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Abstract

We are interested in reinforcement learning (RL) for physical systems. One of the
drawbacks of traditional RL algorithms has been their poor sample efficiency. One
approach to improve it is model-based RL. In our algorithm, we learn a model
of the environment, essentially its transition dynamics and reward function, use
it to generate imaginary trajectories and backpropagate through them to update
the policy, exploiting the differentiability of the model. Intuitively, learning more
accurate models should lead to better performance. Recently, there has been grow-
ing interest in developing better deep neural network based dynamics models for
physical systems, through better inductive biases. We focus on systems undergoing
rigid body motion. We compare two versions of our model-based RL algorithm,
one which uses a standard deep neural network based dynamics model and the
other which uses a Lagrangian Neural Network based dynamics model, which
utilizes the structure of the underlying physics. We find that, in environments that
are not sensitive to initial conditions, both versions achieve similar average-return,
while the physics-informed version achieves better sample efficiency. Whereas, in
environments that are sensitive to initial conditions, the physics-informed version
achieves significantly better average-return and sample efficiency. In these latter
environments, our physics-informed model-based RL approach achieves better
average-return than Soft Actor-Critic, a state-of-the-art model-free RL algorithm.

1 Introduction

We are interested in reinforcement learning (RL) for physical systems. RL can solve sequential
decision making problems through trial and error. In recent years, RL has been combined with
powerful function approximators such as deep neural networks to solve complex continuous con-
trol tasks (Lillicrap et al., 2015; Schulman et al., 2017; Fujimoto et al., 2018; Haarnoja et al., 2018).
However, there remain some critical challenges in RL today (Dulac-Arnold et al., 2021). One of them
is sample efficiency. Traditional RL algorithms require a lot of interactions with the environment to
learn successful policies. In the case of physical systems, collecting such large amounts of training
data using actual hardware is not practical. One solution is to train in simulation. However, for
many physical systems, developing realistic simulations is hard. Another solution is to improve the
sample efficiency. One approach to improve it is model-based RL, where we learn a model of the
environment, essentially its transition dynamics and reward function, use it to generate imaginary
trajectories and use that data to update the policy. This way we need fewer interactions with the
actual environment. Some model-based RL algorithms use the model just to generate additional
data and update the policy using a model-free algorithm (Sutton, 1991; Janner et al., 2019). Other
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model-based RL algorithms exploit the differentiability of the model and backpropagate through
the imaginary trajectories to update the policy (Deisenroth and Rasmussen, 2011; Heess et al., 2015;
Clavera et al., 2020; Hafner et al., 2019, 2020). We adopt the second approach.

Intuitively, learning more accurate models should lead to better performance. Recently there has
been growing interest in developing better deep neural network based dynamics models for physical
systems through better inductive biases (Lutter et al., 2019a; Greydanus et al., 2019; Lutter et al.,
2019b; Zhong et al., 2019, 2020; Cranmer et al., 2020; Finzi et al., 2020; Zhong et al., 2021a). These
physics-informed models predict the future states more accurately compared to standard deep neural
networks. They also obey the underlying physical laws, such as conservation of energy better.
Previous studies in this area have mostly focused on improving dynamics learning. Some studies
have learnt a physics-informed model and used it for inverse dynamics control (Lutter et al., 2019a)
and energy based control (Lutter et al., 2019b; Zhong et al., 2019). We focus on systems undergoing
rigid body motion. The environments considered are shown in Figure 1. In this work, we assume that
there is no friction or contacts. In future work, we plan to include these effects as well. We provide
more details about the environments, such as the task to be accomplished, which joints are acutated,
etc, in Appendix A. We develop our own simulations from first principles.

(a) Reacher (b) Pendulum (c) Cartpole (d) Cart-2-pole (e) Acrobot (f) Cart-3-pole (g) Acro-3-bot

Figure 1: Environments : We consider systems undergoing rigid body motion. We assume that there
is no friction or contacts.

We compare two versions of our model-based RL algorithm, one which uses a standard deep neural
network based dynamics model and the other which uses a Lagrangian Neural Network based
dynamics model, which utilizes the structure of the underlying physics. Our contributions are as
follows,

• Our first contribution is combining physics-informed models and model-based RL. To the best of
our knowledge, we are the first to do so.

