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ABSTRACT

Medical large vision-language models (Med-LVLMs) have shown strong capa-
bilities in clinical tasks such as medical VQA and report generation, but remain
prone to hallucinations—textual output inconsistent with the corresponding im-
ages, which can lead to misdiagnoses or overlooked findings. Existing Direct
Preference Optimization (DPO) methods, relying on coarse-grained vision lan-
guage alignment and synthetic text-based preference data, often fail to capture
subtle lesions, as hallucinations frequently arise from insufficient fine-grained
alignment and preference data that do not faithfully reflect visual content. To
address these challenges, we propose Heatmap-informed Direct Preference Opti-
mization (HDPO), which integrates lesion-level heatmaps to mitigate hallucina-
tions of Med-LVLMs on subtle lesions. HDPO leverages heatmaps to guide pref-
erence data curation by explicitly modeling misdiagnosis, false positives, and false
negatives, and employs a lesion-weighted DPO loss to emphasize clinically salient
regions, allowing fine-grained visual-textual alignment and improved analysis of
subtle lesions. Extensive experiments on four radiology datasets demonstrate that
HDPO consistently outperforms the latest baselines, achieving up to 3% improve-
ment in VQA accuracy and 2% gains in report generation metrics, particularly for
subtle lesions, confirming its effectiveness in reducing hallucinations and enhanc-
ing factual accuracy in Med-LVLMs.

1 INTRODUCTION

The field of medical artificial intelligence (AI) has advanced substantially, particularly in appli-
cations such as pathology detection, interactive diagnosis, and report generation(Jin et al., 2024;
Wolleb et al., 2022; Xia et al., 2024b;c; Wang et al., 2025a; Zhu et al., 2024; Ding et al., 2025; Yang
et al., 2025). With the rapid emergence of large vision–language models (LVLMs), medical LVLMs
(Med-LVLMs) have become a promising paradigm that integrates visual and textual information to
enhance clinical understanding and reasoning(Kurz et al., 2025; Hu et al., 2024; Wang et al., 2025b;
Lin et al., 2025; Liu et al., 2024). Despite their strong capabilities, Med-LVLMs remain vulnera-
ble to hallucinations: textual descriptions inconsistent with or unsupported by medical images(Xia
et al., 2024a; Zhu et al., 2024). Such errors can lead to misdiagnosis or overlooked pathologies,
compromising the reliability and safety of AI-assisted healthcare(Chen et al., 2024; Gupta et al.,
2024).

Recent studies have sought to address hallucinations in Med-LVLMs by investigating their causes
and developing mitigation strategies, including improving vision–language alignment, fine-tuning
with high-quality medical data, and employing preference optimization(Xia et al., 2024b;c; Zhu
et al., 2024; Gupta et al., 2024; Ding et al., 2025; Lan et al., 2024). However, these methods often
adapt techniques from natural image domains without considering challenges specific to medical
images, such as subtle abnormalities and sparse visual cues. These characteristics hinder the reli-
able extraction of clinically relevant features and exacerbate hallucinations(Weese & Lorenz, 2016;
Cheplygina et al., 2019; Zemouri et al., 2019). To bridge this gap, recent efforts have incorporated
domain-specific features, such as clinical relevance scores, into Med-LVLMs(Zhu et al., 2024). Al-
though this approach improves coarse-grained supervision, it fails to explicitly find fine-grained
disease-relevant regions, risking omission of subtle but clinically significant findings. For exam-
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ple, as shown in Figure 1(I), when part of the cardiac contour is masked, the model generates the
same response as before, indicating that lesion-level evidence is ignored and hallucinations arise.
Moreover, preference data are often constructed using synthetic dispreferred answers generated by
large language models(Xia et al., 2024c;b). As illustrated in Figure 1(II), real hallucinations differ
markedly from synthetic ones: the model misidentifies the “right lung” instead of the correct “left
lung”, while the LLM-synthesized dispreferred answer (“right breast”) does not capture the true
visual–text misalignment. These findings underscore the need for fine-grained and lesion-aware
supervision that explicitly aligns the textual findings with the corresponding visual evidence.

Q: Does the chest X-ray exhibit normal 

cardiac silhouette and contour?

Yes, the chest X-ray 

shows a normal 

cardiac silhouette and 

contour. 

Yes, the chest X-ray 

shows a normal 

cardiac silhouette and 

contour. M
M

e
d

P
O

Yes, the chest X-ray 

shows a normal 

cardiac silhouette and 

contour. 

