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ABSTRACT

Forecasts of future events are essential inputs into informed decision-making.
Machine learning (ML) systems have the potential to deliver forecasts at scale, but
there is no framework for evaluating the accuracy of ML systems on a standardized
set of forecasting questions. To address this gap, we introduce ForecastBench: a
dynamic benchmark that evaluates the accuracy of ML systems on an automatically
generated and regularly updated set of 1,000 forecasting questions. To avoid any
possibility of data leakage, ForecastBench is comprised solely of questions about
future events that have no known answer at the time of submission. We quantify
the capabilities of current ML systems by collecting forecasts from expert (human)
forecasters, the general public, and LLMs on a random subset of questions from
the benchmark (N = 200). While LLMs have achieved super-human performance
on many benchmarks, they perform less well here: expert forecasters outperform
the top-performing LLM (p-value < 0.01). We display system and human scores
in a public leaderboard at www.anonymousurl.org.

1 INTRODUCTION

Forecasting the future is a challenging but important task (Armstrong, 2001; Tetlock and Gardner,
2015). Economic forecasts influence investment and hiring decisions (Christensen et al., 2018). And
forecasts of the Covid-19 pandemic in early 2020 prompted local lockdowns to slow the spread of
the virus Adam (2020). However, human forecasting is often expensive, time-consuming, applicable
only in specific domains, and subject to concerns about human biases. Motivated by these limitations,
recent work explores the use of machine learning (ML) models, especially large language models
(LLMs), in automated forecasting (Fluri et al., 2024; Halawi et al., 2024; Hendrycks et al., 2021;
Phan et al., 2024; Pratt et al., 2024; Yan et al., 2024; Zou et al., 2022).

To assess LLMs’ forecasting capabilities, prior work built static benchmarks of questions where
the answer was known (resolved) after the knowledge cut-offs of the LLMs they test (Halawi et al.,
2024; Yan et al., 2024; Zou et al., 2022). For example, “Will a nuclear weapon be detonated in 2023,”
though resolved on Jan 1, 2024, is a valid out-of-sample question for testing a model with a known
knowledge cut-off before the end of 2023.

This static evaluation methodology comes with three key drawbacks. First, as the knowledge
cut-offs of frontier models are updated, static benchmarks become obsolete, necessitating further
data-sourcing. This makes it difficult to continuously track and compare the top models in the field.
Second, knowledge cut-offs are usually estimated using the time range of pre-training data. Such
estimates may not be accurate, and post-training may inject further post-cutoff knowledge into the
model, contaminating the test sets. Lastly, model developers face financial incentives to exaggerate
their accuracy on benchmarks and claim that their models are state-of-the-art performers. While some
fudging is easily identified, other subtle benchmark manipulation or overfitting is harder to catch,
and some studies have shown that there is significant evidence for benchmark contamination and/or
memorization in popular LLM models (Elazar et al., 2024; Li et al., 2023; Roberts et al., 2023).

To address these drawbacks, we introduce ForecastBench, a dynamic benchmark that is continuously
updated with new questions about future events. Our automated system gathers new questions from
nine data sources on a daily basis, including prediction markets, forecasting platforms, and real-world
time series. We regularly elicit predictions on these questions from both automated systems and
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human forecasters. As they resolve, we update a public leaderboard to show participant performance.
This process makes ForecastBench an accurate real-time benchmark of forecasting abilities.

Our initial benchmark consists of 1,000 standardized forecasting questions randomly sampled from
a much larger real-time question bank. To establish baseline levels of performance, we record
predictions from dozens of LLMs on the initial set, using methods like retrieval-augmentation
to boost model performance (Halawi et al., 2024; Lewis et al., 2020). We independently elicit
predictions from human forecasters of varying expertise, including a group of seasoned forecasters
(superforecasters) (Tetlock and Gardner, 2015) who have consistently performed well in competitive
forecasting tournaments. As questions resolve, we rate the submissions of registered models and the
human comparison groups, updating our public leaderboard.

Our initial results indicate that state-of-the-art models, such as GPT-4o and Claude-3.5, perform only
roughly as well as a simple median of forecasts from a survey of humans with no (or minimal) fore-
casting experience, even when the LLMs are augmented with news retrieval and prompt engineering,
and when the models have access to forecasts from a human crowd (on market-based questions). The
models also perform significantly worse than the median of expert forecasters (superforecasters) who
answer the same questions.

These findings leave significant room for researchers to attempt to improve AI-based forecasting
systems using innovative approaches, such as developing methods for continuously updating models
with current events and enhancing LLMs to reason over extended time frames. To support progress in
this area, we publish an auxiliary dataset of LLM and human forecasts, rationales, and accuracy for
use in future LLM fine-tuning and testing.

1.1 RELATED WORK

Automated forecasting ML systems that make accurate forecasts can help inform human decision-
making (Hendrycks et al., 2021; Schoenegger et al., 2024a). Recent work studies the use of LLMs for
automated forecasting Halawi et al. (2024); Jin et al. (2021); Pratt et al. (2024); Yan et al. (2024); Zou
et al. (2022). These papers all build static benchmarks of resolved questions. A recent paper from
Halawi et al. (2024) uses questions resolved between June 2023 and January 2024. Unfortunately, the
latest LLMs, such as GPT-4o, have knowledge cut-offs past this point. This fact motivates our work
to build a dynamically updating benchmark that can accurately evaluate frontier model performance.

In addition, Schoenegger and Park (2023) and Abolghasemi et al. (2023) compare the accuracy of
GPT-4 and other LLMs to human forecasters. Schoenegger et al. (2024b) found that an ensemble
of 12 LLMs rivaled human forecasts in a forecasting tournament in 2023 with a small number of
questions, limiting the study’s statistical power. Unlike our work, that tournament was run only once
and is no longer updated. Also, our much larger question set allows us to make precise statistical
claims about the performance of LLMs relative to each other and relative to human performers.

Finally, recent work focuses on the use of LLMs and transformer-based systems in statistical time-
series forecasting (Das et al., 2024; Dooley et al., 2023; Goswami et al., 2024; Gruver et al., 2023;
Jin et al., 2024; Nie et al., 2023; Rasul et al., 2023; Woo et al., 2024), but many of the most important
forecasting questions do not have well-defined time series that can be used in standard statistical
forecasting models (e.g., what is the probability that a nuclear weapon will be used offensively in the
next ten years?). Our benchmark is more general, and evaluates automated forecasting performance
across questions with and without underlying time series and historical baseline data.

Language model evaluation Evaluating highly capable LLMs is a challenging task—with many
models saturating key benchmarks soon after their release (Maslej et al., 2023; Owen, 2024) and with
benchmarks potentially leaked to models’ training data (Balloccu et al., 2024; Jacovi et al., 2023;
Jiang et al., 2024b; Magar and Schwartz, 2022; Sainz et al., 2023; Xu et al., 2024a;b; Zhang et al.,
2024). Our dynamic forecasting benchmark avoids both of these issues. First, automated forecasting
is highly unsaturated: Halawi et al. (2024) showed that under simple zero-shot evaluation, frontier
models such as GPT-4 are much less accurate than aggregates of human predictions. Second, our
benchmark is dynamic. The final resolution of each question is only determined in the future and
cannot be ‘leaked’ in any training data (by construction). This eliminates concerns of contamination.
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2 PRELIMINARIES

Forecasting A forecasting question asks for a probabilistic prediction of a future event. A forecaster
may assign probabilities to potential outcomes of the event. Forecasting platforms, including
prediction markets, host a wide range of questions. Many questions are of public interest, such as
“Will a Democrat win the 2028 US presidential election?”

Metrics For binary questions, we use the Brier score as the performance metric, defined as (f−o)2,
where f ∈ [0, 1] is the probabilistic forecast and o ∈ {0, 1} is the outcome. Lower Brier scores are
better, and a score of 0.25 is associated with the uninformed forecast of 0.5. Brier scores are strictly
proper, incentivizing truthful reporting from participants.

Models We evaluate 17 LLMs on our initial benchmark: GPT-3.5-Turbo-Instruct (Brown et al.,
2020), GPT-4 (OpenAI, 2023), GPT-4o, Llama-2-70B (Touvron et al., 2023), Llama-3-7B, Llama-3-
70B, Mistral-7B, Mistral-8x7B (Jiang et al., 2024a), Mistral-8x22B, Mistral-Large, Qwen1.5-110B-
Chat, Claude-2.1 (Anthropic, 2023), Claude-3-Haiku, Claude-3.5-Sonnet, Claude-3-Opus (Anthropic,
2024), Gemini 1.5 Flash and Gemini 1.5 Pro (Gemini Team, 2023).

We record model predictions under three different methods: zero-shot prompting, scratchpad prompt-
ing, and scratchpad prompting with retrieval augmentation. For the last setting, we use the retrieval
infrastructure from Halawi et al. (2024) and provide relevant news articles to the models in-context
to reason about. Additionally, only models with a context window larger than 8,000 tokens were
evaluated under the retrieval setting due to the inclusion of news articles in some prompts.

3 BENCHMARK, LEADERBOARD, AND DATASETS

We maintain a question bank with a growing set of forecasting questions. Continuously adding
questions to the question bank allows it to stay relevant and ensures that we have a large selection of
unresolved questions to sample from.

Every night, our automated system updates the question bank with new questions and resolution
values. We drop invalid, low-quality, and resolved questions, categorizing the remaining questions by
topic. The process is fully automated as detailed in Section 3.1.

