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ABSTRACT

Feed-forward 3D reconstruction for autonomous driving has advanced rapidly,
yet existing methods struggle with the joint challenges of sparse, non-overlapping
camera views and complex scene dynamics. We present UniSplat, a general
feed-forward framework that learns robust dynamic scene reconstruction through
unified latent spatio-temporal fusion. UniSplat constructs a 3D latent scaffold,
a structured representation that captures geometric and semantic scene context
by leveraging pretrained foundation models. To effectively integrate information
across spatial views and temporal frames, we introduce an efficient fusion mech-
anism that operates directly within the 3D scaffold, enabling consistent spatio-
temporal alignment. To ensure complete and detailed reconstructions, we design
a dual-branch decoder that generates dynamic-aware Gaussians from the fused
scaffold by combining point-anchored refinement with voxel-based generation,
and maintain a persistent memory of static Gaussians to enable streaming scene
completion beyond current camera coverage. Extensive experiments on real-world
datasets demonstrate that UniSplat achieves state-of-the-art performance in novel
view synthesis, while providing robust and high-quality renderings even for view-
points outside the original camera coverage.

1 INTRODUCTION

Replicating 3D scenes from urban driving sequences has emerged as a core capability for au-
tonomous systems, supporting simulation (Cao et al., 2025; Yang et al., 2023; Tonderski et al.,
2024), scene understanding (Huang et al., 2024b; 2025; Yan et al., 2025a), and long-horizon plan-
ning (Murai et al., 2025). Recent advances in 3D Gaussian Splatting (Yan et al., 2024; Jiawei et al.,
2025; Kerbl et al., 2023) have demonstrated impressive rendering efficiency and fidelity. However,
these methods typically assume substantial viewpoint overlap among input images and rely on per-
scene optimization, which limits their applicability in real-time driving scenarios.

To enable faster inference, feed-forward reconstruction methods have emerged to synthesize novel
views in a single forward pass (Xu et al., 2025; Chen et al., 2024; Zhang et al., 2025; Lu et al., 2024).
These methods typically encode inter-view correlations within the image domain via cross-attention
or by constructing a multi-view stereo (MVS) cost volume, and subsequently decode the Gaussian
primitives from the resulting fused features. Notably, the choice of fusion strategy is crucial, as it
significantly impacts the final rendering quality. EvolSplat (Miao et al., 2025) integrates multi-frame
geometric information from front-view monocular sequences using 3D-CNN, but ignores semantic
fusion and lacks mechanisms for dynamic handling. Meanwhile, Omni-Scene (Wei et al., 2025)
leverages a Triplane Transformer for strong multi-view fusion but does not incorporate temporal
aggregation and is constrained by coarse-grained 3D details. Despite these advances, robust re-
construction in urban driving scenarios remains challenging, particularly in maintaining a unified
latent representation that evolves smoothly over time, handling partial observations, occlusions, and
dynamic motion, and efficiently generating high-fidelity Gaussians from sparse inputs.

To address these challenges, we propose UniSplat, a general feed-forward framework for dynamic
scene modeling from multi-camera videos. The core insight of UniSplat is to construct a unified 3D
scaffold that fuses both multi-view spatial information and multi-frame temporal information. This
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scaffold facilitates geometric and semantic contextual interaction in 3D space, supports efficient
long-term information integration and dynamic modeling, and enables effective decoding of Gaus-
sian primitives. By preserving and fusing essential information, it ensures coherent and consistent
scene reconstruction over time.

Specifically, the UniSplat framework follows a three-stage pipeline. First, we construct an ego-
centric 3D scaffold by feeding multi-view images to a pretrained geometry foundation model and a
visual foundation model, encoding both geometry structure and semantics cues into a sprase 3D fea-
ture volume. Second, we perform spatio-temporal fusion by integrating multi-view spatial context
within the current frame’s scaffolds and fusing historical scaffolds into current scaffolds via ego-
motion compensation, yielding a temporal-enhanced scene representation. Third, we decode the
fused scaffold into Gaussians via a dual-branch strategy: one branch predicts Gaussians at sparse
point locations for fine-grained detail while the other directly generates new Gaussians from voxel
centers to complement point anchor predictions. Each Gaussian is assigned a dynamic probability
score to identify static content, allowing us to maintain a memory bank of persistent static Gaussians
across frames for long-term scene completion.

We evaluate our method on the Waymo Open dataset (Sun et al., 2020) and NuScenes (Caesar
et al., 2020) dataset, which present dynamic street scenes with complex environmental conditions
and limited overlap for multi-camera images. Experimental results demonstrate that our approach
achieves state-of-the-art performance across both datasets in input-view reconstruction and novel-
view synthesis. Notably, with the help of temporal memory, our model exhibits strong robustness
and superior rendering quality when synthesizing views outside the original camera coverage.

In summary, our main contributions are as follows:

• We introduce UniSplat, a novel feed-forward framework for dynamic scene reconstruction
from multi-camera videos via a unified 3D latent scaffold.

• We design a novel scaffold-based fusion mechanism that supports unified spatio-temporal
alignment and progressive scene memory integration.

• We propose a dual-branch Gaussian generation mechanism with dynamic-aware filtering,
enabling fine-grained and complete rendering and memory-based scene completion.

• Comprehensive experiments on two large-scale driving datasets demonstrate that UniSplat
significantly outperforms state-of-the-art feed-forward reconstruction methods, with gen-
eralization capability for challenging views outside the observed camera frustums.