Yes, the chest X-ray 

shows a normal 

cardiac silhouette and 

contour.

L
L

A
V

A
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e
d

Yes. No.G
T

I. II. Q: Where is/are the 

abnormality located?

Right lung.

GT/Prefered answer:

LLM designed dispreferred answer:

The abnormality is 

located in the right

breast.

Left lung.

Expected dispreferred answer:

Figure 1: Limitations of existing Med-LVLMs.
(I) When a part of the cardiac contour is masked,
Med-LVLMs generate identical answers as be-
fore, indicating that models fail to capture fine-
grained visual cues of the lesion. (II) Exam-
ple showing that real hallucination arises from
laterality error (left vs. right lung), whereas
the LLM-generated dispreferred answer (right
breast) fails to reflect the true visual–text mis-
match.

To address these challenges, we propose
Heatmap-informed Direct Preference Opti-
mization (HDPO), a framework that integrates
lesion-level visual attribution with preference
optimization to mitigate hallucinations of Med-
LVLMs on subtle lesions and improve factuality
in medical VQA and report generation tasks.
Unlike prior methods that rely solely on med-
ical images, HDPO incorporates lesion-aware
heatmaps into preference data curation by mod-
eling three common failure modes: misdiagnosis,
false positives, and false negatives. By aligning
textual keywords with their most relevant visual
regions, HDPO promotes clinically meaningful
vision–language associations rather than coarse
and LLM-designed dispreferred answers. In
addition, we calculate a heatmap alignment score
between salient heatmap regions and disease-
related keywords to quantify each preference
pair. Finally, we introduce a Heatmap-guided
preference fine-tuning strategy to scale each
preference pair using the heatmap alignment
score, guiding the model to prioritize clinically
critical findings and reduce hallucinations from
overlooked or misinterpreted lesions.

The primary contribution of this paper is
Heatmap-informed Direct Preference Optimization (HDPO), which improves factuality and reduces
hallucinations in Med-LVLMs, particularly in cases involving subtle lesions. By incorporating a
heatmap-guided preference data curation strategy and a lesion-weighted DPO framework that prior-
itizes clinically relevant regions, HDPO effectively aligns textual findings with corresponding subtle
visual evidence and mitigates hallucinations of Med-LVLMs. Our method consistently outperforms
the latest baselines in four radiology datasets, achieving improvements of up to 3% in VQA accu-
racy and 2% in report generation metrics. These findings underscore the importance of fine-grained,
lesion-informed heatmaps to improve the reliability of medical vision–language models.

2 PRELIMINARIES

In this section, we will provide a brief overview of Med-LVLMs and preference optimization.

Medical Large Vision Language Models. Med-LVLMs are specialized models designed to process
medical images alongside associated textual inputs. They typically integrate a large language model
(LLM) with a visual encoder that extracts features from medical images and converts them into a
representation compatible with the language component. Given a medical image xv and a clinical
query xt, the combined input is represented as x = (xv, xt). The model then generates the response
y through autoregressive decoding based on the fused multimodal input.

Preference Optimization. Preference optimization has emerged as an effective approach for fine-
tuning large language models (LLMs), enabling stronger alignment between the model’s output and
the intended objectives. In this framework, for a given input x, the model policy πθ defines a condi-
tional distribution πθ(y|x), where y denotes a possible textual response. A representative technique,
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Figure 2: Overview of the proposed Heatmap-informed Direct Preference Optimization (HDPO)
framework. HDPO integrates lesion-level heatmaps into DPO by (I) preference data curation, con-
structing non-preferred samples via misdiagnosis, false positives, and false negatives; (II) calculating
heatmap alignment score, matching image patches with heatmaps and textual keywords to quantify
each preference pair; (III) heatmap-guided preference finetuning, guiding the model to prioritize
clinically critical findings and reduce hallucinations using the heatmap alignment score.

Direct Preference Optimization (DPO)(Rafailov et al., 2023), utilizes paired preference data to guide

the model toward preferred behaviors. The preference data are defined as D =
{
x(i), y

(i)
w , y

(i)
l

}N

i=1
,

where y(i)w is the favored output and y
(i)
l is the less desirable alternative for the same input x(i). The

likelihood of preferring yw over yl is modeled as p (yw ≻ yl) = σ (r (x, yw)− r (x, yl)), where
σ(·) is the sigmoid function. In DPO, optimization can be formulated as classification loss over the
preference data as

LDPO (πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
α log

πθ (yw | x)
πref (yw | x)

− α log
πθ (yl | x)
πref (yl | x)

)]
. (1)

Here, πθ represents the reference policy, which is the fine-tuned LLM through supervised fine-
tuning.