Every two weeks, we sample from the question bank and release question sets for teams interested in
submitting their forecasts to the benchmark. We also survey a standard set of LLM-based models
to allow for comparisons of performance over time. The forecasts that these groups submit are
resolved continuously with daily updates to our leaderboard. We provide the resulting data on
forecast questions and submissions to researchers. See Section 3.2 for details. Finally, we discuss the
question resolution procedure in Section 3.3 and our leaderboard design in Section 3.4.

3.1 QUESTION BANK

In an automated process that runs nightly at 0:00 UTC, questions are added to the question bank,
resolution values are updated, and metadata generated. Details follow.

3.1.1 QUESTIONS AND RESOLUTION VALUES

We bring in questions from two broad types of sources: markets and datasets.1 We select multiple,
reliable sources from each type, ensuring the diversity of our benchmark. See Table 1 for details.

Markets As one of our two main question sources, we rely on a handful of prediction markets and
forecast aggregation sites that elicit human predictions on questions across a wide range of topics.2
When selecting questions from market sources to add to the question bank, we choose those with
high levels of active human trading on these platforms (liquidity) as these questions tend to be of

1Licensing information can be found in Section C.1.
2Hereafter, for brevity, we refer to questions that come from both prediction markets and forecast aggregation

sites as "market" questions. We also refer to theses sources collectively as "market" sources.
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higher quality than those with low levels of human trading.3 We also store the latest market and
resolution values for each question.

Datasets As a second question source, we rely on 5 well-established and well-maintained datasets
that track real-world events (e.g. ACLED (Raleigh et al., 2023), a geopolitical database that tracks
worldwide conflict, including facts like the number of protests in Niger each month). With these
dataset sources, we can generate questions using a fixed question template (e.g., “Will the number of
protests in Niger increase by at least 10% over this month’s value by the resolution date?").4

Question Bank Table 1 lists the sources of market and dataset questions, along with the number
of questions available in our question bank, whence we sample questions for our benchmark runs.
In addition to the main questions (with sample size N ), we also construct additional combination
questions by choosing pairs of questions within each source. We describe combination questions in
more detail in Section 3.2.

Table 1: Question bank composition, grouped by source type (market or dataset).

Source URL N
(
N
2

)
RFI randforecastinginitiative.org 15 105
Manifold Markets manifold.markets 392 76,636
Metaculus metaculus.com 800 319,600
Polymarket polymarket.com 534 142,311

Market Total 1,741 538,652

ACLED acleddata.com 3,150 4,959,675
DBnomics db.nomics.world 52 1,326
FRED fred.stlouisfed.org 166 13,695
Wikipedia wikipedia.org 335 55,945
Yahoo! Finance finance.yahoo.com 504 126,756

Dataset Total 4,207 5,157,397

Question Bank Total 5,948 5,696,049

3.1.2 QUESTION METADATA

After we automatically collect forecasting questions and resolution values in our standardized question
bank, the data get processed in several ways. This generates more information about the questions
and creates another sampling option for the creation of the final question set. Following Halawi
et al. (2024), we use gpt-3.5-turbo-0125 to categorize questions by subject and to filter out
low-quality questions. We report the number of questions by category and source in Table 15, where
we display the breakdown of the standard questions from our question bank (N from Table 1) across
question categories by source, after removing low-quality questions.

3.2 QUESTION SETS

LLM question set We release a set of 1,000 forecast questions for LLMs every other Sunday at
midnight UTC. We sample an equal number of questions from each data source to ensure represen-
tativeness. Within each source, we then uniformly sample questions across all question categories,
aiming for an equal distribution from each category within each source. This ensures that models
cannot be overfit to a specific type of question or topic. Limiting the number of questions generated to
1,000 also ensures that costs for testing LLM systems on the benchmark are capped for development
teams with fewer resources.

3See Table 8 for an example question pulled from a market source.
4See Table 9 for an example question pulled from a dataset source.
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Human question set The human question is comprised of 200 forecast questions sampled directly
from the LLM question set. When sampling from the LLM question set, we do our best to maintain
proportionality across question sources and across categories within each question source; this ensures
the question set addresses as many domains as possible.

Forecast horizons For questions derived from dataset sources, the distribution of resolution dates
is the forecast_due_date + n days, where n ∈ {7, 30, 90, 180, 365, 1095, 1825, 3650}. In other
words, for each dataset question we ask for 8 forecasts, differing only in their resolution date, ranging
from one week to 10 years. For questions derived from market sources, we ask for only 1 forecast:
the probability that each question will resolve positively (will the event underlying the question occur,
or not). In time, this setup will allow us to evaluate both human and LLM forecasting performance
over the short, medium, and long term.

Combination questions For every data source, there are two types of questions, each comprising
half of the question set. The first type is a standard forecasting question with a binary outcome, e.g.
“Will inflation (core CPI) be above 3% next month?” We construct the second type, combination
questions, by pairing two standard questions. For combination questions, we ask for forecasts on all
Boolean combinations of the two questions (i.e. P (Q1 ∩Q2), P (Q1 ∩ ¬Q2), . . . ). Considering the
extensive number of existing standard questions and potential combinations in our question bank (as
we could potentially combine 3, 4, or more standard questions together), we effectively have access
to millions of possible forecasting questions to sample from. We show the number of two-question
combination questions in the question bank as it stands at time of writing in the right-hand column of
Table 1. This setup implies that for market combination questions, each forecaster will provide 4
forecasts, whereas for dataset combination questions, each forecaster will provide 32 forecasts (4 for
each boolean combination of Q1 and Q2 at each of the 8 forecast horizons).

Combination questions require forecasters to consider the covariance structure of different events,
some of which are more independent than others. For instance, the best forecasts of whether the
S&P500 (a key U.S. stock market index) will reach an all-time high and whether Spain will win the
next Men’s World Cup are likely independent. However, the best forecast of whether the S&P500
will reach an all-time high and whether the U.S. will enter an economic recession must account for
the likely strong correlation between these events.

Of the 1,000 questions in the LLM question set, 500 are combination questions. Each combination
question is composed of two standard questions from the same set. This means LLMs will also
provide forecasts for the individual components of these combination questions, since they’re drawn
from the existing standard questions. Importantly, none of the 200 questions in the human question
set are combination questions.5

Timeline of forecasting round To estimate baseline human and expert performance on these
questions, we run surveys asking the general public and expert forecasters to predict on our question
sets (see Section 4). We produce the question sets 10 days before the forecast due date to allow for
time to create and run a human survey. LLM teams receive their question set 24 hours before the
due date, even though it was generated at the same time as the human question set; this constrained
time frame gives teams less time to be able to game the system, or be dishonest participants on the
leaderbord. We thus elicit forecasts, obtaining comparable forecast sets on the due date from both
LLMs and humans who faced the same information environment.

3.3 RESOLUTION

We resolve forecast sets nightly by gathering the latest information about which events have or have
not occurred. All questions are ultimately resolved to the final true value.

Evaluating performance on market questions Ground truth is not available for market questions
before the events are known to have occurred or not occurred. Before questions resolve, we evaluate

5We exclude combination questions because expert human forecasts are expensive to generate and by focusing
on forecasts of standard questions we maximize the relevance of these expert human forecasts.
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performance by calculating the squared distance between the forecast value and the platform pre-
diction (an aggregate of human forecasts reported on the platform) from the preceding day. These
values are updated nightly as described in Section 3.1.1. This allows us to score the complete set
of forecast questions, incorporating all information available to people on a nightly basis. Once a
market question is officially resolved, we score the forecast against the resolution value, creating a
definitive score for the question.

Evaluating forecasts on unresolved market questions to the crowd forecast provides a good estimate of
forecast performance, as crowd forecasts tend toward ground truth as the resolution date approaches.
This allows us to estimate forecast performance on a larger set of market questions, as we would
otherwise have to wait until each market resolved.

Evaluating performance on dataset questions Datasets can be updated as new information
becomes available. Thus, questions derived from datasets are continuously resolved to the value from
the the latest available data. As the resolution dates for dataset questions mentioned in earlier come
due (the 7 day horizon to the 10 year horizon), a new round of forecasts is evaluated. We thus are
able to evaluate forecasting performance over different time horizons.

Missing forecasts We select 1,000 questions for the LLM question set to make the forecasting task
impractical to complete manually within the 24 hour window after the question set is released. And
we obligate all LLMs to forecast on all questions to ensure comparability of scores across models
and human-based aggregates. So, when a model does not submit predictions on certain questions
or time horizons, we consider that a model error and impute a naive value for the model to ensure
comparability across models over time.

For market questions, as we only ask users to forecast the outcome of the question, missing forecasts
on question outcomes are assigned the value of the crowd forecast on the forecast due date. Some
may argue this is overly-generous, but we did not want teams to have a competitive advantage by
simply scraping the market websites themselves.

For dataset questions, we impute the value 0.5 (which represents a lack of information) to forecasts
across all time horizons. Empirically, top models report valid forecasts on all questions and are not
affected by this imputation procedure.

3.4 LEADERBOARDS

We generate leaderboards, ranking models and humans by average overall score. The main leader-
board highlights the top forecasting submission across all questions and can by sorted by performance
on the source type (market or dataset) and by resolution status (resolved or unresolved questions). The
leaderboard is updated nightly, given the latest data, market resolution values, and crowd forecasts.

3.5 DATASETS

As a key output of ForecastBench, we generate four living datasets that grow over time. See
Appendix A for licensing details and Appendix B for data dictionaries.