2 RELATED WORK

Neural 3D Reconstruction. The field of neural 3D reconstruction has witnessed remarkable
progress, largely driven by Neural Radiance Fields (NeRF) (Mildenhall et al., 2021) and, more
recently, 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023). NeRF represents scenes as continu-
ous volumetric functions, achieving high-fidelity renderings but incurring substantial computational
costs. Subsequently, 3DGS introduced explicit point-based representations with highly efficient
rasterization, enabling real-time rendering. Despite the impressive performance of NeRF, 3DGS,
and their extensive variants (Hu et al., 2023; Xu et al., 2022; Müller et al., 2022; Hu et al., 2023;
Yu et al., 2024; Yang et al., 2025a), these methods are usually limited by the reliance on dense
input views and costly per-scene optimization, thereby restricting their scalability. Alternatively,
feed-forward methods tackle this challenge by learning generalizable scene priors from large-scale
datasets during training, allowing for immediate reconstruction from sparse observations at inference
time. MuRF (Xu et al., 2024) employs target view frustum volumes for radiance field reconstruction.
PixelSplat (Charatan et al., 2024) and Splatter Image (Szymanowicz et al., 2024) predict per-pixel
3D Gaussians from image features, while MVSplat (Chen et al., 2024) leverages cost volumes for
geometric consistency and DepthSplat (Xu et al., 2025) integrates features from pre-trained monoc-
ular depth models to improve robustness. However, these approaches still face significant challenges
in complex urban driving scenarios, where minimal overlap among surround-view cameras compro-
mises multi-view correspondence and the presence of highly dynamic objects complicates temporal
aggregation. Beyond these explicit geometric methods, token-based transformers (Jin et al., 2025)
and diffusion-based models (Gao et al., 2025; 2024) have also been explored for generalizable view
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synthesis without explicit reconstruction, but they typically suffer from high rendering costs or hal-
lucinate content that is inconsistent with the input context. In this work, we develop a feed-forward
framework to reconstruct complete driving scenes from sparse views while effectively leveraging
multi-frame information.

Driving Scene Reconstruction with 3D Gaussians. Leveraging advances in 3D Gaussian Splat-
ting, several works (Chen et al., 2023; Huang et al., 2024a; Zhou et al., 2024b; Yan et al., 2024;
Zhao et al., 2025; Yan et al., 2025b; Fan et al., 2025; Jiawei et al., 2025) specialize in driving
scenes, focusing on 3D or 4D reconstruction within individual scenes through offline optimization.
In parallel, generalizable methods have also emerged. These approaches Tian et al. (2025); Lu et al.
(2024) typically employ depth networks to determine Gaussian primitive positions in a feed-forward
manner and predict per-pixel Gaussians along camera rays. To enhance global consistency and
completeness, several techniques further incorporate 3D spatial representations. EVolSplat (Miao
et al., 2025) directly accumulates depth across multiple frames and leverages 3D-CNNs to refine
Gaussian geometry. Omni-Scene (Wei et al., 2025) transforms multi-view image features into Tri-
Plane representations and decodes voxel-anchored Gaussians to complement pixel-based estimates.
SCube (Ren et al., 2024) constructs a detailed sparse-voxel scaffold via a hierarchical voxel latent
diffusion model. However, these methods often focus on static or single-frame reconstruction and
struggle to simultaneously handle multi-view fusion and dynamic multi-frame aggregation. More
recently, unsupervised 4D reconstruction approaches have been proposed, but they either lack effec-
tive 3D alignment for complex scene flow estimation (Yang et al., 2025c) or require LiDAR initial-
ization (Wang et al., 2025b). To counter these challenges, we propose UniSplat, a novel framework
that unifies multi-view fusion and dynamic multi-frame aggregation within a 3D latent scaffold.

3D Geometry Reconstruction. End-to-end, data-driven pipelines that reconstruct scene geom-
etry directly from images have progressed rapidly. DUSt3R (Wang et al., 2024) pioneers a
transformer-based framework that predicts 3D point maps from uncalibrated image pairs. Subse-
quent works (Wang et al., 2025f;a; Yang et al., 2025b; Wang et al., 2025c; Chen et al., 2025; Xiao
et al., 2025) extend this paradigm to arbitrary multi-view inputs and scale up both training data and
model capacity, achieving state-of-the-art reconstruction accuracy with strong generalization across
diverse scenes. However, these methods generally struggle with poor texture representation and en-
counter multi-view misalignment under minimal overlap, limiting novel view rendering quality. In
this work, we employ these 3D foundation models to obtain a geometry initialization from images,
and then perform 3D alignment and fusion in the learned latent scaffold.

3 UNISPLAT

UniSplat operates on a continuous stream of multi-camera frames, maintaining a unified 3D latent
representation of the scene that evolves over time. As shown in Fig. 1, each time step begins with
3D scaffold construction from multi-view images (Sec. 3.2), producing a set of 3D voxels (the
latent scaffold) that encodes the scene’s geometry and semantics in an ego-centric coordinate frame.
We then perform a unified spatio-temporal fusion, integrating information across views within the
current scaffold and aggregating it with the latent scaffold from the previous time step (Sec. 3.3).
Finally, we achieve dynamic-aware Gaussian generation (Sec. 3.4) through a dual-branch decoder
that estimates dynamic-aware Gaussian primitives from both points and voxels, while maintaining
a temporal memory bank that accumulates static Gaussians over time to address incomplete scene
coverage caused by sparse camera inputs and limited fields of view.

