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ABSTRACT

The scaling of neural networks with increasing data and model sizes necessitates
the development of more efficient deep learning algorithms. A significant chal-
lenge in neural network training is the memory footprint associated with activa-
tion tensors, particularly in pointwise nonlinearity layers that traditionally save
the entire input tensor for the backward pass, leading to substantial memory con-
sumption. In this paper, we propose a modification to the handling of activa-
tion tensors in pointwise nonlinearity layers. Our method involves saving the
output tensor instead of the input tensor during the forward pass. Since the sub-
sequent layer typically also saves its input tensor, this approach reduces the to-
tal memory required by storing only one tensor between layers instead of two.
This optimization is especially beneficial for transformer-based architectures like
GPT, BERT, Mistral, and Llama. To enable this approach, we utilize the inverse
function of the nonlinearity during the backward pass. As the inverse cannot be
computed analytically for most nonlinearities, we construct accurate approxima-
tions using simpler functions. Experimental results demonstrate that our method
significantly reduces memory usage without affecting training accuracy or com-
putational performance. Our implementation is provided as a drop-in replace-
ment for standard nonlinearity layers in the PyTorch framework, facilitating easy
adoption without requiring architectural modifications. The code is available at
https://github.com/removed/for/anonimity.

1 INTRODUCTION

model = create_model_as_usual()
for layer in model.layers:

layer.act_fn = InvActGELU()
train_as_usual(model)

Listing 1: Pseudocode of hypothetical use of
our drop-in replacement for GELU that will
use less memory without any speed or quality
degradation. Exact memory gains for several
popular huggingface1models are presented in the
following table. Exact model setups are given
in appendix A.1.

Model Memory Saving

BERT −22.9%
Audio Spectral Transformer −24.0%
ViT −23.8%
CLIP −23.4%

The remarkable scaling of neural networks with
increasing data and model sizes has created a
continuous demand for training and deploying
larger models more efficiently. This necessity
drives the ongoing development of deep learn-
ing algorithms that are both computation and
memory-efficient.

A significant portion of memory consumption
during neural network training arises from ac-
tivation tensors, alongside model parameters
and optimizer statistics. Activation tensors
are stored during the forward pass to facilitate
gradient computations in the backward pass.
Even simple and computationally fast opera-
tions, such as pointwise nonlinearities, con-
tribute substantially to this memory footprint
by storing entire input tensors. In most popular
deep learning frameworks, pointwise nonlinear-
ities like GELU Hendrycks & Gimpel (2016)
and SiLU Elfwing et al. (2018) save the whole

1https://huggingface.co/models

1

https://github.com/removed/for/anonimity
https://huggingface.co/models


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

input tensor for the backward pass. This practice leads to considerable memory usage, especially in
transformer-based architectures where such activations are prevalent.

In this work, we propose a modification to the forward and backward passes of element-wise nonlin-
earity layers. Specifically, we suggest saving the output tensor instead of the input tensor during
the forward pass. Since the subsequent layer in the computation graph typically also saves its input
tensor, our approach ensures that only one tensor is stored between layers rather than two, effectively
reducing the memory footprint by nearly 25% in practice.

For a novel approach in implementing nonlinearity functions to gain widespread adoption, it should
ideally meet three key conditions:

1. The method should not introduce any additional computational error, ensuring that model
performance remains unaffected.

2. It should not slow down the model, maintaining or improving the speed of forward and
backward computations.

3. The approach should be user-friendly, meaning it can serve as a straightforward, drop-in
replacement for existing nonlinearity layers without requiring modifications to the architec-
ture or specific tuning of adjacent layers.

For example, highly optimized building blocks like Triton NVIDIA Corporation or CUDA-based
GeGLU implementations for models such as Llama and Mistral, or efficiently fused MLP blocks for
transformer architectures, can offer significant speed and/or memory advantages, but are applicable
to a very narrow range of use cases. In contrast, for general research purposes and R&D, truly
versatile layers are highly desirable. In this paper, we demonstrate that our proposed method meets
all three of these criteria, making it a promising candidate for broader adoption in deep learning
systems.

