

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HEATMAP-INFORMED DIRECT PREFERENCE OPTIMIZATION FOR MITIGATING HALLUCINATIONS OF MEDICAL LVLMs ON SUBTLE LESIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

Medical large vision-language models (Med-LVLMs) have shown strong capabilities in clinical tasks such as medical VQA and report generation, but remain prone to hallucinations—textual output inconsistent with the corresponding images, which can lead to misdiagnoses or overlooked findings. Existing Direct Preference Optimization (DPO) methods, relying on coarse-grained vision language alignment and synthetic text-based preference data, often fail to capture subtle lesions, as hallucinations frequently arise from insufficient fine-grained alignment and preference data that do not faithfully reflect visual content. To address these challenges, we propose Heatmap-informed Direct Preference Optimization (HDPO), which integrates lesion-level heatmaps to mitigate hallucinations of Med-LVLMs on subtle lesions. HDPO leverages heatmaps to guide preference data curation by explicitly modeling misdiagnosis, false positives, and false negatives, and employs a lesion-weighted DPO loss to emphasize clinically salient regions, allowing fine-grained visual-textual alignment and improved analysis of subtle lesions. Extensive experiments on four radiology datasets demonstrate that HDPO consistently outperforms the latest baselines, achieving up to 3% improvement in VQA accuracy and 2% gains in report generation metrics, particularly for subtle lesions, confirming its effectiveness in reducing hallucinations and enhancing factual accuracy in Med-LVLMs.

1 INTRODUCTION

The field of medical artificial intelligence (AI) has advanced substantially, particularly in applications such as pathology detection, interactive diagnosis, and report generation(Jin et al., 2024; Wolleb et al., 2022; Xia et al., 2024b;c; Wang et al., 2025a; Zhu et al., 2024; Ding et al., 2025; Yang et al., 2025). With the rapid emergence of large vision–language models (LVLMs), medical LVLMs (Med-LVLMs) have become a promising paradigm that integrates visual and textual information to enhance clinical understanding and reasoning(Kurz et al., 2025; Hu et al., 2024; Wang et al., 2025b; Lin et al., 2025; Liu et al., 2024). Despite their strong capabilities, Med-LVLMs remain vulnerable to hallucinations: textual descriptions inconsistent with or unsupported by medical images(Xia et al., 2024a; Zhu et al., 2024). Such errors can lead to misdiagnosis or overlooked pathologies, compromising the reliability and safety of AI-assisted healthcare(Chen et al., 2024; Gupta et al., 2024).

Recent studies have sought to address hallucinations in Med-LVLMs by investigating their causes and developing mitigation strategies, including improving vision–language alignment, fine-tuning with high-quality medical data, and employing preference optimization(Xia et al., 2024b;c; Zhu et al., 2024; Gupta et al., 2024; Ding et al., 2025; Lan et al., 2024). However, these methods often adapt techniques from natural image domains without considering challenges specific to medical images, such as subtle abnormalities and sparse visual cues. These characteristics hinder the reliable extraction of clinically relevant features and exacerbate hallucinations(Weese & Lorenz, 2016; Cheplygina et al., 2019; Zemouri et al., 2019). To bridge this gap, recent efforts have incorporated domain-specific features, such as clinical relevance scores, into Med-LVLMs(Zhu et al., 2024). Although this approach improves coarse-grained supervision, it fails to explicitly find fine-grained disease-relevant regions, risking omission of subtle but clinically significant findings. For exam-

ple, as shown in Figure 1(I), when part of the cardiac contour is masked, the model generates the same response as before, indicating that lesion-level evidence is ignored and hallucinations arise. Moreover, preference data are often constructed using synthetic dispreferred answers generated by large language models(Xia et al., 2024c;b). As illustrated in Figure 1(II), real hallucinations differ markedly from synthetic ones: the model misidentifies the “right lung” instead of the correct “left lung”, while the LLM-synthesized dispreferred answer (“right breast”) does not capture the true visual–text misalignment. These findings underscore the need for fine-grained and lesion-aware supervision that explicitly aligns the textual findings with the corresponding visual evidence.

To address these challenges, we propose Heatmap-informed Direct Preference Optimization (HDPO), a framework that integrates lesion-level visual attribution with preference optimization to mitigate hallucinations of Med-LVLMs on subtle lesions and improve factuality in medical VQA and report generation tasks. Unlike prior methods that rely solely on medical images, HDPO incorporates lesion-aware heatmaps into preference data curation by modeling three common failure modes: misdiagnosis, false positives, and false negatives. By aligning textual keywords with their most relevant visual regions, HDPO promotes clinically meaningful vision–language associations rather than coarse and LLM-designed dispreferred answers. In addition, we calculate a heatmap alignment score between salient heatmap regions and disease-related keywords to quantify each preference pair. Finally, we introduce a Heatmap-guided preference fine-tuning strategy to scale each preference pair using the heatmap alignment score, guiding the model to prioritize clinically critical findings and reduce hallucinations from overlooked or misinterpreted lesions.

The primary contribution of this paper is Heatmap-informed Direct Preference Optimization (HDPO), which improves factuality and reduces hallucinations in Med-LVLMs, particularly in cases involving subtle lesions. By incorporating a heatmap-guided preference data curation strategy and a lesion-weighted DPO framework that prioritizes clinically relevant regions, HDPO effectively aligns textual findings with corresponding subtle visual evidence and mitigates hallucinations of Med-LVLMs. Our method consistently outperforms the latest baselines in four radiology datasets, achieving improvements of up to 3% in VQA accuracy and 2% in report generation metrics. These findings underscore the importance of fine-grained, lesion-informed heatmaps to improve the reliability of medical vision–language models.

2 PRELIMINARIES

In this section, we will provide a brief overview of Med-LVLMs and preference optimization.

Medical Large Vision Language Models. Med-LVLMs are specialized models designed to process medical images alongside associated textual inputs. They typically integrate a large language model (LLM) with a visual encoder that extracts features from medical images and converts them into a representation compatible with the language component. Given a medical image x_v and a clinical query x_t , the combined input is represented as $x = (x_v, x_t)$. The model then generates the response y through autoregressive decoding based on the fused multimodal input.

