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Abstract

Motivated by the Bures-Wasserstein distance, we introduce a new family of relative translation
invariant Wasserstein distances, denoted (RWp), as an extension of the classical Wasserstein
distances Wp for p ∈ [1, +∞). We establish that RWp defines a valid metric and demonstrate
that this type of metric is more robust to perturbation than the classical Wasserstein
distances. A bi-level algorithm is designed to compute the general RWp distances between
arbitrary discrete distributions. Additionally, when p = 2, we show that the optimal coupling
solutions are invariant under distributional translation in discrete settings, and we further
propose two algorithms, the RW2-Sinkhorn algorithm and RW2-LP algorithm, to improve
the numerical stability of computing W2 distances and the optimal coupling solutions.
Finally, we conduct three experiments to validate our theoretical results and algorithms.
The first two experiments report that the RW2-Sinkhorn algorithm and RW2-LP algorithm
can significantly reduce the numerical errors compared to standard algorithms. The third
experiment shows that RWp algorithms are computationally scalable and applicable to the
retrieval of similar thunderstorm patterns in practical applications.

1 Introduction

Optimal transport (OT) theory provides a rigorous and interpretable framework for measuring discrepancies
between probability distributions. Due to its strong theoretical foundations and flexibility, OT has become
one of central tools in modern machine learning. It has found wide-ranging applications in domain adaptation
(Courty et al., 2017), generative modeling—most notably in Wasserstein GANs (Arjovsky et al., 2017)—and
evaluation metrics such as the Fréchet Inception Distance (FID) (Heusel et al., 2017). In addition, OT also
played an important role in distributionally robust learning, including regression (Shafieezadeh-Abadeh et al.,
2015; Chen & Paschalidis, 2018) and Markov decision processes (Yu et al., 2023), as well as in object tracking
and matching using graph neural networks (Grand-Clement & Kroer, 2021; Sarlin et al., 2019).

Although many computational methods, such as linear programming–based solvers (Villani, 2009; Peyré &
Cuturi, 2019) and the Sinkhorn algorithm (Cuturi, 2013), have been developed to compute optimal transport
accurately, practical data settings can still lead to a loss of precision. Measurement errors and systematic
perturbations are inevitable in real-world settings. When two distributions are very close, it becomes difficult
to distinguish whether an observed discrepancy reflects intrinsic differences in the underlying data or arises
from exogenous factors such as sensor noise, calibration drift, or other systematic biases. While modern OT
methods can accurately quantify distributional differences, their sensitivity to such perturbations may lead to
instability in downstream tasks and hinder robust performance in practice. As a result, it is natural to raise
the following question:

Can we design a new metric, along with an efficient algorithm, that is robust to systematic perturbations while
still capturing intrinsic differences between probability distributions?

To answer this question, we introduce a new family of relative translation invariant Wasserstein distances,
denoted (RWp), as an extension of the classical Wasserstein distances Wp for p ∈ [1, +∞). Compared with the
classical Wasserstein distances, these new distances are more robust to systematic perturbations and global
translational shifts. We propose an efficient algorithm to compute the general RWp distances. In the special
case p = 2, we show that the optimal transport coupling solution is invariant under any relative translation.
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Building on this property, we further develop two adaptive algorithms, RW2-Sinkhorn algorithm and RW2-
LP algorithm, to reduce computational errors and improve numerical stability. Finally, we conduct three
experiments to validate the effectiveness of the proposed framework. The first two experiments demonstrate
that the RW2-Sinkhorn algorithm and RW2-LP algorithm achieve significantly numerical stability compared
to standard algorithms. The third experiment validates that the RWp algorithms are computationally scalable
and applicable to similar thunderstorm retrieval in real-world applications.

Contributions. The main contributions of this paper are summarized as follows:

(a) We introduce a new family of metrics, the relative translation invariant Wasserstein (RWp) distances,
and prove that they are true metrics and invariant to relative translations of probability distributions.

(b) We design a bi-level algorithm for efficiently computing the general RWp distances between arbitrary
discrete distributions for arbitrary p ≥ 1.

(c) We show that the optimal coupling solutions are invariant under distributional translation in discrete
settings, when p = 2. Based on this property, we develop two adaptive algorithms for the LP-based optimal
transport algorithm and the Sinkhorn algorithm to improve the numerical stability in the computation of the
W2 distance. In particular, we show that the RW2-Sinkhorn algorithm has more advantages in numerical
stability, while the convergence rate remains the same as the standard Sinkhorn algorithm. Our experiments
report that the proposed algorithms can significantly reduce numerical errors.

(d) We demonstrate the practical applications of RWp metrics in the tasks of retrieval of similar thunderstorm
patterns, showcasing their effectiveness in large-scale real-world applications.

Organization. The remainder of the paper is organized as follows. Section 2 reviews classical results in
optimal transport theory and the Sinkhorn algorithm. Section 3 provides the definition of the RWp distances
and some key properties of the distances. Section 4 presents computational algorithms for the general RWp

distances and the RW2-based algorithms for the Sinkhorn algorithm and the LP-based OT algorithm, along
with an analysis of their stability and convergence rate. Finally, Section 5 provides numerical validation for
the RW2 customized Sinkhorn algorithm and the LP algorithm and demonstrates the retrieval results of
similar thunderstorm patterns.

Notations. Let Pp(Rd) denote the set of all probability distributions on Rd with finite p-th order moments.
For simplicity, we let µ and ν denote a pair of source and target distributions, respectively. µ and ν are
supported on finite sets {xi}n1

i=1 and {yj}n2
j=1, respectively, where n1 and n2 denote the numbers of support

points. µ̄ and ν̄ are the means (mass centers) of µ and ν, respectively. Let Rn1×n2
∗ be the set of all n1 × n2

matrices with non-negative entries. We use [µ] to denote the equivalence class (orbit) of µ under the translation
equivalence relation in Pp(Rd). The vector 1 denotes the all-ones vector. The operation ./ denotes the
component-wise vector division. ∥ · ∥ denotes a norm on Rd. ∥C∥∞ denotes the value of the largest component
in matrix C.

Related work. Optimal transport (OT) theory is a classical area with deep connections to probability
theory, diffusion processes, and partial differential equations. For comprehensive overviews, we refer the
reader to monographs (Villani, 2003; Ambrosio et al., 2005; Villani, 2009; Ollivier, 2014). A wide range of
computational OT methods have been developed, including the Greenkhorn algorithm (Altschuler et al.,
2017b), the network simplex method (Peyré & Cuturi, 2019).

Despite the extensive body of existing work, relatively little literature focuses on the effectiveness of the relative
translation, either from a theoretical perspective or in terms of its practical benefits. The Wasserstein–Bures
metric (Chen et al., 2018; K. et al., 2019; Peyré & Cuturi, 2019; Malagò et al., 2018) is the most closely
related to our work; however, it is restricted to Gaussian distributions. In this paper, we extend Gaussian
distributions to a much broader class of distributions and consider general p-norm metrics, thereby providing
a more flexible perspective.

In addition, information geometry (ichi Amari, 2016; Liero et al., 2018; Janati et al., 2020) is also related
to our work, as it offers tools for quantifying variability and structural differences between distributions.
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However, important distinctions remain. Information geometry is typically formulated in terms of divergences,
such as Bregman divergences or other statistical measures, whereas our approach is grounded in transport
costs as the metric, resulting in a geometry that is different from information geometry.

2 Preliminaries

Before presenting our proposed method, we briefly review key concepts and formulations from classical
optimal transport theory. This section establishes the technical foundation for Section 3.

2.1 Optimal Transport Theory

Optimal transport (OT) addresses the problem of finding a minimal-cost plan for transporting one probability
distribution to another on a metric space. Given a cost function c(x, y) and two probability measures µ and
ν on Rd, the goal is to identify a coupling of µ and ν that minimizes the total cost of moving mass from µ to
ν under c(x, y). While the cost function can be any non-negative function, a common and particularly useful
choice is a distance-based cost of order p, such as c(x, y) = ∥x− y∥p, where ∥ · ∥ denotes a norm on Rd and
p ∈ [1,∞). Under these mild conditions, the corresponding OT problem is well-defined (Villani, 2003).

Let µ be the source distribution and ν the target distribution, with µ, ν ∈ Pp(Rd). The optimal transport
problem can be formulated as the following optimization problem.
Definition 2.1 (p-norm optimal transport problem (Villani, 2003)).

OT(µ, ν, p) := min
γ∈Γ(µ,ν)

∫
R2d

∥x− y∥p dγ(x, y), (1)

where
Γ(µ, ν) =

{
γ ∈ Pp(R2d)

∣∣∣ ∫
Rd

γ(x, y) dx = ν(y),
∫
Rd

γ(x, y) dy = µ(x), γ(x, y) ≥ 0
}

.

Here, γ is a transport plan (or coupling), specifying how much mass is moved from source location x to target
location y. The objective is to minimize the total transport cost, i.e., the overall cost of moving masses across
all source–target pairs (x, y).

