
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

INVERTED ACTIVATIONS: REDUCING MEMORY FOOT-
PRINT IN NEURAL NETWORK TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

The scaling of neural networks with increasing data and model sizes necessitates
the development of more efficient deep learning algorithms. A significant chal-
lenge in neural network training is the memory footprint associated with activa-
tion tensors, particularly in pointwise nonlinearity layers that traditionally save
the entire input tensor for the backward pass, leading to substantial memory con-
sumption. In this paper, we propose a modification to the handling of activa-
tion tensors in pointwise nonlinearity layers. Our method involves saving the
output tensor instead of the input tensor during the forward pass. Since the sub-
sequent layer typically also saves its input tensor, this approach reduces the to-
tal memory required by storing only one tensor between layers instead of two.
This optimization is especially beneficial for transformer-based architectures like
GPT, BERT, Mistral, and Llama. To enable this approach, we utilize the inverse
function of the nonlinearity during the backward pass. As the inverse cannot be
computed analytically for most nonlinearities, we construct accurate approxima-
tions using simpler functions. Experimental results demonstrate that our method
significantly reduces memory usage without affecting training accuracy or com-
putational performance. Our implementation is provided as a drop-in replace-
ment for standard nonlinearity layers in the PyTorch framework, facilitating easy
adoption without requiring architectural modifications. The code is available at
https://github.com/removed/for/anonimity.

1 INTRODUCTION

model = create_model_as_usual()
for layer in model.layers:

layer.act_fn = InvActGELU()
train_as_usual(model)

Listing 1: Pseudocode of hypothetical use of
our drop-in replacement for GELU that will
use less memory without any speed or quality
degradation. Exact memory gains for several
popular huggingface1models are presented in the
following table. Exact model setups are given
in appendix A.1.

Model Memory Saving

BERT −22.9%
Audio Spectral Transformer −24.0%
ViT −23.8%
CLIP −23.4%

The remarkable scaling of neural networks with
increasing data and model sizes has created a
continuous demand for training and deploying
larger models more efficiently. This necessity
drives the ongoing development of deep learn-
ing algorithms that are both computation and
memory-efficient.

A significant portion of memory consumption
during neural network training arises from ac-
tivation tensors, alongside model parameters
and optimizer statistics. Activation tensors
are stored during the forward pass to facilitate
gradient computations in the backward pass.
Even simple and computationally fast opera-
tions, such as pointwise nonlinearities, con-
tribute substantially to this memory footprint
by storing entire input tensors. In most popular
deep learning frameworks, pointwise nonlinear-
ities like GELU Hendrycks & Gimpel (2016)
and SiLU Elfwing et al. (2018) save the whole

1https://huggingface.co/models

1

https://github.com/removed/for/anonimity
https://huggingface.co/models


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

input tensor for the backward pass. This practice leads to considerable memory usage, especially in
transformer-based architectures where such activations are prevalent.

In this work, we propose a modification to the forward and backward passes of element-wise nonlin-
earity layers. Specifically, we suggest saving the output tensor instead of the input tensor during
the forward pass. Since the subsequent layer in the computation graph typically also saves its input
tensor, our approach ensures that only one tensor is stored between layers rather than two, effectively
reducing the memory footprint by nearly 25% in practice.

For a novel approach in implementing nonlinearity functions to gain widespread adoption, it should
ideally meet three key conditions:

1. The method should not introduce any additional computational error, ensuring that model
performance remains unaffected.

2. It should not slow down the model, maintaining or improving the speed of forward and
backward computations.

3. The approach should be user-friendly, meaning it can serve as a straightforward, drop-in
replacement for existing nonlinearity layers without requiring modifications to the architec-
ture or specific tuning of adjacent layers.

For example, highly optimized building blocks like Triton NVIDIA Corporation or CUDA-based
GeGLU implementations for models such as Llama and Mistral, or efficiently fused MLP blocks for
transformer architectures, can offer significant speed and/or memory advantages, but are applicable
to a very narrow range of use cases. In contrast, for general research purposes and R&D, truly
versatile layers are highly desirable. In this paper, we demonstrate that our proposed method meets
all three of these criteria, making it a promising candidate for broader adoption in deep learning
systems.

We implemented this approach as a drop-in replacement for standard nonlinearity layers within the
PyTorch Ansel et al. (2024) framework, ensuring seamless integration for researchers and practition-
ers without the need for architectural modifications. In Listing 1, we illustrate the straightforward
integration of our nonlinearity layers into existing pipelines, which requires only the substitution of
standard nonlinearities with our InvAct (Inverted Activation) layers, without the need for additional
modifications to the architecture or hyperparameters.

2 METHOD

Background Knowledge. The computation graph during neural network training can be expressed
as a series of operations fi, each of which transforms an input tensor X(i) into an output tensor
X(i+1). This output tensor subsequently serves as the input for the next operation in the computation
graph:

. . .→ X(i) fi−→ X(i+1) → . . .→ L.

Here, L is the final loss that is optimized using gradient descent. Each operation stores some addi-
tional information S(i), referred to as activation tensors, for the backward pass. During the backward
pass, these activation tensors are used to compute the gradient of the loss L with respect to all inter-
mediate tensors of the computation:

. . .← ∂L

∂X(i)

gradient fi,S(i)

←−−−−−−−− ∂L

∂X(i+1)
← ∂L

∂L
.