We implemented this approach as a drop-in replacement for standard nonlinearity layers within the
PyTorch Ansel et al. (2024) framework, ensuring seamless integration for researchers and practition-
ers without the need for architectural modifications. In Listing 1, we illustrate the straightforward
integration of our nonlinearity layers into existing pipelines, which requires only the substitution of
standard nonlinearities with our InvAct (Inverted Activation) layers, without the need for additional
modifications to the architecture or hyperparameters.

2 METHOD

Background Knowledge. The computation graph during neural network training can be expressed
as a series of operations fi, each of which transforms an input tensor X(i) into an output tensor
X(i+1). This output tensor subsequently serves as the input for the next operation in the computation
graph:

. . .→ X(i) fi−→ X(i+1) → . . .→ L.

Here, L is the final loss that is optimized using gradient descent. Each operation stores some addi-
tional information S(i), referred to as activation tensors, for the backward pass. During the backward
pass, these activation tensors are used to compute the gradient of the loss L with respect to all inter-
mediate tensors of the computation:

. . .← ∂L

∂X(i)

gradient fi,S(i)

←−−−−−−−− ∂L

∂X(i+1)
← ∂L

∂L
.

For pointwise nonlinearity layers, the forward computation fi is simply the element-wise application
of a function f : R→ R to the input tensor X(i):

X
(i+1)
j1,...,jk

= f
(
X

(i)
j1,...,jk

)
, (1)

while the backward computation is the Hadamard product of the gradient with respect to the output
tensor and the derivative of f evaluated at the input tensor:

∂L

∂X(i)
=

∂L

∂X(i+1)
⊙ f ′

(
X(i)

)
. (2)
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1 def forward(X):
2 S = X < T
3 Y = f(X)
4 save_for_backward(Y, S)
5 return Y
6

7 def backward(dY):
8 Y, S = saved_for_backward()
9 return dY * f‘(f−1(Y, S))

Listing 2: Pseudocode of inverted activation
approach for forward and backward passes of
pointwise nonlinearity layer. Boolean array S
should be saved in an optimal way (1 bit per
element) to achieve memory footprint reduction.

T
C = f(T)

left monotonous part

right monotonous part
f
separation point
of two
monotonous parts

Figure 1: Two monotonous parts of the
GELU or SiLU nonlinearity function, each
being an invertible function.

Here, f ′ (X(i)
)

is computed element-wise, similarly to Eq. (1).

Since both Eq. (1) and Eq. (2) are applied independently to each element of the corresponding
tensors, we can simplify the notation by letting x ∈ R represent an input element of the nonlinearity
and y ∈ R represent the corresponding output:

y = f(x),
∂L

∂x
=

∂L

∂y
f ′(x). (3)

It is evident that to perform the backward computation in Eq. (2) efficiently, one can store the entire
input tensor X(i) as an activation tensor S(i). This approach is adopted by most popular deep
learning frameworks, such as PyTorch and Jax, for nonlinearity layers like GELU and SiLU, which
are widely used in transformer-based neural networks.

Inverted Activation. In this work, we propose modifying the forward and backward computations
to save the output tensor X(i+1) instead of the input tensor X(i). If the subsequent layer after the
pointwise nonlinearity also saves its input tensor, the two layers together will only store one tensor
instead of two, thereby significantly reducing the overall memory footprint.

The backward computation in Eq. (3) can be rewritten as:

∂L

∂x
=

∂L

∂y
f ′(x) =

∂L

∂y
f ′ (f−1(y)

)
.

Here, f−1 is the inverse function of the nonlinearity f , which gives our method its name: Inverted
Activations (or InvAct for short).