Building on this formulation, one obtains a family of metrics on Pp(Rd) known as Wasserstein distances
(Villani, 2009), defined directly from the optimal transport cost. It is worth noting that the norm ∥ · ∥ can
have a different order from the order p.
Definition 2.2 (p-Wasserstein distances (Villani, 2009)). The p-Wasserstein distance between two probability
distributions µ and ν is given by

Wp(µ, ν) := OT(µ, ν, p)1/p, p ∈ [1,∞).

The Wasserstein distance defines a true metric on Pp(Rd), satisfying non-negativity, identity of indiscernibles,
symmetry, and the triangle inequality (Villani, 2009). Moreover, it is well-defined for a broad type of
probability distributions, including both discrete and continuous distributions.

In practical applications, the functional optimization in Equation equation 1 is typically reformulated as a
discrete optimization problem. In this setting, the distributions µ and ν are represented by finite number of
support points (data samples){xi}n1

i=1 and {yj}n2
j=1, with associated probability masses {ai}n1

i=1 and {bj}n2
j=1,

where n1 and n2 denote the number of support points, respectively.

Since both n1 and n2 are finite, we define a cost matrix C ∈ Rn1×n2
∗ , whose entries represent the transport

cost from xi to yj ,
Cij = ∥xi − yj∥p.

The discrete optimal transport problem can then be regarded as a linear program

OT(µ, ν, p) = min
P ∈Π(µ,ν)

n1∑
i=1

n2∑
j=1

Cij Pij , (2)
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where the feasible set is
Π(µ, ν) =

{
P ∈ Rn1×n2

∗

∣∣∣ P1 = a, P ⊤1 = b
}

.

Here, Pij denotes the coupling variable, representing the amount of probability mass transported from source
point xi to target point yj . This linear programming formulation provides a tractable and widely used
approach for solving discrete OT problems in practical applications.

2.2 Sinkhorn Algorithm

The discrete OT problem in Equation equation 2 is a linear program that can be solved by simplex or
interior-point algorithms (Peyré & Cuturi, 2019). However, for large-scale problems, these approaches can
become computationally expensive. A popular alternative exploits the special structure of the feasible set
Π(µ, ν) by introducing an entropy regularization term in the objective function (Cuturi, 2013). This leads to
a strictly convex optimization problem whose solution can be obtained via a simple matrix scaling procedure
known as the Sinkhorn algorithm.

The entropy-regularized OT problem is given by

OTλ(µ, ν, p) := min
P ∈Π(µ,ν)

∑
i,j

CijPij + λ
∑
i,j

Pij(log Pij − 1),

where λ > 0 controls the strength of the regularization. Defining

Kij = exp
(
−Cij

λ

)
,

the optimal coupling can be written in the factorized form P = diag(u) K diag(v) for some positive scaling
vectors u ∈ Rn1 and v ∈ Rn2 satisfying the marginal constraints.

The Sinkhorn algorithm starts from initial vectors u(0) = v(0) = 1. For iteration k ≥ 0, the updates proceed
alternately as

u(k+1) ← a./(Kv(k)), v(k+1) ← b./(K⊤u(k+1)),

where the division is component-wise.

Once the updates converge to (u∗, v∗), the coupling matrix P can be recovered as

P = diag(u∗) K diag(v∗).

It is known that as λ→ 0, the entropy-regularized solution converges to the exact optimal transport plan of the
linear program (Cominetti & Martín, 1994), while for fixed λ > 0 the Sinkhorn iterations are computationally
efficient and highly scalable.

3 Relative Translation Optimal Transport and RWp Distances

In this section, we introduce the relative translation optimal transport (ROT) problem and define a family of
distances, relative translation invariant Wasserstein distances (RWp). We establish basic properties, including
existence of the minimizers and RWp defines a true metric for p ≥ 1. Special attention is devoted to the
quadratic case (p = 2), where an additional structure allows for a decomposition of the problem.

3.1 Relative Translation Optimal Transport and the RWp Distance

Classical optimal transport compares two distributions in a fixed coordinate system. However, when the
primary difference between two distributions is caused by a global translation of their support points, the
classical OT distance may overestimate the global translation, rather than their intrinsic difference. To
measure the intrinsic difference, we introduce the relative translation optimal transport problem, which aligns
one distribution with the other through a relative coordinate system, rather than a fixed coordinate system.
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Definition 3.1 (Relative translation optimal transport). Let µ, ν ∈ Pp(Rd). The relative translation optimal
transport problem is defined as

ROT(µ, ν, p) := inf
t∈Rd

OT(µ + t, ν, p), (3)

where t ∈ Rd is a translation vector and (µ + t) denotes the pushforward of µ under the map x 7→ x + t.

This formulation introduces an outer optimization over t, while the inner optimization corresponds to the
classical p-Wasserstein problem in terms of the translated distribution µ + t. As a result, the ROT problem
captures the minimal transport cost while dynamically aligning the two distributions.

The following proposition shows that the search domain for the optimal translation can be restricted to a
compact set. Therefore, the minimizer exists, and the minimal value can be achieved.
Proposition 3.1 (Compactness and existence of minimizers). In equation 3, the search for the optimal
translation t may be restricted to the following compact ball set

B =
{

t ∈ Rd : ∥t∥ ≤ 2 Wp(µ, ν)
}

.

Consequently,
ROT(µ, ν, p) = min

t∈B
OT(µ + t, ν, p),

and the minimizer can be attained.

The proof is provided in Appendix A.1. The compactness ensures that the ROT problem is well-defined and
avoids pathological behavior such as unbounded translations.

A quotient-space perspective. Let ∼T denote the equivalence relation on Pp(Rd) induced by translations:
we write µ ∼T µ′ when µ′ is obtained by applying a translation from µ. This relation partitions Pp(Rd) into
different equivalence classes [µ], which are the elements in the quotient space

Pp(Rd)/∼T .

From this perspective, the ROT problem naturally becomes an optimal transport problem on the quotient
space, whose objective is to compute the minimal transport cost between two equivalence classes [µ] and [ν].

Coming from this observation, we introduce a new family of Wasserstein distances that quantify the minimal
transport cost in terms of the above translation equivalence classes of probability distributions. Since the
value of the ROT problem depends only on the equivalence classes themselves, and the value is actually
invariant under relative translations, we refer to these distances as relative translation invariant Wasserstein
distances, denoted by RWp.
Definition 3.2 (p-relative translation invariant Wasserstein distance). For p ∈ [1,∞), the relative translation
invariant Wasserstein distance between equivalence classes [µ] and [ν] is

RWp([µ], [ν]) := ROT(µ, ν, p)1/p,

where any representatives µ and ν from [µ] and [ν] may be chosen.

The following theorem establishes that RWp is a true metric.
Theorem 3.3. For any p ∈ [1,∞), the function RWp defines a real metric on the quotient space Pp(Rd)/∼T .

The proof is provided in Appendix A.2. We remark that analogous definitions can also be made for other
transformations, such as rotation (see Appendix C.1 for details). However, it is worth noting that the
corresponding optimization problem for rotation is generally non-convex and difficult to solve for the global
minimizers, as illustrated in the example in Appendix C.2. Because of this, we primarily focus on translation
transformation in this work.
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Choice of p on noise tolerance. The choice of p in the RWp distance directly influences the sensitivity of
the distance metric to noise, in a manner similar to the ℓp metric or Wp metric. Metrics with smaller p (e.g.,
RW1) tend to be more robust to outliers and localized noise, since the cost grows linearly with displacement
and therefore does not heavily penalize large but sparse deviations. In contrast, metrics with larger p (e.g.,
RW2 or RW4) amplify the influence of large transport displacements, making the metric more sensitive to
outliers but simultaneously more responsive to global geometric differences in shape. Thus, different choices
of p imply different notions of similarity: small p favors robustness, while large p emphasizes shape similarity.
The experimental results in Subsection 5.2 are also consistent with the above analysis.

3.2 Tractability of the ROT Optimization Problem

Because of the cyclical monotonicity, the ROT problem can be solved analytically when dimension d = 1.
When the dimension d ≥ 2, although the ROT formulation is well-defined and admits at least one minimizer,
we found the corresponding optimization problem is generally non-convex. Several non-convex examples can
be found in Appendix B. This non-convexity stems from the bilinear structure of the objective function for
both variables t and P in Equation equation 3. To solve the optimization problem, even though the overall
problem is non-convex, the two subproblems exhibit partially convex or linear structure:

• For fixed P , the optimization is convex in the translation variable t.

• For fixed t, the optimization over P reduces to a classical linear program.

This suggests that an alternating minimization scheme—iteratively updating t and P—can be used to solve
the general RWp problem. In practice, this approach converges to the local minimizers, produces stable
solutions, and the updates for t and P are computationally simple. In practice, we implement this approach
with dual-simplex–based reinitialization and Armijo backtrack techniques for reducing computational time.
More details and convergence discussion are provided in Subsection 4.1.

3.3 Quadratic ROT and Properties of the RW2 Distance

As discussed previously, the ROT problem is non-convex in general and does not admit a general analytical
decomposition. However, when the cost is the squared Euclidean distance, corresponding to the quadratic
case p = 2, the problem exhibits a special structure that leads to a clear decomposition.
Proposition 3.2 (Decomposition of the quadratic ROT). For any µ, ν ∈ P2(Rd), the quadratic ROT satisfies

ROT(µ, ν, 2) = min
t∈Rd

OT(µ + t, ν, 2) = OT(µ, ν, 2)− ∥µ̄− ν̄∥2
2,

where µ̄ and ν̄ are the means of µ and ν. In addition, in the discrete setting, the optimal coupling P ∈ Rn1×n2
∗

is invariant under any relative translation of distributions.