3 METHODOLOGY

As illustrated in Figure 2, we propose the Heatmap-informed Direct Preference Optimization
(HDPO) framework to improve Med-LVLMs by using fine-grained image-text alignment via
heatmaps. We first describe the preference data curation strategy by modeling common failures,
such as false positives, false negatives, and misdiagnoses. Next, we detail the calculation of the
heatmap alignment score by matching image patches with heatmaps and textual keywords. Finally,
we introduce the heatmap-guided preference fine-tuning strategy, which guides the model to priori-
tize clinically critical findings and reduces hallucinations by using the heatmap alignment score.

3.1 PREFERENCE DATA CURATION

High-quality preference data is essential for HDPO, providing fine-grained supervision that enforces
consistency between visual evidence and textual reports. For each input x, we construct preference
quadruples (x+, y+, x−

e , y
−
e ), where (x+, y+) is the evidence-aligned preferred pair, and (x−

e , y
−
e )

is a dispreferred variant generated from one of three error types: misdiagnosis, false positive, or
false negative. This process is guided by lesion-level heatmaps, which identify salient regions and
their associated disease keywords. By replacing, masking, or removing these keywords and regions,
we systematically produce dispreferred responses that misrepresent or omit critical lesion informa-
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tion. Compared to LLM-based curation methods(Zhu et al., 2024), this heatmap-guided perturbation
provides structured, clinically meaningful supervision for preference optimization.

3.1.1 HEATMAP-GUIDED KEYWORD EXTRACTION

To explicitly capture lesion-level evidence, we use heatmaps generated by the DAug model(Jin
et al., 2024) to weight visual patches. Each input image I is divided into N non-overlapping patches
{p1, p2, . . . , pN} with corresponding heatmap response {H(pi)}. After normalization, we have

H̃(pi) =
H(pi)∑N
j=1 H(pj)

, (2)

which reflects the contribution of the patch pi to the localization of the lesion. The weighted visual
embedding is then obtained by scaling the patch features extracted from the image encoder fv(·):

v =

N∑
i=1

H̃ (pi) · fv (pi) . (3)

In parallel, the ground-truth text answer ygt is segmented into M semantic chunks {t1, t2, . . . , tM}.
Each segment embedding is computed via a text encoder ft(·):

uj = ft(tj), j = 1, . . . ,M. (4)

We then compute the cosine similarity between the heatmap-guided visual embedding v and each
textual fragment uj

sj = cos
(
v,uj

)
=

vT uj

||v|| · |||uj |
. (5)

The chunk with the highest value
k∗ = argmax

j
sj (6)

is considered the disease keyword most strongly supported by lesion-level visual evidence.

Building on this alignment, we construct preference pairs by perturbing or replacing lesion-related
keywords k∗ to simulate different error types (misdiagnosis, false positive, and false negative). This
design ensures that perturbations are localized, clinically significant, and directly related to visual
evidence, providing high-quality supervision signals for HDPO training.

3.1.2 HEATMAP-GUIDED PREFERENCE DATA CONSTRUCTION

To construct preference pairs for DPO, we exploit the alignment between heatmap-salient image
regions and lesion-related textual keywords. From an original image–text pair (x+, y+), we gener-
ate perturbed counterparts (x−

e , y
−
e ) by explicitly modeling three common error modes in medical

vision–language reasoning: misdiagnosis, false positive, and false negative. These perturbations
preserve the clinical fidelity of preferred data while ensuring dispreferred data misrepresent or omit
lesion evidence.

Misdiagnosis. Misdiagnosis occurs when an image contains a pathological finding, but the corre-
sponding text incorrectly labels it with an incorrect disease keyword. To synthesize a misdiagnosis
sample (x−

mis, y
−
mis), we replace k∗ with an alternative k̃ drwan from the medical vocabulary K,

ensuring k̃ ̸= k∗. This produces

x−
mis = x+, y−mis = y+\ {k∗} ∪ {k̃}. (7)

This modification preserves the sentence structure and grammaticality of the original response but
semantically introduces an incorrect diagnosis attribution. As a result, the non-preferred response
(x−

mis, y
−
mis) reflects a clinically invalid diagnosis, while (x+, y+) remains evidence-consistent data.