General public forecast dataset Every time we run the public survey outlined in Section 4, we
provide multiple independent forecasts and rationales on every one of the 200 forecast questions and
report the accuracy of the median public forecast. See Section B.2.1 for details.

Superforecaster forecast dataset We provided a random subset of the benchmark questions to 39
expert forecasters with a strong track record of accurate performance on a diverse set of geopolitical
questions. In addition to forecasts and rationale, the superforecasters provide pertinent information
about their forecasting process, like search terms used and useful URLs consulted. See Section B.2.2.

LLM forecast dataset Similar to the general public dataset, we prompt LLMs to produce forecasts
on each of 1,000 forecast questions in the LLM question set. Their rationales are also included in the
dataset whenever provided. See Section B.2.3 for details.

6
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Question & resolutions dataset In creating the benchmark, we have automated question creation
and resolution from all of the sources outlined in Table 1. We provide these as a dataset that can be
combined with the forecast datasets mentioned above. See Section B.1 for details on these datasets.

4 HUMAN FORECASTER BASELINE

To compare LLM forecasting performance to human performance, we ran surveys of two different
groups: the general public and expert forecasters (superforecasters).

4.1 PUBLIC

We recruited 500 human forecasters via Prolific and Facebook advertising to participate as represen-
tatives of the general public. These human subjects completed a brief introductory survey to gather
demographic information6 and evaluate performance on a few forecasting and comprehension tasks.
They then completed a one-hour survey containing 20 random questions from the 200-item human
question set described in Section 3.2, providing their forecasts and rationales for each question.

The number of responses per question varied to ensure representativeness across subject matters and
sources; at least 40 responses were gathered per question, averaging 49 responses per question.

4.2 SUPERFORECASTERS

We additionally recruited 39 superforecasters, who have a strong track record of accurate performance
on a diverse set of geopolitical questions, to participate in a 9-day forecasting experiment in which
participants were prompted to give their individual forecasts for 20 random questions from the same
200-item human question set described above. Roughly halfway through the 9-day experiment,
participants were moved into a group forecasting stage in which we allowed them to see one
another’s forecasts and rationales and to communicate about each question. They were also given the
opportunity to forecast on questions beyond the 20 questions assigned to them individually.

Because of the more limited quantity of the superforecasters, questions generally had fewer responses
than in the public survey; a minimum of 3 forecasts were recorded for each question, with an average
of 8 responses per question.

See Figure 2 for an example question from the human surveys. All data from human surveys are
anonymized per IRB requirements.

Results We evaluate human performance on the forecasting tasks by comparing predictions to the
ground truth on resolved questions and comparing to community aggregates on unresolved questions.
We find that the median public survey participant had an overall Brier score of 0.111 on the 200-item
subset we drew from the LLM Question Set with 1,000 questions. The median superforecaster
participant had an overall Brier score of 0.091 on this same subset of forecasting questions. See
Section 5 and Table 2 for a comparison between human performance and LLM performance, as well
as Appendix H for a top 50 leaderboard of human and LLM performance.

5 LLM BASELINE

In this section, we evaluate the forecasting capabilities of language models and report on the method-
ology and results.

5.1 METHODOLOGY

We evaluate a suite of instruction-following chat models without any additional fine-tuning (see
Section 2 for details on the models). In each baseline, we prompt the model to generate a probabilistic
forecast that the question will resolve to “Yes.”

6See Appendix L for an overview of public participant demographics.

7
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Baselines We implement seven baselines: (1) zero-shot prompting; (2) prompting with scratchpad
instructions; (3) prompting with scratchpad instructions and retrieved news articles; (4) zero-shot
prompting with crowd forecasts; (5) scratchpad prompting with crowd forecasts; (6) scratchpad
prompting with retrieved news articles and crowd forecasts; and (7) aggregating predictions from
multiple LLMs. Each baseline is described in more detail below.

1 Our first baseline, prompts the model zero-shot to generate a forecast directly without generating
other content, such as intermediate thinking (Figure 4). By prompting the model to output its
forecast directly, we assess raw forecasting capability without sensitivity to prompting strategies.

2 Our second baseline, prompts the model with scratchpad instructions (Nye et al., 2021) that
outline a procedure the model should use to reason about the question (Figure 5). Our scratchpad
prompt comes from (Halawi et al., 2024), which formed its prompts through a combination of
analyzing the Brier score as prompt changes were made, and by adding language to fix common
errors the LLMs would make, e.g., asking them to rephrase the question for understanding.

3 Since LLMs’ knowledge are not continuously updated, it is important to provide LLMs with
up-to-date information relevant to the question (Zou et al., 2022). Our third baseline, scratchpad
with news, uses the same scratchpad prompt as above, supplemented with retrieved news articles.
The retrieval system is the same as described in Halawi et al. (2024): an LLM generates search
queries for a news API, filters articles for relevancy, and summarizes the articles.

4 The question sets we provide to LLMs contain what we term freeze values. For market questions
these are just the crowd forecast on the market the day the question set was created, as described
in Section 3.2. For dataset questions, these are baseline values relevant to the forecasting task.7

Our third baseline is the zero-shot with freeze values. This is simply the zero-shot prompt
from Baseline 1 supplemented with the freeze value and an explanation of the freeze value. For
examples of the freeze value its explanation, see Table 8 and Table 9.

5 Our fifth baseline is the scratchpad with freeze values (the scratchpad prompt from Baseline 2
supplemented with freeze values as explained in Baseline 4).

6 Our sixth baseline is the scratchpad with news with freeze values.

7 The aggregated prediction of forecasters (“crowd” prediction) is a strong benchmark. For instance,
Metaculus (2023) shows that an ensemble of all forecasters consistently outperforms using just
the top 5, 10, ..., 30 best forecasters (based on past scores). In our final baseline, we aggregate the
predictions generated by LLMs into an LLM “crowd” prediction.
To produce the LLM crowd forecast, we use 3 models (GPT-4o, Claude-3.5-Sonnet, and Gemini-
1.5-Pro) and 3 prompts crafted by superforecasters (Figure 6, Figure 7, and Figure 8). This results
in 9 forecasts per question. We generate 3 LLM crowd baselines using the median, geometric
mean, and geometric mean of log odds (Satopää et al., 2014). For details, see Appendix E.

5.2 RESULTS

Comparing humans and LLMs In Table 2, we show that superforecasters achieve an overall mean
Brier score of 0.092, significantly outperforming both the general public (Brier = 0.114, p < 0.001)
and the top LLM performer on the 200-item subset (Claude 3.5 Sonnet: Brier = 0.114, p = 0.001).8
The top-performing language models all had access to the crowd forecast on market questions (the
“freeze values” from Baselines 4, 5, and 6 above). The top-performing model without access to
the crowd forecast on market questions was less accurate than models with access to the human
forecast with a Brier score of 0.126. The comparison between humans and LLMs relies on the 200
questions forecasted by humans, which is a random sub-sample of the 1,000 questions in the question
set provided to LLMs (excluding combination questions).9

7For example, in a question generated from a Wikipedia page about whether a chess player’s Elo rating will
increase by a given date, the freeze value is the chess player’s Elo rating on the question set generation date. An
explanation of what the freeze value represents is also provided.

8See statistical note in Appendix G.
9Accuracy measures are based on more than 200 forecasts because human and LLM forecasters submitted

multiple forecasts on each dataset question, one for each time horizon. The results presented here include
forecasts over the 7-day, 30-day, and 90-day time horizons.
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Table 2: LLM/Human Leaderboard (top 10)

Brier Score ↓

Model Organization Information
provided Prompt Dataset

(N=316)
Market
(N=77)

Overall
(N=393)

Confidence
Interval

Pairwise
p-value
comparing
to No. 1

Pct. more
accurate
than No. 1

Superforecaster median forecast ForecastBench – – 0.126 0.059 0.092 [0.073, 0.112] – 0%
Claude-3-5-Sonnet-20240620 Anthropic Freeze values Scratchpad 0.139 0.089 0.114 [0.092, 0.136] <0.01 31%
Public median forecast ForecastBench – – 0.156 0.072 0.114 [0.095, 0.133] <0.001 24%
Claude-3-5-Sonnet-20240620 Anthropic News with freeze values Scratchpad 0.144 0.094 0.119 [0.098, 0.141] <0.001 30%
GPT-4 OpenAI Freeze values Zero shot 0.164 0.079 0.121 [0.100, 0.143] <0.001 32%
Claude-3-5-Sonnet-20240620 Anthropic Freeze values Zero shot 0.145 0.099 0.122 [0.095, 0.149] <0.001 32%
GPT-4-Turbo-2024-04-09 OpenAI Freeze values Zero shot 0.170 0.077 0.124 [0.102, 0.145] <0.001 33%
GPT-4o OpenAI News with freeze values Scratchpad 0.168 0.082 0.125 [0.107, 0.144] <0.001 26%
Claude-3-5-Sonnet-20240620 Anthropic – Scratchpad 0.139 0.113 0.126 [0.104, 0.148] <0.001 29%
GPT-4o OpenAI Freeze values Scratchpad 0.163 0.093 0.128 [0.108, 0.148] <0.001 27%
Always 0.5 ForecastBench – – 0.250 0.184 0.217 [0.207, 0.227] <0.001 16%
Notes:

1. Shows performance on the 200 standard questions provided in the human question set at the 7-, 30-, and 90-day forecast horizons.
2. The full leaderboard is available at www.anonymousurl.org. Online results are updated nightly, so may be slightly different than the static version presented here.
3. For resolved questions, predictions are compared against ground truth while for unresolved questions, they are compared to community aggregates.
4. The overall score is calculated as the average of the mean dataset Brier score and the mean market Brier score.
5. Pct. more accurate than No. 1: The percent of questions where this forecaster had a better overall score than the best forecaster (with rank 1).
6. Pairwise p-value comparing to No. 1 (bootstrapped): The p-value calculated by bootstrapping the differences in overall score between each model and the best

forecaster (the group with rank 1) under the null hypothesis that there’s no difference.