The proof of Proposition 3.2 is provided in Appendix A.3.

This decomposition has two important implications. First, the optimal coupling P for the classical OT
problem and the ROT problem are identical in this case. Second, optimal coupling P is invariant under
any relative translation of distributions. As a result, any representatives µ′ ∈ [µ] and ν′ ∈ [ν] from their
respective equivalence classes can be used to solve the problem, and they will obtain the same coupling
solutions. This observation provides the theoretical foundation for the RW2 algorithms based on both
LP-based optimal transport solvers and the Sinkhorn algorithm introduced in Subsection 5.1.2, leading to
practical improvements in reducing computational errors. The experimental results in Section 5 further
demonstrate that this decomposition can significantly reduce computational errors.
Corollary 3.4 (Decomposition of W2 distance). For any µ, ν ∈ P2(Rd),

W 2
2 (µ, ν) = ∥µ̄− ν̄∥2

2 + RW 2
2 ([µ], [ν]).
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Corollary 3.4 generalizes the classical Wasserstein–Bures metric (Chen et al., 2018; K. et al., 2019; Peyré
& Cuturi, 2019; Malagò et al., 2018), which was previously applicable only to Gaussian distributions. In
addition, this decomposition provides an intuitive bias–variance interpretation of W2: the displacement of the
means ∥µ̄− ν̄∥2 corresponds to the global “bias” term, while RW2([µ], [ν]) captures the intrinsic “variance”
between the distributions.

Finally, although the above decomposition shows that the optimal translation coincides with the difference
of the means when p = 2, this property does not necessarily hold for other orders p. One counterexample
illustrating this discrepancy is provided in Appendix B.3.

4 RWp Algorithm and RW2 Adaptive algorithms

4.1 Algorithms for Computing RWp Distances

We develop an efficient alternating optimization algorithm for computing RWp distance for general p ≥ 1.
The algorithm alternates between updating the transport plan P and the translation vector t, forming a
block-coordinate descent procedure that monotonically decreases the joint objective

min
t∈Rd

min
P ∈Π(a,b)

∑
i,j

Pij ∥xi + t− yj∥p, Π(a, b) = {P ≥ 0 : P1 = a, P ⊤1 = b}.

Although the entire problem is non-convex, as mentioned in Subsection 3.2, each subproblem has convexity
or linearity properties, allowing the overall method to remain computationally tractable.

Overview of the alternating scheme. The algorithm proceeds by fixing t and solving for the optimal
coupling P , then fixing P and updating t by minimizing the reduced convex objective. Each step is
computationally simple: the P -update is a linear program, while the t-update is a smooth convex minimization.

Updating the transport plan P . When the translation t is fixed, the problem reduces to a standard
discrete optimal transport linear program with cost coefficients Cij(t) = ∥xi + t− yj∥p. As t changes across
iterations, the feasible polytope Π(a, b) remains fixed, and only the cost matrix is updated. Thus, a previously
computed coupling P (k), together with its associated LP basis B(k), remains primal feasible for the next
iteration. This enables warm-starting the LP using a dual simplex reinitialization step, avoiding the need to
recompute the entire LP basis and significantly reducing computational cost.

Updating the translation vector t. For fixed P , the reduced objective

FP (t) =
∑
i,j

Pij ∥xi + t− yj∥p

is convex in t. Instead of a single gradient step, we perform a short inner loop to approximately minimize
FP (t), using gradient descent with an Armijo backtracking line search to ensure sufficient decrease and
stability. This “inner solve” substantially improves descent efficiency, yet remains inexpensive because each
step only involves evaluating weighted residuals of the form xi + t− yj .

Geometric interpretation. The feasible region Π(a, b) is a fixed polytope in the space. For a given
translation t, the matrix C(t) defines an objective hyperplane whose slope depends on the direction and
magnitude of t. Updating t tilts this hyperplane, while the dual simplex step efficiently moves the solution to
the new supporting face of the polytope. From this perspective, the alternating scheme repeatedly reshapes
the geometry of the objective function and projects onto the polytope, tracing out a smooth descent path.

Algorithm. Algorithm 1 summarizes the procedure. We initialize t using the means’ difference, then
alternate between warm-started LP solves and gradient-based updates of t with Armijo backtracking. The
objective decreases at every iteration.
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Algorithm 1 Alternating Optimization for RWp with Dual-Simplex-Acceleration
Require: Samples {xi, ai}, {yj , bj}, order p ≥ 1, tolerances τ, ϵ, inner iteration cap Tmax

1: Initialize t(0) = ν̄ − µ̄

2: Solve OT with cost C
(0)
ij = ∥xi + t(0) − yj∥p to obtain (P (0), B(0))

3: repeat
4: Update costs C

(k)
ij = ∥xi + t(k) − yj∥p

5: Warm-start dual simplex to obtain P (k+1)

6: t̃(0) ← t(k)

7: for s = 0 to Tmax − 1 do
8: Compute gradient gs of FP (k+1) at t̃(s)

9: Update t̃(s+1) = t̃(s) − αsgs using Armijo backtracking
10: if ∥t̃(s+1) − t̃(s)∥ ≤ ϵ max{1, ∥t̃(s)∥} then break
11: t(k+1) = t̃(s+1)

12: F (k+1) =
∑

i,j P
(k+1)
ij ∥xi + t(k+1) − yj∥p

13: until |F (k+1) − F (k)|/F (k) < τ
14: Output: (t⋆, P ⋆, F ⋆)

Convergence guarantee. The following proposition formalizes the descent property of the algorithm. The
full proof is provided in the Appendix A.4.
Proposition 4.1 (Monotone descent and convergence). Let p ≥ 1 and assume c(x, y) = ∥x − y∥p is
differentiable for p > 1 (or admits a subgradient for p = 1). Then Algorithm 1 generates a non-increasing
sequence of objective values {F (k)}. Every accumulation point (t⋆, P ⋆) satisfies the first-order optimality
conditions of the RWp problem. In addition, the warm-started dual simplex step yields locally linear convergence
in the P -update when costs change small, while the inner convex t-update (with Armijo backtracking) improves
stability and accelerates overall descent.

4.2 Applications of RW2 Decomposition to Optimal Transport Computation

The decomposition results of Theorem 3.2 and Corollary 3.4 are useful for improving OT solvers. By
separating the translational component from the intrinsic coupling structure, the new optimization has the
same optimal couplings while improving numerical stability and reducing computational errors. We describe
its applications to both the Sinkhorn algorithm and the linear programming OT algorithm.

4.2.1 RW2-LP Algorithm

For the LP-based OT problem, Corollary 3.4 implies that the Wasserstein cost can be separated into a
translation term and a covariance term. When the objective coefficients Cij = ∥xi − yj∥2

2 are extremely large,
it might lead to ill-conditioned basis matrices and slower convergence. Translating the distributions can
reduce the magnitude of the coefficients. Accordingly, one may translate the source distribution by t∗ = ν̄− µ̄,
compute the optimal transport plan between (µ + t∗, ν), and then recover the full W2 value via summation.
In practice, we introduce a constant threshold M > 1 and apply the translation only when it substantially
reduces the maximum component, thereby avoiding unnecessary translations. More details can be found in
Algorithm 2.

4.2.2 RW2-Sinkhorn Algorithm

The same improvement can also be applied to the entropically regularized OT problem. By performing
the alignment conditionally controlled by threshold M , we can obtain the RW2-Sinkhorn algorithm. In the
following, the convergence rate of the Sinkhorn algorithm actually remains the same, while the numerical
instability issue is reduced.

Convergence rate. Under translation t, the cost becomes C ′(t) = ∥xi + t− yj∥2 and the Gibbs kernel of
the Sinkhorn algorithm becomes K ′ = exp(−C ′(t)/λ). We can prove that the contraction factor ρ in Hilbert’s

8



Under review as submission to TMLR

Algorithm 2 RW2-LP Algorithm
Require: Empirical distributions µ =

∑
i aiδxi

, ν =
∑

j bjδyj
; constant M

1: Compute µ̄, ν̄ and set t∗ = ν̄ − µ̄
2: Form costs Cij = ∥xi − yj∥2

2 and C ′
ij = ∥xi + t∗ − yj∥2

2
3: if M∥C ′∥∞ ≤ ∥C∥∞ then ▷ Use mean alignment only when beneficial
4: C ← C ′

5: Solve minP ∈Π(a,b)⟨C, P ⟩ via a linear programming OT solver
6: Output W 2

2 (µ, ν) = ∥µ̄− ν̄∥2
2 + ⟨C, P ∗⟩ and the optimal plan P ∗

Algorithm 3 RW2-Sinkhorn Algorithm
Require: Measures µ =

∑
i aiδxi

, ν =
∑

j bjδyj
; regularizer λ > 0; tolerance ε > 0; constant M

1: Compute µ̄, ν̄ and t∗ = ν̄ − µ̄
2: Form costs C and C ′ as in Algorithm 2
3: if M∥C ′∥∞ ≤ ∥C∥∞ then
4: C ← C ′

5: Initialize K = exp(−C/λ), and u = v = 1
6: repeat
7: u← a./(Kv), v ← b./(K⊤u)
8: until max

(
∥u⊙ (Kv)− a∥, ∥v ⊙ (K⊤u)− b∥

)
≤ ε

9: P ∗ = diag(u)Kdiag(v)
10: Output W 2

2 (µ, ν) = ∥t∗∥2
2 + ⟨C, P ∗⟩

projective metric is actually invariant under any translation t (see Appendix A.5), where

ρ = tanh
(

∆(K)
4

)
, ∆(K) = 1

λ
max
i,j,k,l

|Cik + Cjl − Cil − Cjk|.

