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Abstract: Robotic grasp detection is to predict a grasp configuration, e.g., grasp location, gripper openness size, to enable
a suitable end-effector to stably grasp a given object on the scene, whereas continual learning (CL) refers to
the skill of an artificial learning system to learn continuously about the external changing world. Because it
corresponds to real-life scenarios where data and tasks continuously occur, CL has aroused increasing interest
in research communities. Numerous studies have focused so far on image classification, but none of them
involve robotic grasp detection, although extending continuously robots with novel grasp capabilities when
facing novel objects in unknown scenes is a major requirement of real-life applications. In this paper, we
propose a first benchmark, namely Jacquard-CL, that uses a small part of the Jacquard Dataset with variations
of the illumination and background to create a NI(new instances)-like scenario. Then, we adapt and benchmark
several state-of-the-art continual learning methods to the grasp detection problem and create a baseline for the
issue of continual grasp detection. The experiments show that regularization-based methods struggle to retain
the previously learned knowledge, but memory-based methods perform better.

1 INTRODUCTION

Dexterous manipulation has been a long-standing
challenge in AI and robotics. Already Aristotle noted
that the hand is the “tool of tools”, and Anaxago-
ras held that “man is the most intelligent of the an-
imals because he has hands”. Thus, intelligence has
long been understood to come together with dexterity,
and the lack thereof in artificial systems explains why
current robots are mostly limited to pre-programmed
tasks in known environments.

As such, a huge research effort (Kumra et al.,
2020) has been focused on the so-called robotic grasp
detection problem, also known as grasp synthesis,
which aims to predict from the observation of a scene
a grasp configuration, e.g., grasp location, gripper
openness size, orientation, to enable a suitable end-
effector to stably grasp a given object laid on the
scene.

State of the art has so far featured a number of
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Figure 1: A robotic arm is trained to grasp an object (De-
pierre et al., 2021).

CNN-based methods for grasp detection from either
RGB or RGB-D images. Most of them can achieve
satisfactory performances (Zhou et al., 2018a), (De-
pierre et al., 2018), (Morrison et al., 2018) (Kumra
et al., 2020). For instance, GR-ConvNet (Kumra
et al., 2020) achieves 97.7% and 94.6% on the Cor-
nell and Jacquard datasets, respectively(Kumra et al.,
2020). However, all these models are trained with a
large dataset through an offline scenario where the en-
tire training data is available, and the training and test-



ing data are assumed i.i.d. But this scenario is quite
unrealistic for real-world applications. For example,
a service robot may encounter different scenes and
lighting conditions during its life span, and it is there-
fore difficult, if not impossible, to retrain the robot
with the whole dataset each time it encounters novel
scenes in its life span, and this for two reasons: 1).
Previous data may not be available anymore, espe-
cially due to the reason of data privacy and protection;
2). Retraining the model each time of a novel scene
with the entire dataset is also time-consuming. Nev-
ertheless, if the robot is only trained with the data of
new scenes, it often suffers from a well-known phe-
nomenon, namely catastrophic forgetting (Goodfel-
low et al., 2014), thereby performing poorly in pre-
vious scenes. As a result, how to train the robot
to learn new knowledge efficiently without forgetting
becomes a key issue for real-world applications. This
is exactly the aim of the research line on continual
learning.

Last years have witnessed many scenarios and
methods in continual learning (CL), but most of them
only focus on image classification. In this paper, we
extend CL to the issue of robotic grasp detection. In
CL, different learning scenarios can be considered.
De Ven and Tolias (van de Ven and Tolias, 2019)
propose the following three CL scenarios: 1). Task-
incremental learning where task identity is always
provided in both training and evaluation; 2). Domain-
incremental learning where task identity is not pro-
vided, and the model needs not to predict task iden-
tity during the inference; 3). Class-incremental learn-
ing where task identity is not provided, and the model
needs to predict task identity during the inference.
More specifically, for object recognition, Lomonaco
and Maltoni (Lomonaco and Maltoni, 2017) propose
to consider the following three scenarios: 1). New In-
stances (NI) where new unseen instances of the same
class appear in the subsequent task; 2). New Classes
(NC) where new unseen classes appear in the sub-
sequent task; 3). New Instances and Classes (NIC)
where new unseen objects and instances appear in the
subsequent task. For a classification problem tackled
with a deep neural network, each output neuron is re-
lated to a class. Thus, when a new class occurs, the
output space is modified. This is not the case for the
problem of grasp prediction, since the output space
does not change. As a result, in this paper we focus on
the scenario NI or domain-incremental learning. This
means the neural network architecture doesn’t change
during the training. We consider novel instances of
objects within different scenes and illumination con-
ditions in subsequent tasks.