3.1 PRELIMINARY

3D Gaussian Splatting (Kerbl et al., 2023) represents a scene as a collection of 3D Gaussian
primitives G = {Gi}Ni=1. Each primitive Gi is defined by a tuple of learnable parameters
θi = {µi, αi,Σi, ci}, representing its 3D center position, opacity, covariance matrix, and color
coefficients, respectively. To render an image from a target viewpoint, these 3D Gaussians are pro-
jected onto the 2D image plane and blended using differentiable alpha compositing. Specifically, for
a particular pixel, the color contribution C from all Gaussians whose projections cover that pixel is:

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj), (1)
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where N is the set of Gaussians overlapping the pixel, sorted by depth. Beyond simple color render-
ing, several works (Zhou et al., 2024a; Zuo et al., 2025) augment Gaussians with additional param-
eters, which can be rendered into a 2D feature map using the same alpha compositing mechanism,
enabling the distillation of knowledge from 2D foundation models. Inspired by this extensibility, we
introduce a learnable dynamic attribute for each Gaussian to explicitly disentangle scene dynamics.
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Figure 1: Overview of UniSplat. Given multi-camera images from vehicle-mounted cameras,
UniSplat leverages foundation models to construct geometry-semantic aware 3D latent scaffolds,
where unified spatio-temporal fusion is performed. From this scaffold, a dual-branch decoder gen-
erates dynamic-aware Gaussian primitives using both point anchors and voxel centers, with dynamic
filtering maintaining a persistent memory of static scene content. The red boxes highlight a dynamic
car that is filtered out in our memory module (best viewed when zoomed in).

3.2 3D SCAFFOLD CONSTRUCTION

Constructing an accurate 3D scaffold from sparse, minimally overlapping camera views is a primary
challenge in multi-view reconstruction for driving scenes. To address this, we harness the power of
geometry foundation models to infer a coherent 3D structure from multi-view images in one forward
pass. We then enrich this 3D geometric scaffold with semantic information from a visual foundation
model. This process yields a latent scaffold representation in the ego-centric coordinate frame of the
vehicle, which provides a strong basis for subsequent spatio-temporal fusion.

Metric-Scale 3D Geometry Generation. Given synchronized multi-view images It = {Ikt }
Ncam
k=1

from a multi-camera rig, we apply a state-of-the-art feed-forward multi-view geometry foun-
dation models (e.g., Wang et al. (2025a;f)) to directly predict a dense 3D point map Pinit

t ∈
RNcam×Himg×Wimg×3, where each pixel is associated with a 3D coordinate inferred jointly from all
views. Unlike per-view depth estimation and late fusion, this unified approach leverages learned
multi-view correspondences to generate a coherent scene-level point cloud. However, such predic-
tions often suffer from scale ambiguity, which is problematic in autonomous driving. Thus, we
introduce an auxiliary scale alignment branch: a small MLP predicts per-camera scale factors from
the pooled geometry features:

γ = MLP(AvgPool(Fgeo
t , {H,W})) ∈ RNcam , (2)

where Fgeo
t denotes the hidden feature maps from the geometry model and AvgPool(·, {H,W})

represents the average pooling over the height and width dimensions for each view. The scale
prediction is supervised by minimizing the error between γ and the optimal scale vector computed
using the ROE solver (Wang et al., 2025d) with LiDAR point references. Applying γ to Pinit

t yields
a metric-consistent point cloud Pt as the geometric foundation of our scaffold.

Scaffold Construction with Geometric-Semantic Context. As the generated Pt is an unstruc-
tured point set, we organize these points into a sparse voxel grid and fuse geometric and semantic
features to create the 3D latent scaffold. To achieve this, we first extract semantic-aware 2D features
Fsem

t from the input views using a visual foundation model (Oquab et al., 2023), and fuse them with
geometric features Fgeo

t to obtain a unified multi-view feature map Ft. We then voxelize the point
cloud into Nv voxels within an ego-centric cuboid [pmin ∈ R3,pmax ∈ R3] covering the surround-
ing scene. The volume is partitioned into voxels of size ϵ, and only voxels containing points are
considered valid. Specifically, for each voxel i, we compute its coarse geometric voxel feature vinit

i
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as the average of the coordinates of points j ∈ Ii that lie in that voxel:

vinit
i =

∑
j∈Ii

Pt,j∑
j∈Ii

1
, i ∈ {1, . . . , Nv}, (3)

where Ii is the index set of points within i-th voxel. Next, to enrich the voxel with geometric-
semantic context, we project each voxel center into the input views and sample the corresponding
features from Ft, which are then concatenated with the initial voxel feature vinit

i . The resulting 3D
scaffold St of the scene is formally defined as a set of these voxels:

St = {(vi ∈ RCs ,pi ∈ R3)}Nv
i=1 (4)

where Cs is the feature dimension, vi represents the voxel feature encoding both geometric and
semantic context, and pi denotes the corresponding voxel center that preserves explicit 3D structure.

3.3 UNIFIED SPATIO-TEMPORAL SCAFFOLD FUSION

A key advantage of our scaffold representation lies in its inherent structure, which encodes explicit
3D geometry within a unified ego-centric space. This design enables contextual interaction in the
unified 3D space, supporting direct and efficient spatio-temporal fusion across multiple views and
temporal frames within a single scaffold representation.