Space-efficient Boolean Indicator. Both GELU and SiLU are non-invertible functions, but they
consist of two monotonic parts, each of which is individually invertible. Thus, we can save additional
information during the forward pass – a Boolean indicator that specifies whether each element of the
input tensor belongs to the first monotonic part or the second part, which helps disambiguate f−1:

s =

{
1 if x < T

0 otherwise
(4)

Here, T is the point of separation between the two monotonic halves (see Fig. 1 for a graphical
explanation). It is possible to store the tensor S in a space-efficient Boolean array, where each
element requires only 1 bit of memory. In our implementation, we achieve this by storing the
Boolean array S in a tensor Scompressed with the data type ‘uint8‘, in which S[i] corresponds to the (i
mod 8)-th bit of the (i÷ 8)-th element:

S[i] = Scompressed [i÷ 8]≫ (i mod 8) .

3
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Figure 2: Derivative of the nonlinearity and its approximation in two coordinate systems: plotted as
a function of the output variable y (left two columns) and the input variable x (right column). The
y-based representation highlights how equations Eqs. (5) to (8) approximate the respective regions
of f ′(f−1(y)). The x-based representation, in turn, helps assess the approximation quality of the
layer baased on how it is used in a neural network context.

Here,≫ denotes the bitwise right shift, and & denotes the bitwise AND operation. Pseudocode for
the resulting pointwise nonlinearity layer can be found in Section 2.1.

Approximation. Both GELU and SiLU are complex functions, and to the best of our knowledge,
neither their inverses f−1 nor f ′ ◦ f−1 can be analytically derived. Therefore, we propose to use
approximations based on simple base functions, similar to the fast GELU approximation Hendrycks
& Gimpel (2016).

There are many decisions to be made when constructing the approximation for f ′ ◦ f−1: whether to
approximate only f−1 and evaluate f ′ in the standard way, or to approximate f ′ ◦ f−1 as a whole;
which primitive functions to use; what form the approximation should take; and how to balance
complexity and accuracy. In this work, we chose to approximate f ′ ◦ f−1 as a whole. The resulting
approximation is highly accurate – so much so that the training process using our approximation is
indistinguishable from training with the original nonlinearity layer, as we will demonstrate in our
experiments in Section 3.

For GELU we use the following approximations:

x < T ⇒ f ′ (f−1(y)
)
≈ qleft(y) = c0

√
y + c1 ∗ (2y + c2

√
−y)(|c3y2 + |c4y + c5|+ c6|+ c7),

(5)

x ≥ T ⇒ f ′ (f−1(y)
)
≈ qright(y) = 1 +

(
c0 + c1

√
ỹ + c2ỹ

)
ec3(c4−ỹ)3 , where ỹ = y − f(T ).

(6)

For SiLU we use the following approximations:

x < T ⇒ f ′ (f−1(y)
)
≈ qleft(y) =

(
c0 + c1

√
ỹ + c2ỹ + c3ỹ

2
)
∗ (1− y) + y, (7)

x ≥ T ⇒ f ′ (f−1(y)
)
≈ qright(y) =

(
1 +

(
c0 + c1

√
ỹ + c2ỹ

)
ec3(c4−ỹ)3

)
∗ (1− y) + y, (8)

where ỹ = y − f(T ) (9)

The coefficients ci are precomputed and fine-tuned specifically for each function (GELU or SiLU)
and each approximation region (x < T or x ≥ T ). All coefficient values used in this work are
provided in appendix A.2. In Fig. 2, we illustrate the functions f ′(f−1(y)) for x < T and x ≥ T ,
along with their respective approximations qleft and qright. The plots also show the approximation
errors, defined as f ′(f−1(y))− qleft(y) for x < T and f ′(f−1(y))− qright(y) for x ≥ T .
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It is important to note that the presented approximations are not necessarily the most optimal or
minimal representations of f ′(f−1(y)). As we are not experts in constructing such approximations,
it is possible that simpler, more accurate, and computationally efficient alternatives exist, which
could further enhance the performance of InvAct. Nonetheless, our current approximations are well-
suited for the specific task at hand, as demonstrated by their effectiveness, accuracy and speed in the
experiments detailed in Section 3.