As a particular failure mode, we find LLMs are specifically worse at combination questions. Although
our human surveys did not explicitly ask for forecasts on combination questions, we bound human
performance by assuming independence of the component of each combination question. This
underestimates human accuracy because a human forecaster predicting the outcome of a combination
question could account for independence between the permuted events. In Table 20, we present this
comparison of human and LLM forecasts. We see that LLMs perform poorly on these combination
questions, and including them in the benchmark widens the gap between human and LLM perfor-
mance: superforecasters (Brier score of 0.071) outperform the general public (Brier score of 0.090)
and the top LLM (Claude-3.5 Sonnet, Brier score of 0.124) significantly. To benchmark the size
of this gap in performance, the 0.053 Brier score gap in performance between superforecasters and
Claude-3.5 Sonnet (the top-performing LLM) is significantly larger than the 0.035 gap in performance
between Claude-3.5 Sonnet and Claude 2.1.

Table 3: LLM Leaderboard (top 10)

Brier Score ↓

Model Organization Information
provided Prompt Dataset

(N=4,107)
Market
(N=907)

Overall
(N=5,014)

Confidence
Interval

Pairwise
p-value
comparing
to No. 1

Pct. more
accurate
than No. 1

Claude-3-5-Sonnet-20240620 Anthropic Freeze values Scratchpad 0.171 0.062 0.116 [0.111, 0.122] – 0%
GPT-4-Turbo-2024-04-09 OpenAI Freeze values Scratchpad 0.171 0.065 0.118 [0.112, 0.123] 0.243 42%
GPT-4o OpenAI Freeze values Scratchpad 0.191 0.054 0.123 [0.117, 0.128] <0.001 43%
Gemini-1.5-Pro Google Freeze values Scratchpad 0.162 0.089 0.125 [0.120, 0.131] <0.001 35%
GPT-4o OpenAI News with freeze values Scratchpad 0.192 0.066 0.129 [0.123, 0.134] <0.001 39%
Gemini-1.5-Pro Google News with freeze values Scratchpad 0.167 0.094 0.131 [0.125, 0.136] <0.001 34%
Claude-3-Opus-20240229 Anthropic Freeze values Zero shot 0.190 0.076 0.133 [0.126, 0.139] <0.001 41%
Qwen1.5-110B-Chat Qwen Freeze values Scratchpad 0.176 0.092 0.134 [0.128, 0.139] <0.001 31%
GPT-4-Turbo-2024-04-09 OpenAI – Scratchpad 0.171 0.097 0.134 [0.129, 0.139] <0.001 31%
Claude-3-5-Sonnet-20240620 Anthropic News with freeze values Scratchpad 0.187 0.083 0.135 [0.129, 0.141] <0.001 32%
Always 0.5 ForecastBench – – 0.250 0.173 0.212 [0.209, 0.215] <0.001 25%
Notes:

1. Shows performance on the 1,000 (500 standard, 500 combination) questions in the LLM question set at the 7-, 30-, and 90-day forecast horizons.
2. The full leaderboard is available at www.anonymousurl.org. Online results are updated nightly, so may be slightly different than the static version presented here.
3. For resolved questions, predictions are compared against ground truth while for unresolved questions, they are compared to community aggregates.
4. The overall score is calculated as the average of the mean dataset Brier score and the mean market Brier score.
5. Pct. more accurate than No. 1: The percent of questions where this forecaster had a better overall score than the best forecaster (with rank 1).
6. Pairwise p-value comparing to No. 1 (bootstrapped): The p-value calculated by bootstrapping the differences in overall score between each model and the best

forecaster (the group with rank 1) under the null hypothesis that there’s no difference.

Comparing LLMs Table 3 excludes humans and evaluates LLMs on the entire question set
(N = 1, 000 questions). Here we see a similar ranking of models, with Claude-3.5 Sonnet slightly
outperforming GPT-4-Turbo. Both of those models outperform GPT-4o and Gemini-1.5 Pro. As in
Table 2, most of the top-performing models use the scratchpad prompt (Figure 5) and use as inputs the
human crowd forecasts for market questions. Access to recent topical news related to the questions
did not improve performance.

LLM performance and forecasting accuracy Figure 1a demonstrates the linear relationship
between an LLM’s score on Chatbot Arena (see Chiang et al. (2024)) and the model’s overall
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(b) Brier score vs. Log training compute

Figure 1: Two graphs demonstrating the linear relationship between the Brier scores from Table 2
and (a) Chatbot Arena scores and (b) estimates of training compute. The dotted blue line represents
the Superforecasters’ overall Brier score. A red dot with a bootstrapped 95% confidence interval is
placed at the intersection of this dotted blue line with the dashed linear fit line to demonstrate the
potential intersection of LLM Arena score/training compute and Superforecaster-level forecasting
performance. For (b) , if estimates from Epoch AI (2024) were not available, we produced estimates
following https://epoch.ai/blog/estimating-training-compute. The trend-line
in (a) is y = 0.506− 0.000298x (R2 = 0.47) and in (b) it is y = 0.844− 0.01213x (R2 = 0.41).

Brier score from Table 2. We observe a significant correlation (r = −0.69, p = 0.002), indicating
that models with higher Arena scores also tend to produce more accurate forecasts. The calculated
linear relationship implies that LLMs will match superforecaster performance when the Arena score
approaches 1398 (bootstrapped 95% CI: 1335–1581).

Figure 1b shows the log-linear relationship between the estimated training compute of LLMs and
the model’s overall Brier score from Table 2. Projecting out the log-linear relationship, we find that
LLMs could match superforecaster performance when training compute approaches 1× 1027, though
there is a large confidence interval (bootstrapped 95% CI: 7.08× 1026–3.64× 1030) because the
log-linear relationship between training compute and forecasting accuracy is marginally statistically
insignificant (r = −0.64, p = 0.06).

6 DISCUSSION

We introduced ForecastBench, a dynamic and continuously updated benchmark for evaluating au-
tomated forecasting systems. By focusing exclusively on questions that are unresolved at the time
of submission, we eliminate the risks of data leakage and ensure a robust evaluation environment.
Our initial results demonstrate that while state-of-the-art LLMs exhibit promising potential, they
underperform expert human forecasters. This performance gap highlights the challenges in leveraging
current LLMs for accurate, real-time forecasting.

We produce a public leaderboard listing the real-time accuracy of top LLMs and humans as well
as a standardized dataset of forecasting questions and rationales. Future work should leverage this
auxiliary dataset of predictions and rationales to fine-tune models, explore new architectures, and
develop adaptive systems better suited for general reasoning in dynamic, real-world environments.
Ultimately, ForecastBench serves as a step toward harnessing the full potential of AI-based systems
and forecasting in decision-making.

10

https://epoch.ai/blog/estimating-training-compute


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

7 REPRODUCIBILITY STATEMENT

One reason we’ve open-sourced our code (link in Appendix A) is to allow for independent verification
of our results. See Appendix I for reproducing the human forecast sets, Appendix J for reproducing
LLM forecast sets, and Appendix K for resolving the forecasts and creating the leaderboard.

8 ETHICS STATEMENT

Human survey subjects in both the public and superforecaster surveys are made aware prior to
their participation in the study via an informed consent form (approved by our IRB) that their
forecast/rationale data may be publicly released and used to train large language models or other AI
systems, with said data carefully reviewed and anonymized.
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A LICENSING AND MAINTENANCE

Hosting The ForecastBench human and LLM-only overall leaderboards are available on
www.anonymousurl.org. Combination leaderboards will be added soon. Documentation and Tutorials
are forthcoming. We plan to open our bi-weekly forecasting rounds to LLM teams in November
2024.

Datasets Our datasets, distributed under the CC BY-SA 4.0 license, will be made available and
updated regularly on www.anonymousurl.org.

Codebase The code underlying our automated system runs on Google Cloud Platform and is
available at https://storage.googleapis.com/iclr_5aac22/code/forecastbench.tar.xz under the MIT
license.

Maintenance & long-term preservation We ensure the long-term availability and maintenance of
the benchmark as it is funded by Open Philanthropy until mid-2027. In case no further funding is
provided beyond that point, we will upload our final datasets to GitHub and Hugging Face.
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B DATASETS

We intend our datasets to be used for training general LLMs, fine-tuning forecasting LLMs, and for
any applicable research purposes. No restrictions are placed on who may use our datasets, nor to
what end.

B.1 QUESTION AND RESOLUTION SETS

Every question set will be published. Their resolutions will also be published such that there’s
a complete training set when combined with the forecast sets outlined in Section B.2. The data
dictionary for the question set is outlined in Table 4 and Table 5. The data dictionary for the resolution
set is outlined in Table 6 and Table 7.

Data format The question and resolution datasets are released as JSON (.json) files.

Ethical and responsible use There are no restrictions on use of the question and resolution datasets.

Availability https://storage.googleapis.com/iclr_5aac22/datasets/question_sets.html

Data collection Our question and resolution datasets have been pulled, and are updated, from
various, public-facing sources. From those sources where the terms of use/service prohibit the
redistribution of their information (currently, Manifold Markets and Metaculus), we have obtained
explicit permission to do so. Before we add new sources to our growing dataset, we will ensure the
ability to distribute questions and resolutions publicly. Data sources in our question bank can be
found in Table 14.