Spatial Scaffold Fusion. Unlike traditional approaches Chen et al. (2024); Xu et al. (2025) that
fuse spatial information across views in 2D space using image-level cross-attention, which is often
hindered by limited overlap between views, we perform spatial fusion directly in the 3D scaffold
space. In this representation, spatially corresponding information from different views is naturally
aligned in 3D space. Specifically, we employ a sparse 3D U-Net ϕ to integrate multi-view features,
producing a spatially-enhanced scaffold representation Sspa

t :

Sspa
t = ϕ(St), (5)

Temporal Scaffold Fusion. Instead of processing historical raw images as in existing works (Lu
et al., 2024; Tian et al., 2025), we integrate temporal cues directly within the scaffold representation
in a streaming manner. Given the previous fused latent scaffold features Sfused

t−1 from a streaming
memory, we first warp its voxel centers into the current frame’s coordinate system using the known
ego-pose T t

t−1, and their features are tagged with a time-step embedding to distinguish them from
current observations. We then merge the transformed previous scaffold Sfused

t−1 with the current scaf-
fold Sspa

t via element-wise addition at any overlapping voxels, and simply union the features for
non-overlapping regions. We denote this operation as a sparse tensor addition:

Sfused
t = Sspa

t ⊕Warp(Sfused
t−1 , T

t
t−1) (6)

where ⊕ denotes sparse tensor addition that aggregates features at overlapping voxel locations while
preserving non-overlapping features from both sparse tensors. The resulting tensor Sfused

t is further
refined by a lightweight sparse convolutional network to capture complex temporal dependencies
and is cached back into the streaming memory to maintain long-term temporal information.

3.4 DYNAMIC-AWARE GAUSSIAN GENERATION

Building upon the spatio-temporally fused scaffold Sfused
t , we generate a set of 3D Gaussian prim-

itives via a dual-branch decoding strategy, yielding primitives that explicitly disentangle static and
dynamic scene components, which enables progressive scene completion over time.

Dual-Branch Gaussian Decoder. Our Gaussian decoder comprises two complementary branches
that jointly enhance reconstruction fidelity and completeness. The point decoder branch focuses
on preserving fine-grained geometric details by leveraging the point-level anchors from the recon-
structed metric-scale point map Pt. For each point Pt,i ∈ Pt, we locate its voxel coordinate in the
scaffold and retrieve the corresponding latent feature from Sfused

t as:

f 3d
t,i = Retrieve

(
Sfused
t ,

⌊
Pt,i − pmin

ϵ

⌋)
, (7)

5
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where ⌊·⌋ denotes the voxel indexing operation. If a point falls outside the scaffold’s spatial extent,
zero-padding is applied. Since each point Pt,i maintains a one-to-one correspondence with its source
pixel, we additionally sample 2D image feature f 2d

t,i for each point from the multi-view feature maps
Ft. These features are concatenated to predict the Gaussian primitives via an MLP:

{(∆µi, αi,Σi, ci, di)} = MLP([f 3d
t,i, f

2d
t,i]), (8)

where ∆µi denotes the Gaussian’s offset from the point anchor, and di ∈ R is a learned dynamic
score indicating motion likelihood. This branch yields a detailed set of Gaussians denoted as Gpoint

t .

The voxel decoder branch complements the point-based decoding by directly predicting new Gaus-
sian primitives from voxel-level scaffold features, effectively filling in sparsely covered regions and
enhancing the scene completeness. For each voxel in Sfused

t , we adopt a compact MLP to produce g
sets of Gaussian parameters (as in Eq. 8) per voxel. The center of each Gaussian is derived by adding
the predicted displacement to the voxel center, forming the set Gvoxel

t . The complete reconstruction
at time t is then given by Gt = Gpoint

t ∪ Gvoxel
t .

Dynamic-aware Gaussian Completion. To enhance temporal consistency and alleviate occlusion-
induced sparsity, we introduce a memory mechanism that maintains accumulated static Gaussians
over time. Each Gaussian primitive is associated with a dynamic attribute di, enabling motion-aware
filtering. Given the static memory Mt−1 from the previous frame, we transform it into the current
ego-centric coordinate system and perform a view filtering to remove Gaussians visible in the current
field of view. The resulting filtered memory M′

t−1 is then fused with the current reconstruction:

Gcomplete
t = Gt ∪M′

t−1 (9)

where Gcomplete
t provides a comprehensive scene representation that fills in the blind spots of the

current frame’s reconstruction. Finally, the memory is updated by retaining static Gaussians from
the current frame:

Mt = M′
t−1 ∪ {Gi ∈ Gt | di < τd}, i ∈ {1, ..., NGt

} (10)

where τd is a score threshold, and NGt
is the total number of current Gaussians. This streaming

mechanism enables temporally persistent reconstruction while suppressing dynamic artifacts.

3.5 TRAINING OBJECTIVE

The model is optimized via a composite loss function defined over the rendered outputs from Gt:

L =
∑

v∈Vinput

(
λ1Lv

mse + λ2Lv
lpips + λ3Lv

dyn + λ4Lv
scale

)
+

∑
v∈Vnovel

λ1Lv
mse ⊙Bv (11)

where Lv
mse and Lv

lpips are the MSE reconstruction and LPIPS perceptual losses (Zhang et al., 2018)
between rendered and ground-truth images for view v, Lv

dyn is the cross-entropy loss between ren-
dered dynamic scores and ground-truth dynamic segmentation masks, and Lv

scale is a smooth-L1 loss
for scale supervision. Vinput refers to the set of input camera views at time t and Vnovel denotes
novel viewpoints at time t + 1. The operator ⊙ denotes element-wise multiplication, where the
background mask Bv excludes dynamic regions to prevent optimization instability. Further details
regarding dynamic rendering are provided in Appendix A.1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets and Metrics. We conduct experiments on two large-scale autonomous driving bench-
marks: Waymo Open (Sun et al., 2020) and nuScenes (Caesar et al., 2020) datasets. The Waymo
Open dataset includes 798 training and 202 validation sequences, with all sequences approximately
20 seconds long and captured at 10Hz using five cameras. For nuScenes, which provides six
surround-view images per frame, we adopt the strategy of Wei et al. (2025) and partition scenes
into equally spaced bins along the vehicle trajectory, yielding 135,941 training and 30,080 valida-
tion bins. Each bin consists of multiple sequential frames, and the central frame serves as the input.