For pointwise nonlinearity layers, the forward computation fi is simply the element-wise application
of a function f : R→ R to the input tensor X(i):

X
(i+1)
j1,...,jk

= f
(
X

(i)
j1,...,jk

)
, (1)

while the backward computation is the Hadamard product of the gradient with respect to the output
tensor and the derivative of f evaluated at the input tensor:

∂L

∂X(i)
=

∂L

∂X(i+1)
⊙ f ′

(
X(i)

)
. (2)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

1 def forward(X):
2 S = X < T
3 Y = f(X)
4 save_for_backward(Y, S)
5 return Y
6

7 def backward(dY):
8 Y, S = saved_for_backward()
9 return dY * f‘(f−1(Y, S))

Listing 2: Pseudocode of inverted activation
approach for forward and backward passes of
pointwise nonlinearity layer. Boolean array S
should be saved in an optimal way (1 bit per
element) to achieve memory footprint reduction.

T
C = f(T)

left monotonous part

right monotonous part
f
separation point
of two
monotonous parts

Figure 1: Two monotonous parts of the
GELU or SiLU nonlinearity function, each
being an invertible function.

Here, f ′ (X(i)
)

is computed element-wise, similarly to Eq. (1).

Since both Eq. (1) and Eq. (2) are applied independently to each element of the corresponding
tensors, we can simplify the notation by letting x ∈ R represent an input element of the nonlinearity
and y ∈ R represent the corresponding output:

y = f(x),
∂L

∂x
=

∂L

∂y
f ′(x). (3)

It is evident that to perform the backward computation in Eq. (2) efficiently, one can store the entire
input tensor X(i) as an activation tensor S(i). This approach is adopted by most popular deep
learning frameworks, such as PyTorch and Jax, for nonlinearity layers like GELU and SiLU, which
are widely used in transformer-based neural networks.

Inverted Activation. In this work, we propose modifying the forward and backward computations
to save the output tensor X(i+1) instead of the input tensor X(i). If the subsequent layer after the
pointwise nonlinearity also saves its input tensor, the two layers together will only store one tensor
instead of two, thereby significantly reducing the overall memory footprint.

The backward computation in Eq. (3) can be rewritten as:

∂L

∂x
=

∂L

∂y
f ′(x) =

∂L

∂y
f ′ (f−1(y)

)
.

Here, f−1 is the inverse function of the nonlinearity f , which gives our method its name: Inverted
Activations (or InvAct for short).

Space-efficient Boolean Indicator. Both GELU and SiLU are non-invertible functions, but they
consist of two monotonic parts, each of which is individually invertible. Thus, we can save additional
information during the forward pass – a Boolean indicator that specifies whether each element of the
input tensor belongs to the first monotonic part or the second part, which helps disambiguate f−1:

s =

{
1 if x < T

0 otherwise
(4)

Here, T is the point of separation between the two monotonic halves (see Fig. 1 for a graphical
explanation). It is possible to store the tensor S in a space-efficient Boolean array, where each
element requires only 1 bit of memory. In our implementation, we achieve this by storing the
Boolean array S in a tensor Scompressed with the data type ‘uint8‘, in which S[i] corresponds to the (i
mod 8)-th bit of the (i÷ 8)-th element:

S[i] = Scompressed [i÷ 8]≫ (i mod 8) .

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

G
E

L
U

0.15 0.10 0.05 0.00
y

0.10

0.05

0.00

va
lu

e

x < T

f ′ f 1

qleft

error

0 5 10
y

0.0

0.5

1.0

va
lu

e

x T

f ′ f 1

qright

error

10 0 10
x

0.0

0.5

1.0

va
lu

e

f ′

q
error

0.0

0.5

1.0

1.5

er
ro

r

1e 2

0.0

0.5

1.0

1.5

er
ro

r

1e 2

0.0

0.5

1.0

1.5

er
ro

r

1e 2

Si
L

U

0.2 0.1 0.0
y

0.100

0.075

0.050

0.025

0.000

va
lu

e

x < T

f ′ f 1

qleft

error

0 5 10
y

0.00

0.25

0.50

0.75

1.00

va
lu

e

x T

f ′ f 1

qright

error

10 0 10
x

0.0

0.5

1.0

va
lu

e

f ′

q
error

1

0

er
ro

r

1e 3

0

2

er
ro

r

1e 3

0

2

er
ro

r

1e 3

Figure 2: Derivative of the nonlinearity and its approximation in two coordinate systems: plotted as
a function of the output variable y (left two columns) and the input variable x (right column). The
y-based representation highlights how equations Eqs. (5) to (8) approximate the respective regions
of f ′(f−1(y)). The x-based representation, in turn, helps assess the approximation quality of the
layer baased on how it is used in a neural network context.

Here,≫ denotes the bitwise right shift, and & denotes the bitwise AND operation. Pseudocode for
the resulting pointwise nonlinearity layer can be found in Section 2.1.

Approximation. Both GELU and SiLU are complex functions, and to the best of our knowledge,
neither their inverses f−1 nor f ′ ◦ f−1 can be analytically derived. Therefore, we propose to use
approximations based on simple base functions, similar to the fast GELU approximation Hendrycks
& Gimpel (2016).

There are many decisions to be made when constructing the approximation for f ′ ◦ f−1: whether to
approximate only f−1 and evaluate f ′ in the standard way, or to approximate f ′ ◦ f−1 as a whole;
which primitive functions to use; what form the approximation should take; and how to balance
complexity and accuracy. In this work, we chose to approximate f ′ ◦ f−1 as a whole. The resulting
approximation is highly accurate – so much so that the training process using our approximation is
indistinguishable from training with the original nonlinearity layer, as we will demonstrate in our
experiments in Section 3.