Table 4: Question set data dictionary.

Field Description Required Data Type
forecast_due
_date

Date in ISO format. e.g.
"2024-07-21"

✓ string

question_set The name of the file that con-
tains the question set. e.g.
"2024-07-21-llm.json"

✓ string

questions A list of questions to forecast on, as
defined in Table 5.

✓ array<object>

B.1.1 EXAMPLES

Table 8, Table 9, and Table 10 show concrete examples of the data dictionary detailed in Table 4.

B.2 FORECAST SETS

Every set of forecasts provided to ForecastBench is made public and all forecasts coming from the
general public are anonymized before release.

Each forecast set contains the header information outlined in Table 11, with all forecasts in an array
called forecasts. The forecast sets are described in the following subsections.

Data format The question and resolution datasets are released as JSON (.json) files.

Ethical and responsible use There are no restrictions on use of the forecast sets.

Availability https://storage.googleapis.com/iclr_5aac22/datasets/forecast_sets.html
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Table 5: Data dictionary for question entries in questions array from Table 4.

Field Description Required Data Type
id A unique identifier string given

source. If instead of a string
it’s an array of strings, then this
is a combination question and
combination_of will contain
one question per id in the array of
strings.

✓ string | array<string>

source Where the data comes from. ✓ string
question The question to forecast, presented

as an f-string with placeholders
{forecast_due_date} and
{resolution_date} for dataset
questions.

✓ string

resolution_
criteria

ForecastBench resolution criteria.
Specifies how forecasts will be eval-
uated for each question type.

✓ string

background Background information about the
forecast question provided by the
source, if available. Default: ‘N/A’

string

market_info_
open_
datetime

The datetime when the forecast
question went on the market spec-
ified by source. Default: ‘N/A’

string

market_info
_close_
datetime

The datetime when the forecast
question closes on the market speci-
fied by source. Default: ‘N/A’

string

market_info_
resolution_
criteria

The resolution criteria provided by
the source, if available. Default:
‘N/A’

string

url The URL where the resolution value
is found.

✓ string

freeze_datetime The datetime UTC when this ques-
tion set was generated.

✓ string

freeze_datetime_
value

The latest value of the market or
comparison value the day the ques-
tion was frozen.

✓ string

freeze_datetime_
value
_explanation

Explanation of what
the value specified in
freeze_datetime_value
represents.

✓ string

source_intro A prompt that presents the source of
this question.

✓ string

combination_of An array of question objects, as de-
fined by this data dictionary. De-
fault: ‘N/A’

string | array<object>

resolution_datesThe resolution dates for which fore-
casts should be provided for this
forecast question.

✓ array<string>

B.2.1 GENERAL PUBLIC FORECAST SET

This forecast set consists of both forecasts made by individuals on the given question set and of the
aggregation of those forecasts, as described in Appendix D. The dataset will be updated every time a
survey is run with every forecast containing the information outlined in Table 11 and Table 12. Note
that the aggregated forecast sets do not contain the user_id or reasoning fields.
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Table 6: Resolution set data dictionary.

Field Description Required Data Type
forecast_due
_date

Date in ISO format. e.g.
"2024-07-21"

✓ string

question_set The name of the file that con-
tains the question set. e.g.
"2024-07-21-llm.json"

✓ string

resolutions A list of resolutions to the forecast
questions, as defined in Table 7.

✓ array<object>

Table 7: Data dictionary for resolution entries in questions array from Table 6.

Field Description Required Data Type
id A unique identifier string given

source. A list if this was a combi-
nation question.

✓ string | array<string>

source Where the data comes from. ✓ string
direction If id has an array value, this is an

array of the same length. Each en-
try ∈ {−1, 1}. If the value is 1, it
means the question was asked in the
normal direction. If the value is −1,
it means the question was negated
in the question. e.g. for a ques-
tion asking for P (¬Q1 ∩ Q2), the
value would be [−1, 1]; all possible
directions for this question would
be: [1, 1], [−1, 1], [1,−1], [−1,−1].
The value is null when id is a
string.

✓ string

forecast_due
_date

The date the forecast is due in ISO
8601 format YYYY-MM-DD.

✓ string

resolution_date The date the value is associated with
in ISO 8601 format YYYY-MM-DD.

✓ string

resolved_to The resolution value for the given
date.

✓ number

resolved If true the question has been re-
solved. False otherwise.

✓ boolean

Data collection Data is collected from human forecasters via Qualtrics. We collect the reasoning
behind forecasts and manually anonymize the data to ensure there is no personally identifiable
information in the dataset before posting it online.

B.2.2 SUPERFORECASTER FORECAST SET

In addition to the fields outlined in Table 11 and Table 12, the superforecaster dataset contains
forecasts with the fields shown in Table 13. Likewise, this dataset will be updated every time a group
of superforecasters is surveyed.

Data collection 39 superforecasters provided forecasts, rationales, and additional information
about they way they forecast in our latest survey round. We will further manually check all of their
responses to ensure the anonymity of the dataset.
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Table 8: Prediction market example.

Field Entry
id 1558
source metaculus
combination_of N/A
question Will the Cavendish account for less than 50% of banana exports world-

wide before 2035?
background Bananas are a well-liked import fruit all over the world, and the

Cavendish cultivar has been crushing that market for sixty years. But
its rise is literally founded upon the compost heap of the Gros Michel,
another cultivar. The so-called ’Big Mike’ variety had been the leading
export towards Europe and North America, but the Panama disease,
a fungus belonging to the *Fusarium* clade, killed that. Luckily the
Cavendish, grown in the same soil as the wilting Gros Michel, replaced
it as *the* banana most of the western world connected with bananas.
However, it appears another *Fusarium* rears its spores. Cavendish,
with their genetic homogenity (they’re all clones) and sterile nature,
aren’t resistant to it, and the fungus is ravaging more and more planta-
tions. There are efforts under way to deal with *Fusarium*, but with
various societies’ doubts and misgivings about GMOs, the cure may be
viewed as a curse instead.

market_info_
resolution_
criteria

This question will resolve as **Yes** if the Cavendish banana accounts
for less than 50% of worldwide annual banana exports in any year from
2018 to 2034 (inclusive).

market_info_
open_datetime

2018-11-13T08:00:00+00:00

market_info_
close_datetime

2034-12-31T23:00:00+00:00

resolution_
criteria

Resolves to the outcome of the question found at
https://www.metaculus.com/questions/1558/cavendish-bananas-
collapse-by-2035/.

url https://www.metaculus.com/questions/1558/cavendish-bananas-
collapse-by-2035/

freeze_datetime_
value

0.48

freeze_datetime_
value_explanation

The community prediction.

freeze_datetime 2024-07-12T00:00:00+00:00
source_intro We would like you to predict the outcome of a prediction market. A pre-

diction market, in this context, is the aggregate of predictions submitted
by users on the website Manifold. You’re going to predict the probability
that the market will resolve as ‘Yes’.

resolution_datesN/A

B.2.3 LLM FORECAST SET

This dataset provides the same data (aside from user_id) as outlined in Table 11 and Table 12,
only provided by language models. Each individual .json file was created by a model for the given
question set.

Data collection Beyond informing teams their forecasts will be made public, we will not check the
rationales.
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Table 9: Data source (DBnomics) example.

Field Entry
id meteofrance_TEMPERATURE_celsius.07005.D
source dbnomics
combination_of N/A
question What is the probability that the daily average temperature at the French

weather station at Abbeville will be higher on resolution_date
than on forecast_due_date?

background The history of Average temperature by day and by station for France -
Degree Celsius - ABBEVILLE - Daily from Météo-France is available at
https://db.nomics.world/meteofrance_TEMPERATURE_celsius.07005.D.

market_info_
resolution_
criteria N/A
market_info_
open_datetime N/A
market_info_
close_datetime N/A
url https://db.nomics.world/meteofrance_TEMPERATURE_celsius.07005.D
resolution_
criteria

Resolves to the value found at
https://db.nomics.world/meteofrance_TEMPERATURE_celsius.07005.D
once the data is published.

freeze_datetime_
value 17.95
freeze_datetime_
value_explanation

The daily average temperature at the French weather station at Abbeville.

freeze_datetime 2024-07-12T00:00:00+00:00
source_intro DBnomics collects data on topics such as population and living con-

ditions, environment and energy, agriculture, finance, trade and others
from publicly available resources, for example national and international
statistical institutions, researchers and private companies. You’re going
to predict how questions based on this data will resolve.

resolution_dates["2024-07-28", "2024-08-20", "2024-10-19",
"2025-01-17", "2025-07-21", "2027-07-21",
"2029-07-20", "2034-07-19"]
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Table 10: Combination (DBnomics) example.

Field Entry
id ["meteofrance_TEMPERATURE_celsius.07117.D",

"meteofrance_TEMPERATURE_celsius.07240.D"]
source dbnomics
combination_of [An array containing dictionary entries of both questions.]
question We are presenting you with two probability questions. Please

predict the probability that both will happen, that one will happen
but not the other, and that neither will happen. In other words, for
each resolution date please provide 4 predictions.

background N/A
market_info_
resolution_
criteria N/A
market_info_
open_datetime N/A
market_info_
close_datetime N/A
url N/A
resolution_
criteria N/A
freeze_datetime
value N/A
freeze_datetime
value_
explanation N/A
freeze_datetime 2024-07-12T00:00:00+00:00
human_prompt We are presenting you with two probability questions. Please

predict the probability that both will happen, that one will happen
but not the other, and that neither will happen. In other words, for
each resolution date please provide 4 predictions.

resolution_dates["2024-07-28", "2024-08-20", "2024-10-19",
"2025-01-17", "2025-07-21", "2027-07-21",
"2029-07-20", "2034-07-19"]

Table 11: Data dictionary of headers for forecast set.