2.1 ALTERNATIVES TO BIT-COMPRESSED BOOLEAN INDICATOR

An essential component for inverting nonlinearities such as GELU or SiLU is an indicator function
that identifies which monotonic part the original x belongs to. Currently, we store this information
in a space-efficient, bit-compressed Boolean tensor, where each Boolean value occupies only 1 bit
of memory. In this section, we will discuss two alternative methods for storing this information
without requiring even 1 bit per element.

Sign-bit Inverted Activation. Both GELU and SiLU functions are bounded, which means there
exists some constant C (see Fig. 1) such that for all x, f(x) ≥ C, where f represents either the
GELU or SiLU function. This implies that the value f(x) − C is always greater than zero. Instead
of storing f(x) for the backward pass, we can store f(x) − C with its sign bit modified according
to the indicator function s (see Eq. (4)).

For most popular floating-point formats used in deep learning, such as float32, float16, and bfloat16,
the sign bit is the last bit of a floating-point number. This approach allows us to eliminate the need
for additional memory to store the 1 bit per element for the indicator function, making the entire
nonlinearity layer memory-free in terms of footprint. The modified value y = f(x) does not pose
an issue for subsequent computations, as C is a predefined global constant for a given activation
function. For example, the computation for an activation function followed by a fully-connected
linear layer can be expressed as follows:

1 N # number of bits in floating point data type
2 C # minimum of activation function f
3 def forward(X, W_linear):
4 S = X < T
5 Y = f(X) - C
6 Y = (Y & (~(1 << N))) | (S << N) # sets sign bit of tensor Y
7 # to indicator function S
8 save_for_backward(Y)
9

10 return (Y + C) @ W_linear
11

12 def backward(dY, W_linear):
13 Y = saved_for_backward()
14 S = Y & (1 << N)# extracts indicator function from last bit of tensor Y
15 Y = Y ^ S # reverts sign bit of tensor Y back to zero
16 dW = (Y + C).T @ dY
17 dX = dY * f‘(f−1(Y + C, S))
18 return dY, dW

Here, the forward pass takes the input tensor X and the matrix Wlinear of the fully-connected linear
layer and returns f(X) ·Wlinear.

Unfortunately, to the best of our knowledge, it is not possible to implement such a layer in PyTorch
that works independently of what comes after the nonlinearity function, meaning that you would
have to write a custom implementation for each new architectural block. As a result, the sign-bit
approach does not satisfy condition 3 outlined in the Introduction (see Section 1), and thus we do
not consider it a viable candidate for broad adoption.

Precision Bit Inverted Activation. The second approach to store the indicator function s (see
Eq. (4)) is to use the lowest precision bit of a floating-point number (for most popular floating-point
data types, this is the first bit in a base-2 representation). During the forward pass, we compute
y = f(x) and modify this bit of y to be equal to s (see Eq. (4)).

5
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Compared to the previous approach, this method does not violate condition 3, as it allows for a conve-
nient drop-in replacement for classical activation functions on all modern deep learning frameworks.
However, it is more challenging to evaluate the accuracy of this approach. Both the standard inverted
activation and the sign-bit inverted activation perform the forward pass exactly and introduce only a
minimal approximation error during the backward pass. This method, on the other hand, sacrifices
one precision bit for the pointwise nonlinearity computation during the forward pass. Moreover,
with the ongoing trend of reducing floating-point precision, loss of accuracy may become larger in
the future. For this reason, we do not consider it a viable candidate for broad adoption at this time,
as it requires extensive experimentation to validate its accuracy. However, we still regard it as an
interesting approach that may find applications in the future.