Preference Optimization. Preference optimization has emerged as an effective approach for fine-tuning large language models (LLMs), enabling stronger alignment between the model’s output and the intended objectives. In this framework, for a given input x , the model policy π_θ defines a conditional distribution $\pi_\theta(y|x)$, where y denotes a possible textual response. A representative technique,

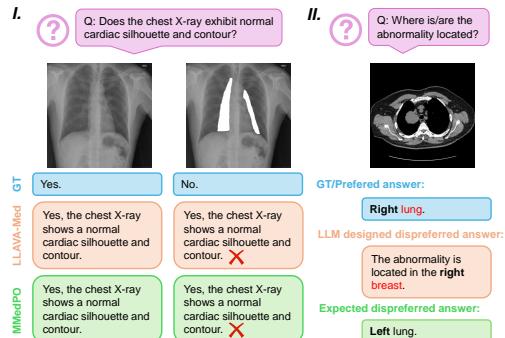


Figure 1: Limitations of existing Med-LVLMs. (I) When a part of the cardiac contour is masked, Med-LVLMs generate identical answers as before, indicating that models fail to capture fine-grained visual cues of the lesion. (II) Example showing that real hallucination arises from laterality error (left vs. right lung), whereas the LLM-generated dispreferred answer (right breast) fails to reflect the true visual–text mismatch.

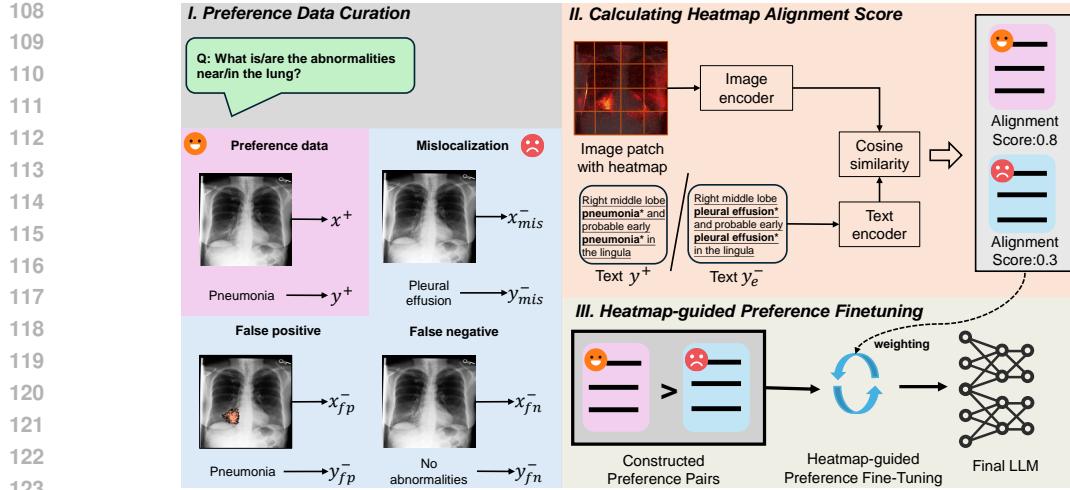


Figure 2: Overview of the proposed Heatmap-informed Direct Preference Optimization (HDPO) framework. HDPO integrates lesion-level heatmaps into DPO by (I) preference data curation, constructing non-preferred samples via misdiagnosis, false positives, and false negatives; (II) calculating heatmap alignment score, matching image patches with heatmaps and textual keywords to quantify each preference pair; (III) heatmap-guided preference finetuning, guiding the model to prioritize clinically critical findings and reduce hallucinations using the heatmap alignment score.

Direct Preference Optimization (DPO)(Rafailov et al., 2023), utilizes paired preference data to guide the model toward preferred behaviors. The preference data are defined as $\mathcal{D} = \{x^{(i)}, y_w^{(i)}, y_l^{(i)}\}_{i=1}^N$, where $y_w^{(i)}$ is the favored output and $y_l^{(i)}$ is the less desirable alternative for the same input $x^{(i)}$. The likelihood of preferring y_w over y_l is modeled as $p(y_w \succ y_l) = \sigma(r(x, y_w) - r(x, y_l))$, where $\sigma(\cdot)$ is the sigmoid function. In DPO, optimization can be formulated as classification loss over the preference data as

$$\mathcal{L}_{DPO}(\pi_\theta; \pi_{ref}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\alpha \log \frac{\pi_\theta(y_w | x)}{\pi_{ref}(y_w | x)} - \alpha \log \frac{\pi_\theta(y_l | x)}{\pi_{ref}(y_l | x)} \right) \right]. \quad (1)$$

Here, π_θ represents the reference policy, which is the fine-tuned LLM through supervised fine-tuning.

3 METHODOLOGY

As illustrated in Figure 2, we propose the Heatmap-informed Direct Preference Optimization (HDPO) framework to improve Med-LVLMs by using fine-grained image-text alignment via heatmaps. We first describe the preference data curation strategy by modeling common failures, such as false positives, false negatives, and misdiagnoses. Next, we detail the calculation of the heatmap alignment score by matching image patches with heatmaps and textual keywords. Finally, we introduce the heatmap-guided preference fine-tuning strategy, which guides the model to prioritize clinically critical findings and reduces hallucinations by using the heatmap alignment score.

3.1 PREFERENCE DATA CURATION

High-quality preference data is essential for HDPO, providing fine-grained supervision that enforces consistency between visual evidence and textual reports. For each input x , we construct preference quadruples (x^+, y^+, x_e^-, y_e^-) , where (x^+, y^+) is the evidence-aligned preferred pair, and (x_e^-, y_e^-) is a dispreferred variant generated from one of three error types: misdiagnosis, false positive, or false negative. This process is guided by lesion-level heatmaps, which identify salient regions and their associated disease keywords. By replacing, masking, or removing these keywords and regions, we systematically produce dispreferred responses that misrepresent or omit critical lesion informa-

tion. Compared to LLM-based curation methods(Zhu et al., 2024), this heatmap-guided perturbation provides structured, clinically meaningful supervision for preference optimization.