• Our second contribution is showing in which environments we can significantly benefit by learning
physics-informed models. In environments that are not sensitive to initial conditions, both versions
of our algorithm achieve similar average-return, while the physics-informed version achieves
better sample efficiency. Whereas, in environments that are sensitive to initial conditions, the
physics-informed version achieves significantly better average-return and sample efficiency. Thus,
in environments that are sensitive to initial conditions, we can significantly benefit by learning
physics-informed models. There are two factors behind this, one is that numerical errors accumulate
fast in these environments, and the other is that while standard deep neural networks struggle to
learn accurate dynamics models in these environments, physics-informed models are able to do so
due to their inductive biases. Sensitivity to initial conditions is characterized by a large finite-time
maximal Lyapunov exponent. The main factors that cause it are underactuation, which leads to
relatively unrestrained motion, and the system’s high inherent sensitivity to initial conditions, which
is characterized by a large long-term maximal Lyapunov exponent under free fall.

• Our third contribution is showing when model accuracy matters in model-based RL, in general. We
show that model accuracy matters a lot in environments that are sensitive to initial conditions, as
numerical errors accumulate fast in these environments. Whereas, model accuracy matters only
to some extent in environments that are not sensitive to initial conditions, as numerical errors
accumulate slowly in these environments.

• Our fourth contribution is showing that physics-informed model-based RL can exceed the asymp-
totic performance of model-free RL. We compare our model-based approaches against Soft
Actor-Critic (SAC) (Haarnoja et al., 2018), a state-of-the-art model-free RL algorithm. In the
environments that are sensitive to initial conditions, due to factors such as underactuation, high
variance in the agent trajectories and poor predictability, we require a lot of samples to learn. SAC

2



is affected by this issue, while our model-based RL approaches overcome this issue by generating
sufficient imaginary data. Hence, our physics-informed model-based RL approach achieves better
average-return than SAC in these environments.

2 Model-Based RL

Our model-based RL algorithm essentially iterates over three steps. First is the environment in-
teraction step, where we use the current policy to interact with the environment and gather data.
Second is the model learning step, where we use the gathered data to learn the dynamics and reward
models. Third is the behaviour learning step, where we use the learned model to generate imaginary
trajectories and backpropagate through them to update the policy. We discuss the model learning and
behaviour learning steps in detail below.

2.1 Model Learning

In the model learning step, we learn the dynamics and reward models. In dynamics learning, we
want to predict the next state, given the current state and action. We model these systems using
Lagrangian mechanics. Hence, the state consists of generalized coordinates q, which describe
the configuration of the system, and generalized velocities q̇, which are the time derivatives of
q. The action is the motor torque τ . So, in dynamics learning, we essentially want to learn the
transformation (qt, q̇t, τ t)→ (qt+1, q̇t+1). The most straightforward solution is to train a standard
deep neural network. We refer to this approach as DNN. This is shown in Figure 2(a). Another
approach is to utilize the structure of the underlying Lagrangian mechanics. This approach builds
upon recent work such as Deep Lagrangian Networks (DeLaN) (Lutter et al., 2019a), DeLaN for
energy control (Lutter et al., 2019b) and Lagrangian Neural Networks (Cranmer et al., 2020). We
detail this approach here. In Lagrangian mechanics, the Lagrangian is a scalar quantity defined as
L(q, q̇, t) = T (q, q̇)− V(q), where T (q, q̇) is the kinetic energy and V(q) is the potential energy.

The Lagrangian equations of motion are given by,
d

dt

∂L
∂q̇
− ∂L
∂q

= τ . For systems undergoing rigid

body motion, the kinetic energy is 1
2 q̇T M(q) q̇, where M(q) is the mass matrix, which is symmetric

and positive definite. Hence, the Lagrangian equations of motion become,

M(q) q̈ +
∂

∂q

(
M(q) q̇

)
q̇− ∂

∂q

(
1

2
q̇T M(q) q̇

)
︸ ︷︷ ︸

C(q,q̇) q̇

+
∂V(q)
∂q︸ ︷︷ ︸

G(q)

= τ (1)

Here, C(q, q̇) q̇ represents the centripetal / Coriolis forces and G(q) represents the conservative
forces (e. g., gravity). We use one network to learn the potential energy function V(q) and another
network to learn a lower triangular matrix L(q), using which we compute the mass matrix as
M(q) = L(q) LT (q). We then compute C(q, q̇) q̇ and G(q) as shown in Equation 1. Rearranging
Equation 1, we get the acceleration as q̈ = M−1(q) (τ − C(q, q̇) q̇−G(q)). We then numerically
integrate the state derivative (q̇, q̈) over one time step using second-order Runge-Kutta to compute
the next state. We refer to this approach as LNN, short for Lagrangian Neural Network. The entire
process is shown in Figure 2(b). In both the DNN and LNN approaches to dynamics learning, we
use the L1 error between the predicted state and the ground truth as the loss for training. In reward
learning, we want to learn the reward function. In general, the reward is a function of the current
state, action and the next state. In our case, the reward only depends on the next state. Hence, we
train a network to map the next state to the reward. We use the L1 error between the predicted reward
and the ground truth as the loss for training.