State of the art on CL has so far featured

three main approaches, namely regularisation-based,
memory-based, and the use of dynamic architectures.
Regularisation-based methods (Chaudhry et al., 2018)
(Zenke et al., 2017) (Kirkpatrick et al., 2017) evalu-
ate the importance of each parameter and add some
constraints to prevent these parameters from chang-
ing too much during training. These approaches work
well for task-incremental learning. However, they
all fail when applied to domain-incremental or class-
incremental learning (van de Ven and Tolias, 2019).
For our purpose of grasp detection, these methods can
be directly applied without modification. Memory-
based techniques (Li and Hoiem, 2016), (Shin et al.,
2017), (Lopez-Paz and Ranzato, 2017), (Chaudhry
et al., 2019), (Goodfellow et al., 2014), (Bang et al.,
2021), (Douillard et al., 2020) store a small part of ex-
emplars of previous tasks or create pseudo-exemplars.
They are efficient at preventing forgetting, but the per-
formance is limited by the replay buffer size or the
generative model’s quality. Some methods can be di-
rectly extended to our purpose, but others targeting
class-incremental learning are not suitable for grasp
detection. The methods based on dynamic architec-
tures (Rusu et al., 2016) (Aljundi et al., 2017) (Verma
et al., 2021) propose to add an auxiliary architecture
or fix a part of the network for a specific task. They
mainly target task-incremental learning. Therefore,
they are not suitable for our purpose.

The contributions of this work are twofold :
• We propose a new benchmark based on Jacquard

dataset for continual grasp detection.
• We expand some works of continual learning to

grasp detection and create a baseline.

2 Related Work

Grasp Detection Architectures. Recent CNN-
based models usually use 2D representation for a
grasp. It can be described as g = {x,y,h,w,θ} where
(x,y) is the center, (h,w) represents the dimensions,
and θ the orientation. As a result, Redmond and
Angelova work(Redmon and Angelova, 2015) treats
grasp detection as a pure regression problem. It uses
AlexNet as the backbone and predict these five val-
ues directly in the output layer. This model can only
predict one grasp from one image and can not fully
use the dataset. Inspired by the research on object de-
tection in computer vision (CV), (Zhou et al., 2018b)
(Depierre et al., 2021) treat a grasp as a bounding
box and introduce the notion of reference anchor box.
They do not directly predict five parameter values of
a grasp, but a deformation of a reference box. (De-
pierre et al., 2021) achieves 85.74% on the Jacquard



Dataset. (Morrison et al., 2018) (Kumra et al., 2020)
use a generative model to predict a grasp at the pixel
level. The output here is four images of the same
size as the input. GR-ConvNet(Kumra et al., 2020)
reaches the state-of-the-art performance of 94.6% on
the Jacquard Dataset. In this paper, GR-ConvNet is
used as the backbone.

GR-ConvNet. GR-ConvNet (Kumra et al., 2020) is
based on GG-CNN (Morrison et al., 2018). Both net-
works use the depth image or RGB-D image as in-
put and generate three pixel-wise maps: grasp qual-
ity, angle, and gripper width, respectively. Then they
search local maximums in the grasp quality map for
the positions for potential grasps. A complete grasp
is generated with the value of angle and gripper width
maps at these local maximum positions.The main dif-
ference between GR-ConvNet and GG-CNN resides
in the fact that GR-ConvNet uses a deeper network
and residual blocks, thereby resulting in a higher ac-
curacy.

Continual Learning (CL) Scenarios. As discussed
in the introduction section, different CL scenarios are
possible. De Ven and Tolias (van de Ven and To-
lias, 2019) makes use of the notion of task identity
to distinguish three CL scenarios: task-incremental,
domain-incremental or class-incremental CL. Many
CL methods (Aljundi et al., 2017) (Rusu et al., 2016)
target task-incremental learning, where task identity
is provided during training and inference. It gives
the possibility to add some specific parameters’ re-
sponses to the corresponding task. In such a situa-
tion, a model is always composed of multiple sub-
models, and each corresponds to a task. However,
in the case of grasp detection, the task identity is
unknown, and we need a model that can react cor-
rectly to the input without task identities. Therefore,
our use-case is closer to domain-incremental or class-
incremental learning. The difference between them
resides on whether the model predicts the task iden-
tity or not. If the output space changes between tasks,
Class-incremental is more suitable. For example,
adding new classes(for classification) means adding
new neurons at the output layer, thereby changing also
the output labels. However, if the output space does
not change and there is no apparent boundaries be-
tween tasks, domain-incremental scenario is more ap-
propriate. More specifically to classification, Core50
(Lomonaco and Maltoni, 2017) proposes three CL
scenarios, namely NI, NC, and NIC. Compared with
previous work, NI is similar to domain-incremental,
NC similar to class-incremental. NIC is a kind of
NC where task boundaries are fuzzy between tasks.