3.1.1 HEATMAP-GUIDED KEYWORD EXTRACTION

To explicitly capture lesion-level evidence, we use heatmaps generated by the DAug model(Jin et al., 2024) to weight visual patches. Each input image I is divided into N non-overlapping patches $\{p_1, p_2, \dots, p_N\}$ with corresponding heatmap response $\{H(p_i)\}$. After normalization, we have

$$\tilde{H}(p_i) = \frac{H(p_i)}{\sum_{j=1}^N H(p_j)}, \quad (2)$$

which reflects the contribution of the patch p_i to the localization of the lesion. The weighted visual embedding is then obtained by scaling the patch features extracted from the image encoder $f_v(\cdot)$:

$$\mathbf{v} = \sum_{i=1}^N \tilde{H}(p_i) \cdot f_v(p_i). \quad (3)$$

In parallel, the ground-truth text answer y_{gt} is segmented into M semantic chunks $\{t_1, t_2, \dots, t_M\}$. Each segment embedding is computed via a text encoder $f_t(\cdot)$:

$$\mathbf{u}_j = f_t(t_j), \quad j = 1, \dots, M. \quad (4)$$

We then compute the cosine similarity between the heatmap-guided visual embedding \mathbf{v} and each textual fragment \mathbf{u}_j

$$\mathbf{s}_j = \cos(\mathbf{v}, \mathbf{u}_j) = \frac{\mathbf{v}^T \mathbf{u}_j}{\|\mathbf{v}\| \cdot \|\mathbf{u}_j\|}. \quad (5)$$

The chunk with the highest value

$$k^* = \arg \max_j \mathbf{s}_j \quad (6)$$

is considered the disease keyword most strongly supported by lesion-level visual evidence.

Building on this alignment, we construct preference pairs by perturbing or replacing lesion-related keywords k^* to simulate different error types (misdiagnosis, false positive, and false negative). This design ensures that perturbations are localized, clinically significant, and directly related to visual evidence, providing high-quality supervision signals for HDPO training.

3.1.2 HEATMAP-GUIDED PREFERENCE DATA CONSTRUCTION

To construct preference pairs for DPO, we exploit the alignment between heatmap-salient image regions and lesion-related textual keywords. From an original image–text pair (x^+, y^+) , we generate perturbed counterparts (x_e^-, y_e^-) by explicitly modeling three common error modes in medical vision–language reasoning: misdiagnosis, false positive, and false negative. These perturbations preserve the clinical fidelity of preferred data while ensuring dispreferred data misrepresent or omit lesion evidence.

Misdiagnosis. Misdiagnosis occurs when an image contains a pathological finding, but the corresponding text incorrectly labels it with an incorrect disease keyword. To synthesize a misdiagnosis sample (x_{mis}^-, y_{mis}^-) , we replace k^* with an alternative \tilde{k} drawn from the medical vocabulary \mathcal{K} , ensuring $\tilde{k} \neq k^*$. This produces

$$x_{mis}^- = x^+, \quad y_{mis}^- = y^+ \setminus \{k^*\} \cup \{\tilde{k}\}. \quad (7)$$

This modification preserves the sentence structure and grammaticality of the original response but semantically introduces an incorrect diagnosis attribution. As a result, the non-preferred response (x_{mis}^-, y_{mis}^-) reflects a clinically invalid diagnosis, while (x^+, y^+) remains evidence-consistent data.

False positive. False positives simulate cases in which the response asserts a finding unsupported by the image. Given a disease keyword k^* , we first use the heatmap to localize its corresponding salient region $\Omega^* \subset \mathbb{R}^{H \times W}$. To generate a false positive sample, a binary mask $M(\Omega^*)$ is applied to the salient region, producing a corrupted image while preserving the original textual description.

$$x_{fp}^- = x^+ \odot (1 - M(\Omega^*)), \quad y_{fp} = y^+. \quad (8)$$

216 This creates a controlled mismatch between the image and text, so the model learns to avoid generating
 217 findings that lack visual support.

218 **False negative.** False negatives represent under-reporting errors, that is, a lesion present in the
 219 image but omitted or misrepresented in the textual description. For the keyword k^* identified by
 220 heatmap-guided patch–keyword alignment, a non-preferred response is generated while the image
 221 remains unchanged $x_{fn}^- = x^+$. We exemplify two strategies: (i) neutralization, replacing the key-
 222 word lesion with a generic negation phrase, such as “no abnormalities”, to explicitly deny the find-
 223 ing,

$$y_{fn}^- = y^+ \setminus \{k^*\} \cup \{\text{“no abnormalities”}\}; \quad (9)$$

224 (ii) deletion, removing the lesion keyword from the text while retaining the rest of the report, i.e.,
 225

$$y_{fn}^- = y^+ \setminus \{k^*\}. \quad (10)$$

226 These manipulations produce dispreferred pairs (x_{fn}^-, y_{fn}^-) in which the textual description under-
 227 reports or omits the true evidence of the lesion. During preference optimization, such examples guide
 228 the model in assigning higher likelihoods to reports that accurately describe the salient findings, thus
 229 improving lesion-aware and evidence-based responses.

232 3.2 CALCULATING HEATMAP ALIGN SCORE

233 After constructing preference pairs, we quantify each pair using lesion-level heatmaps, as errors
 234 involving critical lesions should weigh more heavily in model optimization. To do this, a heatmap
 235 alignment score is calculated for each pair, measuring how well the predicted visual embeddings of
 236 the model attend to lesion-critical regions.

237 Formally, for a given image-text pair, we first extract the visual embedding \mathbf{v} and the textual embed-
 238 dings k_j corresponding to the set of differential keywords $\Delta(y^+, y_e^-)$ that distinguish the preferred
 239 response y^+ from the non-preferred response y_e^- . The heatmap alignment score is then defined as

$$w(x^+, y^+, x_e^-, y_e^-) = 1 + \lambda \cdot \max_{k_j \in \Delta(y^+, y_e^-)} \cos(\mathbf{v}, f_t(k_j)). \quad (11)$$

240 where λ is a scaling factor. This score quantifies the alignment between the model’s attention and
 241 clinically important regions: preference pairs that involve critical lesions receive higher scores,
 242 whereas less important discrepancies are down-weighted. These weights capture lesion-specific
 243 importance at a fine-grained level, providing the foundation for a subsequent preference fine-tuning.