6
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Table 1: Quantitative results on the Waymo Dataset. The best results are marked in bold and
underlined entries indicate second-place performance. ∗: Evaluation conducted on front 3 views
only. †: Results obtained using optimal scale alignment.

Method Views Reconstruction Novel View Synthesis
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

EvolSplat (Miao et al., 2025) Front 23.35 0.70 0.29 - - -
UniSplat Front 28.93 0.86 0.18 27.34 0.80 0.20
DriveRecon∗ (Lu et al., 2024) Multi 23.86 0.72 0.33 17.32 0.58 0.53
MVSplat (Chen et al., 2024) Multi 24.94 0.80 0.23 22.04 0.68 0.34
DepthSplat (Xu et al., 2025) Multi 25.38 0.76 0.26 23.86 0.70 0.31
UniSplat Multi 28.56 0.83 0.20 25.12 0.74 0.27
UniSplat† Multi 29.58 0.86 0.17 25.98 0.76 0.24

Table 2: Quantitative results on the nuScenes Dataset. We highlight best results in bold and second-
place results with underlines. ∗: reported by Wei et al. (2025).

Method PSNR↑ SSIM↑ LPIPS↓
PixelSplat∗ (Charatan et al., 2024) 21.51 0.616 0.372
MVSplat∗ (Chen et al., 2024) 21.61 0.658 0.295
Omin-Scene (Wei et al., 2025) 24.27 0.736 0.237
UniSplat 25.37 0.765 0.246

To measure visual quality, we adopt standard image quality metrics including PSNR, SSIM (Wang
et al., 2004), and LPIPS (Zhang et al., 2018). Following Yang et al. (2024); Lu et al. (2024), the
Waymo benchmark evaluates two tasks: reconstruction, for which images at current timestep t serve
as targets, and novel view synthesis, which synthesizes images at the subsequent timestep t+1. For
nuScenes, consistent with Wei et al. (2025), we evaluate on target views consisting of the first, last,
and central frames of each bin.

Implementation Details. For our 3D scaffold reconstruction, we employ a frozen pretrained ge-
ometry transformer π3 (Wang et al., 2025f) for initial geometry generation and a pretrained DI-
NOv2 ViT-small backbone (Oquab et al., 2023) for semantic feature extraction. The scaffold is built
within a real-world volume of [-72m, -72m, -4m, 72m, 72m, 12m], using an initial voxel size of
(0.1m, 0.1m, 0.2m). Scaffold spatial fusion is performed using a sparse 3D U-Net with a maximum
downsampling factor of 8×, while the temporal fusion employs a separate sparse 3D U-Net with a
maximum downsampling factor of 2×. In the Gaussian decoding stage, the second branch generates
g = 4 primitives per voxel, and the dynamic attribute threshold for streaming scene completion is set
to τd = 0.7. We adopt image resolutions of 350× 518 for the Waymo dataset and 224× 406 for the
nuScenes dataset. All models are trained using the AdamW optimizer (Loshchilov & Hutter, 2019)
on 16 NVIDIA H20 GPUs with a total batch size of 32. For the training objective, we set λ1=1.0,
λ2=0.01, λ3=0.01, and λ4=0.02. Additional implementation details are provided in Appendix A.1.

4.2 MAIN RESULTS

Waymo. We compare UniSplat against state-of-the-art sparse-view reconstruction methods, includ-
ing MVSplat (Chen et al., 2024), DepthSplat (Xu et al., 2025), EvolSplat (Miao et al., 2025), and
DriveRecon (Lu et al., 2024). For the general methods MVSplat and DepthSplat, we retrain them
on the Waymo Open Dataset using their official codebases. For driving-specific methods EvolSplat
and DriveRecon, we conduct evaluation on our validation scenes and resize their outputs to match
the resolution for fair comparison. The quantitative results are summarized in Table 1. UniSplat
consistently outperforms all baselines across every metric for both input view reconstruction and
novel view synthesis. The qualitative comparisons are shown in Figure 2. Notably, MVSplat and
DepthSplat struggle to reconstruct fine geometric details and exhibit noticeable artifacts, especially
in overlapping regions between adjacent cameras. In contrast, our method produces visually coher-
ent and high-quality results. We also report an variant (denoted by †), in which per-camera scales
are set to optimal values derived from LiDAR pointmap, leading to additional improvements.

NuScenes. Following Wei et al. (2025), we evaluate UniSplat on the nuScenes benchmark under the
same protocol. As shown in Table 2, UniSplat surpasses the previous state of the art, Omni-Scene,
achieving 25.37 PSNR (+1.10dB). The qualitative comparisons are provided in Appendix A.3.
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Dynamic-aware Gaussian Completion. UniSplat predicts per-Gaussian dynamic attributes, en-
abling the progressive construction of the scene during inference without manual labels. As shown
in Figure 3, the top section presents a baseline without dynamic filtering, where ghosting artifacts
arise from accumulated dynamic objects. In contrast, our approach effectively completes missing
regions while suppressing such artifacts. As illustrated in the bottom section, UniSplat successfully
completes unobserved areas arising from two typical cases: limited 360° coverage in Waymo’s five-
camera setup and cross-camera blind spots. Moreover, we can observe our model clearly separates
dynamic vehicles from parked ones, demonstrating its effective use of temporal context.

Ground Truth Ours DepthSplat MVSplat
Figure 2: Qualitative comparisons on the Waymo dataset. Our method yields more detailed and
consistent geometry than existing works. Red boxes indicate artifacts. Best viewed zoomed in.

