101 one-shot guidance. For UNSAT, RLAF-SATLIB underperforms the reported Graph-Q-SAT MRIR,  
1102 consistent with training solely on SAT instances. The solver guidance from our main experiments  
1103 (RLAF-Main) achieves the highest MRIR on the 250-variable UNSAT set, which aligns with its  
1104 training on mixed SAT/UNSAT data and the consistent solver guidance on long search trajectories  
1105 with  $>100K$  branching decisions.

1106 These results support two observations. First, a one-shot multiplicative-weights interface can provide  
1107 persistent guidance throughout the search while avoiding per-decision GNN calls, achieving clear  
1108 gains on larger SAT instances. Second, policy-gradient training over a joint, partially continuous  
1109 action space is effective for learning guidance that scales in problem size and can transfer across  
1110 EVSIDS-based solvers. The incurred wall-clock overhead is only a single forward pass (Section B.4),  
1111 enabling guidance of *all* decisions without prohibitive inference costs.

## 1112 B.7 IMPACT OF WEIGHTS AND POLARITIES

1113  
1114 Our learned policies provide both variable weights and polarities to guide the solver. Here, we aim to  
1115 measure the individual impact of these model outputs. To this end, we evaluate the models from our  
1116 main experiment in a modified setting where only the weights or the polarities are provided to the  
1117 guided solver. We create a setting where only the variable weights are used by setting all polarities to  
1118 1. In the inverse setting, we set all variable weights to 1 and only use the predicted polarities.



Figure 9: Relative mean number of decisions compared to the Glucose base solver. **Less is better**.  
1134 We compare 3 guidance settings: Using polarities only (p), using weights only (w), and using both  
1135 weights and polarities (p+w).

1134 Figure 9 provides the test results in both settings as well as the default setting where both weights and  
 1135 polarities are used. Overall, we observe that variable weights account for most of the performance  
 1136 gains. On satisfiable 3SAT problems, the polarities do play a significant role in accelerating the solver,  
 1137 as using both weights and polarities performs significantly better than using either separately. On the  
 1138 remaining instance distributions, guidance with weights only already achieves the same speed-up as  
 1139 using both weights and polarities. Conceptually, well-chosen variable polarities are most impactful  
 1140 on satisfiable problems with non-empty backbones, and our empirical results reflect this. Variable  
 1141 weights, on the other hand, are ubiquitously useful across instance distributions.

1142

## 1143 B.8 IMPACT OF THE GNN DEPTH

1144

1145 We further study how the depth of the underlying GNN affects the quality of the learned guidance.  
 1146 Recall that this depth was set to 10 in our main experiments. We train two additional policies to guide  
 1147 Glucose on 3SAT with GNN depths of 3 and 5, respectively. Figure 10a provides the mean number of  
 1148 decisions achieved by each policy on the 3SAT(300) test set. We observe that deeper GNNs yield  
 1149 more effective guidance. These results demonstrate that the learned policies effectively exploit the  
 1150 model’s depth and incorporate non-trivial structural graph features that are not captured by shallow  
 1151 GNNs. These results also suggest that scaling up the GNN model in the future may further improve  
 1152 performance.

1153



(a) Effect of the GNN depth.

(b) Effect of  $\sigma^w$ .

1164

1165

1166 Figure 10: Ablation experiments on the effects of GNN depth and  $\sigma^w$  parameter. We report the mean  
 1167 number of decisions achieved on the 3SAT(300) test set (SAT and UNSAT).

1168

1169

## B.9 IMPACT OF $\sigma^w$

1170

1171

We further provide data on the impact of the  $\sigma^w$  hyperparameter, which sets the variance of the LogNormal variable weight distributions. By default, we use a fixed value of  $\sigma^w = 0.1$  in our main experiments, which was determined in preliminary tuning runs. To probe the effect of using a wider range of values for  $\sigma^w$ , we train two additional policies to guide Glucose on 3SAT with  $\sigma^w = 0.05$  and  $\sigma^w = 0.5$ . Both of these additional policies converged stably during training. Figure 10b compares the test results of these policies. We observe that the three policies all successfully accelerate the base solver. The policy trained with  $\sigma^w = 0.05$  performs nearly identically to our default of  $\sigma^w = 0.1$ , while training with a higher value of  $\sigma^w = 0.5$  does cause some performance degradation. This suggests that successfully training a policy with RLAf does not require the specific choice of  $\sigma^w = 0.1$ . However, as the test-time performance is somewhat sensitive to the choice of this hyperparameter, it should be appropriately tuned for a given application of RLAf.

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187