False positive. False positives simulate cases in which the response asserts a finding unsupported
by the image. Given a disease keyword k∗, we first use the heatmap to localize its corresponding
salient region Ω∗ ⊂ RH×W . To generate a false positive sample, a binary mask M (Ω∗) is applied
to the salient region, producing a corrupted image while preserving the original textual description.

x−
fp = x+ ⊙ (1−M (Ω∗)) , yfp = y+. (8)

4
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This creates a controlled mismatch between the image and text, so the model learns to avoid gener-
ating findings that lack visual support.

False negative. False negatives represent under-reporting errors, that is, a lesion present in the
image but omitted or misrepresented in the textual description. For the keyword k∗ identified by
heatmap-guided patch–keyword alignment, a non-preferred response is generated while the image
remains unchanged x−

fn = x+. We exemplify two strategies: (i) neutralization, replacing the key-
word lesion with a generic negation phrase, such as “no abnormalities”, to explicitly deny the find-
ing,

y−fn = y+\ {k∗} ∪ {”no abnormalities”}; (9)

(ii) deletion, removing the lesion keyword from the text while retaining the rest of the report, i.e.,

y−fn = y+\ {k∗} . (10)

These manipulations produce dispreferred pairs (x−
fn, y

−
fn) in which the textual description underre-

ports or omits the true evidence of the lesion. During preference optimization, such examples guide
the model in assigning higher likelihoods to reports that accurately describe the salient findings, thus
improving lesion-aware and evidence-based responses.

3.2 CALCULATING HEATMAP ALIGN SCORE

After constructing preference pairs, we quantify each pair using lesion-level heatmaps, as errors
involving critical lesions should weigh more heavily in model optimization. To do this, a heatmap
alignment score is calculated for each pair, measuring how well the predicted visual embeddings of
the model attend to lesion-critical regions.

Formally, for a given image-text pair, we first extract the visual embedding v and the textual embed-
dings kj corresponding to the set of differential keywords ∆(y+, y−e ) that distinguish the preferred
response y+ from the non-preferred response y−e . The heatmap alignment score is then defined as

w(x+, y+, x−
e , y

−
e ) = 1 + λ · max

kj∈∆(y+,y−
e )

cos(v, ft(kj)). (11)

where λ is a scaling factor. This score quantifies the alignment between the model’s attention and
clinically important regions: preference pairs that involve critical lesions receive higher scores,
whereas less important discrepancies are down-weighted. These weights capture lesion-specific
importance at a fine-grained level, providing the foundation for a subsequent preference fine-tuning.

3.3 HEATMAP-GUIDED PREFERENCE FINE-TUNING

Once the heatmap alignment score is computed, they are integrated into the HDPO framework to
guide model fine-tuning. Given a data set of preference quadruples

D =
{(

x+, y+, x−
e , y

−
e

)
|e ∈ {mis, fp, fn}

}
, (12)

the HDPO loss is formulated as

LHDPO (πθ;πref) = −ED

[
w log σ

(
α log

πθ (y
+ | x+)

πref (y+ | x+)
− α log

πθ (y
−
e | x−

e )

πref

(
y−e | x−

e

))] . (13)

This formulation ensures that errors involving heatmap-aligned lesion keywords generate stronger
gradient signals, directing the model to prioritize clinical accuracy. In practice, lesion-weighted loss
accelerates preference alignment for critical lesions while reducing hallucinations of overlooked or
misinterpreted lesions.

4 EXPERIMENT

In this section, we conducted extensive experiments to assess the effectiveness of the proposed
Heatmap-informed Direct Preference Optimization (HDPO) framework. We benchmark HDPO in
four widely used radiology datasets that cover both VQA and report generation tasks and compared
against recent fine-tuned Med-LVLM baselines.
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4.1 EXPERIMENTAL SETUPS

Implementation Details. We employ LLaVA-Med-1.5 7B (Li et al., 2023) as the backbone
model. The lesion-level heatmaps are curated using the DAug model(Jin et al., 2024). We adopt a
Vision Transformer (ViT-B/16)(Dosovitskiy et al., 2020) pretrained on large-scale medical datasets
as image encoder, while BioClinicalBERT(Alsentzer et al., 2019) is used as text encoder to extract
keyword representations. During the preference optimization stage, we apply the LoRA fine-tuning
(Hu et al., 2022) on LLaVA-Med-1.5 7B with a batch size of 4, a learning rate of 1 × 10−7, and
train for 3 epochs. All experiments are carried out using PyTorch 2.1.2 on four NVIDIA RTX A100
GPUs, with a total training time of approximately 2–3 hours.