246 3.3 HEATMAP-GUIDED PREFERENCE FINE-TUNING

247 Once the heatmap alignment score is computed, they are integrated into the HDPO framework to
 248 guide model fine-tuning. Given a data set of preference quadruples

$$\mathcal{D} = \{(x^+, y^+, x_e^-, y_e^-) | e \in \{mis, fp, fn\}\}, \quad (12)$$

249 the HDPO loss is formulated as

$$\mathcal{L}_{HDPO}(\pi_\theta; \pi_{ref}) = -\mathbb{E}_{\mathcal{D}} \left[w \log \sigma \left(\alpha \log \frac{\pi_\theta(y^+ | x^+)}{\pi_{ref}(y^+ | x^+)} - \alpha \log \frac{\pi_\theta(y_e^- | x_e^-)}{\pi_{ref}(y_e^- | x_e^-)} \right) \right]. \quad (13)$$

250 This formulation ensures that errors involving heatmap-aligned lesion keywords generate stronger
 251 gradient signals, directing the model to prioritize clinical accuracy. In practice, lesion-weighted loss
 252 accelerates preference alignment for critical lesions while reducing hallucinations of overlooked or
 253 misinterpreted lesions.

256 4 EXPERIMENT

257 In this section, we conducted extensive experiments to assess the effectiveness of the proposed
 258 Heatmap-informed Direct Preference Optimization (HDPO) framework. We benchmark HDPO in
 259 four widely used radiology datasets that cover both VQA and report generation tasks and compared
 260 against recent fine-tuned Med-LVLM baselines.

270 4.1 EXPERIMENTAL SETUPS
271

272 **Implementation Details.** We employ LLaVA-Med-1.5 7B (Li et al., 2023) as the backbone
273 model. The lesion-level heatmaps are curated using the DAug model(Jin et al., 2024). We adopt a
274 Vision Transformer (ViT-B/16)(Dosovitskiy et al., 2020) pretrained on large-scale medical datasets
275 as image encoder, while BioClinicalBERT(Alsentzer et al., 2019) is used as text encoder to extract
276 keyword representations. During the preference optimization stage, we apply the LoRA fine-tuning
277 (Hu et al., 2022) on LLaVA-Med-1.5 7B with a batch size of 4, a learning rate of 1×10^{-7} , and
278 train for 3 epochs. All experiments are carried out using PyTorch 2.1.2 on four NVIDIA RTX A100
279 GPUs, with a total training time of approximately 2–3 hours.
280

281 **Baseline Methods.** We compare HDPO with Direct Preference Optimization (DPO)(Rafailov
282 et al., 2023)and several recent variants. These include the self-rewarding method(Yuan et al., 2024),
283 which generates its own responses to construct preference pairs; STLLaVA-Med(Sun et al., 2024),
284 which refines preference selection through advanced LLM, and MMDPO(Zhu et al., 2024), which
285 incorporates clinical relevance to improve optimization. Additionally, we benchmark three VLM
286 preference fine-tuning methods originally developed for natural images: Povid(Zhou et al., 2024),
287 FiSAO (Cui et al., 2024), and SIMA(Wang et al., 2024). All methods are also evaluated on models
288 previously trained with supervised fine-tuning (SFT) using the corresponding datasets, enabling
289 direct comparison.
290

291 **Evaluation Datasets.** To evaluate the effectiveness of HDPO in improving factuality and clinical
292 reliability, we adopt four widely used medical vision–language datasets that cover VQA and report
293 generation in X-ray and CT modalities. For VQA, we used VQA-RAD (Lau et al., 2018) and
294 SLAKE (Liu et al., 2021), which provide fine-grained question–answer pairs linked to radiology
295 images. For report generation, we used two large-scale chest X-ray corpora: MIMIC-CXR (Johnson
296 et al., 2019), which includes more than 377,000 images with clinical reports, and IU-Xray (Demner-
297 Fushman et al., 2015), a benchmark dataset with paired images and reports.
298

299 **Evaluation Metrics.** Following (Xia et al., 2024b;c), we evaluate the medical VQA task using
300 accuracy and recall metrics. For the report generation task, we adopt BLEU(Papineni et al., 2002),
301 ROUGE-L(Lin, 2004), METEOR(Banerjee & Lavie, 2005) as evaluation metrics.
302

303 4.2 MAIN RESULTS
304

305 **Comparison with Baseline Methods.** As shown in Table 1, HDPO consistently outperforms
306 all baselines in four radiology datasets: SLAKE, VQA-RAD, IU-Xray, and MIMIC-CXR. With-
307 out supervised fine-tuning (SFT), it achieves the highest accuracy on both open- and closed-ended
308 questions in SLAKE (54.68 and 74.59) and VQA-RAD (38.14 and 68.53), surpassing preference
309 optimization methods such as DPO, STLLaVA-Med, and MMedPO. It also outperforms the VLM
310 fine-tuning methods developed for natural images, including Povid, FiSAO, and SIMA, underscor-
311 ing the importance of lesion-aware supervision. For report generation, HDPO achieves substantial
312 gains on IU-Xray, reaching 24.58 METEOR, 31.12 BLEU, and 35.98 ROUGE-L, outperforming the
313 best baseline MMedPO (23.49, 29.52, 34.16). On the large-scale MIMIC-CXR dataset, it further
314 sets a new state-of-the-art with 13.87 METEOR, 12.54 BLEU, and 11.59 ROUGE-L.
315

316 When combined with SFT, the improvement of HDPO becomes more pronounced, achieving the
317 best performance in the four datasets and exceeding other preference optimization methods by a
318 clear margin. These results validate the core design of HDPO: leveraging heatmap-guided lesion
319 supervision in preference construction explicitly grounds textual descriptions in clinically relevant
320 visual evidence, thereby reducing misdiagnosis, false positives, and false negatives while producing
321 more clinically factual outputs than prior approaches.
322

323 **Effect on Medical Data with Subtle Lesions** To evaluate the capacity of HDPO to capture fine-
324 grained lesion evidence, we construct subtle lesion subsets from SLAKE, VQA-RAD, IU-Xray, and
325 MIMIC-CXR using annotated segmentation masks. Lesions occupying less than 5% of the image
326 area are defined as small. We evaluated our method on these subsets separately. As shown in Table
327 2, HDPO achieves the largest performance gains in small-lesion cases relative to existing methods.
328 This improvement reflects the effectiveness of heatmap-guided data curation and preference fine-
329 tuning to improve the description of subtle abnormalities often overlooked by baselines. These
330 results underscore the clinical reliability of HDPO and its ability to mitigate hallucinations arising
331 from neglected or misinterpreted lesions.
332