Input View Dynamics MemoryW/O Memory

Back Left

Front Left

Rotate

Rotate

Back Left

Rotate

Figure 3: Qualitative results of scene completion on the Waymo dataset. Top: Aggregated scene
without dynamic filtering, where red boxes indicate ghosting artifacts caused by accumulating the
dynamic car. Bottom: Our method, equipped with dynamic-aware Gaussians, completes unob-
served regions due to limited sensor coverage and bridges cross-camera gaps while avoiding dy-
namic artifacts. The predicted dynamic masks used for filtering are shown for reference.
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Table 3: Impact of feature composition of Ft.
“Geo” and “Sem” denote geometric and semantic
features, respectively.

Geo Sem PSNR↑ SSIM↑ LPIPS↓
✓ 24.78 0.73 0.35

✓ 24.85 0.72 0.31
✓ ✓ 25.08 0.74 0.30

Table 4: Analysis of spatio-temporal fusion.
“Spa” and “Tem” denote spatial and temporal fu-
sion, respectively.

Spa Tem PSNR↑ SSIM↑ LPIPS↓
24.14 0.68 0.32

✓ 24.50 0.70 0.32
✓ ✓ 25.08 0.74 0.30

Table 5: Ablation study on the two branches of our
Gaussian decoder.

Point Voxel PSNR↑ SSIM↑ LPIPS↓
✓ 24.62 0.72 0.38
✓ ✓ 25.08 0.74 0.30

Table 6: Performance comparison of different
geometry foundation models.

Models PSNR↑ SSIM↑ LPIPS↓
MoGe-2 24.98 0.74 0.29

π3 25.08 0.74 0.30

4.3 ABLATION STUDY

In this section, we conduct ablation studies on the Waymo Open Dataset (Sun et al., 2020) to investi-
gate the individual components of our framework, with a focus on novel view synthesis performance.
For efficiency, we subsample the first 20% of frames from each sequence and apply optimal scale
alignment to the point map to accelerate model convergence. All models are trained for 20 epochs
with a batch size of 32 on 16 GPUs.

Ablation on Geometric and Semantic Features in Scaffold. Table 3 investigates the contribu-
tion of geometric and semantic features from foundation models to the scaffold representation.
The absence of semantic features causes a severe decline in LPIPS, increasing the error by 0.05,
which can be attributed to the fact that LPIPS measures perceptual similarity using deep semantic
representations. In contrast, the 2nd and 3rd rows show that performance gap is less pronounced
when only DINO features are used, suggesting that current large-scale pretrained 2D foundation
model (Siméoni et al., 2025) may implicitly capture certain geometric priors.

Analysis of Spatio-Temporal Fusion. We ablate the effects of our spatial and temporal scaffold
fusion, with results summarized in Table 4. As shown in 1st and 2nd rows, the incorporation of
spatial scaffold fusion, which aggregates spatial information in 3D space, improves performance by
+0.36dB in PSNR and +0.02 in SSIM compared to the baseline that only relies on image-domain fu-
sion. Further integration of temporal scaffold fusion, which incorporates historical context through
ego-motion warping and fusion in the latent scaffold domain, brings an additional gain of +0.58dB
in PSNR and +0.04 in SSIM. We also compare against a variant that explicitly uses two consecu-
tive frames without latent-space temporal propagation. This approach achieves a lower PSNR of
24.72dB, likely due to its limited ability to model dynamic elements and restricted temporal context.
These results demonstrate the effectiveness of our unified spatio-temporal modeling approach that
operates directly within the 3D scaffold representation for handling sparse, minimally-overlapping
camera views and complex dynamic driving scenes.

Dual-Branch Gaussian Decoder. We validate our dual-branch decoder design in Table 5. Using
only point-anchored Gaussians results in a performance degradation of 0.46 in PSNR, 0.02 in SSIM,
and an increase of 0.08 in LPIPS error, underscoring the critical role of voxel-generated Gaussians
in improving scene completeness by effectively filling sparsely covered regions. The voxel-only
variant is excluded from comparison as it fails catastrophically at long-range rendering (Wei et al.,
2025), yielding consistently poor performance across all metrics.

Geometry Foundation Model. In Table 6, We ablate the impact of the geometry foundation model
on our framework’s performance. Specifically, replacing the default model with MoGe-2 (Wang
et al., 2025e), a recently introduced open-domain geometry estimation method, yields consistent
performance, which indicates that our approach is robust to the choice of the underlying geometry
foundation model. Notably, we exclude the representative VGGT (Wang et al., 2025a), as our em-
pirical observations indicate that it generalizes less effectively than π3 in outdoor driving scenarios.
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5 CONCLUSION

We presented UniSplat, a unified feed-forward framework for dynamic driving scene reconstruc-
tion and novel view synthesis. Our core contribution is the introduction of a 3D latent scaffold
that seamlessly unifies spatio-temporal fusion from multi-camera videos. By leveraging foundation
models, this scaffold encodes robust geometric and semantic priors, enabling efficient fusion directly
in 3D space. We further proposed a dual-branch Gaussian decoder that generates dynamic-aware
primitives from the scaffold, coupled with a streaming memory mechanism to accumulate static
scene content over time for long-term completion. Extensive experiments on Waymo and nuScenes
demonstrate that UniSplat not only achieves state-of-the-art performance under standard settings
but also exhibits remarkable generalization to challenging viewpoints outside the original camera
coverage. We believe that our framework provides a promising foundation for future research on
dynamic scene understanding, interactive 4D content creation, and lifelong world modeling.

6 ETHICS STATEMENT

We confirm adherence to the ICLR Code of Ethics and have carefully evaluated the ethical implica-
tions of our research. We present our key considerations below.