Baseline Methods. We compare HDPO with Direct Preference Optimization (DPO)(Rafailov
et al., 2023)and several recent variants. These include the self-rewarding method(Yuan et al., 2024),
which generates its own responses to construct preference pairs; STLLaVA-Med(Sun et al., 2024),
which refines preference selection through advanced LLM, and MMDPO(Zhu et al., 2024), which
incorporates clinical relevance to improve optimization. Additionally, we benchmark three VLM
preference fine-tuning methods originally developed for natural images: POVID(Zhou et al., 2024),
FiSAO (Cui et al., 2024), and SIMA(Wang et al., 2024). All methods are also evaluated on models
previously trained with supervised fine-tuning (SFT) using the corresponding datasets, enabling
direct comparison.

Evaluation Datasets. To evaluate the effectiveness of HDPO in improving factuality and clinical
reliability, we adopt four widely used medical vision–language datasets that cover VQA and report
generation in X-ray and CT modalities. For VQA, we used VQA-RAD (Lau et al., 2018) and
SLAKE (Liu et al., 2021), which provide fine-grained question–answer pairs linked to radiology
images. For report generation, we used two large-scale chest X-ray corpora: MIMIC-CXR (Johnson
et al., 2019), which includes more than 377,000 images with clinical reports, and IU-Xray (Demner-
Fushman et al., 2015), a benchmark dataset with paired images and reports.

Evaluation Metrics. Following (Xia et al., 2024b;c), we evaluate the medical VQA task using
accuracy and recall metrics. For the report generation task, we adopt BLEU(Papineni et al., 2002),
ROUGE-L(Lin, 2004), METEOR(Banerjee & Lavie, 2005) as evaluation metrics.

4.2 MAIN RESULTS

Comparison with Baseline Methods. As shown in Table 1, HDPO consistently outperforms
all baselines in four radiology datasets: SLAKE, VQA-RAD, IU-Xray, and MIMIC-CXR. With-
out supervised fine-tuning (SFT), it achieves the highest accuracy on both open- and closed-ended
questions in SLAKE (54.68 and 74.59) and VQA-RAD (38.14 and 68.53), surpassing preference
optimization methods such as DPO, STLLaVA-Med, and MMedPO. It also outperforms the VLM
fine-tuning methods developed for natural images, including POVID, FiSAO, and SIMA, underscor-
ing the importance of lesion-aware supervision. For report generation, HDPO achieves substantial
gains on IU-Xray, reaching 24.58 METEOR, 31.12 BLEU, and 35.98 ROUGE-L, outperforming the
best baseline MMedPO (23.49, 29.52, 34.16). On the large-scale MIMIC-CXR dataset, it further
sets a new state-of-the-art with 13.87 METEOR, 12.54 BLEU, and 11.59 ROUGE-L.

When combined with SFT, the improvement of HDPO becomes more pronounced, achieving the
best performance in the four datasets and exceeding other preference optimization methods by a
clear margin. These results validate the core design of HDPO: leveraging heatmap-guided lesion
supervision in preference construction explicitly grounds textual descriptions in clinically relevant
visual evidence, thereby reducing misdiagnosis, false positives, and false negatives while producing
more clinically factual outputs than prior approaches.

Effect on Medical Data with Subtle Lesions To evaluate the capacity of HDPO to capture fine-
grained lesion evidence, we construct subtle lesion subsets from SLAKE, VQA-RAD, IU-Xray, and
MIMIC-CXR using annotated segmentation masks. Lesions occupying less than 5% of the image
area are defined as small. We evaluated our method on these subsets separately. As shown in Table
2, HDPO achieves the largest performance gains in small-lesion cases relative to existing methods.
This improvement reflects the effectiveness of heatmap-guided data curation and preference fine-
tuning to improve the description of subtle abnormalities often overlooked by baselines. These
results underscore the clinical reliability of HDPO and its ability to mitigate hallucinations arising
from neglected or misinterpreted lesions.
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Table 1: Performance comparison on medical VQA and report generation tasks covering four radi-
ology datasets: SLAKE, VQA-RAD, IU-Xray, and MIMIC-CXR. Recall is reported for open-ended
questions (Open), and accuracy for closed-ended questions (Closed). The BLEU denotes the aver-
age of BLEU-1/2/3/4. +SFT indicates that the model was first fine-tuned with SFT before applying
the corresponding baselines.