2.2 Behaviour Learning

In the behaviour learning step, we use the learned model to generate imaginary trajectories and
backpropagate through them to update the policy. We build upon the Dreamer algorithm (Hafner et al.,
2019, 2020). We adopt an actor-critic approach. The critic aims to predict the expected discounted
return from a given state. We train the critic to regress the λ-return (Schulman et al., 2015). We
stabilize the critic training by computing the λ-return using a target network that is updated every 100
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(a) DNN (b) LNN

Figure 2: Two approaches to dynamics learning : In DNN, we use a standard deep neural network. In
LNN, we utilize the structure of the underlying Lagrangian mechanics.

critic updates. The critic loss function is given by L(w) = E [
∑T−1
t=0

1
2 ( V (st;w)− sg (V ′λ(st)) )

2],
where,

V ′λ(st) =

{
rt + γ ( (1− λ)V ′(st+1;w

′) + λV ′λ(st+1) ) if t < T

V ′(st;w
′) if t = T

(2)

We stop the gradients around the target (denoted by the sg(.) function), as is typical in the literature.
We use a stochastic actor. The actor aims to output actions that lead to states that maximize the
expected discounted return. We train the actor to maximize the same λ-return that was computed to
train the critic. We add an entropy term to the actor objective to encourage exploration. The overall
actor loss function is given by L(θ) = − E [

∑T−1
t=0 [ V ′λ(st)− η log π(at|st; θ) ]]. To backpropagate

through sampled actions, we use the reparameterization trick (Kingma and Welling, 2013). The actor
network outputs the mean µ and standard deviation σ of a Gaussian distribution, from which we
obtain the action as at = tanh(µθ(st) + σθ(st) · ε), where ε ∼ N (0, I). We summarize our overall
model-based RL algorithm in Algorithm 1.

Initialize networks with random weights.
Execute random actions for K episodes to initialize replay buffer.
for each episode do

// Model Learning
for N1 times do

Draw mini batch of transitions from replay buffer. Fit dynamics and reward models.
end
// Behaviour Learning
for N2 times do

Draw mini batch of states from replay buffer. From each state, imagine a trajectory of length T .
Backpropagate through imaginary trajectories to update actor, critic.

end
// Environment Interaction
Interact with environment for one episode using current policy. Add transitions to replay buffer.

end
Algorithm 1: MBRL

2.3 Experiments

We train two versions of our model-based RL algorithm, one which uses the DNN approach for
dynamics learning and the other which uses the LNN approach. We refer to them as MBRL-DNN
and MBRL-LNN respectively. In both versions, we use an imagination horizon of 16 time steps. In
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addition, we train a state-of-the-art model-free RL algorithm, Soft Actor-Critic (SAC) (Haarnoja et al.,
2018), to serve as a baseline. We train each algorithm on five random seeds.

3 Results and Analysis

We record the results from the experiments in Table 1. The training curves are shown in Figure 3. We
summarize the results below,

• Across environments, MBRL-LNN achieves significantly lower dynamics error than MBRL-DNN.
The reward error for both methods are similar.

• In Reacher, Pendulum and Cartpole, all the methods, i. e., MBRL-DNN, MBRL-LNN and SAC,
successfully solve the task and achieve similar average-return.

• In Cart-2-pole, again, all the methods successfully solve the task. However, in terms of average-
return, MBRL-LNN > SAC > MBRL-DNN.

• In Acrobot, Cart-3-pole and Acro-3-bot, only MBRL-LNN and SAC successfully solve the task,
while MBRL-DNN is unsuccessful. Again, in terms of average-return, MBRL-LNN > SAC >
MBRL-DNN.

• Across environments, MBRL-LNN achieves similar or better average return than MBRL-DNN
and SAC, while requiring fewer samples. In other words, MBRL-LNN achieves better sample
efficiency.