For GELU we use the following approximations:

x < T ⇒ f ′ (f−1(y)
)
≈ qleft(y) = c0

√
y + c1 ∗ (2y + c2

√
−y)(|c3y2 + |c4y + c5|+ c6|+ c7),

(5)

x ≥ T ⇒ f ′ (f−1(y)
)
≈ qright(y) = 1 +

(
c0 + c1

√
ỹ + c2ỹ

)
ec3(c4−ỹ)3 , where ỹ = y − f(T ).

(6)

For SiLU we use the following approximations:

x < T ⇒ f ′ (f−1(y)
)
≈ qleft(y) =

(
c0 + c1

√
ỹ + c2ỹ + c3ỹ

2
)
∗ (1− y) + y, (7)

x ≥ T ⇒ f ′ (f−1(y)
)
≈ qright(y) =

(
1 +

(
c0 + c1

√
ỹ + c2ỹ

)
ec3(c4−ỹ)3

)
∗ (1− y) + y, (8)

where ỹ = y − f(T ) (9)

The coefficients ci are precomputed and fine-tuned specifically for each function (GELU or SiLU)
and each approximation region (x < T or x ≥ T ). All coefficient values used in this work are
provided in appendix A.2. In Fig. 2, we illustrate the functions f ′(f−1(y)) for x < T and x ≥ T ,
along with their respective approximations qleft and qright. The plots also show the approximation
errors, defined as f ′(f−1(y))− qleft(y) for x < T and f ′(f−1(y))− qright(y) for x ≥ T .

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

It is important to note that the presented approximations are not necessarily the most optimal or
minimal representations of f ′(f−1(y)). As we are not experts in constructing such approximations,
it is possible that simpler, more accurate, and computationally efficient alternatives exist, which
could further enhance the performance of InvAct. Nonetheless, our current approximations are well-
suited for the specific task at hand, as demonstrated by their effectiveness, accuracy and speed in the
experiments detailed in Section 3.

2.1 ALTERNATIVES TO BIT-COMPRESSED BOOLEAN INDICATOR

An essential component for inverting nonlinearities such as GELU or SiLU is an indicator function
that identifies which monotonic part the original x belongs to. Currently, we store this information
in a space-efficient, bit-compressed Boolean tensor, where each Boolean value occupies only 1 bit
of memory. In this section, we will discuss two alternative methods for storing this information
without requiring even 1 bit per element.

Sign-bit Inverted Activation. Both GELU and SiLU functions are bounded, which means there
exists some constant C (see Fig. 1) such that for all x, f(x) ≥ C, where f represents either the
GELU or SiLU function. This implies that the value f(x) − C is always greater than zero. Instead
of storing f(x) for the backward pass, we can store f(x) − C with its sign bit modified according
to the indicator function s (see Eq. (4)).

For most popular floating-point formats used in deep learning, such as float32, float16, and bfloat16,
the sign bit is the last bit of a floating-point number. This approach allows us to eliminate the need
for additional memory to store the 1 bit per element for the indicator function, making the entire
nonlinearity layer memory-free in terms of footprint. The modified value y = f(x) does not pose
an issue for subsequent computations, as C is a predefined global constant for a given activation
function. For example, the computation for an activation function followed by a fully-connected
linear layer can be expressed as follows:

1 N # number of bits in floating point data type
2 C # minimum of activation function f
3 def forward(X, W_linear):
4 S = X < T
5 Y = f(X) - C
6 Y = (Y & (~(1 << N))) | (S << N) # sets sign bit of tensor Y
7 # to indicator function S
8 save_for_backward(Y)
9

10 return (Y + C) @ W_linear
11

12 def backward(dY, W_linear):
13 Y = saved_for_backward()
14 S = Y & (1 << N)# extracts indicator function from last bit of tensor Y
15 Y = Y ^ S # reverts sign bit of tensor Y back to zero
16 dW = (Y + C).T @ dY
17 dX = dY * f‘(f−1(Y + C, S))
18 return dY, dW

Here, the forward pass takes the input tensor X and the matrix Wlinear of the fully-connected linear
layer and returns f(X) ·Wlinear.

Unfortunately, to the best of our knowledge, it is not possible to implement such a layer in PyTorch
that works independently of what comes after the nonlinearity function, meaning that you would
have to write a custom implementation for each new architectural block. As a result, the sign-bit
approach does not satisfy condition 3 outlined in the Introduction (see Section 1), and thus we do
not consider it a viable candidate for broad adoption.

Precision Bit Inverted Activation. The second approach to store the indicator function s (see
Eq. (4)) is to use the lowest precision bit of a floating-point number (for most popular floating-point
data types, this is the first bit in a base-2 representation). During the forward pass, we compute
y = f(x) and modify this bit of y to be equal to s (see Eq. (4)).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Compared to the previous approach, this method does not violate condition 3, as it allows for a conve-
nient drop-in replacement for classical activation functions on all modern deep learning frameworks.
However, it is more challenging to evaluate the accuracy of this approach. Both the standard inverted
activation and the sign-bit inverted activation perform the forward pass exactly and introduce only a
minimal approximation error during the backward pass. This method, on the other hand, sacrifices
one precision bit for the pointwise nonlinearity computation during the forward pass. Moreover,
with the ongoing trend of reducing floating-point precision, loss of accuracy may become larger in
the future. For this reason, we do not consider it a viable candidate for broad adoption at this time,
as it requires extensive experimentation to validate its accuracy. However, we still regard it as an
interesting approach that may find applications in the future.