Models SLAKE VQA-RAD IU-Xray MIMIC-CXR
Open Closed Open Closed METEOR BLEU ROUGE-L METEOR BLEU ROUGE-L

LLaVA-Med v1.5 44.26 61.30 29.24 63.97 14.56 10.31 10.95 10.25 9.38 7.71
+ Self-Rewarding 42.63 61.30 33.29 64.17 14.20 10.38 10.52 10.78 9.27 7.73
+ DPO 49.30 62.02 29.76 64.70 16.08 12.95 17.13 11.19 9.45 7.80
+ POVID 52.43 70.35 31.77 65.07 20.80 24.33 30.05 11.21 9.66 7.84
+ SIMA 51.77 69.10 31.23 64.80 17.11 22.87 29.10 11.16 9.58 7.49
+ FiSAO 52.69 70.46 32.70 64.11 21.06 25.72 30.82 11.32 9.68 7.62
+ STLLaVA-Med 48.65 61.75 30.17 64.38 16.11 10.58 10.51 11.11 9.29 7.72
+ MMedPO 53.99 73.08 36.36 66.54 23.49 29.52 34.16 12.85 11.13 10.03
+ HDPO(Ours) 54.68 74.59 38.14 68.53 24.58 31.12 35.98 13.87 12.54 11.59

+ SFT 50.45 65.62 31.38 64.26 22.75 28.86 33.66 12.39 10.21 8.75
+ Self-Rewarding 50.62 65.89 32.69 65.89 22.89 28.97 33.93 12.15 10.05 8.77
+ DPO 53.50 69.47 32.88 64.33 23.07 29.97 34.89 12.37 10.38 9.10
+ POVID 52.18 70.67 32.95 64.97 23.95 29.75 34.63 11.85 10.45 9.05
+ SIMA 51.75 69.28 32.50 64.08 23.90 29.41 34.45 12.44 10.25 9.02
+ FiSAO 52.80 70.82 32.94 65.77 23.57 29.88 35.01 12.97 10.69 9.39
+ STLLaVA-Med 52.72 66.69 33.72 64.70 22.79 28.98 34.05 12.21 10.12 8.98
+ MMedPO 55.23 75.24 34.03 67.64 24.00 30.13 35.17 13.28 13.22 10.20
+ HDPO(Ours) 55.47 75.17 35.41 67.54 24.49 30.37 35.86 13.69 13.94 12.97

Table 2: Performance comparison on the full subtle-lesion subsets across four radiology datasets for
medical VQA and report generation shows that HDPO achieves larger gains on subtle-lesion cases
than state-of-the-art methods, highlighting its advantage in describing subtle abnormalities.

Models SLAKE VQA-RAD IU-Xray MIMIC-CXR
Open Closed Open Closed METEOR BLEU ROUGE-L METEOR BLEU ROUGE-L

LLaVA-Med v1.5 43.89 59.14 31.11 62.67 12.59 9.67 9.84 8.51 7.99 6.12
+ MMedPO 51.64 70.26 34.57 64.00 21.84 27.51 31.69 10.85 8.98 8.07
+ HDPO(Ours) 53.97 73.41 37.17 67.79 23.46 29.97 33.82 12.67 11.03 10.42

4.3 ABLATION STUDY

Here, we performed ablation studies to evaluate the contribution of key components in our proposed
framework–preference data curation, lesion-aware loss weighting, and heatmap source.

Table 3: Ablation studies for preference data curation strategy in HDPO.
misdiagnosis false positive false negtive SLAKE VQA-RAD IU-Xray MIMIC-CXR

✗ ✗ ✗ 61.47 50.69 27.87 10.83

✓ ✗ ✗ 62.57 52.41 29.11 11.73
✗ ✓ ✗ 63.18 52.89 29.74 11.88
✗ ✗ ✓ 63.57 53.04 30.02 12.09
✓ ✓ ✓ 64.64 53.34 30.56 12.66

Impact of Preference Data Curation Strategy. To assess the role of different error types in
preference data curation, we perform ablations by removing misdiagnoses, false positives, and false
negatives. As shown in Table 3, excluding any single type consistently degrades performance across
all four datasets. In particular, omitting false negatives yields the largest drop, suggesting that under-
reporting errors are especially harmful in clinical scenarios. However, incorporating all three types
of error achieves the highest scores, confirming that comprehensive modeling hallucination of mis-
diagnosis, overlooked, and overdiagnosis provides the most effective supervision in Med-LVLM to
improve both VQA accuracy and report factuality.
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No evidence of pleural effusion is observed. The lung fields do not demonstrate consolidation. Patchy opacity in the right lobe 

may represent atelectasis. The cardiac silhouette is enlarged, consistent with cardiomegaly. No pneumothorax or acute 

osseous abnormality is identified.