Figure 3: Training curves for MBRL-DNN, MBRL-LNN and SAC experiments. The solid curves
represent the mean performance over all the seeds. The shaded region represents the 95 % confidence
interval. The dashed lines indicate the best average-return after convergence.

We try to understand the results better. Reacher, Pendulum and Cartpole appear to be simple
environments where all methods perform well. Cart-2-pole, Acrobot, Cart-3-pole and Acro-3-bot
appear to be more challenging environments, where there is a noticeable difference in the performance
of different methods. We try to understand what makes these latter environments more challenging
and why certain methods perform better in these environments than others.

3.1 Environment Dynamics

As a first step, we try to characterize the underlying dynamics of each environment by calculating
their Lyapunov exponents. Lyapunov exponents measure the rate of separation of trajectories which
start from nearby initial states. If the initial separation vector is u0 and the separation vector at time t
is ut, then the Lyapunov exponent is defined as λ = 1

t log
‖ut‖
‖u0‖ . The rate of separation varies based on

the orientation of the initial separation vector. In general, there is a spectrum of Lyapunov exponents,
equal in number to the state space dimension. It is common to refer to the largest among them as
the maximal Lyapunov exponent (MLE). The rate of separation is maximum along the direction
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Environment Method Steps
Dynamics Reward Average Solved Free Finite Trajectory

Error Error Return (Y/N) Fall Time Error

MLE MLE

Reacher

MBRL-DNN 0.25 M 126.57e-5 7.2217e-4 942.7 Y

0.0247 -0.0051

1.0984

MBRL-LNN 0.125 M 4.7557e-5 8.4078e-4 943.4 Y 0.2036

SAC 1.25 M – – 943.2 Y –

Pendulum

MBRL-DNN 0.25 M 108.93e-5 8.198e-4 787.3 Y

0.0346 -0.0811

0.6933

MBRL-LNN 0.125 M 3.4559e-5 8.3962e-4 786.7 Y 0.1099

SAC 1.25 M – – 786.8 Y –

Cartpole

MBRL-DNN 0.25 M 149.31e-5 7.5226e-4 899.4 Y

0.0718 -0.4626

0.5141

MBRL-LNN 0.125 M 6.014e-5 8.6215e-4 900.0 Y 0.1645

SAC 1.25 M – – 897.4 Y –

Cart-2-pole

MBRL-DNN 2 M 499.94e-5 16.049e-4 786.4 Y

1.1330 0.3241

2.6164

MBRL-LNN 0.5 M 70.389e-5 8.8135e-4 828.3 Y 0.9744

SAC 10 M – – 801.7 Y –

Acrobot

MBRL-DNN 2 M 799.90e-5 8.848e-4 764.5 N

1.0340 0.4265

4.8975

MBRL-LNN 0.5 M 48.046e-5 7.9032e-4 911.8 Y 2.2121

SAC 10 M – – 817.8 Y –

Cart-3-pole

MBRL-DNN 2 M 1196.0e-5 17.044e-4 757.0 N

3.0904 0.8099

18.2503

MBRL-LNN 0.5 M 61.3e-5 6.5141e-4 916.6 Y 1.3601

SAC 10 M – – 759.4 Y –

Acro-3-bot

MBRL-DNN 2 M 1322.0e-5 16.6256e-4 739.7 N

3.2265 0.6230

16.0338

MBRL-LNN 0.5 M 156.34e-5 10.308e-4 929.4 Y 2.8153

SAC 10 M – – 853.5 Y –

Table 1: Overall results from MBRL-DNN, MBRL-LNN and SAC experiments. The data shown
corresponds to the best performing checkpoint (in terms of average-return).

associated with the MLE. An arbitrary initial separation vector will typically contain some component
in this direction, and because of the exponential growth rate, this component will dominate the
evolution. The MLE is a measure of the system’s sensitivity to initial conditions. It also represents
how quickly numerical errors will accumulate. Thus, it is also a measure of the predictability.