This is a pseudocode for the forward and backward passes of this approach:
1 def forward(X):
2 S = X < T
3 Y = f(X)
4 Y = (Y & (~1)) | S
5 save_for_backward(Y)
6

7 return Y
8

9 def backward(dY):
10 Y = saved_for_backward()
11 S = Y & 1 # extracts indicator fucntion from last bit of tensor Y
12 return dY * f‘(f−1(Y, S))

3 EXPERIMENTS

The validation of our method’s efficiency is two-fold:

1. We compare the computational efficiency of the forward and backward passes of our in-
verted activation nonlinearity layer in various settings.

2. We demonstrate that the approximation of the nonlinearity gradient does not affect the
quality of gradient descent during training.

With these results, we can confidently assert that inverted nonlinearity layers can be safely used in
practice to reduce the memory required for training neural networks without any speed or accuracy
degradation. All tests and measurements were performed on a single NVIDIA A100 GPU.

3.1 COMPUTATIONAL EFFICIENCY

In this section, we compare the computational efficiency of PyTorch Ansel et al. (2024) nonlinearity
layers with our Triton-based NVIDIA Corporation implementations of inverted activation nonlinear-
ities. We conduct three groups of tests (with detailed setups presented in appendix A.3):

1. Application of nonlinearity to a tensor.
2. Application of several layers, one of which is a nonlinearity layer. For this purpose, we

selected several popular building blocks of modern neural networks:
• Linear layer + nonlinearity
• Transformer MLP block: Linear layer + nonlinearity + Linear layer
• GeGLU Shazeer (2020): Hadamard product of a linear layer + nonlinearity with an-

other linear layer
3. Full neural network training iterations for the following popular network architectures:

• BERT
• Llama v3.1 8B

The corresponding measurements are presented in table 1. The results indicate that the difference
in computational efficiency between our inverted activation nonlinearity layer and the standard non-
linearity layer within various architectural blocks (such as MLP, Linear + activation, or GeGLU) is

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

less than 1%. Furthermore, for full-scale neural networks like BERT and Llama, this difference is
even more negligible, being less than 0.1%.

Torch (ms) InvAct (ms) Precision Bit InvAct (ms)

Plain GELU 0.82 0.86 (+5.75%) 0.86 (+4.96%)

Linear + GELU 11.78 11.80 (+0.13%) 11.79 (+0.06%)
Tranformer MLP Block 75.41 75.46 (+0.06%) 75.41 (−0.00%)
GeGLU 94.08 94.13 (+0.05%) 94.09 (+0.00%)

BERT 1112.12 1112.62 (+0.05%) 1112.25 (+0.01%)
Llama3.1-8b 182.84 182.94 (+0.06%) 182.80 (−0.02%)

Table 1: Comparison of computation time (in milliseconds) for different activation function imple-
mentatoins and neural network architectures. We compare following architecture blocks: plain non-
linearity layer, fully-connected layer with nonlinearity, Transformer MLP block, GeGLU Shazeer
(2020), BERT Devlin et al. (2019) model, Llama3.1-8b model. For each architecture block we com-
pare following activation functions: torch GELU, our inverted activation and precision-bit inverted
activation. We show difference in percents w.r.t. torch nonlinearity. Our layer is lower then 1%
slower compared to torch nonlinearity inside some computation block, and lower then 0.1% slower
inside BERT and Llama.

3.2 EFFECT OF THE APPROXIMATION ERROR

0 20 40 60 80 100
Iteration

1.4

1.6

1.8

Tr
ai

ni
ng

 L
os

s Torch
InvAct

1900 1920 1940 1960 1980 2000
Iteration

1

2

Tr
ai

ni
ng

 L
os

s Torch
InvAct

0 500 1000 1500
Iteration

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25
Va

lid
at

io
n 

Lo
ss

Torch
InvAct

0 20 40 60 80 100
Iteration

1.00

1.25

1.50

1.75

Tr
ai

ni
ng

 L
os

s

Torch
InvAct

1900 1920 1940 1960 1980 2000
Iteration

0.5

1.0

Tr
ai

ni
ng

 L
os

s Torch
InvAct

Figure 3: Comparison of BERT model fine-tuning with original and inverted GELU activations.
The first row (except the rightmost column) compares two runs with Torch GELU and inverted
GELU using identical random seeds. The second row shows losses averaged across 16 runs for each
activation function. The leftmost column displays the training loss during the first 100 iterations.
The middle column shows the training loss during the last 100 iterations out of a total of 2000. The
rightmost column compares the validation losses. The observed losses, both training and validation,
are nearly identical, with any discrepancies attributable to minor approximation inaccuracies that
are absolutely insignificant and negligible for practical purposes.

In this section, we investigate the impact of our approximation method on the training process and
final model performance. To evaluate this, we conducted experiments using two popular neural
network architectures: BERT and Llama. We trained these models on standard benchmark tasks
using both the original PyTorch GELU activation function and our approximated inverted GELU
function for BERT, as well as the PyTorch SiLU activation function and our approximated inverted
SiLU function for Llama.