The chest X-ray image shows a large right-sided pleural effusion. A pleural effusion is an abnormal accumulation of fluid in 

the pleural space, which is the area between the layers of tissue that line the lungs and the chest cavity. This can be caused 

by various conditions, such as infections, heart failure, or malignancies. Further evaluation and tests will be needed to 

determine the exact cause and appropriate treatment for the patient.

Please generate a detailed medical report based on the provided image.

The chest X-ray shows a normal heart size and mediastinal contours. There is no focal consolidation, pleural effusion, or 

pneumothorax. The lungs are clear, and there is no evidence of acute osseous abnormalities. The impression is that there is 

no acute cardiopulmonary abnormality.
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The chest X-ray image shows a large right-sided pleural effusion. A pleural effusion is an abnormal accumulation of fluid in 

the pleural space, which is the area between the layers of tissue that line the lungs and the chest cavity. This can be caused 

by various conditions, such as infections, heart failure, or malignancies. Further evaluation and tests will be needed to 

determine the exact cause and appropriate treatment for the patient.

Please generate a detailed medical report based on the provided image.
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Figure 3: Illustration of HDPO’s ability of lesion-aware grounding, reduction of hallucinations, and
improved clinical factuality.

Effect of Lesion-Aware Loss Weighting. We further investigate the impact of lesion-aware
weighting by setting λ = 0, which reduces our loss to the standard DPO formulation without focus-
ing on clinically salient regions.

Table 4: Ablation studies for lesion-aware weight-
ing in HDPO.

Dataset DPO Loss HDPO Loss

SLAKE 62.17 64.64
VQA-RAD 51.46 53.34

IU-Xray 28.55 30.56
MIMIC-CXR 10.08 12.66

As shown in Table 4, this leads to a con-
sistent performance degradation across all
datasets, with drops of more than 2 points
on SLAKE and IU-Xray. In contrast, HDPO
loss achieves the best results on all bench-
marks, confirming that weighting preference
pairs according to the alignment of the le-
sion and keyword provides stronger supervi-
sion and is essential for learning reliable visual-textual associations in medical reasoning tasks.

Effect of Heatmap Source. We also study the effect of different heatmap sources on HDPO.

Table 5: Ablation studies for heatmap source selec-
tion in HDPO.

Dataset GradCAM MedKLIP DAug

SLAKE 58.94 60.31 64.64
VQA-RAD 47.37 49.87 53.34

IU-Xray 24.91 26.76 30.56
MIMIC-CXR 8.67 9.32 12.66

As shown in Table 5, using Grad-
CAM(Selvaraju et al., 2017), a CAM-based
method, produces the weakest performance
due to its coarse and often noisy activa-
tion maps. MedKLIP(Wu et al., 2023),
which leverages attention-based attribution,
provides stronger signals but still fails to
locate the fine-grained lesion. In contrast,
DAug-generated heatmaps deliver the most
precise lesion-level supervision, resulting
in significant improvements across all datasets (e.g., SLAKE 64.64 vs. 58.94 with GradCAM).
Overall, the comparison demonstrates that accurate lesion attribution is essential for HDPO: while
coarse heatmaps can only provide weak guidance, fine-grained lesion-aware maps allow the model
to learn precise and clinically meaningful visual-textual associations, thereby improving both
medical VQA and report generation tasks.

4.4 CASE STUDY

To further illustrate the effectiveness of HDPO in reducing hallucinations on subtle lesions and
improving visual-text alignment, we present the representative case study on a chest X-ray image.