324
 325 Table 1: Performance comparison on medical VQA and report generation tasks covering four radiology datasets: SLAKE, VQA-RAD, IU-Xray, and MIMIC-CXR. Recall is reported for open-ended
 326 questions (Open), and accuracy for closed-ended questions (Closed). The BLEU denotes the aver-
 327 age of BLEU-1/2/3/4. +SFT indicates that the model was first fine-tuned with SFT before applying
 328 the corresponding baselines.
 329

330 331 Models	332 SLAKE		333 VQA-RAD		334 IU-Xray			335 MIMIC-CXR		
	336 Open	337 Closed	338 Open	339 Closed	340 METEOR	341 BLEU	342 ROUGE-L	343 METEOR	344 BLEU	345 ROUGE-L
LLaVA-Med v1.5	44.26	61.30	29.24	63.97	14.56	10.31	10.95	10.25	9.38	7.71
+ Self-Rewarding	42.63	61.30	33.29	64.17	14.20	10.38	10.52	10.78	9.27	7.73
+ DPO	49.30	62.02	29.76	64.70	16.08	12.95	17.13	11.19	9.45	7.80
+ Povid	52.43	70.35	31.77	65.07	20.80	24.33	30.05	11.21	9.66	7.84
+ Sima	51.77	69.10	31.23	64.80	17.11	22.87	29.10	11.16	9.58	7.49
+ FiSAO	52.69	70.46	32.70	64.11	21.06	25.72	30.82	11.32	9.68	7.62
+ STLLaVA-Med	48.65	61.75	30.17	64.38	16.11	10.58	10.51	11.11	9.29	7.72
+ MMedPO	53.99	73.08	36.36	66.54	23.49	29.52	34.16	12.85	11.13	10.03
+ HDPO(Ours)	54.68	74.59	38.14	68.53	24.58	31.12	35.98	13.87	12.54	11.59
+ SFT	50.45	65.62	31.38	64.26	22.75	28.86	33.66	12.39	10.21	8.75
+ Self-Rewarding	50.62	65.89	32.69	65.89	22.89	28.97	33.93	12.15	10.05	8.77
+ DPO	53.50	69.47	32.88	64.33	23.07	29.97	34.89	12.37	10.38	9.10
+ Povid	52.18	70.67	32.95	64.97	23.95	29.75	34.63	11.85	10.45	9.05
+ Sima	51.75	69.28	32.50	64.08	23.90	29.41	34.45	12.44	10.25	9.02
+ FiSAO	52.80	70.82	32.94	65.77	23.57	29.88	35.01	12.97	10.69	9.39
+ STLLaVA-Med	52.72	66.69	33.72	64.70	22.79	28.98	34.05	12.21	10.12	8.98
+ MMedPO	55.23	75.24	34.03	67.64	24.00	30.13	35.17	13.28	13.22	10.20
+ HDPO(Ours)	55.47	75.17	35.41	67.54	24.49	30.37	35.86	13.69	13.94	12.97

348
 349 Table 2: Performance comparison on the full subtle-lesion subsets across four radiology datasets for
 350 medical VQA and report generation shows that HDPO achieves larger gains on subtle-lesion cases
 351 than state-of-the-art methods, highlighting its advantage in describing subtle abnormalities.

352 353 Models	354 SLAKE		355 VQA-RAD		356 IU-Xray			357 MIMIC-CXR		
	358 Open	359 Closed	358 Open	359 Closed	358 METEOR	359 BLEU	358 ROUGE-L	358 METEOR	359 BLEU	358 ROUGE-L
LLaVA-Med v1.5	43.89	59.14	31.11	62.67	12.59	9.67	9.84	8.51	7.99	6.12
+ MMedPO	51.64	70.26	34.57	64.00	21.84	27.51	31.69	10.85	8.98	8.07
+ HDPO(Ours)	53.97	73.41	37.17	67.79	23.46	29.97	33.82	12.67	11.03	10.42

358 4.3 ABLATION STUDY

360 Here, we performed ablation studies to evaluate the contribution of key components in our proposed
 361 framework—preference data curation, lesion-aware loss weighting, and heatmap source.

362 Table 3: Ablation studies for preference data curation strategy in HDPO.

363 misdiagnosis	364 false positive	365 false negtive	366 SLAKE	367 VQA-RAD	368 IU-Xray	369 MIMIC-CXR
✗	✗	✗	61.47	50.69	27.87	10.83
✓	✗	✗	62.57	52.41	29.11	11.73
✗	✓	✗	63.18	52.89	29.74	11.88
✗	✗	✓	63.57	53.04	30.02	12.09
✓	✓	✓	64.64	53.34	30.56	12.66

371 **Impact of Preference Data Curation Strategy.** To assess the role of different error types in
 372 preference data curation, we perform ablations by removing misdiagnoses, false positives, and false
 373 negatives. As shown in Table 3, excluding any single type consistently degrades performance across
 374 all four datasets. In particular, omitting false negatives yields the largest drop, suggesting that under-
 375 reporting errors are especially harmful in clinical scenarios. However, incorporating all three types
 376 of error achieves the highest scores, confirming that comprehensive modeling hallucination of mis-
 377 diagnosis, overlooked, and overdiagnosis provides the most effective supervision in Med-LVLM to
 improve both VQA accuracy and report factuality.

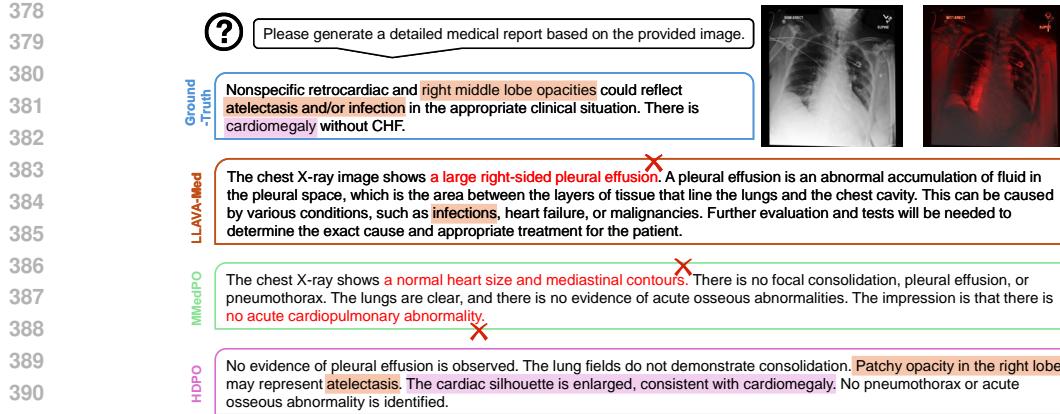


Figure 3: Illustration of HDPO’s ability of lesion-aware grounding, reduction of hallucinations, and improved clinical factuality.