Thus, the aligned optimization has the same convergence rate as the original one.

Numerical stability. A principal source of numerical instability in Sinkhorn iterations is from underflow
in the exponential kernel K = exp(−C/λ), particularly when Cij is large. The translation t could alleviate
this instability by conditionally reducing the magnitude of the cost coefficients,

C ′
ij = ∥xi + t− yj∥2

2,

ensuring that the entries of K ′ = exp(−C ′(t∗)/λ) remain well-scaled throughout the iterations. We may also
measure this instability by defining the ill-condition of the matrix K as

κ(K) =
∏
i,j

Kij = exp
(
− 1

λ

∑
i,j

∥xi + t− yj∥2
2

)
.

By calculating the optimal condition of κ(K), the maximizer occurs at t = ȳ− x̄, which matches t = ν̄ − µ̄ for
empirical measures with uniform weights. As a result, the alignment can maximize κ(K) and reduce kernel
underflow.

Computational complexity. Altschuler et al. (2017a) show that, for precision level τp, time complexity
of the Sinkhorn algorithm is O

(
m2∥C∥3

∞(log m) τ−3
p

)
, where m = n1 = n2 for simplicity. Since the alignment

can reduce the value of ∥C∥∞, our approach can also lower the complexity bound.

5 Experiments

We evaluate the proposed algorithms through three experiments. The first two experiments validate the
numerical stability and efficiency of the RW2-based LP and Sinkhorn algorithms. The third experiment
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presents a real-world thunderstorm pattern retrieval task, illustrating the effectiveness of the general RWp

distances in large-scale applications. All experiments are conducted on a Linux workstation equipped with 64
CPU cores (Intel Core i7, 2.60 GHz), 16 GB RAM, and an NVIDIA RTX 3090 GPU.

5.1 Numerical Validation

We begin with validation tests to evaluate the numerical stability of the RW2-based algorithms under varying
dimensionality and translation magnitudes.

5.1.1 Validation of the RW2-LP Algorithm

Setup. We consider two settings:

(1) Same distribution with different translation: The component of each sample in the source distribution µ is
draw from N (0, 1), and the target distribution is constructed as ν = µ + t, where t is a translation applied
along the last coordinate and takes values in {0, 1, 2, 4, 8, 16}. Each distribution size is 4,096 and we consider
dimensions d ∈ {2, 5, 10}.

(2) Different distributions: The component of each sample in the distribution µ is sampled from N (0, 1).
The component of each sample in ν is drawn from the Uniform distribution U [−1, 1] first, and then the
distribution ν is translated by t = 1 along the last coordinate. We consider d ∈ {2, 5, 10} with 1,024 samples
for each distribution and vary the maximum iteration budget of the LP algorithm from 26 to 216.

We compare the RW2-LP algorithm (Algorithm 2) with the standard LP algorithm to solve OT problems.
Performance is measured in terms of the absolute error of W 2

2 (µ, ν) and the running time. Ground-truth
W 2

2 (µ, ν) is given by ∥t∥2
2 in the setting (1) and by a high-precision LP solution in the setting (2). The LP

solver is from the ot.emd2() function in the POT library (Flamary et al., 2021) and the threshold parameter
is fixed at M = 1. The experiments are repeated six times for the same settings.

Results. For the first setting, Figure 1(a) shows that the RW2-LP solver curves yield substantially lower
numerical errors than the standard LP solver curves. The discrepancy between the two approaches becomes
increasingly pronounced for larger translations and higher dimensions, while the three RW2-LP solver curves
completely overlap at the bottom of the plot, indicating consistent low numerical errors of the RW2-LP
formulation across dimensions. Figure 1(b) demonstrates that running time remains comparable or lower
across all dimensions.

For the second setting, Figure 2(a) shows faster convergence under tight iteration budgets: the RW2-LP
formulation consistently attains lower error for all dimensions. Figure 2(b) reports that running time remains
comparable or even slightly reduced. In summary, the RW2 formulation improves both stability and efficiency
in the LP-based OT solver.

5.1.2 Validation of the RW2-Sinkhorn Algorithm

Setup. We perform one test for the Sinkhorn algorithm under a configuration similar to setting (2) in
the first experiment. The component of each sample in the source distribution µ is draw from N (0, 1),
and the component of each sample in the target distribution ν is draw from U [−1, 1], then translated
by t ∈ {0, 1, 2, 4, 8, 16}. We test dimensions d ∈ {2, 5, 10} with 1,024 samples. We also test other pairs
(Gaussian→Gaussian, Gaussian→Geometric, Gaussian→Poisson) with the same setting, and more results
can be found in Appendix D.1. All these tests are repeated six times to ensure accuracy.

We compare the RW2-Sinkhorn algorithm (Algorithm 3) with the standard Sinkhorn algorithm. Both
methods use ot.sinkhorn2() from the POT library (Flamary et al., 2021) with regularization reg = 10−5,
a maximum of 1,000 iterations, and stopping threshold stopThr= 10−5. The threshold parameter is fixed at
M = 1.

Results. Figure 3(a) shows that the RW2-Sinkhorn algorithm achieves significantly lower numerical errors,
particularly as the translation magnitude increases. The three RW2-Sinkhorn curves completely overlap at

10
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Figure 1: LP algorithms comparison on Gaussian→ Gaussian translation tasks. (a) The RW2-LP formulation
achieves consistently lower numerical errors. The three RW2-LP solver curves completely overlap at the
bottom of the plot, indicating consistent low numerical errors of the RW2-LP formulation across dimensions.
(b) Running time remains comparable or slightly lower across all dimensions.
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Figure 2: LP algorithms comparison on Gaussian → Uniform tasks with limited iteration budgets. (a) The
RW2-LP solver achieves substantially lower error, especially under small budgets. (b) Running time remains
similar or slightly lower across d ∈ {2, 5, 10}.

the bottom of the plot, indicating consistent low numerical errors of the RW2-Sinkhorn formulation across
dimensions. Figure 3(b) shows that the running time remains almost the same across all configurations,
confirming that accuracy improvements do not incur additional running time.

5.2 Thunderstorm Pattern Retrieval with RWp

Thunderstorm patterns are critical for airline and airport operations. Given a reference thunderstorm event, it
is useful to retrieve similar historical thunderstorm events in the database. We apply general RWp distances
on the real-world thunderstorm dataset to show that general RWp can be used to retrieve similar weather
patterns.
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Figure 3: Sinkhorn algorithms comparison on Gaussian → Uniform tasks. (a) The RW2-Sinkhorn algorithm
achieves significantly lower errors, especially under large translations. The three RW2-Sinkhorn curves
completely overlap at the bottom of the plot, indicating consistent low numerical errors of the RW2-Sinkhorn
formulation across dimensions. (b) Running time is comparable across all settings.

Table 1: Running time for different metrics of retrieving the most similar thunderstorm snapshot from the
full dataset (32,073 images) given a reference snapshot.

Metric ℓ2 W2 RW1 RW2 RW4

Running Time(s) 11.16 50.87 1,060.15 48.28 803.21

Dataset and preprocessing. Our data are collected radar images from MULTI-RADAR/MULTI-SENSOR
SYSTEM (MRMS) (Zhang et al., 2016) focusing on a 300× 300 km2 rectangular area centered at the Dallas
Fort Worth International Airport (DFW), where each pixel represents a 3 × 3 km2 area. The data are
updated every 10 minutes, tracking from 2014 to 2022 between March and October, including around 32,073
images having thunderstorm patterns. Vertically Integrated Liquid Density (VIL density) and reflectivity
are two common measurements for assessing thunderstorm intensity, with threshold values of 3kg ·m−3 and
35dBZ, respectively (Matthews & Delaura, 2010). We use reflectivity as thunderstorm measurements and
use 35dBZ as the threshold to transform radar images to the corresponding binary matrices.

Thunderstorm types: We consider two types of thunderstorm events:

• Snapshots: single radar images representing storm patterns;

• Sequences: a series of consecutive snapshots representing storm evolution in a short time.

In the main text we focus on snapshot retrieval; sequence-based results are provided in Appendix D.2.

Snapshot retrieval. Given a reference thunderstorm snapshot, we compute distances to all snapshots in
the dataset using RWp for p ∈ {1, 2, 4}, and compare the results with the baseline distances ℓ2 and W2. For
each metric, the top-5 most similar thunderstorm snapshots. Figure 4 illustrates one example of snapshot
retrieval results.