For BERT, we fine-tuned the model on the Yelp Review dataset Yelp (2020) for sentiment classifica-
tion. We compared the training process of models using both the original GELU activation function
and our inverted GELU activation. Comparisons of the training and validation losses are presented
in Fig. 3. We observe that the approximation inaccuracy of the inverted activation does not affect
BERT’s training quality, as both training and validation losses are nearly indistinguishable over all

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

0 20 40 60 80 100
Iteration

0.0

2.5

5.0

7.5

Tr
ai

ni
ng

 L
os

s Torch
InvAct

1900 1920 1940 1960 1980 2000
Iteration

0.5

1.0

1.5

Tr
ai

ni
ng

 L
os

s Torch
InvAct

0 500 1000 1500
Iteration

0.76

0.78

0.80

0.82

0.84

Va
lid

at
io

n 
Lo

ss

Torch
InvAct

0 20 40 60 80 100
Iteration

0.0

2.5

5.0

7.5

Tr
ai

ni
ng

 L
os

s Torch
InvAct

1900 1920 1940 1960 1980 2000
Iteration

0.5

1.0

1.5

Tr
ai

ni
ng

 L
os

s Torch
InvAct

Figure 4: Same as Fig. 3, but for the Llama v3.1 8B model with SiLU nonlinearity. The first
row (except the rightmost column) compares two runs with Torch SiLU and inverted SiLU using
identical random seeds. The second row shows losses averaged across 16 runs for each activation
function. The leftmost column displays the training loss during the first 100 iterations. The middle
column shows the training loss during the last 100 iterations out of a total of 2000. The rightmost
column compares the validation losses. The observed losses, both training and validation, are nearly
identical, with any discrepancies attributable to minor approximation inaccuracies that are absolutely
insignificant and negligible for practical purposes.

2000 steps of the training process. The variance produced by different random seeds is significantly
larger than any difference between the two activation functions, suggesting that any discrepancies
are negligible and on par with machine precision.

We extended this experiment to a significantly larger model, Llama v3.1 8B Dubey et al. (2024),
which uses a different activation function – SiLU. We fine-tuned a 4-bit quantized version with
LoRA Hu et al. (2022) using ORPO on a combination of DPO datasets2. The results for Llama
training, presented in Fig. 4, show an even closer match between the original SiLU activation and
our inverted SiLU activation compared to the BERT experiment. The training and validation losses
are virtually indistinguishable throughout the entire training process. This remarkable similarity
further supports our conclusion that the approximation inaccuracy of the inverted activation has a
negligible impact on training quality and final model performance.

Based on this comparison of model training using original and inverted activations, we can conclude
that the approximation inaccuracy of the InvAct does not affect training quality in any way. Com-
bined with the speed measurements presented in Section 3.1, we can state that the inverted activation
nonlinearity layer is a perfect drop-in replacement for GELU and SiLU activation functions.

Furthermore, the seamless integration of our method into existing architectures – without requiring
any modifications to pipelines, code, or hyperparameters – highlights its potential for widespread
adoption in various deep learning applications. The ability to reduce memory requirements with-
out compromising model accuracy or training dynamics makes our inverted activation approach a
promising tool for researchers and practitioners working with memory-intensive models, especially
in resource-constrained environments.

3.3 COMPARISON WITH FEWBIT

Another method that reduces the memory required by pointwise nonlinearities is FewBit Novikov
et al. (2023), a gradient quantization method that saves a quantized version of the nonlinearity gra-
dient. FewBit with one bit per element suffers from a considerable accuracy drop, as demonstrated
in Fig. 5. The authors report that using 4-bit quantization, which requires four times more memory
compared to our standard InvAct implementation, FewBit does not show any performance degrada-
tion. However, even in that setting, our approach is superior: the approximation of f ′(f−1(x)) is
much more accurate than FewBit quantization up to 8 bits! We show L2 and L∞ approximation
errors for FewBit and InvAct in Fig. 5, and our approach demonstrates significantly better approxi-
mation quality, even when compared to FewBit using 8 times more bits per element.

2https://huggingface.co/datasets/mlabonne/orpo-dpo-mix-40k

8

https://huggingface.co/datasets/mlabonne/orpo-dpo-mix-40k


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

0 500 1000 1500
Iteration

0.8

0.9

1.0

1.1

1.2

1.3
Va

lid
at

io
n 

Lo
ss

BERT
Torch
InvAct
FewBit

0 500 1000 1500
Iteration

0.76

0.78

0.80

0.82

0.84

Va
lid

at
io

n 
Lo

ss

Llama v3.1 8B
Torch
InvAct
FewBit

2 4 6 8
# bits

10 2

10 1

Er
ro

r

FewBit
FewBit

2 4 6 8
# bits

10 1

Er
ro

r FewBit
InvAct

Figure 5: Comparison of InvAct (our) nonlinearity layer with the FewBit Novikov et al. (2023) non-
linearity layer. The two left plots show the validation loss for fine-tuning BERT and Llama v3.1
8B, respectively. The BERT model uses the GELU nonlinearity, while the Llama model uses the
SiLU nonlinearity. FewBit is used with a 1-bit per element memory budget to match the memory
footprint of InvAct. The FewBit approach exhibits significantly worse validation loss, while our
InvAct approach is indistinguishable from the standard Torch nonlinearity. The right column shows
the L2 approximation error (top plot) and L∞ approximation error (bottom plot) for FewBit GELU
with respect to the number of bits used in gradient quantization (blue line), compared to the approxi-
mation quality of InvAct (red dashed line). Our approach always uses only 1 bit per element. InvAct
demonstrates superior approximation quality, even when compared to 8-bit FewBit GELU (y-axis is
in logarithmic scale).

4 RELATED WORK

The efficient scaling of neural, has necessitated innovations in low-precision training, quantization
techniques, and various compression methods. These approaches address computational and mem-
ory bottlenecks, enabling the training of ever-larger models on hardware-limited resources.