Effect of Lesion-Aware Loss Weighting.

We further investigate the impact of lesion-aware weighting by setting $\lambda = 0$, which reduces our loss to the standard DPO formulation without focusing on clinically salient regions.

As shown in Table 4, this leads to a consistent performance degradation across all datasets, with drops of more than 2 points on SLAKE and IU-Xray. In contrast, HDPO loss achieves the best results on all benchmarks, confirming that weighting preference pairs according to the alignment of the lesion and keyword provides stronger supervision and is essential for learning reliable visual-textual associations in medical reasoning tasks.

Effect of Heatmap Source.

We also study the effect of different heatmap sources on HDPO.

As shown in Table 5, using GradCAM(Selvaraju et al., 2017), a CAM-based method, produces the weakest performance due to its coarse and often noisy activation maps. MedKLIP(Wu et al., 2023), which leverages attention-based attribution, provides stronger signals but still fails to locate the fine-grained lesion. In contrast, DAug-generated heatmaps deliver the most precise lesion-level supervision, resulting in significant improvements across all datasets (e.g., SLAKE 64.64 vs. 58.94 with GradCAM). Overall, the comparison demonstrates that accurate lesion attribution is essential for HDPO: while coarse heatmaps can only provide weak guidance, fine-grained lesion-aware maps allow the model to learn precise and clinically meaningful visual-textual associations, thereby improving both medical VQA and report generation tasks.

4.4 CASE STUDY

To further illustrate the effectiveness of HDPO in reducing hallucinations on subtle lesions and improving visual-text alignment, we present the representative case study on a chest X-ray image.

Visualization and Grounding.

In Figure 3, we show the original chest radiograph images alongside heatmaps. The heatmaps highlight lesion-aware regions, such as atelectasis, infection, and cardiomegaly, which correspond to the critical findings mentioned in the ground-truth reports. This visualization demonstrates the ability of a lesion-aware heatmap to ground textual outputs in the correct visual evidence, enhancing both interpretability and clinical reliability.

432 **Reduction of Hallucinations.** In Figure 3, LLaVA-Med erroneously reported a “large right-
 433 sided pleural effusion” while failing to detect the cardiomegaly present. Similarly, MMedPO mis-
 434 diagnosed “normal heart size and mediastinal contours” and overlooked lobe opacities. In contrast,
 435 HDPO avoided these hallucinations, accurately reporting “The cardiac silhouette is enlarged, consis-
 436 tent with cardiomegaly” and correctly identifying atelectasis from the observed opacity, supported
 437 by a precise lesion heatmap. Across multiple cases, HDPO consistently reduces spurious findings,
 438 particularly for subtle abnormalities, demonstrating its ability to capture clinical visual evidence.

439 **Improved Clinical Factuality.** HDPO further improves the specificity and clinical accuracy of
 440 its outputs. As shown in Figure 3, for cases with small lobe opacities, HDPO provides precise
 441 descriptions specifying the exact location, for example, “Patchy opacity in the right lobe,” while
 442 baseline methods often omit such details or produce vague, potentially misleading statements. By
 443 aligning the textual output with salient image regions, HDPO ensures accurate capture of critical
 444 diagnostic information, enhancing its utility for clinical decision support.

445 5 REALTED WORK

446 **Factuality in Med-LVLMs.** The rapid development of Large Vision Language Models (LVLMs)
 447 has accelerated progress in medical applications(Kurz et al., 2025; Xia et al., 2024c; Lin et al., 2025),
 448 demonstrating strong capabilities across diverse imaging modalities and clinical tasks(Ding et al.,
 449 2025; Yang et al., 2025; Wang et al., 2025a). Despite these advances, existing Med-LVLMs often
 450 struggle with factual consistency(Zhu et al., 2024; Chen et al., 2024; Gupta et al., 2024), failing to
 451 reason effectively in complex medical scenarios and generating hallucinated outputs unsupported by
 452 the corresponding images. Such errors compromise the reliability and safety of AI-assisted health-
 453 care, potentially causing misdiagnoses or missed pathologies. Recent benchmarking studies(Xia
 454 et al., 2024b;c; Zhu et al., 2024; Kurz et al., 2025) have highlighted these ongoing challenges in
 455 tasks such as medical VQA and report generation.

456 **Preference Optimization in Med-LVLMs.** Preference optimization is essential to develop effec-
 457 tive, safe, and trustworthy models while mitigating hallucinations in medical applications (Gorba-
 458 tovski et al., 2024; Gao et al., 2023; Xu et al., 2024). Standard approaches, such as RLHF (Ouyang
 459 et al., 2022), rely on human-labeled preference data to train a reward model, but this adds complex-
 460 ity and potential instability. Direct Preference Optimization (DPO) (Rafailov et al., 2023) simpli-
 461 fies training by fine-tuning directly on pairwise preference data without explicit reward modeling.
 462 MMedPO (Zhu et al., 2024) extends this to medical models using clinically relevant preferences,
 463 but focuses on coarse textual and visual alignment and can miss fine-grained pathological regions.
 464 To overcome this, we propose HDPO, a preference optimization framework designed to capture
 465 detailed disease-specific characteristics in medical images.

466 **Lesion-Aware-Heatmap Supervision for Assistance in Medical Imaging.** Medical image anal-
 467 ysis depends on subtle pathological cues, but global visual or textual preferences often overlook criti-
 468 cal lesions, resulting in hallucinations in Med-LVLM output. Incorporating visual attributions, such
 469 as class activation (Selvaraju et al., 2017) or attention maps (Wu et al., 2023) as supervision directs
 470 models to relevant regions, improving accuracy and interpretability. However, these approaches typ-
 471 ically produce coarse heatmaps. To address this, DAUG (Zhu et al., 2024) used generative models to
 472 generate lesion-level heatmaps. Motivated by the ability of lesion-level annotations to reduce local-
 473 ized hallucinations, we propose HDPO, which integrates lesion-aware supervision into preference
 474 data curation and fine-tuning to improve diagnostic factuality in Med-LVLMs.