For grasp detection, the output space doesn’t change.
Therefore, Domain-incremental or NI is more appro-
priate to our use-case. Specifically to NI, OpenLoRIS
(She et al., 2020) changes the distributions of differ-
ent tasks by adjusting some parameters, e.g., illumi-
nation, occlusion, or clutter.

Continual Learning (CL) Methods. Most of the
existing methods are aimed at the class-incremental
learning. Therefore, they don’t match our use-case.
For grasp detection, the output of the network for the
five grasp parameters doesn’t change over tasks. As
a result, only the CL methods or techniques using a
static architecture is suitable for us.

EWC (Kirkpatrick et al., 2017) is the first work
to estimate the importance of all parameters for pre-
viously learned tasks and penalize their changes in
the future. SI (Zenke et al., 2017), Riemannian walk
(Chaudhry et al., 2018) share the same ideal but pro-
pose different estimation methods. These methods
can retain the previous knowledge, but they possibly
penalize too many parameters important to the previ-
ous task, and it degrades the ability to learn new tasks.

LWF (Li and Hoiem, 2016) introduces the notion
of distillation in continual learning. It needs the pre-
viously learned model to label the data of the current
task (without memory) or previous task (with mem-
ory), then use these data together with current data in
training. An essential aspect of this method is knowl-
edge distillation which makes use of the whole output
of the previous model to label the data, resulting in the
so called ”soft targets”(van de Ven and Tolias, 2019).
Soft targets usually contain richer information about
the previous model. But if the distribution of the cur-
rent task is much different from the distribution of the
previous task, this kind of label may not be useful.
Based on the idea of distillation, PodNet (Douillard
et al., 2020) labels the data not only using the out-
put layer but also all the intermediate layers. This
method performs better when the learning sequence
is longer. (Ebrahimi et al., 2021) uses Grad-cam to
label the data while (Kurmi et al., 2021) relies on un-
certainty to label the data.

A-GEM (Chaudhry et al., 2019) stores a part of
previous data called as episodic memory. When train-
ing, it computes a reference gradient by using a ran-
dom batch from the episodic memory, then adjusting
the current gradient to ensure the gradient to optimize
does not violate the reference gradient. Thus, the loss
of the previous task will not increase.



Figure 2: Samples from the Jacquard Dataset. Each rect-
angle represents a possible grasp. In this dataset, each ob-
ject has five poses, and each pose has hundreds of possible
grasps.

3 Continual Grasp Detection
Benchmark

The Jacquard Dataset illustrated in Figure 2 (Depierre
et al., 2018) is a large-scale synthetic dataset contain-
ing RGB-D images and rich annotations of successful
grasps from a simulated environment. The Jacquard
dataset comprises 54 485 different images from 11
619 distinct objects with a total of 4 967 454 grasps
annotations.

3.1 Dataset

Because the Jacquard Dataset is based on ShapeNet
(Chang et al., 2015), we can use WordNet synsets
to regroup the dataset into 160 categories. As a re-
sult, the datatset can also be used for classification.
The aim of this paper is not to achieve the state-of-
the-art performance on grasp detection, but generate
a continual learning benchmark. For this purpose, we
choose from the Jacquard dataset five categories (air-
plane, desk lamp, bowl, soda can, pencil) that contain
the most images and 150 images for each category, re-
sulting in 750 images in total. From the developer ver-
sion of the Jacquard Dataset, we can obtain the mask
of an object and change the background and illumi-
nation conditions. Specifically, we keep the size and
the pose of the object so that the ground truth grasp
doesn’t change but modify the background or the il-
lumination conditions to create different tasks. Each
task thus contains the same five categories and 750
images but with a different background or different
illumination conditions. As such, ten different tasks
have been created. The model is trained sequentially
to these ten tasks.