1. Applications and Responsible Use
Our work advances 3D reconstruction techniques for autonomous driving scenarios, aiming to
improve scene understanding and safety in transportation systems. We acknowledge that re-
construction technologies may have applications beyond our intended scope. We encourage the
responsible deployment of our methods in accordance with applicable regulations and safety
standards for autonomous vehicle development.

2. Data Handling and Compliance
We utilize established public datasets (Waymo Open Dataset and nuScenes) under their respec-
tive licensing agreements. These datasets contain anonymized driving sequences without per-
sonal identifiers. Our research strictly follows the data usage policies established by the dataset
providers and does not involve additional data collection or processing of sensitive information.

3. Computational Efficiency
Our framework incorporates efficient latent-space processing and streaming temporal fusion to
reduce computational requirements compared to existing approaches. This design consideration
supports more sustainable research practices while maintaining high reconstruction quality for
practical applications.

7 REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we have provided comprehensive details necessary to repli-
cate our experiments. The main text outlines our experimental settings in Section 4.1, including
dataset usage, evaluation metrics, and training configurations. Further implementation specifics are
documented in Appendix A.1, which covers network architecture details, hyperparameter settings,
and the use of software libraries such as SpConv for sparse convolutions. All experiments are based
on publicly available datasets, including the Waymo Open Dataset and the nuScenes dataset, and
use clearly defined data splits and evaluation protocols consistent with prior work. For a fair com-
parison with baseline methods, we describe the retraining procedures and adaptations in Appendix
A.1. To further support the research community, we commit to releasing our full source code and
preprocessed datasets upon acceptance of this paper.
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A APPENDIX

Input View Novel View & GT Ours Omni-Scene
Figure 4: Qualitative comparisons on the nuScenes dataset. The red boxes highlight undesirable
artifacts

Input View Dynamics MemoryW/O Memory

Rotate

Front Left

Rotate

Back Right

Shift

Back Right

Rotate

Figure 5: Additional qualitative results of streaming scene completion on the Waymo dataset

A.1 IMPLEMENTATION DETAILS

Implementation details of UniSplat. We employ the SpConv (Contributors, 2022) library to im-
plement the sparse 3D U-Net, which comprises convolutional and transposed convolutional layers
and achieves a maximum downsampling factor of 8×. The model is trained in a streaming manner
using clips of 20 frames for 20 epochs, with an initial learning rate of 1.5× 10−4 following a cosine
decay schedule. For the semantic backbone within the 3D scaffold reconstruction, we uses a learn-
ing rate scaled by a factor of 0.1. To address the severe class imbalance in the dynamic segmentation
loss, we incorporate a negative sampling strategy that randomly selects 50,000 negative pixels per
sample for loss computation. For Gaussian rasterization, we adopt the framework of Kerbl et al.
(2023) and, following StreetGaussian (Yan et al., 2024), set the spherical harmonics (SH) degree to
1 for efficiency.

Dynamic Rendering. To supervise the dynamic attributes of the Gaussians in Gt, we introduce
a dynamics rendering mechanism that renders dynamic masks using the standard differentiable
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Table 7: Efficiency comparison on the nuScenes dataset.
Method FPS↑ Mem.(GB)↓ Param(M) PSNR↑ SSIM↑ LPIPS↓
Omin-Scene (Wei et al., 2025) 2.5 8.22 81.7 24.27 0.736 0.237
UniSplat 4.0 8.30 91.0 25.37 0.765 0.246

Gaussian-splatting pipeline, with dynamic logits as inputs instead of colors:

D =
∑
i∈N

diαi

i−1∏
j=1

(1− αj), (12)

Where D denotes the per-pixel dynamic probability. For ground-truth mask generation, we identify
moving objects via 3D bounding box tracking, project them onto the image plane to create prompts
for SAM2 (Ravi et al., 2024), and subsequently use the model to generate the final masks.

Implementation details of UniSplat counterparts. To adapt general feedforward reconstruction
baselines to the autonomous driving setting, we retrain MVSplat (Chen et al., 2024) and Depth-
Splat (Xu et al., 2025) on the Waymo Open Dataset Sun et al. (2020). For MVSplat, we initialize
the model using its official weights pre-trained on RealEstate10K (Zhou et al., 2018). Context views
are from the current timestep, while target viewpoints include both the current and next timesteps.
Training is conducted with a batch size of 16 on 8 H20 GPUs for 40,000 iterations, as further training
empirically degrades performance. For DepthSplat, we initialize from its official weights pre-trained
on dl3dV (Ling et al., 2024) and use the variant equipped with a ViT-B backbone (Dosovitskiy et al.,
2021). All other training settings remain consistent with those used for MVSplat.

Evaluation Protocol on NuScenes. Due to the patch size constraint of our geometry foundation
model, which requires image dimensions to be divisible by 14, we train our model at a resolution
of 224 × 406, differing from the 224 × 400 resolution used by Omni-Scene (Wei et al., 2025). For
a fair comparison, evaluation is performed by resizing our model’s outputs to 224 × 400, aligning
with the baseline’s resolution before metric computation.

A.2 EFFICIENCY ANALYSIS

We benchmark the efficiency of our method against Omni-Scene, a state-of-the-art open-source
driving-specific reconstruction model, on the nuScenes dataset (Caesar et al., 2020). Note that
Omni-Scene initializes its pixel-aligned Gaussians using predictions from a pretrained monocular
depth estimation model (Hu et al., 2024), which are precomputed and not included in its computa-
tional cost. To ensure a fair comparison, we also exclude the cost of our geometry foundation model
during inference. The results are summarized in Table 7. UniSplat attains higher runtime efficiency
(4.0 FPS vs. 2.5 FPS) while surpassing Omni-Scene by a large margin in reconstruction quality. We
attribute this to our fine-grained spatial fusion and streaming temporal aggregation in latent scaffold
space. We also observe that Omni-Scene’s rendering stage is the primary bottleneck (60% of in-
ference time), as it generates roughly 2 million voxel-based Gaussians per scene. All experiments
were conducted on a single H20 GPU. The reported inference time represents the end-to-end recon-
struction and rendering of all 18 target frames per sample, averaged over 2,048 samples, with data
loading time excluded.