This is a pseudocode for the forward and backward passes of this approach:
1 def forward(X):
2 S = X < T
3 Y = f(X)
4 Y = (Y & (~1)) | S
5 save_for_backward(Y)
6

7 return Y
8

9 def backward(dY):
10 Y = saved_for_backward()
11 S = Y & 1 # extracts indicator fucntion from last bit of tensor Y
12 return dY * f‘(f−1(Y, S))

3 EXPERIMENTS

The validation of our method’s efficiency is two-fold:

1. We compare the computational efficiency of the forward and backward passes of our in-
verted activation nonlinearity layer in various settings.

2. We demonstrate that the approximation of the nonlinearity gradient does not affect the
quality of gradient descent during training.

With these results, we can confidently assert that inverted nonlinearity layers can be safely used in
practice to reduce the memory required for training neural networks without any speed or accuracy
degradation. All tests and measurements were performed on a single NVIDIA A100 GPU.

3.1 COMPUTATIONAL EFFICIENCY

In this section, we compare the computational efficiency of PyTorch Ansel et al. (2024) nonlinearity
layers with our Triton-based NVIDIA Corporation implementations of inverted activation nonlinear-
ities. We conduct three groups of tests (with detailed setups presented in appendix A.3):

1. Application of nonlinearity to a tensor.
2. Application of several layers, one of which is a nonlinearity layer. For this purpose, we

selected several popular building blocks of modern neural networks:
• Linear layer + nonlinearity
• Transformer MLP block: Linear layer + nonlinearity + Linear layer
• GeGLU Shazeer (2020): Hadamard product of a linear layer + nonlinearity with an-

other linear layer
3. Full neural network training iterations for the following popular network architectures:

• BERT
• Llama v3.1 8B

The corresponding measurements are presented in table 1. The results indicate that the difference
in computational efficiency between our inverted activation nonlinearity layer and the standard non-
linearity layer within various architectural blocks (such as MLP, Linear + activation, or GeGLU) is

6
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less than 1%. Furthermore, for full-scale neural networks like BERT and Llama, this difference is
even more negligible, being less than 0.1%.

Torch (ms) InvAct (ms) Precision Bit InvAct (ms)

Plain GELU 0.82 0.86 (+5.75%) 0.86 (+4.96%)

Linear + GELU 11.78 11.80 (+0.13%) 11.79 (+0.06%)
Tranformer MLP Block 75.41 75.46 (+0.06%) 75.41 (−0.00%)
GeGLU 94.08 94.13 (+0.05%) 94.09 (+0.00%)

BERT 1112.12 1112.62 (+0.05%) 1112.25 (+0.01%)
Llama3.1-8b 182.84 182.94 (+0.06%) 182.80 (−0.02%)

Table 1: Comparison of computation time (in milliseconds) for different activation function imple-
mentatoins and neural network architectures. We compare following architecture blocks: plain non-
linearity layer, fully-connected layer with nonlinearity, Transformer MLP block, GeGLU Shazeer
(2020), BERT Devlin et al. (2019) model, Llama3.1-8b model. For each architecture block we com-
pare following activation functions: torch GELU, our inverted activation and precision-bit inverted
activation. We show difference in percents w.r.t. torch nonlinearity. Our layer is lower then 1%
slower compared to torch nonlinearity inside some computation block, and lower then 0.1% slower
inside BERT and Llama.

3.2 EFFECT OF THE APPROXIMATION ERROR
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Figure 3: Comparison of BERT model fine-tuning with original and inverted GELU activations.
The first row (except the rightmost column) compares two runs with Torch GELU and inverted
GELU using identical random seeds. The second row shows losses averaged across 16 runs for each
activation function. The leftmost column displays the training loss during the first 100 iterations.
The middle column shows the training loss during the last 100 iterations out of a total of 2000. The
rightmost column compares the validation losses. The observed losses, both training and validation,
are nearly identical, with any discrepancies attributable to minor approximation inaccuracies that
are absolutely insignificant and negligible for practical purposes.