Quantization methods aim to compress neural network weights and activations by representing
them in lower-precision formats, such as 4-bit integers. One can quantize model weights Jacob et al.
(2018); Zafrir et al. (2019); Gholami et al. (2021) or activations that are saved for backward Chen
et al. (2021); Novikov et al. (2023). Former are used more in during inference, but approaches
to utilize it during training are also exist Liu et al. (2024); Shao et al. (2024); Xu et al. (2024).
These methods are especially popular for the fine-tuning stage of training, where reducing memory
usage without extensive retraining is crucial. While quantization effectively decreases the memory
footprint, it can introduce computational inaccuracies. As a result, these errors lead to degradation
in model performance, making the balance between memory savings and maintaining model quality
a key consideration when applying quantization.

Low-precision training techniques have emerged as another powerful approach to reducing both
the memory and computational requirements of large-scale models Micikevicius et al. (2018). One
widely adopted format is bfloat16 Kalamkar et al. (2019), which retains a wider range of values
compared to traditional FP16 while providing faster computation and reduced memory consump-
tion. More recently work towards even lower precision training in float8 formats have also been
explored Wang et al. (2018) for their potential to further reduce memory and computational de-
mands. These formats are particularly attractive for their extreme compression capability, though
their usage requires careful consideration to avoid significant accuracy loss. Moreover, widespread
adoption of these lower precision formats relies heavily on GPU manufacturers integrating support
for them directly into hardware. Until this support is in place, these formats remain experimental
and difficult to implement at scale.

Custom CUDA and Triton implementations Unsloth (2023); Hsu et al. (2024) have become
essential for optimizing critical building blocks in popular architectures, significantly improving
memory efficiency and computational speed. For instance, highly fused implementations of MLP
blocks Müller et al. (2021) or optimized GeGLU layers are widely used to reduce the overhead of
separate operations by merging them into a single, streamlined kernel. Another prominent example

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

is FlashAttention Dao (2024), which significantly improves the efficiency of attention mechanisms
by reducing memory bottlenecks while maintaining performance. These custom kernels, often de-
veloped in CUDA or Triton, enable fine-grained optimizations tailored to specific hardware architec-
tures, providing substantial performance improvements. However, the development of such highly
optimized components demands significant engineering effort and a deep understanding of both the
underlying hardware and neural network operations. Each optimization, whether in matrix multipli-
cations, element-wise operations, or memory management, requires meticulous custom work, and
the resulting implementations are typically neural netowrk architecture-specific. Despite the com-
plexity, continuous innovation in these low-level building blocks is critical, as it provides massive
improvements in memory usage and training speed, making it possible to push the boundaries of
model scaling and performance.

5 LIMITATIONS

It is important to note that inverted nonlinearities save memory only when the next layer after the
nonlinearity also saves its input for the backward pass. Fortunately, this behavior is common in most
popular neural network architectures, such as transformers.

Additionally, our method reduces memory usage only for nonlinearity layers. The percentage of
memory savings depends on the architecture in use. Furthermore, the presence of complemen-
tary techniques may impact these gains. For instance, when training models with checkpoint-
ing Griewank & Walther (2000), the memory bottleneck could shift between activations saved dur-
ing the forward pass and activations recomputed during the backward pass, potentially affecting the
benefits of our approach.

Despite these limitations, our highly efficient implementation of inverted activations within the Py-
Torch framework using Triton kernels makes us confident that our method will see broad adoption.
We believe that it will prove invaluable to deep learning practitioners who seek to reduce memory
usage without compromising speed order and model accuracy.

6 CONCLUSION

In this work, we presented an innovative method to reduce the memory footprint during neural
network training by modifying how activation tensors are saved for backward passes in pointwise
nonlinearity layers. By saving the output tensor instead of the input tensor, we significantly de-
creased the memory requirements for transformer-based architectures such as GPT, BERT, Mistral,
and Llama.

Our proposed method includes the development of a space-efficient Boolean indicator to handle the
non-invertible nature of these functions, enabling a practical implementation within the PyTorch
framework. Additionally, we introduced accurate approximations for the derivatives of the inverse
functions of GELU and SiLU, ensuring that training performance remains unaffected while achiev-
ing substantial memory savings.

The experiments and approximations demonstrated the feasibility and effectiveness of our approach,
with results showing that the training process using our modified nonlinearity layers is indistinguish-
able from using the original layers in terms of accuracy.

We set out to meet three key criteria for a successful replacement of standard nonlinearity layers:
maintaining model speed, preserving model accuracy, and ensuring ease of use. Our proposed
method satisfies all three conditions. It does not slow down the neural network, it does not degrade
model quality, and it is extremely easy to integrate, making memory savings essentially "free."

We have implemented this method for the PyTorch framework, and the code is available at https:
//github.com/removed/for/anonimity.

REFERENCES

Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky,
Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will

10

https://github.com/removed/for/anonimity
https://github.com/removed/for/anonimity


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Constable, Alban Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael
Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos,
Mario Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, CK Luk, Bert Maher, Yunjie Pan, Chris-
tian Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Michael Suo,
Phil Tillet, Eikan Wang, Xiaodong Wang, William Wen, Shunting Zhang, Xu Zhao, Keren Zhou,
Richard Zou, Ajit Mathews, Gregory Chanan, Peng Wu, and Soumith Chintala. PyTorch 2: Faster
Machine Learning Through Dynamic Python Bytecode Transformation and Graph Compilation.
In 29th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2 (ASPLOS ’24). ACM, April 2024. doi: 10.1145/3620665.3640366.
URL https://pytorch.org/assets/pytorch2-2.pdf.