Field Description Required Data Type
organization The organization name as it should be dis-

played on the leaderboard.
✓ string

model The model name as it should be displayed
on the leader board.

✓ string

question_set The name of the question set file these fore-
casts are associated with.

✓ string

forecast_due
_date

The date the forecasts were due in ISO 8601
format YYYY-MM-DD.

✓ string

forecasts All forecasts for this question set. ✓ array<object>
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Table 12: Public forecast set data dictionary of entries in forecasts array from Table 11.

Field Description Required Data Type
id A unique identifier string given

source. If instead of a string it’s a
list of strings, then this is a combi-
nation question.

✓ string | array<string>

source Where the data comes from. ✓ string
forecast The forecast ∈ [0, 1]. ✓ number
resolution_date The resolution date this forecast cor-

responds to. null for market ques-
tions.

✓ string |null

reasoning The rationale underlying the fore-
cast.

string

direction If id has an array value, this is an
array of the same length. Each en-
try is an integer ∈ {−1, 1}. If the
value is 1, it means the question was
asked in the normal direction. If the
value is −1, it means the question
was negated in the question. e.g. for
a question asking for P (¬Q1∩Q2),
the value would be [−1, 1]. All
possible values are: [1, 1], [−1, 1],
[1,−1], [−1,−1], and null.

array<number>
|null

user_id A randomly generated string associ-
ated with the human respondent who
submitted the forecast. This value
contains no information which could
identify said participant and was as-
signed to the dataset after personal
identifiers had been removed.

✓ string

Table 13: Superforecaster forecast set data dictionary of entries in forecasts array from Table 11
(additional fields to those in Table 12).

Field Description Required Data Type
searches An array of search terms used in re-

searching the topic.
array<string>

consulted_urls A list of useful urls array<string>
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C QUESTION BANK

C.1 LICENSES

The licenses outlined in Table 14 apply to the datasets we have sourced for questions. We were
granted express permission to use questions from Manifold Markets and Metaculus. Though not
required by their license, we also met with a representative from ACLED who approved our use of
their dataset for the benchmark and dataset distribution.

Table 14: Question sources and permissions

License License grants
permission to use

Express permission
granted

RAND Forecasting Initiative Public Domain ✓
Manifold Terms of Service ✗ ✓
Metaculus Terms of Use ✗ ✓
Polymarket Terms of Service ✓
ACLED Terms of Use ✓ ✓
DBnomics Open License ✓
FRED Terms of Use ✓
Wikipedia Terms of Use ✓
Yahoo! Terms of Use ✓

C.2 CATEGORIES

We generate metadata on all of the questions in our question bank, categorizing our questions, as
described in Section 3.1.2.

It is important to have forecasting questions across a broad array of categories to test LLM capabilities.
We are currently adding more questions from datasets with the goal of equilibrating these categories.

Table 15: Categories and question counts by source, dropping invalid questions.
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Arts & Recreation 0 57 10 16 0 0 0 0 0 83
Economics & Business 1 22 76 35 0 0 166 0 504 804
Environment & Energy 0 3 44 5 0 52 0 0 0 104
Healthcare & Biology 0 8 83 1 0 0 0 214 0 306
Politics & Governance 6 51 208 428 0 0 0 0 0 693

Science & Tech 5 101 200 21 0 0 0 1 0 328
Security & Defense 4 15 157 9 3,150 0 0 0 0 3,335

Sports 0 77 21 4 0 0 0 120 0 222
Other 0 0 1 0 0 0 0 0 0 1

Total 16 334 800 519 3150 52 166 335 504 5,876
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D HUMAN SURVEY INSTRUCTIONS AND SCREENSHOTS

D.1 INSTRUCTIONS

Participants in the public survey were first prompted to read a consent form detailing the tasks
involved in the study and potential risks to participants, alongside estimates of payment for completing
each study ($5 + bonus payments for forecasting performance in the introductory survey; $10 for
completing the primary survey). In said consent form, the overall task was described as follows:
"You will be asked to read some material, to follow some instructions, and to provide forecasts for
future events." Then, participants were prompted to give their responses to 20 forecasting questions
randomly selected from the 200-question subset of questions provided to the LLMs.

Participants were given a brief description of the task ahead before each question as follows:

You are going to be predicting the probability of the answer to the question below
being "Yes" (or "resolving positively").

For tasks with questions generated from data providers, forecasters were prompted to provide a
probability forecast at multiple resolution dates.

The public survey was hosted on Qualtrics’s (https://www.qualtrics.com/) survey soft-
ware platform.

Participants in the superforecaster survey went through a similar initial experience before being
moved into the group forecasting stage described in Section 4. Because of the expertise of this
set of forecasters, superforecaster participants were also guaranteed a base payment of $1,000 for
participating in the individual and group stages of the experiment as well as bonus payments for
individual-level accuracy.

The superforecaster survey was hosted on Quorum (https://quorumapp.com/), a platform
designed to host multi-stage forecasting tournaments.

D.2 SCREENSHOTS

The following screenshots (Figure 2, Figure 3 show a few of the questions presented to participants
in the public study.
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Figure 2: An example market-based question from the human survey.
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Figure 3: An example question generated from a data provider, in this case DBnomics, from the
public survey. Two of eight forecast horizons for which we elicited forecasts are included above. The
rationale text boxes (one for each forecast horizon) have also been excluded from the screenshot for
brevity.
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E DETAILS ABOUT LLM "CROWD" BASELINE

E.1 MODELS

To construct a crowd baseline that includes diverse candidates, we evaluate models using the most
recent forecasting dataset containing cross-domain questions with true resolutions from Halawi et al.
(2024). We assess models from the following organizations: OpenAI, Mistral AI, Qwen, Google,
Anthropic, and Meta. Using the same scratchpad prompting method from Halawi et al. (2024), we
then select the top three models: GPT-4o, Gemini-1.5.Pro, Claude-3.5-Sonnet. See Table 16 for the
results.

Table 16: Brier Scores from each LLM "crowd" candidate.

Model Scratchpad

GPT-4o 0.207 (0.026)
Llama-3-70b 0.232 (0.020)
Mistral-Large 0.233 (0.026)
Qwen-1.5-110b 0.222 (0.025)
Gemini-1.5-Pro 0.214 (0.025)
Claude-3.5-Sonnet 0.178 (0.025)
GPT-4-0613 0.222 (0.009)
GPT-4-1106-Preview 0.209 (0.012)
GPT-3.5-Turbo-1106 0.261 (0.010)
GPT-3.5-Turbo-Instruct 0.257 (0.009)
Claude-2 0.219 (0.014)
Claude-2.1 0.215 (0.014)
Gemini-Pro 0.230 (0.007)
Mistral-7B-Instruct 0.243 (0.008)
Mistral-8x7B-Instruct 0.238 (0.010)
Mixtral-8x7B-DPO 0.248 (0.010)
Yi-34B-Chat 0.241 (0.009)
Llama-2-7B 0.264 (0.011)
Llama-2-13B 0.268 (0.008)
Llama-2-70B 0.282 (0.011)

The highlights indicate the models we decide to use. Subscript numbers denote 2 standard errors.
Above the divider line are the new models we evaluate, while below the divider line are the models
evaluated by Halawi et al. (2024) on the same dataset using the same prompt.

E.2 AGGREGATION METHODS

With the forecasts generated by the top 3 models selected in Section E.1, we then compare perfor-
mance of 5 aggregation methods: Median, Trimmed Mean, Geometric Mean, and Geometric Mean
of Log Odds (Satopää et al., 2014). See Table 17 for the results.

E.3 OTHER DETAILS

LLM Parameters. We set the temperature as 0 and the max output token length as 2000.

F PROMPTS

In this section, we present the following prompts: zero-shot (Figure 4), scratchpad (Figure 5),
and three prompts (Figure 6, Figure 7, Figure 8) written by superforecasters from the Forecasting
Research Institute used to construct the LLM "crowd" baseline. Note that the scratchpad with
information retrieval prompt is simply the scratchpad with an additional line "We have retrieved
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Table 17: Brier Scores from each Aggregation Method.

Aggregation Method Brier Score

Median 0.197 (0.024)
Trimmed Mean 0.197 (0.024)
Geometric Mean 0.194 (0.023)
Geometric Mean of Log Odds 0.194 (0.023)

The geometric mean and geometric mean of log odds are highlighted as they achieve the best
performance. Subscript numbers denote 2 standard errors.

You are an expert superforecaster, familiar with the work of Tetlock and others. Make a prediction of the probability that the question
will be resolved as true. You MUST give a probability estimate between 0 and 1 UNDER ALL CIRCUMSTANCES. If for some reason
you can’t answer, pick the base rate, but return a number between 0 and 1.
Question: {question}
Question Background: {background}
Resolution Criteria: {resolution_criteria}
Question close date: {close_date}
Output your answer (a number between 0 and 1) with an asterisk at the beginning and end of the decimal. Do not output anything else.
Answer:
{{ Insert answer here }}

Figure 4: Zero-shot Prompt from Halawi et al. (2024)

the following information for this question: {retrieved_info}" before the instructions begin. For
combination questions, we slightly modify each of the above prompts by including the second
question’s information (Figure 9). Finally, we present the prompt used to determine whether a
question is marked as valid or invalid in Figure 10.