In this section, we investigate the impact of our approximation method on the training process and
final model performance. To evaluate this, we conducted experiments using two popular neural
network architectures: BERT and Llama. We trained these models on standard benchmark tasks
using both the original PyTorch GELU activation function and our approximated inverted GELU
function for BERT, as well as the PyTorch SiLU activation function and our approximated inverted
SiLU function for Llama.

For BERT, we fine-tuned the model on the Yelp Review dataset Yelp (2020) for sentiment classifica-
tion. We compared the training process of models using both the original GELU activation function
and our inverted GELU activation. Comparisons of the training and validation losses are presented
in Fig. 3. We observe that the approximation inaccuracy of the inverted activation does not affect
BERT’s training quality, as both training and validation losses are nearly indistinguishable over all
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Figure 4: Same as Fig. 3, but for the Llama v3.1 8B model with SiLU nonlinearity. The first
row (except the rightmost column) compares two runs with Torch SiLU and inverted SiLU using
identical random seeds. The second row shows losses averaged across 16 runs for each activation
function. The leftmost column displays the training loss during the first 100 iterations. The middle
column shows the training loss during the last 100 iterations out of a total of 2000. The rightmost
column compares the validation losses. The observed losses, both training and validation, are nearly
identical, with any discrepancies attributable to minor approximation inaccuracies that are absolutely
insignificant and negligible for practical purposes.

2000 steps of the training process. The variance produced by different random seeds is significantly
larger than any difference between the two activation functions, suggesting that any discrepancies
are negligible and on par with machine precision.

We extended this experiment to a significantly larger model, Llama v3.1 8B Dubey et al. (2024),
which uses a different activation function – SiLU. We fine-tuned a 4-bit quantized version with
LoRA Hu et al. (2022) using ORPO on a combination of DPO datasets2. The results for Llama
training, presented in Fig. 4, show an even closer match between the original SiLU activation and
our inverted SiLU activation compared to the BERT experiment. The training and validation losses
are virtually indistinguishable throughout the entire training process. This remarkable similarity
further supports our conclusion that the approximation inaccuracy of the inverted activation has a
negligible impact on training quality and final model performance.

Based on this comparison of model training using original and inverted activations, we can conclude
that the approximation inaccuracy of the InvAct does not affect training quality in any way. Com-
bined with the speed measurements presented in Section 3.1, we can state that the inverted activation
nonlinearity layer is a perfect drop-in replacement for GELU and SiLU activation functions.

Furthermore, the seamless integration of our method into existing architectures – without requiring
any modifications to pipelines, code, or hyperparameters – highlights its potential for widespread
adoption in various deep learning applications. The ability to reduce memory requirements with-
out compromising model accuracy or training dynamics makes our inverted activation approach a
promising tool for researchers and practitioners working with memory-intensive models, especially
in resource-constrained environments.

3.3 COMPARISON WITH FEWBIT

Another method that reduces the memory required by pointwise nonlinearities is FewBit Novikov
et al. (2023), a gradient quantization method that saves a quantized version of the nonlinearity gra-
dient. FewBit with one bit per element suffers from a considerable accuracy drop, as demonstrated
in Fig. 5. The authors report that using 4-bit quantization, which requires four times more memory
compared to our standard InvAct implementation, FewBit does not show any performance degrada-
tion. However, even in that setting, our approach is superior: the approximation of f ′(f−1(x)) is
much more accurate than FewBit quantization up to 8 bits! We show L2 and L∞ approximation
errors for FewBit and InvAct in Fig. 5, and our approach demonstrates significantly better approxi-
mation quality, even when compared to FewBit using 8 times more bits per element.