Jianfei Chen, Lianmin Zheng, Zhewei Yao, Dequan Wang, Ion Stoica, Michael W. Mahoney,
and Joseph Gonzalez. Actnn: Reducing training memory footprint via 2-bit activation com-
pressed training. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th Interna-
tional Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, vol-
ume 139 of Proceedings of Machine Learning Research, pp. 1803–1813. PMLR, 2021. URL
http://proceedings.mlr.press/v139/chen21z.html.

Miles D. Cranmer. Interpretable machine learning for science with pysr and symbolicregression.jl.
CoRR, abs/2305.01582, 2023. doi: 10.48550/ARXIV.2305.01582. URL https://doi.org/
10.48550/arXiv.2305.01582.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In
The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
mZn2Xyh9Ec.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–
4186. Association for Computational Linguistics, 2019. doi: 10.18653/V1/N19-1423. URL
https://doi.org/10.18653/v1/n19-1423.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
son, Graeme Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Ko-
revaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,
Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-
wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. The
llama 3 herd of models. CoRR, abs/2407.21783, 2024. doi: 10.48550/ARXIV.2407.21783. URL
https://doi.org/10.48550/arXiv.2407.21783.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network func-
tion approximation in reinforcement learning. Neural Networks, 107:3–11, 2018. doi: 10.1016/J.
NEUNET.2017.12.012. URL https://doi.org/10.1016/j.neunet.2017.12.012.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. CoRR, abs/2103.13630,
2021. URL https://arxiv.org/abs/2103.13630.

11

https://pytorch.org/assets/pytorch2-2.pdf
http://proceedings.mlr.press/v139/chen21z.html
https://doi.org/10.48550/arXiv.2305.01582
https://doi.org/10.48550/arXiv.2305.01582
https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=mZn2Xyh9Ec
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.1016/j.neunet.2017.12.012
https://arxiv.org/abs/2103.13630


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Andreas Griewank and Andrea Walther. Algorithm 799: revolve: an implementation of checkpoint-
ing for the reverse or adjoint mode of computational differentiation. ACM Trans. Math. Softw.,
26(1):19–45, 2000. doi: 10.1145/347837.347846. URL https://doi.org/10.1145/
347837.347846.

Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities and stochastic regularizers with gaussian
error linear units. CoRR, abs/1606.08415, 2016. URL http://arxiv.org/abs/1606.
08415.

Pin-Lun Hsu, Yun Dai, Vignesh Kothapalli, Qingquan Song, Shao Tang, and Siyu Zhu. Liger-kernel:
Efficient triton kernels for llm training, 2024. URL https://github.com/linkedin/
Liger-Kernel.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In The Tenth Inter-
national Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew G. Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In 2018 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pp. 2704–
2713. Computer Vision Foundation / IEEE Computer Society, 2018. doi: 10.1109/CVPR.
2018.00286. URL http://openaccess.thecvf.com/content_cvpr_2018/html/
Jacob_Quantization_and_Training_CVPR_2018_paper.html.

Dhiraj D. Kalamkar, Dheevatsa Mudigere, Naveen Mellempudi, Dipankar Das, Kunal Banerjee,
Sasikanth Avancha, Dharma Teja Vooturi, Nataraj Jammalamadaka, Jianyu Huang, Hector Yuen,
Jiyan Yang, Jongsoo Park, Alexander Heinecke, Evangelos Georganas, Sudarshan Srinivasan,
Abhisek Kundu, Misha Smelyanskiy, Bharat Kaul, and Pradeep Dubey. A study of BFLOAT16
for deep learning training. CoRR, abs/1905.12322, 2019. URL http://arxiv.org/abs/
1905.12322.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. LLM-QAT: data-free quantization aware
training for large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.),
Findings of the Association for Computational Linguistics, ACL 2024, Bangkok, Thailand and
virtual meeting, August 11-16, 2024, pp. 467–484. Association for Computational Linguistics,
2024. doi: 10.18653/V1/2024.FINDINGS-ACL.26. URL https://doi.org/10.18653/
v1/2024.findings-acl.26.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory F. Diamos, Erich Elsen, David García,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed
precision training. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net,
2018. URL https://openreview.net/forum?id=r1gs9JgRZ.

Thomas Müller, Fabrice Rousselle, Jan Novák, and Alexander Keller. Real-time neural radiance
caching for path tracing. ACM Trans. Graph., 40(4):36:1–36:16, 2021. doi: 10.1145/3450626.
3459812. URL https://doi.org/10.1145/3450626.3459812.

Georgii Sergeevich Novikov, Daniel Bershatsky, Julia Gusak, Alex Shonenkov, Denis Valerievich
Dimitrov, and Ivan V. Oseledets. Few-bit backward: Quantized gradients of activation functions
for memory footprint reduction. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of
Machine Learning Research, pp. 26363–26381. PMLR, 2023. URL https://proceedings.
mlr.press/v202/novikov23a.html.

NVIDIA Corporation. Triton Inference Server: An Optimized Cloud and Edge Inferencing Solution.
URL https://github.com/triton-inference-server/server.