475 6 CONCLUSION

476 In this work, we introduce Heatmap-informed Direct Preference Optimization (HDPO) to address
 477 the persistent issue of hallucinations in medical large vision-language models. By incorporating
 478 lesion-level heatmaps into both preference data construction and optimization, HDPO achieves fine-
 479 grained vision-language alignment and effectively reduces errors such as misdiagnosis, false pos-
 480 itives, and false negatives. Extensive experiments on four radiology datasets demonstrate the ef-
 481 fectiveness of our approach. HDPO consistently outperforms the latest baselines, particularly in
 482 medical data with subtle lesions. Beyond mitigating hallucinations, HDPO highlights the potential
 483 of integrating visual interpretability signals into preference-based training, paving the way for more
 484 reliable and reliable medical AI systems.

486 ACKNOWLEDGEMENT
487488 This work is supported by the National Key R&D Program of China (Grant No. 2024YFF0505703).
489490 LLM USE STATEMENT
491492 During the preparation of this paper, we used large language models (LLMs) solely for language
493 polishing. All content in the paper was developed and verified by the authors.
494495 REFERENCES
496497 Emily Alsentzer, John R Murphy, Willie Boag, Wei-Hung Weng, Di Jin, Tristan Naumann,
498 and Matthew McDermott. Publicly available clinical bert embeddings. *arXiv preprint*
499 *arXiv:1904.03323*, 2019.500 Satanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for mt evaluation with improved
501 correlation with human judgments. In *Proceedings of the acl workshop on intrinsic and extrinsic*
502 *evaluation measures for machine translation and/or summarization*, pp. 65–72, 2005.503 Jiawei Chen, Dingkang Yang, Tong Wu, Yue Jiang, Xiaolu Hou, Mingcheng Li, Shunli Wang,
504 Dongling Xiao, Ke Li, and Lihua Zhang. Detecting and evaluating medical hallucinations in
505 large vision language models. *arXiv preprint arXiv:2406.10185*, 2024.506 Veronika Cheplygina, Marleen De Bruijne, and Josien PW Pluim. Not-so-supervised: a survey of
507 semi-supervised, multi-instance, and transfer learning in medical image analysis. *Medical image*
508 *analysis*, 54:280–296, 2019.509 Chenhang Cui, An Zhang, Yiyang Zhou, Zhaorun Chen, Gelei Deng, Huaxiu Yao, and Tat-Seng
510 Chua. Fine-grained verifiers: Preference modeling as next-token prediction in vision-language
511 alignment. *arXiv preprint arXiv:2410.14148*, 2024.512 Dina Demner-Fushman, Marc D Kohli, Marc B Rosenman, Sonya E Shooshan, Laritza Rodriguez,
513 Sameer Antani, George R Thoma, and Clement J McDonald. Preparing a collection of radiol-
514 ogy examinations for distribution and retrieval. *Journal of the American Medical Informatics*
515 *Association*, 23(2):304–310, 2015.516 Meidan Ding, Jipeng Zhang, Wenxuan Wang, Haiqin Zhong, Xiaoqin Wang, Xinheng Lyu, Went-
517 ing Chen, and Linlin Shen. Eagle: Expert-guided self-enhancement for preference alignment
518 in pathology large vision-language model. In *Proceedings of the 63rd Annual Meeting of the*
519 *Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 14603–14619, 2025.520 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
521 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
522 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*
523 *arXiv:2010.11929*, 2020.524 Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
525 *International Conference on Machine Learning*, pp. 10835–10866. PMLR, 2023.526 Alexey Gorbatovski, Boris Shaposhnikov, Alexey Malakhov, Nikita Surnachev, Yaroslav Aksnov,
527 Ian Maksimov, Nikita Balagansky, and Daniil Gavrilov. Learn your reference model for real good
528 alignment. *arXiv preprint arXiv:2404.09656*, 2024.529 Shailja Gupta, Rajesh Ranjan, and Surya Narayan Singh. A comprehensive survey of retrieval-
530 augmented generation (rag): Evolution, current landscape and future directions. *arXiv preprint*
531 *arXiv:2410.12837*, 2024.532 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
533 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

540 Yutao Hu, Tianbin Li, Quanfeng Lu, Wenqi Shao, Junjun He, Yu Qiao, and Ping Luo. Omnimedvqa:
 541 A new large-scale comprehensive evaluation benchmark for medical lVLM. In *Proceedings of the*
 542 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 22170–22183, 2024.

543

544 Ying Jin, Zhuoran Zhou, Haoquan Fang, and Jenq-Neng Hwang. Daug: Diffusion-based channel
 545 augmentation for radiology image retrieval and classification. *arXiv preprint arXiv:2412.04828*,
 546 2024.

547 Alistair EW Johnson, Tom J Pollard, Nathaniel R Greenbaum, Matthew P Lungren, Chih-ying Deng,
 548 Yifan Peng, Zhiyong Lu, Roger G Mark, Seth J Berkowitz, and Steven Horng. Mimic-cxr-jpg, a
 549 large publicly available database of labeled chest radiographs. *arXiv preprint arXiv:1901.07042*,
 550 2019.

551 Christoph F Kurz, Tatiana Merzhevich, Bjoern M Eskofier, Jakob Nikolas Kather, and Benjamin
 552 Gmeiner. Benchmarking vision-language models for diagnostics in emergency and critical care
 553 settings. *npj Digital Medicine*, 8(1):423, 2025.

554

555 Wei Lan, Wenyi Chen, Qingfeng Chen, Shirui Pan, Huiyu Zhou, and Yi Pan. A survey of hallucina-
 556 tion in large visual language models. *arXiv preprint arXiv:2410.15359*, 2024.

557 Jason J Lau, Soumya Gayen, Asma Ben Abacha, and Dina Demner-Fushman. A dataset of clinically
 558 generated visual questions and answers about radiology images. *Scientific data*, 5(1):1–10, 2018.

559

560 Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang, Tristan Nau-
 561 man, Hoifung Poon, and Jianfeng Gao. Llava-med: Training a large language-and-vision as-
 562 sistant for biomedicine in one day. *Advances in Neural Information Processing Systems*, 36:
 563 28541–28564, 2023.