Results and analysis. Table 1 reports the running time for each distance metric. The ℓ2 distance is the
fastest to compute. The classical Wasserstein distance W2 incurs a substantially longer running time than
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2

Reference
2022-04-13 17:10

2019-06-05 13:10
d = 17.916

2014-04-03 16:30
d = 18.358

2018-03-19 08:00
d = 18.385

2015-04-10 01:10
d = 18.466

2014-04-27 21:40
d = 18.547

W2

Reference
2022-04-13 17:10

2019-06-19 09:30
d = 7.404

2017-04-26 16:20
d = 8.060

2018-05-15 15:40
d = 8.261

2020-05-05 11:20
d = 8.802

2016-03-30 16:00
d = 8.909

RW1

Reference
2022-04-13 17:10

2019-03-14 06:40
d = 0.026

2017-04-26 17:10
d = 0.029

2015-05-15 10:50
d = 0.033

2022-03-22 08:00
d = 0.037

2014-03-31 17:50
d = 0.038

RW2

Reference
2022-04-13 17:10

2019-03-14 06:40
d = 0.029

2017-04-26 17:10
d = 0.034

2015-05-15 10:50
d = 0.043

2014-03-31 17:50
d = 0.045

2022-03-22 08:00
d = 0.046

RW4

Reference
2022-04-13 17:10

2019-03-14 06:40
d = 0.032

2017-04-26 17:10
d = 0.041

2014-03-31 16:50
d = 0.050

2018-03-19 07:50
d = 0.053

2022-03-22 08:00
d = 0.054

Figure 4: Top-5 retrieval results for different distance metrics using the same reference storm (leftmost
column). Rows correspond to ℓ2, W2, and RWp distances, p = {1, 2, 4}. Each retrieved storm is annotated
with the distance to the reference. RWp distances yield significantly more structurally consistent matches
with the reference, demonstrating robustness to relative translations.

ℓ2, reflecting the overhead of solving the full optimal transport problem. RW2 achieves the lowest running
time due to the decomposition property. In contrast, RW1 and RW4 require additional calculations due to
alternative optimization. Overall, these results demonstrate that the proposed method is computationally
feasible for large-scale applications.

Figure 4 presents the top-5 retrieval results obtained using different metrics for the same reference snapshot.
The Euclidean ℓ2 metric yields the least informative matches: the retrieved storms are sparsely distributed
and poorly aligned with the reference, demonstrating strong sensitivity to spatial misalignment and a limited
ability to capture structural similarity. The classical Wasserstein distance W2 improves retrieval quality by
producing storms with more coherent mass distributions; however, noticeable deformation and dispersion
persist, reflecting its dependence on absolute spatial locations. In contrast, the relative Wasserstein distance
RWp consistently retrieves thunderstorm events that closely match the reference in both shape and orientation
for all tested orders p ∈ {1, 2, 4}. In particular, RW1 is more tolerant to outliers and local noise, whereas
increasing p to 2 and 4 creates a great penalty on large transportation, leading to slightly higher distance
values while preserving overall structural alignment. As shown by the third- to fifth-ranked retrievals in
Figure 4, the thunderstorm event on 2022-03-22 exhibits a sparser spatial structure with more outliers than
the event on 2014-03-31. Consequently, the latter achieves a smaller distance under the RW1 metric, while
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the ranking is reversed under RW2 and RW4. This example confirms that RW1 is more robust to outliers
and local noise, while larger p values increasingly emphasize global shape similarity.

6 Conclusions

In this paper, we introduce a novel family of distances, relative translation invariant Wasserstein (RWp)
distances, for measuring the similarity between probability distributions. Extended from the classical optimal
transport framework, we show that RWp defines a proper metric on the quotient space P2(Rd)/∼T and is
invariant under relative translations. In the special case p = 2, the proposed distance exhibits additional
structure, including a decomposition of the optimal transport formulation and translation-invariant coupling
solutions. We further develop algorithms for computing general RWp distances, and RW2-based algorithms
for both LP-based and Sinkhorn OT solvers to mitigate numerical instability and reduce computational errors.
We analyze the numerical stability and computational complexity of the proposed algorithms. Finally, we
validate the proposed algorithms through extensive experiments, demonstrating that our proposed algorithms
significantly reduce computational errors in both LP-based and Sinkhorn OT solvers and enable practical
meteorological applications in large-scale real-world settings.
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Appendix

A Proofs

A.1 Proposition 3.1

Proof of Proposition 3.1. Let p ∈ [1,∞) and µ, ν ∈ Pp(Rd). Define Wp as the Wasserstein distance with cost
∥x− y∥p, and set F (t) := Wp(µ + t, ν).

For all t ∈ Rd,
Wp(µ, µ + t) = ∥t∥.

By the triangle inequality,

F (t) ≥
∣∣ Wp(µ + t, µ)−Wp(µ, ν)

∣∣ =
∣∣ ∥t∥ −Wp(µ, ν)

∣∣.
Hence if ∥t∥ ≥ 2 Wp(µ, ν), then

F (t) ≥ ∥t∥ −Wp(µ, ν) ≥ Wp(µ, ν) = F (0).

So no minimizer lies outside the ball

B := { t ∈ Rd : ∥t∥ ≤ 2 Wp(µ, ν) }.

Since F is lower semi-continuous in t and B is compact, F attains its minimum on B. Therefore,

ROT(µ, ν, p) = min
∥t∥≤2 Wp(µ,ν)

Wp(µ + t, ν).

A.2 Theorem 3.3

Proof of Theorem 3.3. Using the previous notations, we first verify that the translation relation ∼T is an
equivalence relation on Pp(Rd). It is reflexive, since any µ ∈ Pp(Rd) can be translated to itself by the zero
vector; symmetric, since if µ can be translated to ν, then ν can be translated back to µ; and transitive, since
if µ can be translated to ν and ν to η, then µ can also be translated to η.

Hence, by the properties of equivalence relations, the quotient set Pp(Rd)/∼T is well defined. Let [µ] denote
an element of this quotient space. Based on that, Wp(·, ·) is a true metric on Pp(Rd) (Villani, 2003), it
satisfies identity, positivity, symmetry, and the triangle inequality. We now show that RWp(·, ·) also satisfies
these axioms on Pp(Rd)/∼T .

For any [µ], [ν], [η] ∈ Pp(Rd)/∼T :

• Identity:
RWp([µ], [µ]) = min

µ′,µ′′∈[µ]
Wp(µ′, µ′′) = Wp(µ′, µ′) = 0.

• Positivity:
RWp([µ], [ν]) = min

µ′∈[µ],ν′∈[ν]
Wp(µ′, ν′) ≥ 0.

• Symmetry:

RWp([µ], [ν]) = min
µ′∈[µ],ν′∈[ν]

Wp(µ′, ν′) = min
ν′∈[ν],µ′∈[µ]

Wp(ν′, µ′) = RWp([ν], [µ]).
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• Triangle inequality:
Fix ϵ > 0. By definition of the minimum, there exist µ′ ∈ [µ], ν′ ∈ [ν] such that

Wp(µ′, ν′) ≤ RWp([µ], [ν]) + ϵ,

and ν′′ ∈ [ν], η′ ∈ [η] such that

Wp(ν′′, η′) ≤ RWp([ν], [η]) + ϵ.

Since ν′ ∼T ν′′, there exists a translation t ∈ Rd with ν′′ = ν′ − t. By translation invariance of Wp,
we have

Wp(ν′′, η′) = Wp(ν′ − t, η′) = Wp(ν′, η′ + t).
Thus η′ + t ∈ [η]. And the triangle inequality for Wp gives

Wp(µ′, η′ + t) ≤Wp(µ′, ν′) + Wp(ν′, η′ + t).

Combining with the above bounds,

RWp([µ], [η]) ≤Wp(µ′, η′ + t)
≤Wp(µ′, ν′) + Wp(ν′, η′ + t)
= Wp(µ′, ν′) + Wp(ν′′, η′)
≤ RWp([µ], [ν]) + RWp([ν], [η]) + 2ϵ.

Since ϵ > 0 was arbitrary, the inequality follows.

Therefore, RWp defines a metric on Pp(Rd)/∼T .

A.3 Proof of Proposition 3.2

Proof of Proposition 3.2. We first establish the decomposition in the continuous setting and then verify the
invariance of the optimal coupling in the discrete case.

Continuous case. Consider the quadratic ROT problem

ROT(µ, ν, 2) = min
t∈Rd

min
γ∈Π(µ+t,ν)

∫
R2d

∥x + t− y∥2
2 dγ(x, y).

Expanding the square yields∫
∥x + t− y∥2

2 dγ =
∫ (
∥x− y∥2

2 + ∥t∥2
2 + 2t· (x− y)

)
dγ

=
∫
∥x− y∥2

2 dγ + ∥t∥2
2 + 2t ·

∫
(x− y) dγ.

(4)

For any γ ∈ Π(µ, ν), the marginal conditions imply∫
x dγ = µ̄,

∫
y dγ = ν̄.