3.2 Evaluation Metrics

3.2.1 Grasp Detection Metric

To determine whether a grasp is successful or not,
we use the rectangle metric proposed by (Jiang et al.,
2011). A successful grasp should satisfy the follow-
ing two conditions as shown in Figure 4:

• The intersection over union(IOU) ratio between
the prediction and the ground-truth grasp rectan-
gle is over 25%.

• The predicted angle is less than 30◦ compared
with the ground-truth.

We then propose two criteria to evaluate the per-
formance of grasp detection :

• One grasp accuracy (1-GA): From one output
of our model, we generate only one grasp. Af-
ter passing all test images, we accumulate all suc-
cessful grasps, then divide them by the number of
test images.

• Ten grasps accuracy (10-GA): Here we generate
ten grasps for one output. After passing all test
images, we accumulate all successful grasps, then
divide them by the number of attempted grasps.

Because the output of our model is an image of the
same size as the input, Ten grasps accuracy (10-GA)
can get much more detailed information and evaluate
the quality of generated images more precisely.

3.2.2 Continual Learning Metric

Average Accuracy (A) Let ai, j be the accuracy
evaluated on the data of j-th task after training the
model incrementally from tasks 0 to i. Then the aver-
age accuracy after training on i-th task is then defined
as Ai =

1
10 ∑

9
j=0 ai, j there are ten tasks in total. The

higher is A, the better is the model, but this does not
provide any information about forgetting.

Backward Transfer (BF) the backward transfer
after training on i-th task is defined as BFi =
1
i ∑

i
j=0(a j, j −ai, j) and i ̸= 0, j < i. This criterion can

estimate the influence that learning a task i has on the
performance of a previous task j < i (Chaudhry et al.,
2018). The lower is BF, the better the model can over-
come the forgetting.

4 Experiments

GR-ConvNet (Kumra et al., 2020) has been chosen
as the backbone model as it represents the state-of-
the-art on grasp detection. It consists of basic blocks,



Figure 3: There are 10 tasks in our benchmark, Ti represents the i-th task. The difference between tasks is the background
and illumination. T5 correspond to the original Jacquard dataset. T0,T2,T3,T4,T6,T8 use a different background.T1,T7 use a
different illumination. In T9, we apply a gaussian filter to blur the input image.

Figure 4: We present two grasps for an object given. G1:
the ground truth and G2: the prediction. α represents the
included angle.G1∩G2 represents the intersection of two
grasps rectangles.

e.g., convolutional layers, batch normalization layers,
etc. As a result, it is simple to adapt continual learn-
ing methods used for classification to fit GR-ConvNet
chosen as backbone. To enable a model to predict
both grasps and classes from an input RGB-D image,
we add an extra head to predict the class label. The
network architecture is shown in Figure 5.

Original RGB-D images are rendered in 224x224
resolution, then normalized. The annotations are
transformed into four images via the method proposed
in (Morrison et al., 2018). For each task, 416 images
are used for training, 104 images for validation and
130 images for testing. Because the task order influ-
ence much, we run three experiments with different
task orders and then output the average accuracy.

4.1 Methods

Using the NI scenario, we compare the following CL
methods:

- Offline: The model is trained using the data from
all the ten tasks at once. This is also called joint train-
ing, and the performance it achieves can be seen as an
upper bound for CL methods.

- Fine-tuning: The model is sequentially trained in
the standard way. It uses the weights of the previ-
ously trained model as the initialization for the cur-
rent task. Its performance constitutes the lower bound
of CL methods.

- Online EWC / SI: One hyperparameter, namely
λ, is introduced by these methods, to control the
regularization strength as in the following formula :
Ltotal = Lcurrent +λLregularization. The value of λ is set
by a grid search.

- LWF / PodNet with or without memory: The
CL variant without memory means that the previously
trained model is used to label the data of the cur-
rent task. So for each training mini-batch, Ltotal =
λcLcurrent + λmLmemory. We set λc =

1
Ntasks−so− f ar

and

λm = (1− 1
Ntasks−so− f ar

) based on (van de Ven and To-
lias, 2019). The CL variant with memory means that
we store a small part of previous data into a memory
buffer. We then random sample a mini-batch from the
buffer when training the model for a new task. After
training a task, 15 images from the task are randomly



Figure 5: Architecture of the GR-ConvNet-based network used in our experiments. The input is a 224x224 RGB-D image.
There are two outputs: the classification output with five classes, and the grasp output with a quality image, a width image,
and two angle images, respectively as in (Morrison et al., 2018).

selected into the replay buffer. The rest of the algo-
rithm stay the same.