564 Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In *Text summarization
 565 branches out*, pp. 74–81, 2004.

566

567 Tianwei Lin, Wenqiao Zhang, Sijing Li, Yuqian Yuan, Binhe Yu, Haoyuan Li, Wanggui He, Hao
 568 Jiang, Mengze Li, Xiaohui Song, et al. Healthgpt: A medical large vision-language model for
 569 unifying comprehension and generation via heterogeneous knowledge adaptation. *arXiv preprint
 570 arXiv:2502.09838*, 2025.

571

572 Bo Liu, Li-Ming Zhan, Li Xu, Lin Ma, Yan Yang, and Xiao-Ming Wu. Slake: A semantically-
 573 labeled knowledge-enhanced dataset for medical visual question answering. In *2021 IEEE 18th
 574 international symposium on biomedical imaging (ISBI)*, pp. 1650–1654. IEEE, 2021.

575

576 Bo Liu, Ke Zou, Liming Zhan, Zexin Lu, Xiaoyu Dong, Yidi Chen, Chengqiang Xie, Jiannong Cao,
 577 Xiao-Ming Wu, and Huazhu Fu. Gemex: A large-scale, groundable, and explainable medical vqa
 578 benchmark for chest x-ray diagnosis. *arXiv preprint arXiv:2411.16778*, 2024.

579

580 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 581 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 582 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 583 27730–27744, 2022.

584

585 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
 586 evaluation of machine translation. In *Proceedings of the 40th annual meeting of the Association
 587 for Computational Linguistics*, pp. 311–318, 2002.

588

589 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 590 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 591 in neural information processing systems*, 36:53728–53741, 2023.

592

593 Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
 594 and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
 595 ization. In *Proceedings of the IEEE international conference on computer vision*, pp. 618–626,
 596 2017.

597

598 Guohao Sun, Can Qin, Huazhu Fu, Linwei Wang, and Zhiqiang Tao. Stllava-med: Self-training
 599 large language and vision assistant for medical. *arXiv e-prints*, pp. arXiv–2406, 2024.

594 Jinhong Wang, Tajamul Ashraf, Zongyan Han, Jorma Laaksonen, and Rao Mohammad Anwer.
 595 Mira: A novel framework for fusing modalities in medical rag. *arXiv preprint arXiv:2507.07902*,
 596 2025a.

597 Pengyu Wang, Shuchang Ye, Usman Naseem, and Jinman Kim. Mrgagents: A multi-agent frame-
 598 work for improved medical report generation with med-lvlms. *arXiv preprint arXiv:2505.18530*,
 599 2025b.

600 Xiyao Wang, Juhai Chen, Zhaoyang Wang, Yuhang Zhou, Yiyang Zhou, Huaxiu Yao, Tianyi
 601 Zhou, Tom Goldstein, Parminder Bhatia, Furong Huang, et al. Enhancing visual-language
 602 modality alignment in large vision language models via self-improvement. *arXiv preprint*
 603 *arXiv:2405.15973*, 2024.

604 Jürgen Weese and Cristian Lorenz. Four challenges in medical image analysis from an industrial
 605 perspective, 2016.

606 Julia Wolleb, Florentin Bieder, Robin Sandkühler, and Philippe C Cattin. Diffusion models for med-
 607 ical anomaly detection. In *International Conference on Medical image computing and computer-
 608 assisted intervention*, pp. 35–45. Springer, 2022.

609 Chaoyi Wu, Xiaoman Zhang, Ya Zhang, Yanfeng Wang, and Weidi Xie. Medklip: Medical knowl-
 610 edge enhanced language-image pre-training in radiology. *arXiv preprint arXiv:2301.02228*, 2023.

611 Peng Xia, Ze Chen, Juanxi Tian, Yangrui Gong, Ruibo Hou, Yue Xu, Zhenbang Wu, Zhiyuan Fan,
 612 Yiyang Zhou, Kangyu Zhu, et al. Cares: A comprehensive benchmark of trustworthiness in med-
 613 ical vision language models. *Advances in Neural Information Processing Systems*, 37:140334–
 614 140365, 2024a.

615 Peng Xia, Kangyu Zhu, Haoran Li, Tianze Wang, Weijia Shi, Sheng Wang, Linjun Zhang, James
 616 Zou, and Huaxiu Yao. Mmed-rag: Versatile multimodal rag system for medical vision language
 617 models. *arXiv preprint arXiv:2410.13085*, 2024b.

618 Peng Xia, Kangyu Zhu, Haoran Li, Hongtu Zhu, Yun Li, Gang Li, Linjun Zhang, and Huaxiu Yao.
 619 Rule: Reliable multimodal rag for factuality in medical vision language models. *arXiv preprint*
 620 *arXiv:2407.05131*, 2024c.

621 Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin Liu, Zhiyu Mei, Guangju Wang, Chao Yu,
 622 and Yi Wu. Is dpo superior to ppo for llm alignment? a comprehensive study. *arXiv preprint*
 623 *arXiv:2404.10719*, 2024.

624 Yan Yang, Xiaoxing You, Ke Zhang, Zhenqi Fu, Xianyun Wang, Jiajun Ding, Jiamei Sun, Zhou Yu,
 625 Qingming Huang, Weidong Han, et al. Spatio-temporal and retrieval-augmented modelling for
 626 chest x-ray report generation. *IEEE Transactions on Medical Imaging*, 2025.

627 Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason
 628 Weston. Self-rewarding language models. *arXiv preprint arXiv:2401.10020*, 3, 2024.

629 Ryad Zemouri, Noureddine Zerhouni, and Daniel Racoceanu. Deep learning in the biomedical
 630 applications: Recent and future status. *Applied Sciences*, 9(8):1526, 2019.

631 Yiyang Zhou, Chenhang Cui, Rafael Rafailev, Chelsea Finn, and Huaxiu Yao. Aligning modalities
 632 in vision large language models via preference fine-tuning. *arXiv preprint arXiv:2402.11411*,
 633 2024.

634 Kangyu Zhu, Peng Xia, Yun Li, Hongtu Zhu, Sheng Wang, and Huaxiu Yao. Mmedpo: Aligning
 635 medical vision-language models with clinical-aware multimodal preference optimization. *arXiv*
 636 *preprint arXiv:2412.06141*, 2024.

637

638

639

640

641

642

643

644

645

646

647