Thus,
∫

(x− y) dγ = µ̄− ν̄. Substituting into equation 4 gives∫
∥x + t− y∥2

2dγ =
∫
∥x− y∥2

2dγ + ∥t∥2
2 + 2t · (µ̄− ν̄).

Thus,
ROT(µ, ν, 2) = OT(µ, ν, 2) + min

t∈Rd

(
∥t∥2

2 + 2t · (µ̄− ν̄)
)
,

and the strictly convex term is minimized at t∗ = ν̄ − µ̄, yielding

ROT(µ, ν, 2) = OT(µ, ν, 2)− ∥µ̄− ν̄∥2
2.
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Discrete case (invariance of the optimal coupling). Let µ =
∑n1

i=1 aiδxi
and ν =

∑n2
j=1 bjδyj

, and let
P ∈ Π(a, b) be a coupling matrix. For fixed t, the discrete ROT objective is∑

i,j

Pij ∥xi + t− yj∥2
2.

Expanding the square gives∑
i,j

Pij∥xi + t− yj∥2
2 =

∑
i,j

Pij∥xi − yj∥2
2 + ∥t∥2

2
∑
i,j

Pij + 2t ·
∑
i,j

Pij(xi − yj). (5)

Using the marginal constraints,∑
i,j

Pij = 1,
∑
i,j

Pijxi = µ̄,
∑
i,j

Pijyj = ν̄,

hence
∑

i,j Pij(xi − yj) = µ̄− ν̄. Substituting into equation 5, we obtain∑
i,j

Pij∥xi + t− yj∥2
2 =

∑
i,j

Pij∥xi − yj∥2
2 + ∥t∥2

2 + 2t · (µ̄− ν̄),

where the additional terms depend only on t and not on P . Thus, for any fixed t, the minimizers over
P ∈ Π(a, b) of

P 7→
∑
i,j

Pij∥xi + t− yj∥2
2

coincide exactly with those of the original quadratic OT objective

P 7→
∑
i,j

Pij∥xi − yj∥2
2.

Hence, the optimal coupling is invariant under any relative translation.

Combining the continuous decomposition with the discrete invariance establishes the proposition.

A.4 Proof of Proposition 4.1

Proof. Recall that the objective of the RWp problem is

F (t, P ) =
∑
i,j

Pij ∥xi + t− yj∥p,

with p ≥ 1. The feasible set Π(a, b) is convex and compact, and for any fixed coupling P , the map t 7→ F (t, P )
is convex (strictly convex when p > 1).

Step 1: Monotone descent. Each iteration consists of two substeps.

(a) P -update. For fixed t(k), the coupling is updated by solving the linear program

P (k+1) = arg min
P ∈Π(a,b)

F (t(k), P ),

which gives
F (t(k), P (k+1)) ≤ F (t(k), P (k)).

The warm-started dual simplex step used in Algorithm 1 preserves this monotone decrease.

(b) t-update. For fixed P (k+1), the algorithm performs an inner gradient-based minimization of the convex
function

t 7→ F (t, P (k+1)),
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using Armijo backtracking to choose the step size. Therefore, each inner step satisfies the sufficient decrease
condition

F (t(k+1), P (k+1)) ≤ F (t(k), P (k+1)).

Combining the two substeps yields the global descent property

F (t(k+1), P (k+1)) ≤ F (t(k), P (k)), ∀k ≥ 0,

so {F (k)} is a non-increasing sequence bounded below by 0, and therefore convergent.

Step 2: Existence of accumulation points. Because Π(a, b) is compact and F ( · , P ) is coercive in
t for each P , the sequence {t(k)} remains bounded. Thus, the sequence {(t(k), P (k))} admits at least one
accumulation point (t⋆, P ⋆).

Step 3: Stationarity of accumulation points. For each k, we have the optimality relation

P (k+1) = arg min
P ∈Π(a,b)

F (t(k), P ),

and the Armijo-based inner loop ensures that t(k+1) satisfies a first-order decrease condition for the convex
problem mint F (t, P (k+1)). Passing to the limit along any convergent subsequence and using continuity of F
and of its gradient (or subgradient) in t, we obtain

0 ∈ ∂tF (t⋆, P ⋆), P ⋆ ∈ arg min
P ∈Π(a,b)

F (t⋆, P ).

Hence, (t⋆, P ⋆) satisfies the first-order optimality conditions of the RWp problem.

Step 4: Conclusion. The alternating scheme produces a monotone sequence of objective values converging
to F ⋆, and every accumulation point of the iterates is a stationary point of the non-convex RWp problem.
The dual simplex re-initialization ensures locally linear progress in the P -update when the cost perturbation
is small, while the Armijo-controlled inner t-update guarantees stable and accelerated descent.

A.5 Invariance of the Sinkhorn Convergence Rate under Translation

The following proposition formalizes the invariance of the Sinkhorn convergence rate under translation. In
particular, it establishes that translating the input distributions does not affect the contraction constant of
the Sinkhorn operator in Hilbert’s projective metric, even though it may significantly improve numerical
conditioning.
Proposition A.1 (Translation invariance of the Hilbert–metric contraction). Let Cij = ∥xi − yj∥2

2 denote
the quadratic cost matrix, and let

K = exp
(
−C

λ

)
, λ > 0,

be the associated Gibbs kernel used in the Sinkhorn algorithm. For any translation vector t ∈ Rd, define the
translated cost

C ′
ij = ∥xi + t− yj∥2

2, K ′ = exp
(
−C ′

λ

)
.

Then the projective diameter of K,

∆(K) = 1
λ

sup
i,j,k,l

|Cik + Cjl − Cil − Cjk|,

satisfies ∆(K ′) = ∆(K). Consequently, the Hilbert metric contraction factor

ρ = tanh
(

∆(K)
4

)
,
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and hence, the geometric convergence rate of the Sinkhorn iterations is invariant under translation of the
input distributions.

Proof. We begin by expanding the translated cost function:

C ′
ij = ∥xi + t− yj∥2

2 = ∥xi − yj∥2
2 + 2t · (xi − yj) + ∥t∥2

2.

Substituting into the expression defining the projective diameter yields

C ′
ik + C ′

jl − C ′
il − C ′

jk = (Cik + 2t·(xi − yk) + ∥t∥2
2) + (Cjl + 2t·(xj − yl) + ∥t∥2

2)
− (Cil + 2t·(xi − yl) + ∥t∥2

2)− (Cjk + 2t·(xj − yk) + ∥t∥2
2).

The constant terms ∥t∥2
2 cancel since they appear twice with positive and twice with negative sign. The linear

terms in t also cancel, as
(xi − yk) + (xj − yl)− (xi − yl)− (xj − yk) = 0.

Therefore,
C ′

ik + C ′
jl − C ′

il − C ′
jk = Cik + Cjl − Cil − Cjk,

implying that ∆(K ′) = ∆(K).

As a consequence, the contraction factor ρ = tanh(∆(K)/4) and the corresponding geometric convergence
rate of the Sinkhorn algorithm remains unchanged under any translation t ∈ Rd. Although translation affects
the numerical scaling of the kernel entries and thereby their conditioning, it leaves the convergence rate
invariant.

B Examples of ROT Problems

In this section, we present three examples to show that solving the ROT problem for p ≥ 1 is challenging in
general. The first two examples demonstrate the non-convexity of the ROT formulation in a two-dimensional
setting, and the third example shows that the optimal solution t does not necessarily always be the difference
between the mass centers when the order p ̸= 2.

Throughout this section, the underlying cost function is assumed to be

c(x, y) = ∥x− y∥p
p.

B.1 Non-convexity with respect to the translation variable t

Consider a two-dimensional setting where the source and target distributions µ and ν are supported on

{xi = (cos 2iπ

3 , sin 2iπ

3 ), i = 1, 2, 3}, {yj = (− cos 2jπ

3 ,− sin 2jπ

3 ), j = 1, 2, 3},

each with equal masses. These configurations are illustrated in Figure 5(a).

We focus on the effect of the translation variable t on the objective function and the transport plan P attains
its minimal value for each fixed t. In other words, we study the function

t 7→ min
P

∑
i,j

Pij ∥xi + t− yj∥p
p.

Figures 5(b)–(c) show the corresponding contour and surface plots for p = 1, both clearly indicating that this
function is non-convex with respect to t.

Using the same µ and ν, we also examine other exponents p ∈ {1.2, 4, 10}. The corresponding contour and
surface plots are shown in Figure 6, indicating that non-convexity in t persists for a range of p values.
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(c) Surface plot of the function
minP

∑
i,j

Pij ∥xi + t − yj∥ with re-
spect to the translation vector t =
(x, y).

Figure 5: Contour and surface plots of minP

∑
i,j Pij ∥xi + t− yj∥ showing non-convexity in t.

B.2 Non-convexity with respect to the coupling variable P

Next, using the same source and target distributions as in the first example and setting p = 1, we examine
the effect of the variable P on the objective function via fixing the translation vector t to be its minimal
value for each fixed P . In other words, we consider the function

F1(P ) = min
t

∑
i,j

Pij ∥xi + t− yj∥,

and show that F1(P ) is non-convex with respect to the variable P .