A.3 MORE QUALITATIVE RESULTS.

Qualitative Comparisons on the nuScenes dataset. Qualitative comparisons for novel view syn-
thesis against Omni-Scene are presented in Figure 4. Our method demonstrates superior spatial
coherence, as evidenced in challenging cases such as the thin pole (first row), and produces fewer
artifacts like the buildings shown in the second and third rows.

Streaming Scene Completion. Figure 5 provides additional qualitative results for our streaming
scene completion capability. As shown in the first and second rows, when the viewpoint rotates
or shifts to the regions outside the camera frustums, our method robustly reconstructs these newly
visible areas, maintaining high fidelity and spatial coherence. The third row illustrates a failure case
in which a moving pedestrian is misclassified as static. As a result, the dynamic object is improperly
retained in the memory, leading to noticeable ghosting artifacts in the rendered sequence.
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T = 0s T = 1.3s

…

Input View Input ViewVoxel-rendered Voxel-rendered
Figure 6: Visualization of a moving vehicle at two timestamps (T = 0 s and T = 1.3 s). For each time
step, we show the input view and the corresponding voxel-rendered result from our scaffold. Despite
the vehicle’s motion, the renderings exhibit no ghosting artifacts or temporal inconsistencies.

Input View Point Branch Voxel Branch Dual Branch

Rotate

Figure 7: Reconstructions from the point-only, voxel-only, and dual-branch decoders under camera
rotation. The red boxes highlight artifacts that appear when using only point branch.

Dynamic Handling in the Latent Scaffold. Beyond the explicit dynamic filtering employed in our
streaming Gaussian memory, we observe that the latent scaffold itself exhibits an inherent ability
to handle scene dynamics. Through unified spatio-temporal fusion, the model implicitly learns to
aggregate multi-frame features according to geometric consistency. In Figure 6, we visualize the
reconstruction of a scene containing a moving vehicle. Although features from the moving vehicle
are repeatedly integrated into nearby scaffold voxels over time, the voxel-rendered results remain
free of trailing artifacts or temporal inconsistencies. This suggests that the learned fusion in the latent
space effectively integrates temporal information and suppresses outdated evidence from dynamic
objects.

Visual Analysis of the Dual-Branch Decoder. To better illustrate the behavior of the point and
voxel branches, we visualize the rendering outputs from individual branches under a large view-
point change in Figure 7. The point branch preserves high-frequency details but leads to overfitting
to the input view, resulting in holes and distortions in the novel view (highlighted in red). Con-
versely, the voxel branch serves as a continuous volumetric backbone, although it tends to produce
smoother reconstructions with limited fine-grained sharpness. The final dual-branch decoder effec-
tively combines these complementary strengths, recovering sharp details while maintaining robust
structural integrity in novel views.

A.4 DYNAMIC ACTOR EDITING

Leveraging the explicit disentanglement of static and dynamic Gaussians, UniSplat supports flexible
scene manipulation tasks, including the removal, relocation, and insertion of dynamic actors.

Extracting dynamic actors. Using the learned dynamic scores, we first render a 2D dynamic mask
and extract connected components. 3D Gaussians corresponding to the selected region with high
dynamic probabilities are then grouped as independent actor assets.

Background restoration after editing. A primary challenge in object removal or relocation is
the “disocclusion” problem, where the background region behind a moving object is unobserved
in the current frame. Our framework addresses this by leveraging the streaming memory. In the
standard pipeline, we employ a view-filtered memory M′

t−1 (Eqs. 9 and 10) to avoid redundancy
with the current observations. For editing tasks, however, we explicitly query the full memory state
Mt−1, which allows us to recover static Gaussians captured at earlier timestamps but occluded by
the dynamic actor in the current view.
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Input View Moving Adding Removing

Figure 8: Dynamic actor editing. Starting from the Input View (left), we demonstrate three editing
operations: Moving the vehicle, Adding a vehicle instance to the scene, and Removing the vehicle
entirely.

Input View W/O Memory Memory

Figure 9: More qualitative results of actor removing.

Unified re-rendering with edited actors. Finally, the edited dynamic Gaussians (e.g., moved to
a new position or newly inserted) are combined with the restored static scene. This unified set is
rendered to produce the manipulated scene. As illustrated in Figure 8 and Figure 9, we demonstrate
successful manipulation operations, including moving, adding, and removing an actor, highlighting
the geometric consistency of both the edited actor and the recovered background.

A.5 VIDEO VISUALIZATION

We present a supplementary video demonstrating our reconstruction results on two scenes, showcas-
ing novel view synthesis under camera shifts, along with dynamic prediction capabilities. We note
that in certain frames (e.g., at 1:03), the low Gaussian opacity of glass surfaces results in a perceived
misalignment between dynamic masks and RGB content. Please refer to the video file included in
the supplementary material.

B DECLARATION OF LLM USAGE

Large Language Models (LLMs) were utilized to assist with language refinement and manuscript
preparation, including grammar checking and enhancing textual clarity. All scientific concepts,
methodological innovations, experimental frameworks, data analysis, and conclusions presented in
this work are independently developed by the authors. We have thoroughly reviewed and validated
all content, and assume complete responsibility for the accuracy and integrity of this manuscript.
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