G STATISTICAL DETAILS

While our pairwise bootstrapped p-values are precise, our statistical tests do ignore one potentially
important source of imprecision. We assume that each question is independent of the other questions.
In a world where forecasting accuracy on questions is quite correlated within a topic, or where most
events are correlated, this may result in us overstating how confidently we can reject the equivalence
of different models. We hope to explore this question in future work, but we are somewhat reassured
by the fact that our gathering of forecasting questions from diverse domains and sources makes it
unlikely that correlated questions would change our interpretation of these results in any meaningful
way.

Our statistical tests are significantly more precise than the 95% confidence intervals for each model
would imply because accuracy on each question is quite correlated across models. To understand this
phenomenon, consider a hypothetical world where Model A outperforms Model B by a constant (ϵ)
on each question. No matter how close the performance of Models A and B are (how small ϵ is), and
no matter how much variance there is in the accuracy of Model A across questions (which drives
the 95% confidence interval surrounding Model A’s accuracy), a pairwise bootstrap would show that
Model A is more accurate than Model B. This is because forecasts of Model A and Model B are
perfectly correlated.

H LEADERBOARDS: TOP 50

We show the best 50 performers on several leaderboards. The first is the leaderboard for the
human question set of 200 standard (non-combination) questions:Table 18. Table 19 shows the
leaderboard for the full LLM question set of 1,000 questions. Finally, in Table 20, we present the
human leaderboard with combination questions included where humans provided forecasts on both
components of the combination question. We derive human forecasts for these combination questions
by treating each component of the question as independent.
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Question:
{question}
Question Background:
{background}
Resolution Criteria:
{resolution_criteria}
Question close date: {close_date}
Instructions:
1. Given the above question, rephrase and expand it to help you do better answering. Maintain all information in the original question.
{{ Insert rephrased and expanded question.}}
2. Provide a few reasons why the answer might be no. Rate the strength of each reason.
{{ Insert your thoughts }}
3. Provide a few reasons why the answer might be yes. Rate the strength of each reason.
{{ Insert your thoughts }}
4. Aggregate your considerations. Think like a superforecaster (e.g. Nate Silver).
{{ Insert your aggregated considerations }}
5. Output an initial probability (prediction) given steps 1-4.
{{ Insert initial probability }}
6. Evaluate whether your calculated probability is excessively confident or not confident enough. Also, consider anything else that might
affect the forecast that you did not before consider.
{{ Insert your thoughts }}
7. Output your answer (a number between 0 and 1) with an asterisk at the beginning and end of the decimal. (For example, if there are n
resolution dates, you would output different *p* for each resolution date) Do not output anything else.
{{ Insert your answer }}

Figure 5: Scratchpad Prompt modified from Halawi et al. (2024)

I AGGREGATING HUMAN FORECASTS

We provide aggregated forecasts on benchmark questions from 500 members of the general public
and 39 superforecasters, as described in Section 4:

• Public: https://storage.googleapis.com/iclr_5aac22/datasets/datasets/forecast_sets/2024-07-
21/2024-07-21.ForecastBench.human_public.json

• Superforecasters: https://storage.googleapis.com/iclr_5aac22/datasets/datasets/forecast_sets/2024-
07-21/2024-07-21.ForecastBench.human_super.json

As described in the main paper, members of the general public were recruited via Prolific and
Facebook. First, participants completed an introductory survey designed to gather demographic
information and evaluate performance on a few forecasting and comprehension tasks. Then, they
were invited to take part in the main survey, featuring 20 random benchmark questions. Some
participants were disqualified from participating in the main survey based on suspicious elements of
their presurvey responses (e.g. answering questions rapidly, large numbers of submissions from the
same IP address, etc.).

Superforecasters were invited to participate directly and were prompted to give forecasts for at
least 20 questions from the benchmark (though, many chose to participate on additional questions).
Superforecasters were also given access to other Superforecasters’ forecasts and rationales and were
allowed to comment on and update based on others’ forecasts.

For each group, the median forecast for each forecasting question was taken to create the aggregated
forecast sets. Code and individual forecasts are forthcoming once we can ensure that the text responses
have been fully anonymized.

J REPRODUCE LLM FORECASTS

We evaluate 17 LLMs on our initial benchmark: GPT-3.5-Turbo-Instruct (Brown et al., 2020),
GPT-4 (OpenAI, 2023), GPT-4o, Llama-2-70B (Touvron et al., 2023), Llama-3-7B, Llama-3-70B,
Mistral-7B, Mistral-8x7B (Jiang et al., 2024a), Mistral-8x22B, Mistral-Large, Qwen1.5-110B-Chat,
Claude-2.1 (Anthropic, 2023), Claude-3-Haiku, Claude-3.5-Sonnet, Claude-3-Opus (Anthropic,
2024), Gemini 1.5 Flash and Gemini 1.5 Pro (Gemini Team, 2023).

To make inferences, we use APIs. For GPT-suite, we use OpenAI’s API, for Gemini-suite, we use
Google’s API, for Llama-suite, Mistral-7B, Mixtral-8x7B, Mixtral-8x22B and Qwen1.5-110B-Chat,
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Question: {question}
Question Background: {background}
Resolution Criteria: {resolution_criteria}
Question close date: {close_date}
We have retrieved the following information for this question: {retrieved_info}
Instructions:
1. Given the above question, rephrase and expand it to help you do better answering. Maintain all information in the original question. {{
Insert rephrased and expanded question.}}
2. Let’s start by coming up with a base-rate that could be helpful for forecasting this question. Come up with the best reference-class you
can for this sort of event, and give a general base-rate that doesn’t take into account factors unique to this question.
For instance, if the question were about the probability of a new technology being widely adopted within five years, you might look at
historical data on the adoption rates of similar technologies as a reference class. Come up with a base-rate that could be relevant for this
question.
The base-rate must be formatted as a clear probability (or number, in cases where you believe that to be more useful than a probability).
For instance, imagine you are forecasting the probability that an incumbent president will be re-elected in an upcoming election in a
hypothetical country. The past data shows that the incumbent has been elected 60% of the time.
Here, you would write ‘The reference class I have chosen is the incumbent being elected. My base-rate is that the probability of the
incumbent being re-elected is 0.6.’ Give a justification for the base-rate, as well as a clear number.
Importantly, the base-rate should be as specific as it’s possible to be without losing confidence that the number is correct. For instance, if
you were forecasting on the probability of a hypothetical democratic country going to war in the next year, you should ideally produce a
base-rate for a democratic country going to war in a given year, rather than simply thinking about a given country going to war.
{{ Insert your base rate }}
3. Now, let’s think about factors specific to this question that may give us a good reason to deviate from the base-rate. Please give some
reasons that the probability of this question resolving positively may be higher than the base rate. Please note specifically how they affect
your forecast in terms of percentage point change. {{ Insert your thoughts }}
4. Now, let’s think about reasons that the probability of this question resolving positively may be lower than the base rate. Please note
specifically how they affect your forecast in terms of percentage point change. {{ Insert your thoughts }}
5. Consider any other factors that may affect the probability of this question resolving positively or negatively, that you have not already
discussed in the previous two steps. {{ Insert your thoughts }}
6. Aggregate your considerations. Think like a superforecaster (e.g. Nate Silver). Give a ranking to each consideration based on how
much you believe it ought to affect your forecast. {{ Insert your aggregated considerations }}
7. Are there any ways in which the question could resolve positively or negatively that you haven’t considered yet, or that require some
outside-the-box thinking? For example, if the question was ‘Will Microsoft have a market capitalization of over $5tn by 2030’, you
might consider questions like:
How likely is it that Microsoft no longer exists in 2030? How likely is it that inflation erodes that value of the dollar as such that $5n is
worth significantly less than it is today? How likely is it that there is a merger between Microsoft and another large company? How likely
is it that Microsoft is broken up, as it is perceived to have monopoly power?
Here, we’re thinking about things that are probably quite unlikely to happen, but should still be integrated into your forecast. Write up
some possibilities and consider how they should be integrated into your final forecast. {{Insert your thoughts and considerations about
how this should affect your forecast}}
8. Output an initial probability (prediction) given steps 1-7. {{ Insert initial probability. }}
9. Okay, now let’s think about some other ways to consider how to forecast on this question. What would you say are the odds that if you
could fast-forward and find out whether that statement is true or false, you would find out it’s true? You must give an odds ratio. This
odds ratio probably shouldn’t be purely on the basis of the considerations in the previous steps, but you should think again about what
you would expect to see if you could fast-forward into the future. If it helps, imagine that you’re taking a bet. {{ Insert your odds ratio. }}
10. Given your rephrased statement from step 1, think of 2-3 statements that if you conditioned on their being TRUE, you would think
it more or less likely that your statement would be TRUE as well. These statements must not DETERMINE OR BE LOGICALLY
EQUIVALENT to the original statement. Be creative! {{ Insert 2 to 3 related statements. }}
11. For each of your related statements, give new odds of the original statement conditional on the related statement being TRUE. {{ For
each related statement, insert new odds for the original statement. }}
12. Now consider each of your odds from the previous steps(steps 9 - 11), and come up with your all-things-considered odds ratio for the
original statement. {{ Insert final odds for the original statement. }}
13. Now, convert that odds ratio to a probability between 0 and 1. {{Insert a probability}}
14. Now, consider the probability that you came up with in step 8, as well as the probability that you came up with in step 13. Which of
these probabilities do you lean towards? How do you weigh them against one another? Write up your thoughts on which probability is
more likely to be “correct”, and then decide on a FINAL probability that will be used as your forecast. {{Insert your thoughts AND a
final probability}}
15. Output your answer (a number between 0 and 1) with an asterisk at the beginning and end of the decimal. {{ Insert your answer }}

Figure 6: Superforecaster Prompt 1

we use Together AI’s API, and for Mistral-Large, we use Mistral AI’s API, for Claude-suite, we use
Anthropic’s API. To reproduce our results, people will need to gather these API keys.