Visualization and Grounding. In Figure 3, we show the original chest radiograph images along-
side heatmaps. The heatmaps highlight lesion-aware regions, such as atelectasis, infection, and
cardiomegaly, which correspond to the critical findings mentioned in the ground-truth reports. This
visualization demonstrates the ability of a lesion-aware heatmap to ground textual outputs in the
correct visual evidence, enhancing both interpretability and clinical reliability.
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Reduction of Hallucinations. In Figure 3, LLAVA-Med erroneously reported a “large right-
sided pleural effusion” while failing to detect the cardiomegaly present. Similarly, MMedPO mis-
diagnosed “normal heart size and mediastinal contours” and overlooked lobe opacities. In contrast,
HDPO avoided these hallucinations, accurately reporting “The cardiac silhouette is enlarged, consis-
tent with cardiomegaly” and correctly identifying atelectasis from the observed opacity, supported
by a precise lesion heatmap. Across multiple cases, HDPO consistently reduces spurious findings,
particularly for subtle abnormalities, demonstrating its ability to capture clinical visual evidence.

Improved Clinical Factuality. HDPO further improves the specificity and clinical accuracy of
its outputs. As shown in Figure 3, for cases with small lobe opacities, HDPO provides precise
descriptions specifying the exact location, for example, “Patchy opacity in the right lobe,” while
baseline methods often omit such details or produce vague, potentially misleading statements. By
aligning the textual output with salient image regions, HDPO ensures accurate capture of critical
diagnostic information, enhancing its utility for clinical decision support.

5 REALTED WORK

Factuality in Med-LVLMs. The rapid development of Large Vision Language Models (LVLMs)
has accelerated progress in medical applications(Kurz et al., 2025; Xia et al., 2024c; Lin et al., 2025),
demonstrating strong capabilities across diverse imaging modalities and clinical tasks(Ding et al.,
2025; Yang et al., 2025; Wang et al., 2025a). Despite these advances, existing Med-LVLMs often
struggle with factual consistency(Zhu et al., 2024; Chen et al., 2024; Gupta et al., 2024), failing to
reason effectively in complex medical scenarios and generating hallucinated outputs unsupported by
the corresponding images. Such errors compromise the reliability and safety of AI-assisted health-
care, potentially causing misdiagnoses or missed pathologies. Recent benchmarking studies(Xia
et al., 2024b;c; Zhu et al., 2024; Kurz et al., 2025) have highlighted these ongoing challenges in
tasks such as medical VQA and report generation.

Preference Optimization in Med-LVLMs. Preference optimization is essential to develop effec-
tive, safe, and trustworthy models while mitigating hallucinations in medical applications (Gorba-
tovski et al., 2024; Gao et al., 2023; Xu et al., 2024). Standard approaches, such as RLHF (Ouyang
et al., 2022), rely on human-labeled preference data to train a reward model, but this adds complex-
ity and potential instability. Direct Preference Optimization (DPO) (Rafailov et al., 2023) simpli-
fies training by fine-tuning directly on pairwise preference data without explicit reward modeling.
MMedPO (Zhu et al., 2024) extends this to medical models using clinically relevant preferences,
but focuses on coarse textual and visual alignment and can miss fine-grained pathological regions.
To overcome this, we propose HDPO, a preference optimization framework designed to capture
detailed disease-specific characteristics in medical images.

Lesion-Aware-Heatmap Supervision for Assistance in Medical Imaging. Medical image anal-
ysis depends on subtle pathological cues, but global visual or textual preferences often overlook crit-
ical lesions, resulting in hallucinations in Med-LVLM output. Incorporating visual attributions, such
as class activation (Selvaraju et al., 2017) or attention maps (Wu et al., 2023) as supervision directs
models to relevant regions, improving accuracy and interpretability. However, these approaches typ-
ically produce coarse heatmaps. To address this, DAug (Zhu et al., 2024) used generative models to
generate lesion-level heatmaps. Motivated by the ability of lesion-level annotations to reduce local-
ized hallucinations, we propose HDPO, which integrates lesion-aware supervision into preference
data curation and fine-tuning to improve diagnostic factuality in Med-LVLMs.

6 CONCLUSION

In this work, we introduce Heatmap-informed Direct Preference Optimization (HDPO) to address
the persistent issue of hallucinations in medical large vision-language models. By incorporating
lesion-level heatmaps into both preference data construction and optimization, HDPO achieves fine-
grained vision-language alignment and effectively reduces errors such as misdiagnosis, false pos-
itives, and false negatives. Extensive experiments on four radiology datasets demonstrate the ef-
fectiveness of our approach. HDPO consistently outperforms the latest baselines, particularly in
medical data with subtle lesions. Beyond mitigating hallucinations, HDPO highlights the potential
of integrating visual interpretability signals into preference-based training, paving the way for more
reliable and reliable medical AI systems.
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