12

https://doi.org/10.1145/347837.347846
https://doi.org/10.1145/347837.347846
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
https://github.com/linkedin/Liger-Kernel
https://github.com/linkedin/Liger-Kernel
https://openreview.net/forum?id=nZeVKeeFYf9
http://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
http://arxiv.org/abs/1905.12322
http://arxiv.org/abs/1905.12322
https://doi.org/10.18653/v1/2024.findings-acl.26
https://doi.org/10.18653/v1/2024.findings-acl.26
https://openreview.net/forum?id=r1gs9JgRZ
https://doi.org/10.1145/3450626.3459812
https://proceedings.mlr.press/v202/novikov23a.html
https://proceedings.mlr.press/v202/novikov23a.html
https://github.com/triton-inference-server/server


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization
for large language models. In The Twelfth International Conference on Learning Represen-
tations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=8Wuvhh0LYW.

Noam Shazeer. GLU variants improve transformer. CoRR, abs/2002.05202, 2020. URL https:
//arxiv.org/abs/2002.05202.

Unsloth. Unsloth: A framework for efficient neural network training. https://github.com/
un1slothai/unsloth, 2023. Accessed: 2024-09-26.

Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash Gopalakrishnan. Train-
ing deep neural networks with 8-bit floating point numbers. In Samy Bengio, Hanna M. Wal-
lach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), Ad-
vances in Neural Information Processing Systems 31: Annual Conference on Neural Informa-
tion Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp.
7686–7695, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
335d3d1cd7ef05ec77714a215134914c-Abstract.html.

Yuzhuang Xu, Xu Han, Zonghan Yang, Shuo Wang, Qingfu Zhu, Zhiyuan Liu, Weidong Liu,
and Wanxiang Che. Onebit: Towards extremely low-bit large language models. CoRR,
abs/2402.11295, 2024. doi: 10.48550/ARXIV.2402.11295. URL https://doi.org/10.
48550/arXiv.2402.11295.

Inc. Yelp. Yelp open dataset. https://www.yelp.com/dataset, 2020. Accessed: 2024-09-
26.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. Q8BERT: quantized 8bit BERT.
In Fifth Workshop on Energy Efficient Machine Learning and Cognitive Computing - NeurIPS
Edition, EMC2@NeurIPS 2019, Vancouver, Canada, December 13, 2019, pp. 36–39. IEEE,
2019. doi: 10.1109/EMC2-NIPS53020.2019.00016. URL https://doi.org/10.1109/
EMC2-NIPS53020.2019.00016.

A APPENDIX

A.1 MEMORY TABLE

We perform memory measurements for several popular neural network architectres from Hggging-
face model repository: https://huggingface.co/models. Memory saving percentage
given in a table are calculated as how much less memory is used for stored activations, without
taking model size and optimizer statistics in consideration. The following models were used:

• BERT: google-bert/bert-base-uncased
Measured for sequence length equals 1024

• Audio Spectrogram Transformer: MIT/ast-finetuned-audioset-10-10-0.4593
Measured for 1024× 128 spectrogram shape

• ViT (Visual Transformer): google/vit-base-patch16-224-in21k

• CLIP: openai/clip-vit-large-patch14
Measured for text length equals 77 and number of image exaples equal to the number of
text examples.

A.2 APPROXIMATION COEFFICIENTS

Approximations Eqs. (6) to (8) were built by hands. Left part of GELU approximation Eq. (5)
were buld with an assstance of PySR Cranmer (2023) framework. Parameters of approximation for
GELU:

13

https://openreview.net/forum?id=8Wuvhh0LYW
https://openreview.net/forum?id=8Wuvhh0LYW
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
https://github.com/un1slothai/unsloth
https://github.com/un1slothai/unsloth
https://proceedings.neurips.cc/paper/2018/hash/335d3d1cd7ef05ec77714a215134914c-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/335d3d1cd7ef05ec77714a215134914c-Abstract.html
https://doi.org/10.48550/arXiv.2402.11295
https://doi.org/10.48550/arXiv.2402.11295
https://www.yelp.com/dataset
https://doi.org/10.1109/EMC2-NIPS53020.2019.00016
https://doi.org/10.1109/EMC2-NIPS53020.2019.00016
https://huggingface.co/models
https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593
https://huggingface.co/google/vit-base-patch16-224-in21k
https://huggingface.co/openai/clip-vit-large-patch14


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

qleft :

c0 +1.6311011311381
c1 +0.16997246666667
c2 −0.06261728
c3 +1.2947087
c4 +1.98055565
c5 +0.22730362
c6 −0.038978495
c7 +1.3295193

(10)

qright :

c0 −1.383717971214795
c1 +1.558420184350027
c2 +0.044045748018110
c3 +0.032146736769376
c4 −2.119885089843949

(11)

Parameters of approximation for SiLU:

qleft :

c0 −1.310856402130980
c1 +0.848589647031652
c2 −0.162990512595109
c3 +0.002696163985044
c4 −5.770613302664509

(12)

qright :

c0 +0.217177007595768
c1 −0.507684370508263
c2 +0.079631397669175
c3 +0.357494204859375

(13)

A.3 EXPERIMENT SETUPS

• Plain Nonlinearity
Batch size = 225.

• Nonlinearity + Linear
Batch size = 215, features dimension = 210.

• MLP Block
Batch size = 215, input/output dimension = 210, hidden dimension = 4 ∗ 210.

• GeGLU Block
Batch size = 215, input dimension = 210, output dimension = 4 ∗ 210.

• BERT
Batch size = 64, sequence length = 1024

• Llama v3.1 8B
Batch size = 1, sequence length = 512

14


	Introduction
	Method
	Alternatives to Bit-Compressed Boolean Indicator

	Experiments
	Computational Efficiency
	Effect of the Approximation Error
	Comparison with FewBit

	Related Work
	Limitations
	Conclusion
	Appendix
	Memory Table
	Approximation Coefficients
	Experiment Setups