Since the dimension of P is high, plotting the contour of F1(P ) directly is not possible. Instead, we demonstrate
non-convexity by exhibiting two transport plans P1 and P2 such that the interpolated function value is strictly
smaller than the function value at the interpolated transport plan, which violates the convexity property.
Therefore, the function F1(P ) is non-convex.

Consider two feasible transport plans:

P1 = 1
3

1 0 0
0 0 1
0 1 0

 , P2 = 1
3

0 1 0
0 0 1
1 0 0

 .

The optimal translations are t∗P1 = (1, 0) and t∗P2 = (− 1
2 , 0), therefore, F1(P1) = 1 and F1(P2) = 1

2 +
√

3
3 .

However, for their midpoint, 1
2 (P1 + P2), we obtain

F1
( 1

2 (P1 + P2)
)

= 1 +
√

3
6 > 1

2 (F1(P1) + F1(P2)) ,

which shows that F1(P ) is non-convex in P .

In summary, the above examples show that the convexity of the ROT problem cannot be guaranteed in
general, especially in high-dimensional or non-quadratic cases.

B.3 Optimal translation versus mean difference

We now show that for p ̸= 2, the optimal translation minimizing

min
t

∑
i,j

Pij ∥xi + t− yj∥p
p

21



Under review as submission to TMLR

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.08

1.26

1.44

1.62

1.80

1.98

2.16

m
in

E(
s,

P)

(a) p = 1.2.

1
0

1
x 1

0
1

y

1.25
1.50
1.75
2.00

Z

(b) p = 1.2.

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

0.90
1.02
1.14
1.26
1.38
1.50
1.62
1.74
1.86
1.98

m
in

E(
s,

P)

(c) p = 4.

1
0

1
x 1

0
1

y

1.00
1.25
1.50
1.75

Z

(d) p = 4.

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

0.84

1.02

1.20

1.38

1.56

1.74

1.92

2.10

m
in

E(
s,

P)

(e) p = 10.

1
0

1
x 1

0
1

y

1.00
1.25
1.50
1.75
2.00

Z

(f) p = 10.

Figure 6: Contour and surface plots of the function minP

∑
i,j Pij ∥xi + t− yj∥p

p showing non-convexity in t
for p ∈ {1.2, 4, 10}.

does not necessarily coincide with the difference between the mean vectors of the two distributions.

Consider a two-dimensional example where

{x1 = (3, 0), x2 = (0, 0), x3 = (0, 3)}, {y1 = (−3, 0), y2 = (0, 0), y3 = (0,−3)},

each with equal masses. For p = 1, the mean vectors are µ̄ = (0, 0) and ν̄ = (0, 0). Using their difference as
the translation gives

W1(µ, ν) = 1
3 (3 + 3 + 6) = 4.

However, when translating the source distribution by t0 = (−3,−3), we obtain

W1(µ + t0, ν) = 1
3 (3 + 3) = 2 < 4.
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Therefore, for p ̸= 2, the optimal translation minimizing the ROT cost is not the same as the difference
between the mean vectors of µ and ν.
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C Rotation Equivalence

In addition to the translation relation, an extension of the ROT framework is to consider the rotation
relation on the space of probability measures. This perspective allows us to explore the geometric structure
of distributions up to rigid-body rotations or reflections, and to study the computational behavior of the
resulting optimization problem.

C.1 Rotation equivalence and induced quotient metric

Let O(n) denote the orthogonal group of Rd, consisting of all rotations and reflections. We define an
equivalence relation ∼R on Pp(Rd) as follows:

µ ∼R ν ⇐⇒ ∃R ∈ O(n) such that ν = R#µ.

The quotient space under this relation is denoted by

QR := Pp(Rd)/∼R,

where each element [µ]R represents the orbit of µ under all rotations and reflections.
Definition C.1 (Rotation-invariant Wasserstein distance). For any two equivalence classes [µ]R, [ν]R ∈ QR,
we define

W (R)
p ([µ]R, [ν]R) := inf

R∈O(n)
Wp(µ, R#ν).

The following result establishes that this construction yields a valid metric on the quotient space.

Proposition C.1 (Well-defined metric on the rotation quotient space). The function W
(R)
p defines a real

metric on QR. Moreover, the infimum in the definition is attained.

Proof. First, W
(R)
p is well-defined since for any µ′, ν′ in the same equivalence classes as µ, ν, there exist

R0, S0 ∈ O(n) such that µ′ = R0#µ and ν′ = S0#ν. Using the invariance of Wp under orthogonal
transformations,

inf
R

Wp(µ′, R#ν′) = inf
R

Wp(R0#µ, (RS0)#ν) = inf
Q

Wp(µ, Q#ν),

where Q = R−1
0 RS0. so the value is independent of the representatives.

The properties of a metric follow directly:

• Non-negativity and symmetry: Inherited from Wp, since R 7→ R−1 is a bijection on O(n).

• Identity of indiscernibles: If W
(R)
p ([µ]R, [ν]R) = 0, then there exists a sequence Rk ∈ O(n) with

Wp(µ, (Rk)#ν) → 0. Compactness of O(n) ensures a convergent subsequence Rkℓ
→ R∗, and

continuity of the pushforward implies µ = R∗
#ν. Thus [µ]R = [ν]R. The converse is immediate.

• Triangle inequality: For any µ, ν, η and R, S ∈ O(n),

Wp(µ, (RS)#η) ≤Wp(µ, R#ν) + Wp(R#ν, (RS)#η) = Wp(µ, R#ν) + Wp(ν, S#η).

Taking the infimum over R, S yields

W (R)
p ([µ]R, [η]R) ≤W (R)

p ([µ]R, [ν]R) + W (R)
p ([ν]R, [η]R).

Finally, since O(n) is compact and R 7→Wp(µ, R#ν) is continuous, the infimum is attained. Hence, W
(R)
p

defines a real metric on QR.
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C.2 Non-convexity of the optimization over rotations

Although the rotation-induced distance W
(R)
p defines a valid metric on the quotient space QR, the underlying

optimization problem over rotations is generally non-convex. The following example illustrates this behavior
even in a simple two-dimensional case.
Proposition C.2 (Non-convexity of Wp(µ, R#ν) with respect to rotation). Consider the cost function
c(x, y) = ∥x− y∥p

p with p ≥ 1. Let the source and target distributions µ and ν be defined on R2 as

µ = 1
3

2∑
k=0

δuk
, ν = 1

3

2∑
k=0

δuk
,

where uk = (cos(2πk/3), sin(2πk/3)) for k = 0, 1, 2. For each rotation matrix Rθ with angle θ ∈ [0, 2π),
define

f(θ) := W p
p

(
µ, (Rθ)#ν

)
.

Then f(θ) is a non-convex function on [0, 2π), and it possesses three disconnected global minimizers.

Proof. Since both µ and ν have equal discrete masses, the optimal coupling matches the three support points
under cyclic permutations σm(k) = k + m mod 3, for m ∈ {0, 1, 2}. For any fixed permutation σm, the
transport cost is

1
3

2∑
k=0
∥uk −Rθuσm(k)∥p

p =
(
2− 2 cos(θ − 2πm

3 )
)p/2

,

since for unit vectors a, b separated by an angle δ, ∥a− b∥2
2 = 2− 2 cos δ. Therefore, taking the minimum

over the three possible permutations yields

f(θ) = min
m∈{0,1,2}

(
2− 2 cos(θ − 2πm

3 )
)p/2

.

It follows that f(θ) achieves its minimum value f(θ∗) = 0 at θ∗ ∈ {0, 2π/3, 4π/3}, corresponding to perfect
rotational alignment. Between any two minima (e.g., between 0 and 2π/3), f attains a local maximum at
θ = π/3, where

f(π/3) =
(
2− 2 cos(π/3)

)p/2 = 1.

Thus, f has a periodic multi-well structure with three disconnected global minima separated by higher-cost
regions. Hence, f(θ) is non-convex, even in this simple discrete case.

This example shows that, while the rotation-invariant Wasserstein distance W
(R)
p defines a well-posed metric

on the quotient space QR, the corresponding optimization problem is generally non-convex. Consequently,
finding the optimal rotation R∗ that minimizes Wp(µ, R#ν) may require nonconvex optimization strategies
or carefully designed initialization schemes.
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D Additional Experiment Results

D.1 Additional Experiments for the Adaptive RW2-Sinkhorn Algorithm

To further assess the RW2-Sinkhorn algorithm, we evaluate its performance on three additional source–target
distribution pairs: (1) Gaussian → Gaussian, (2) Gaussian → Geometric, and (3) Gaussian → Poisson.
All tests use 1,024 samples, translation magnitude ranges over {0, 2, 4, 8, 16}, and dimension d ∈ {2, 5, 10},
following the setup in Subsection 5.1.2. We report the numerical error (relative to LP ground truth) and the
running time.
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(a) Computation error vs. translation magnitude.
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Figure 7: Gaussian → Gaussian experiment. (a) The standard Sinkhorn algorithm becomes increasingly
unstable as translation grows, producing large numerical errors. The three RW2-Sinkhorn curves completely
overlap at the bottom of the plot, indicating consistent low numerical errors of the RW2-Sinkhorn formulation
across dimensions. (b) Running time remains nearly identical across dimensions and translation magnitudes.