Finite-Time MLE : We are interested in knowing how nearby trajectories diverge over finite-time,
under a trained RL policy. Hence, we compute the finite-time MLE. We consider the period from the
start of an episode, till the agent reaches the goal state, which typically takes several hundred time steps.
The simplest method to compute the finite-time MLE is to evolve two trajectories starting from nearby
initial states. A more efficient and reliable method is to use the so-called variational equation (Skokos,
2010), which linearizes the dynamics to explicitly compute how separation vectors evolve with time.
The original variational equation is defined only for autonomous systems. We modify it to accomodate
a control policy. Let the dynamics in the presence of control inputs be described by ṡ = f(s, a), where
a = π(s). The modified variational equation is given by, u̇ = d f

d s u = ( ∂ f
∂ s +

∂ f
∂ a

d a
d s )u. We consider

a random initial separation vector of unit length. We then jointly integrate the system dynamics
along with the modified variational equation to compute how the separation vector evolves with
time. We renormalize the separation vector periodically and each time, use the Lyapunov exponent
definition to compute a fresh estimate of the finite-time MLE and update its running average. We
continue this process until the agent reaches the goal state. We compute the finite-time MLE for
policies of MBRL-DNN, MBRL-LNN and SAC, and average the results. We record the results in
Table 1. We find that Reacher, Pendulum and Cartpole have a relatively small, negative, finite-time
MLE. This implies that they are less sensitive to initial conditions and more predictable. Whereas,
Cart-2-pole, Acrobot, Cart-3-pole and Acro-3-bot have a relatively large, positive, finite-time MLE.
This implies that they are more sensitive to initial conditions and less predictable. The finite-time
MLE is a function of the system dynamics as well as the policy.
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Free Fall MLE : To get an idea of the system’s inherent sensitivity to initial conditions, independent
of any control policy, we compute the long-term MLE under free fall. We call this the free fall MLE.
We follow the same procedure we used to compute the finite-time MLE, with some minor changes.
One change is that, we use the original variational equation. Let the dynamics in the absence of
control inputs be described by ṡ = f(s). Then, the variational equation is given by u̇ = d f

d s u. The
other change is that, we continue the MLE computation process for a sufficiently long time, until
the running average converges. We record the results in Table 1. We find that Reacher, Pendulum
and Cartpole have a relatively small, positive, free fall MLE, implying low inherent sensitivity to
initial conditions. Whereas, Cart-2-pole, Acrobot, Cart-3-pole and Acro-3-bot have a relatively large,
positive, free fall MLE, implying high inherent sensitivity to initial conditions.

3.2 Actuation

In Appendix A, we describe which joints are acutated in each environment. Reacher and Pendulum
are fully actuated. The rest of the environments are underactuated. The level of underactuation
varies. Cartpole and Cart-2-pole are somewhat less underactuated, while Acrobot, Cart-3-pole and
Acro-3-bot are somewhat more underactuated. Underactuation makes it harder to learn successful
policies. It also leads to relatively unrestrained motion.

3.3 Imaginary Trajectories

Next, we assess the quality of the imaginary trajectories produced by MBRL-DNN and MBRL-LNN.
We generate 10,000 imaginary trajectories of length 16 time steps and also generate the corresponding
ground truth trajectories. First, we assess the accuracy of the imaginary trajectories. For each
imaginary trajectory, we compute the state error (L1 error between predicted state and true state) at
each time step. We also compute the trajectory error, which is the sum of the state errors along the
trajectory. We plot the average state error as a function of time in Figure 4. We record the average
trajectory error in Table 1. We find that, MBRL-LNN has a low trajectory error across environments.
MBRL-DNN’s trajectory error varies. In Reacher, Pendulum, Cartpole and Cart-2-pole, it has a
moderate trajectory error. In Acrobot, Cart-3-pole and Acro-3-bot, it has a high trajectory error.
Across environments, MBRL-LNN has lower trajectory error than MBRL-DNN, i. e, MBRL-LNN’s
imaginary trajectories are more accurate.

Figure 4: Accuracy of imaginary trajectories : State Error vs Time.

Next, we assess how well the imaginary trajectories respect the underlying physical laws, such as
conservation of energy. In our environments, the work done by external non-conservative forces, i. e,
the actuators, is non-zero. Hence, the total energy of the system will change. The change in total
energy must equal the work done by external non-conservative forces, for energy to be conserved.
We define the energy error as the absolute difference between the two quantities. For each imaginary
trajectory, we compute the energy error at each time step. We plot the average energy error as a
function of time in Figure 5. We find that, across environments, MBRL-LNN has lower energy error
than MBRL-DNN, i. e, MBRL-LNN’s imaginary trajectories conserve energy better.

7



Figure 5: Conservation of energy in imaginary trajectories : Energy Error vs Time.