2https://huggingface.co/datasets/mlabonne/orpo-dpo-mix-40k
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Figure 5: Comparison of InvAct (our) nonlinearity layer with the FewBit Novikov et al. (2023) non-
linearity layer. The two left plots show the validation loss for fine-tuning BERT and Llama v3.1
8B, respectively. The BERT model uses the GELU nonlinearity, while the Llama model uses the
SiLU nonlinearity. FewBit is used with a 1-bit per element memory budget to match the memory
footprint of InvAct. The FewBit approach exhibits significantly worse validation loss, while our
InvAct approach is indistinguishable from the standard Torch nonlinearity. The right column shows
the L2 approximation error (top plot) and L∞ approximation error (bottom plot) for FewBit GELU
with respect to the number of bits used in gradient quantization (blue line), compared to the approxi-
mation quality of InvAct (red dashed line). Our approach always uses only 1 bit per element. InvAct
demonstrates superior approximation quality, even when compared to 8-bit FewBit GELU (y-axis is
in logarithmic scale).

4 RELATED WORK

The efficient scaling of neural, has necessitated innovations in low-precision training, quantization
techniques, and various compression methods. These approaches address computational and mem-
ory bottlenecks, enabling the training of ever-larger models on hardware-limited resources.

Quantization methods aim to compress neural network weights and activations by representing
them in lower-precision formats, such as 4-bit integers. One can quantize model weights Jacob et al.
(2018); Zafrir et al. (2019); Gholami et al. (2021) or activations that are saved for backward Chen
et al. (2021); Novikov et al. (2023). Former are used more in during inference, but approaches
to utilize it during training are also exist Liu et al. (2024); Shao et al. (2024); Xu et al. (2024).
These methods are especially popular for the fine-tuning stage of training, where reducing memory
usage without extensive retraining is crucial. While quantization effectively decreases the memory
footprint, it can introduce computational inaccuracies. As a result, these errors lead to degradation
in model performance, making the balance between memory savings and maintaining model quality
a key consideration when applying quantization.

Low-precision training techniques have emerged as another powerful approach to reducing both
the memory and computational requirements of large-scale models Micikevicius et al. (2018). One
widely adopted format is bfloat16 Kalamkar et al. (2019), which retains a wider range of values
compared to traditional FP16 while providing faster computation and reduced memory consump-
tion. More recently work towards even lower precision training in float8 formats have also been
explored Wang et al. (2018) for their potential to further reduce memory and computational de-
mands. These formats are particularly attractive for their extreme compression capability, though
their usage requires careful consideration to avoid significant accuracy loss. Moreover, widespread
adoption of these lower precision formats relies heavily on GPU manufacturers integrating support
for them directly into hardware. Until this support is in place, these formats remain experimental
and difficult to implement at scale.

Custom CUDA and Triton implementations Unsloth (2023); Hsu et al. (2024) have become
essential for optimizing critical building blocks in popular architectures, significantly improving
memory efficiency and computational speed. For instance, highly fused implementations of MLP
blocks Müller et al. (2021) or optimized GeGLU layers are widely used to reduce the overhead of
separate operations by merging them into a single, streamlined kernel. Another prominent example
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is FlashAttention Dao (2024), which significantly improves the efficiency of attention mechanisms
by reducing memory bottlenecks while maintaining performance. These custom kernels, often de-
veloped in CUDA or Triton, enable fine-grained optimizations tailored to specific hardware architec-
tures, providing substantial performance improvements. However, the development of such highly
optimized components demands significant engineering effort and a deep understanding of both the
underlying hardware and neural network operations. Each optimization, whether in matrix multipli-
cations, element-wise operations, or memory management, requires meticulous custom work, and
the resulting implementations are typically neural netowrk architecture-specific. Despite the com-
plexity, continuous innovation in these low-level building blocks is critical, as it provides massive
improvements in memory usage and training speed, making it possible to push the boundaries of
model scaling and performance.

5 LIMITATIONS

It is important to note that inverted nonlinearities save memory only when the next layer after the
nonlinearity also saves its input for the backward pass. Fortunately, this behavior is common in most
popular neural network architectures, such as transformers.

Additionally, our method reduces memory usage only for nonlinearity layers. The percentage of
memory savings depends on the architecture in use. Furthermore, the presence of complemen-
tary techniques may impact these gains. For instance, when training models with checkpoint-
ing Griewank & Walther (2000), the memory bottleneck could shift between activations saved dur-
ing the forward pass and activations recomputed during the backward pass, potentially affecting the
benefits of our approach.