- Memory replay: Based on fine-tuning, we add a
replay buffer that is the same as in LWF with mem-
ory. During training, a mini-batch is randomly sam-
pled from the replay buffer and is used to compute a
memory loss. The formula and the hyperparameters
are the same as in LWF with memory. This method
can be seen as a lower bound of CL algorithms that
use memory.

- A-GEM: It uses the same replay buffer like LWF
with memory. There is no hyperparameter, and we
use the same strategy as (Chaudhry et al., 2019).

4.2 Training Details

For all tasks, we turn on the data augmentation that in-
cludes random rotations (0,π/2,π,3π/2) and random
zooms from 0.6 to 1.0. All models are trained 20 it-
erations per task using the ADAM-optimizer and the
model that performs the best on the validation set of
the current task is selected for testing. The learning
rate is initially set to 0.00005 and a learning rate de-
cay lr = 0.9 ∗ iteration2 is used. For each task, the
optimizer is reinitialized.

5 Results

As can be seen from Table 1, the CL methods without
memory struggle on our benchmark for grasp detec-
tion, as they display almost the same performance or

even worse compared to the naive fine-tuning. The
methods using memory perform well and are very
close to the upper bound, but these methods have no
obvious advantage over the Native memory replay4.1
method. Our benchmark evidences that there exists
a big gap between methods with and without mem-
ory. EWC and SI perform better in overcoming the
forgetting (the lowest BF) for methods without mem-
ory, but LWF and PodNet are nearly helpless and
even have negative effects. In our benchmark, the
change of background can lead to a drift of distri-
bution, especially from a complex background to a
simple one. This severe gap between distributions of
different tasks can make LWF and PodNet useless, be-
cause these methods use the previous model to label
the current data. For methods with memory, PodNet
achieves the best score in terms of BF. In this case,
PodNet uses the previous model to label previous data
by using all intermediate layers’ output, and suggests
that this kind of annotation has rich information about
the previous model, thereby helpful to overcome for-
getting.

6 Limitations

Our benchmark are primarily designed for changes in
background and illumination conditions over different
tasks. However, for a real-work scenario, the classes
and the poses may also increase incrementally.



Table 1: Comparison of state-of-the-art continual learning methods on our benchmark. For each method, we run three
experiments with different task orders. A1: one-grasp accuracy; A10: ten-grasp accuracy; Ac: classification accuracy; BF1:
one-grasp backward transfer; BF10: ten-grasp backward transfer; BFc: classification backward transfer. From the table, we
find that there is no obvious improvement by using the state-of-the-art incremental learning methods compare with using
Fine-tuning and Memory Replay.

Methods without memory A1 (%) A10 (%) Ac (%) BF1 (%) BF10 (%) BFc (%)
Offline(upper-bound) 80.18 73.34 97.34
Fine-tuning(ft) 73±4 50±12 76±15 −1±2 13±12 11±13
Online EWC (Kirkpatrick et al., 2017) 74±4 50±10 77±15 −1±2 12±13 10±12
SI (Zenke et al., 2017) 73±4 51±10 76±12 0±2 11±13 11±12
LWF without memory (Li and Hoiem, 2016) 65±2 44±2 50±10 1±1 3±6 8±1
PodNet without memory (Douillard et al., 2020) 66±2 46±2 49±7 1±1 2±6 9±1

Methods with memory (20 images for each task) A1 (%) A10 (%) Ac (%) BF1 (%) BF10 (%) BFc (%)
Memory Replay 77±1 65±5 92±3 −3±2 −3±5 −6±2
A-GEM (Chaudhry et al., 2019) 76±1 62±8 90±5 −2±2 −1±6 −3±5
LWF (Li and Hoiem, 2016) 77±1 66±3 93±3 −4±2 −4±3 −7±1
PodNet (Douillard et al., 2020) 77±1 67±3 92±2 −4±2 −4±5 −6±2

Figure 6: Validation accuracy (averaged on 3 runs) after training on each task for different methods.

7 Conclusion

We proposed a novel CL benchmark for vision-based
grasp detection. We overviewed some continual
learning methods and extended them to our bench-
mark to test their performance. Our experimental re-
sults show that these CL methods don’t display sig-
nificant improvement over the lower bound, thereby
suggesting the necessity of a replay buffer to retain
knowledge. However, in real-life situations, past data
are not always available, therefore, how to get a com-
parable accuracy without memory is an issue for fu-
ture research.
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