Gaussian → Gaussian. In this setting, the standard Sinkhorn algorithm becomes increasingly unstable as
the translation magnitude grows, resulting in noticeable growth in numerical error (Figure 7(a)). In contrast,
the RW2 version consistently has much lower error across all dimensions and translation levels. The three
RW2-Sinkhorn curves completely overlap at the bottom of the plot, indicating consistent low numerical
errors of the RW2-Sinkhorn formulation across dimensions. Figure 7(b) shows that the running time of the
RW2-Sinkhorn algorithm remains nearly identical to that of the standard Sinkhorn method.

Gaussian → Geometric. For this task, both the standard and RW2-Sinkhorn algorithms achieve compara-
ble numerical accuracy across all tested dimensions and translation magnitudes (Figure 8(a)). The five curves,
except for the Sinkhorn method at dimension 10, completely overlap at the bottom of the plot. Similarly, the
running time of both methods remains nearly identical (Figure 8(b)), showing that the adaptive step does
not cause extra running time.

Gaussian → Poisson. The Poisson target introduces heavier-tailed behavior and greater distributional
mismatch. As shown in Figure 9(a), the standard Sinkhorn algorithm becomes increasingly unstable as
translation grows, with large error spikes appearing especially in higher dimensions. In contrast, the RW2-
Sinkhorn algorithm has consistently lower error across all translation magnitudes. The three RW2-Sinkhorn
curves completely overlap at the bottom of the plot, indicating consistent low numerical errors of the
RW2-Sinkhorn formulation across dimensions. Running time remains essentially unchanged between the two
approaches (Figure 9(b)), showing that the improved stability comes at no additional computational cost.
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Figure 8: Gaussian → Geometric experiment. (a) Both standard Sinkhorn and RW2-Sinkhorn algorithm
achieve comparable numerical accuracy. The five curves, except for the Sinkhorn algorithm at dimension 10,
completely overlap at the bottom of the plot. (b) Running time remains nearly identical across dimensions
and translation magnitudes.
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(a) Computation error vs. translation magnitude.
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Figure 9: Gaussian → Poisson experiment. (a) The standard Sinkhorn algorithm becomes increasingly
unstable as translation grows, producing large numerical errors. The three RW2-Sinkhorn curves almost
overlap at the bottom of the plot, indicating consistent low numerical errors of the RW2-Sinkhorn formulation
across dimensions. (b) Running time remains essentially unchanged, showing that the adaptive RW2 step
improves stability without extra computational time.

D.2 Sequence retrieval experimental results for Section 5.2

Sequence settings. In addition to single-snapshot retrieval, we extend our evaluation to the retrieval
of thunderstorm sequences, where each sequence consists of a temporally ordered series of thunderstorm
snapshots. In our experiments, each sequence spans one hour and contains six consecutive snapshots. The
similarity between two sequences is measured as the average of the metric distances computed between
corresponding snapshot pairs. Under this setting, we report the top-3 sequence retrieval results for all five
metrics considered in Section 5.2, namely ℓ2, W2, and RWp with p ∈ {1, 2, 4}. To avoid redundant retrievals,
the selected sequences are constrained to originate from distinct calendar dates (year–month–day).
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Sequence retrieval results. Figures 10–14 present the sequence retrieval results for the five metrics.
For each metric, the results are visualized using four rows: the first row corresponds to the same reference
thunderstorm sequence, while the second through fourth rows show the top three retrieved sequences identified
by the corresponding metric. All retrieved sequences originate from calendar dates that are distinct from one
another and from that of the reference sequence, ensuring temporal diversity in the retrieved results.

Across the five metrics, clear differences in retrieval behavior can be observed. The classical W2 distance
tends to favor sequences that are spatially close to the reference, even when their internal storm structures
and temporal evolution differ. In contrast, the proposed RWp distances consistently emphasize similarity in
storm morphology and evolution patterns, leading to retrieved sequences that are visually more coherent
with the reference sequence. Among the proposed variants, RW2 provides the most balanced performance,
yielding sequences that closely match both the shape and temporal progression of the reference thunderstorm.
These observations are consistent with the snapshot-based retrieval results reported in Section 5.2 and further
demonstrate the robustness of the proposed RWp distances for spatio-temporal retrieval tasks.

ref seq

2022-04-13 17:10 2022-04-13 17:20 2022-04-13 17:30 2022-04-13 17:40 2022-04-13 17:50 2022-04-13 18:00

top1 seq
d = 17.453

2019-03-14 05:40 2019-03-14 05:50 2019-03-14 06:00 2019-03-14 06:10 2019-03-14 06:20 2019-03-14 06:30

top2 seq
d = 19.020

2017-04-26 16:30 2017-04-26 16:40 2017-04-26 16:50 2017-04-26 17:00 2017-04-26 17:10 2017-04-26 17:20

top3 seq
d = 19.058

2015-04-10 01:20 2015-04-10 01:30 2015-04-10 01:40 2015-04-10 01:50 2015-04-10 02:00 2015-04-10 02:10

Figure 10: Sequence retrieval results using the ℓ2 distance. The first row shows the reference thunderstorm
sequence consisting of six consecutive snapshots. The second to fourth rows show the top three retrieved
sequences. Each column corresponds to a 10-minute interval, and timestamps are shown above each frame.
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ref seq

2022-04-13 17:10 2022-04-13 17:20 2022-04-13 17:30 2022-04-13 17:40 2022-04-13 17:50 2022-04-13 18:00

top1 seq
d = 6.904

2017-04-26 16:20 2017-04-26 16:30 2017-04-26 16:40 2017-04-26 16:50 2017-04-26 17:00 2017-04-26 17:10

top2 seq
d = 7.181

2019-06-19 09:30 2019-06-19 09:40 2019-06-19 09:50 2019-06-19 10:00 2019-06-19 10:10 2019-06-19 10:20

top3 seq
d = 8.026

2018-05-03 20:40 2018-05-03 20:50 2018-05-03 21:00 2018-05-03 21:10 2018-05-03 21:20 2018-05-03 21:30

Figure 11: Sequence retrieval results using the W2 distance. While the retrieved sequences are spatially close
to the reference, their internal storm structures may differ. The first row is the reference sequence, followed
by the top three retrieved sequences from distinct calendar dates.

ref seq

2022-04-13 17:10 2022-04-13 17:20 2022-04-13 17:30 2022-04-13 17:40 2022-04-13 17:50 2022-04-13 18:00

top1 seq
d = 0.027

2019-03-14 06:00 2019-03-14 06:10 2019-03-14 06:20 2019-03-14 06:30 2019-03-14 06:40 2019-03-14 06:50

top2 seq
d = 0.045

2016-03-08 00:30 2016-03-08 00:40 2016-03-08 00:50 2016-03-08 01:00 2016-03-08 01:10 2016-03-08 01:20

top3 seq
d = 0.046

2017-04-26 16:40 2017-04-26 16:50 2017-04-26 17:00 2017-04-26 17:10 2017-04-26 17:20 2017-04-26 17:30

Figure 12: Sequence retrieval results using the RW1 distance. Compared to W2, the retrieved sequences
exhibit improved consistency in storm morphology and evolution patterns.
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ref seq

2022-04-13 17:10 2022-04-13 17:20 2022-04-13 17:30 2022-04-13 17:40 2022-04-13 17:50 2022-04-13 18:00

top1 seq
d = 0.032

2019-03-14 06:00 2019-03-14 06:10 2019-03-14 06:20 2019-03-14 06:30 2019-03-14 06:40 2019-03-14 06:50

top2 seq
d = 0.058

2014-03-31 17:30 2014-03-31 17:40 2014-03-31 17:50 2014-03-31 18:00 2014-03-31 18:10 2014-03-31 18:20

top3 seq
d = 0.058

2017-04-26 16:40 2017-04-26 16:50 2017-04-26 17:00 2017-04-26 17:10 2017-04-26 17:20 2017-04-26 17:30

Figure 13: Sequence retrieval results using the RW2 distance. The retrieved sequences closely match the
reference sequence in both spatial structure and temporal evolution. This metric provides the most balanced
performance among all considered distances.

ref seq

2022-04-13 17:10 2022-04-13 17:20 2022-04-13 17:30 2022-04-13 17:40 2022-04-13 17:50 2022-04-13 18:00

top1 seq
d = 0.036

2019-03-14 06:00 2019-03-14 06:10 2019-03-14 06:20 2019-03-14 06:30 2019-03-14 06:40 2019-03-14 06:50

top2 seq
d = 0.064

2014-03-31 16:30 2014-03-31 16:40 2014-03-31 16:50 2014-03-31 17:00 2014-03-31 17:10 2014-03-31 17:20

top3 seq
d = 0.065

2017-04-26 16:20 2017-04-26 16:30 2017-04-26 16:40 2017-04-26 16:50 2017-04-26 17:00 2017-04-26 17:10

Figure 14: Sequence retrieval results using the RW4 distance. Although slightly more sensitive to outliers,
RW4 still preserves the overall storm evolution patterns across time.
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