Despite these limitations, our highly efficient implementation of inverted activations within the Py-
Torch framework using Triton kernels makes us confident that our method will see broad adoption.
We believe that it will prove invaluable to deep learning practitioners who seek to reduce memory
usage without compromising speed order and model accuracy.

6 CONCLUSION

In this work, we presented an innovative method to reduce the memory footprint during neural
network training by modifying how activation tensors are saved for backward passes in pointwise
nonlinearity layers. By saving the output tensor instead of the input tensor, we significantly de-
creased the memory requirements for transformer-based architectures such as GPT, BERT, Mistral,
and Llama.

Our proposed method includes the development of a space-efficient Boolean indicator to handle the
non-invertible nature of these functions, enabling a practical implementation within the PyTorch
framework. Additionally, we introduced accurate approximations for the derivatives of the inverse
functions of GELU and SiLU, ensuring that training performance remains unaffected while achiev-
ing substantial memory savings.

The experiments and approximations demonstrated the feasibility and effectiveness of our approach,
with results showing that the training process using our modified nonlinearity layers is indistinguish-
able from using the original layers in terms of accuracy.

We set out to meet three key criteria for a successful replacement of standard nonlinearity layers:
maintaining model speed, preserving model accuracy, and ensuring ease of use. Our proposed
method satisfies all three conditions. It does not slow down the neural network, it does not degrade
model quality, and it is extremely easy to integrate, making memory savings essentially "free."

We have implemented this method for the PyTorch framework, and the code is available at https:
//github.com/removed/for/anonimity.
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A APPENDIX

A.1 MEMORY TABLE

We perform memory measurements for several popular neural network architectres from Hggging-
face model repository: https://huggingface.co/models. Memory saving percentage
given in a table are calculated as how much less memory is used for stored activations, without
taking model size and optimizer statistics in consideration. The following models were used:

• BERT: google-bert/bert-base-uncased
Measured for sequence length equals 1024

• Audio Spectrogram Transformer: MIT/ast-finetuned-audioset-10-10-0.4593
Measured for 1024× 128 spectrogram shape

• ViT (Visual Transformer): google/vit-base-patch16-224-in21k

• CLIP: openai/clip-vit-large-patch14
Measured for text length equals 77 and number of image exaples equal to the number of
text examples.

A.2 APPROXIMATION COEFFICIENTS

Approximations Eqs. (6) to (8) were built by hands. Left part of GELU approximation Eq. (5)
were buld with an assstance of PySR Cranmer (2023) framework. Parameters of approximation for
GELU:
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qleft :

c0 +1.6311011311381
c1 +0.16997246666667
c2 −0.06261728
c3 +1.2947087
c4 +1.98055565
c5 +0.22730362
c6 −0.038978495
c7 +1.3295193

(10)

qright :

c0 −1.383717971214795
c1 +1.558420184350027
c2 +0.044045748018110
c3 +0.032146736769376
c4 −2.119885089843949

(11)

Parameters of approximation for SiLU:

qleft :

c0 −1.310856402130980
c1 +0.848589647031652
c2 −0.162990512595109
c3 +0.002696163985044
c4 −5.770613302664509

(12)

qright :

c0 +0.217177007595768
c1 −0.507684370508263
c2 +0.079631397669175
c3 +0.357494204859375

(13)

A.3 EXPERIMENT SETUPS

• Plain Nonlinearity
Batch size = 225.

• Nonlinearity + Linear
Batch size = 215, features dimension = 210.

• MLP Block
Batch size = 215, input/output dimension = 210, hidden dimension = 4 ∗ 210.

• GeGLU Block
Batch size = 215, input dimension = 210, output dimension = 4 ∗ 210.

• BERT
Batch size = 64, sequence length = 1024

• Llama v3.1 8B
Batch size = 1, sequence length = 512
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