3.4 Discussion

Cart-2-pole, Acrobot, Cart-3-pole and Acro-3-bot are underactuated and have high inherent sensitivity
to initial conditions, which is characterized by a large free fall MLE. Underactuation makes it harder
to learn successful policies. It also leads to relatively unrestrained motion. Such unrestrained motion
in a system with a large free fall MLE leads to sensitivity to initial conditions, which is characterized
by a large finite-time MLE. Sensitivity to initial conditions leads to high variance in the agent
trajectories. It also leads to poor predictability, which affects critic learning, as it is concerned with
predicting the discounted return, and hence also affects actor learning, as our methods follow an
actor-critic approach. Under these conditions, we need a lot of samples to learn.

SAC is successful in all four of these environments. However, it is affected by the issue of a lot of
samples being needed to learn. MBRL-DNN and MBRL-LNN overcome this issue by generating a
lot of imaginary data, which allows them to perform many more policy updates. This is the main
reason why SAC achieves lower average-return than MBRL-LNN in these environments.

Sensitivity to initial conditions makes it challenging for standard deep neural networks to learn
accurate dynamics models. In Acrobot, Cart-3-pole and Acro-3-bot, MBRL-DNN has a large
dynamics error. As numerical errors accumulate fast in these environments, its imaginary trajectories
have high trajectory error. Hence, it is unable to learn good policies and is unsuccessful in these
environments. Cart-2-pole is a borderline case. Here, MBRL-DNN achieves a moderate dynamics
error. Hence, even though numerical errors accumulate fast, its imaginary trajectories only have
moderate trajectory error. Hence, it is able to learn a reasonably good policy and is successful.

In all four of these environments, MBRL-LNN achieves a small dynamics error due to its inductive
biases. Hence, even though numerical errors accumulate fast, its imaginary trajectories have low
trajectory error. Hence, it is able to learn good policies and is successful in these environments. Thus,
MBRL-LNN achieves better average-return and sample efficiency than both MBRL-DNN and SAC
in these environments, because it is able to generate a lot of high quality imaginary data and perform
many policy updates using it.

In contrast, Reacher, Pendulum and Cartpole are well-actuated and/or have low inherent sensitivity
to initial conditions, which is characterized by a small free fall MLE. Hence, they are less sensitive
to initial conditions, which is characterized by a small finite-time MLE. In these environments,
MBRL-LNN has a low dynamics error, MBRL-DNN has a moderate dynamics error and numerical
errors accumulate slow. Hence, MBRL-LNN has a low trajectory error, MBRL-DNN has a moderate
trajectory error and both methods are able to learn good policies and are successful, and so is SAC.
In these environments, MBRL-LNN achieves similar average-return to MBRL-DNN and SAC, but
achieves better sample efficiency.
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4 Conclusion

We apply model-based RL to systems undergoing rigid body motion. In our algorithm, we learn a
model of the environment, use it to generate imaginary trajectories and backpropagate through them
to update the policy. We compare two versions of our algorithm, one which uses a standard deep
neural network based dynamics model and the other which uses a Lagrangian Neural Network based
dynamics model, which utilizes the structure of the underlying physics. In environments that are not
sensitive to initial conditions, both versions of our algorithm achieve similar average-return, while
the physics-informed version achieves better sample efficiency. Whereas, in environments that are
sensitive to initial conditions, the physics-informed version achieves significantly better average-
return and sample efficiency. Thus, in environments that are sensitive to initial conditions, we can
significantly benefit by learning physics-informed models. There are two factors behind this, one is
that numerical errors accumulate fast in these environments, and the other is that while standard deep
neural networks struggle to learn accurate dynamics models in these environments, physics-informed
models are able to do so due to their inductive biases. Sensitivity to initial conditions is characterized
by a large finite-time maximal Lyapunov exponent. The main factors that cause it are underactuation,
which leads to relatively unrestrained motion, and the system’s high inherent sensitivity to initial
conditions, which is characterized by a large long-term maximal Lyapunov exponent under free fall.

We show when model accuracy matters in model-based RL, in general. We show that model accuracy
matters a lot in environments that are sensitive to initial conditions, as numerical errors accumulate
fast in these environments. Whereas, model accuracy matters only to some extent in environments that
are not sensitive to initial conditions, as numerical errors accumulate slowly in these environments.

We show that physics-informed model-based RL can exceed the asymptotic performance of model-
free RL. We compare our model-based approaches against Soft Actor-Critic (SAC), a state-of-the-art
model-free RL algorithm. In the environments that are sensitive to initial conditions, due to factors
such as underactuation, high variance in the agent trajectories and poor predictability, we require a lot
of samples to learn. SAC is affected by this issue, while our model-based RL approaches overcome
this issue by generating sufficient imaginary data. Hence, our physics-informed model-based RL
approach achieves better average-return than SAC in these environments.

5 Future Work

In future work, we plan to move towards robotics tasks. We plan to consider friction, as it is present
in most real world robots. As far as learning friction, there are two approaches. In the black box
approach, the friction is learnt directly from data using a neural network (Zhong et al., 2020). In
the white box approach, an analytic friction model is used and its parameters alone are learnt from
data (Lutter et al., 2019b). We plan to pursue the white box approach.

In future work, we also plan to consider contact dynamics, as it is present in many robotics tasks like
manipulation and locomotion. There are predominantly two approaches to simulate contact dynamics,
the linear complementarity approach (LCP) (Stewart and Trinkle, 1996; Anitescu and Potra, 1997)
and the convex optimization approach (Todorov et al., 2012). LCP was the standard approach for
a long time. Convex optimization has similar accuracy and is more efficient. We plan to adopt
the latter approach and use differentiable convex optimization layers (Agrawal et al., 2019) to learn
differentiable contact models which can extend LNNs. There has been some recent work in this
direction by Zhong et al., 2021b. However they assume that the robot’s environment is known and
use it to compute the active contacts and their jacobians. We plan to do away with this assumption by
equipping the robot with sensors to perceive its environment.

Upon learning a physics-informed model that captures rigid body dynamics, friction and contact
dynamics, we plan to train a model-based RL algorithm.
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Appendix

A Environment Details

The task to be accomplished in each environment is as follows,

• Reacher : Control a fully-actuated two-link manipulator in the horizontal plane to reach a fixed
target location.

• Pendulum : Swing up and balance a simple pendulum.
• Cartpole : Swing up and balance an unactuated pole by applying forces to a cart at its base.
• Cart-2-pole : One extra pole is added to Cartpole. Again, only the cart is actuated.
• Acrobot : Control a two-link manipulator to swing up and balance. Only the second pole is

actuated.
• Cart-3-pole : One extra pole is added to Cart-2-pole. Only the cart and the third pole are actuated.
• Acro-3-bot : One extra pole is added to Acrobot. Only the first and the third poles are actuated.

In all the environments, there are no terminal states. Each episode consists of 1000 time steps. The
total reward over an episode is in the range [0, 1000].

B Implementation Details

Table 2 and Table 3 list the hyperparameters and network architectures used in our model-based RL
experiments. For SAC, we use the same hyperparameters and network architectures as the original
SAC paper (Haarnoja et al., 2018).

Parameter Value
Random episodes at start of training (K) 10

Replay buffer size 105

Batch size for model learning 64

Model learning batches per episode (N1) 104

Batch size for behaviour learning 64

Behaviour learning batches per episode (N2) 103

Imagination horizon (T ) 16
Discount factor (γ) 0.99

Lambda (λ) 0.95
Entropy weightage (η) 10−4

Gradient clipping norm 100

Optimizer AdamW
Learning rate 3× 10−4

Table 2: Model-Based RL Hyperparameters.

Network Architecture
Critic dim (s) , 256 , 256 , 1
Actor dim (s) , 256 , 256 , 2× dim (a)
DNN dim (s) + dim (a) , 64 , 64 , dim (s)

LNN L dim (s)
2

, 64 , 64 , dim (s)×(dim (s)+2)
8

LNN V dim (s)
2

, 64 , 64 , 1
Reward dim (s) , 64 , 64 , 1

Table 3: Model-Based RL Network Architectures.

C Long-Horizon Imaginary Trajectories

Although during behaviour learning we use an imagination horizon of only 16 time steps, in Figures 6
and 7, we plot the average state error and energy error as a function of time for imaginary trajectories
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of horizon 100 time steps, to see how far into the future our models can predict accurately. We find
that, across environments, MBRL-LNN is able to accurately predict quite far into the future, while
MBRL-DNN is unable to.

Figure 6: Accuracy of long-horizon imaginary trajectories : State Error vs Time.

Figure 7: Conservation of energy in long-horizon imaginary trajectories : Energy Error vs Time.
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