We then record model predictions using several different methods: zero-shot prompting, scratchpad
prompting, scratchpad prompting with retrieval augmentation, and scratchpad prompting with retrieval
augmentation and aggregate human forecasts. For the scratchpad and information retrieval setting,
we use the retrieval infrastructure from Halawi et al. (2024) and provide relevant news articles to
the models in-context to reason about. Additionally, only models with a context window larger than
8,000 tokens were evaluated under the retrieval setting due to the inclusion of news articles in the
prompt.
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Question: {question}
Question Background: {background}
Resolution Criteria: {resolution_criteria}
Here’s some related information from the news that I’ve collected for you: {retrieved_info}
Question close date: {close_date}
Instructions:
1. Rephrase the question as a statement about the future, e.g. you would rephrase “Will Biden be the U.S. president on January 1 2025?”
as “Biden is the U.S. president on January 1 2025.” {{ Insert question rephrased as a statement. }}
2. What would you say are the odds that if you could fast-forward and find out whether that statement is true or false, you would find out
it’s true? You must give an odds ratio. If it helps, imagine that you’re taking a bet. {{ Insert your odds ratio. }}
3. Given your rephrased statement, think of 2-3 statements that if you conditioned on their being TRUE, you would think it more or less
likely that your statement would be TRUE as well. These statements must not DETERMINE OR BE LOGICALLY EQUIVALENT to
the original statement. Be creative! {{ Insert 2 to 3 related statements. }}
4. For each of your related statements, give new odds of the original statement conditional on the related statement being TRUE.insert
new odds for the original statement. }}
5. Now consider each of your odds from the previous steps and come up with your all-things-considered odds ratio for the original
statement. Output your answer (a number between 0 and 1) with an asterisk at the beginning and end of the decimal. {{ Insert final odds
for the original statement. }}

Figure 7: Superforecaster Prompt 2

Question: {question}
Question Background: {background}
Resolution Criteria: {resolution_criteria}
Relevant information we retrieved from news articles: {retrieved_info}
Question close date: {close_date}
Instructions:
1. Given the above question, rephrase and expand it to help you do better answering. Maintain all information in the original question. {{
Insert rephrased and expanded question.}}
2. Provide a few reasons why the answer might be no. Rate the strength of each reason. For now, ignore the evidence, ideas, and
perspectives contained in the attached news articles. {{ Insert your thoughts }}
3. Provide a few reasons why the answer might be yes. Rate the strength of each reason. For now, ignore the evidence, ideas, and
perspectives contained in the attached news articles. {{ Insert your thoughts }}
4. Aggregate the considerations you developed in the previous steps. Think like a superforecaster (e.g. Nate Silver). {{ Insert your
aggregated considerations }}
5. Output an initial probability (prediction) given steps 1-4. {{ Insert initial probability. }}
6. Now, consider the perspectives, ideas, and evidence that was provided in the retrieved news articles. How should these affect your
judgment of the probability of the question resolving positively? List all reasons why these news articles might increase the probability
of the question resolving positively. {{Insert your thoughts}}
7. Now, let’s focus on how the ideas, perspectives, and evidence provided in the news articles might decrease the probability of the
question resolving positively. {{Insert your thoughts}}
8. Given what you’ve thought about in the previous two steps, update your probability from the initial probability you gave in step 5.
{{Insert updated probability}}
9. Evaluate whether your calculated probability is excessively confident or not confident enough. Also, consider anything else that might
affect the forecast that you did not before consider. {{ Insert your thoughts }}
10. Output your answer (a number between 0 and 1) with an asterisk at the beginning and end of the decimal. Do not output anything
else. {{ Insert your answer }}

Figure 8: Superforecaster Prompt 3

Additionally, to speed up the inference, we use multithreading with 50 workers, which requires a high
rate limit and requests for better subscription plans from each source. However, one can run inference
sequentially by setting it as 1 worker, but this requires longer time to generate all the baselines.

J.1 ZERO-SHOT AND SCRATCHPAD BASELINES

Prompts We use the zero-shot and scratchpad prompts attached in the appendix of our paper.

Hyperparameters For the zero-shot setting, we set the maximum output token length to 50 since we
only request probabilistic forecasts. For the scratchpad prompt, we increase the maximum output
token length to 1300 as it requires reasoning and probabilistic forecasts. We initially considered a
high token length of 3000, but after observing that the maximum response length was around 1250,
we finalized 1300 as the optimal maximum token length. In both cases, the model temperature is set
to 0 to ensure stable outputs.

How to Reproduce To run zero-shot and scratchpad baselines, follow the steps below:

1. Insert all the necessary API keys in src/helpers/keys.py.
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Question 1: {question_1}
Question 2: {question_2}
Question 1 Background: {background_1}
Question 2 Background: {background_2}
Question 1 Resolution Criteria: {resolution_criteria_1}
Question 2 Resolution Criteria: {resolution_criteria_2}
Question 1 Current value on {freeze_datetime_1}: {value_at_freeze_datetime_1}
Question 1 Value Explanation: {value_at_freeze_datetime_explanation_1}
Question 2 Current value on {freeze_datetime_1}: {value_at_freeze_datetime_2}
Question 2 Value Explanation: {value_at_freeze_datetime_explanation_2}
Here’s some related information from the news that I’ve collected for Question 1: {retrieved_info_1}
Here’s some related information from the news that I’ve collected for Question 2: {retrieved_info_2}
Question resolution date: {list_of_resolution_dates}

Figure 9: Combination Prompt that includes information about both non-market questions. The
instructions are truncated and can be supplemented with any of the prompts shown above.

I want to assess the quality of a forecast question.
Here is the forecast question: {question}.
Please flag questions that don’t seem appropriate by outputting "flag". Otherwise, if it seems like a
reasonable question or if you’re unsure, output "ok."
In general, poorly-defined questions, questions that are sexual in nature, questions that are too
personal,
questions about the death/life expectancy of an individual should be flagged or, more generally,
questions
that are not in the public interest should be flagged. Geopolitical questions, questions about court
cases,
the entertainment industry, wars, public figures, and, more generally, questions in the public interest
should
be marked as "ok."
Examples of questions that should be flagged:

* "Will I finish my homework tonight?"

* "Metaculus party 2023"

* "Will Hell freeze over?"

* "Heads or tails?"

* "Will I get into MIT?"

* "Will this video reach 100k views by the EOD?"

* "If @Aella goes on the Whatever podcast, will she regret it?"

* "Daily coinflip"

* "Musk vs Zuckerberg: Will either of them shit their pants on the mat?"
Examples of questions that should NOT be flagged:

* "Will Megan Markle and Prince Harry have a baby by the end of the year?"

* "Will the Brain Preservation Foundation’s Large Mammal preservation prize be won by Feb 9th, 2017?"

* "Will there be more novel new drugs approved by the FDA in 2016 than in 2015?"

* "Will Israel invade Rafah in May 2024?"

* "Will Iraq return its ambassador to Iran in the next month?"

* "Tiger Woods Will Win Another PGA Tournament"

* "Will Dwayne Johnson win the 2024 US Presidential Election?"

* "Will Oppenheimer win best picture AND Bitcoin reach $70K AND Nintendo announce a new console by EOY
2024?"

* "Will anybody born before 2000 live to be 150?"

* "Will Taylor Swift get married before Bitcoin reaches $100K USD?"

* "Will Russia’s total territory decrease by at least 20% before 2028?"

* "Will Donald Trump be jailed or incarcerated before 2030?"

* "If China invades Taiwan before 2035, will the US respond with military force?"

* "Will there be a tsunami that kills at least 50,000 people before 2030?"

* "Will there be a military conflict resulting in at least 50 deaths between the United States and China
in 2024?"

* "Will an AI system be reported to have successfully blackmailed someone for >$1000 by EOY 2028?"

* "Will Vladimir Putin declare Martial Law in at least 3/4 of Russia before 2025?"
Again, when in doubt, do NOT flag the question; mark it as "ok".
Your response should take the following structure:
Insert thinking:
{{ insert your concise thoughts here }}
Classification:
{{ insert "flag" or "ok"}}

Figure 10: Question Validation Prompt

2. Run the zero-shot and the scratchpad baselines in src/base_eval/llm_baselines/
manager/main.py.

J.2 SCRATCHPAD WITH INFORMATION RETRIEVAL BASELINE

Prompts We use the same scratchpad prompt as scratchpad baseline with an additional line "We have
retrieved the following information for this question: {retrieved_info}" before the instructions begin.
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Table 18: Leaderboard: Human question set (Top 50)

Brier Score ↓

Model Organization Information
provided Prompt Dataset

(N=316)
Market
(N=77)

Overall
(N=393)

Confidence
Interval

Pairwise
p-value
comparing
to No. 1

Pct. more
accurate
than No. 1

Superforecaster median forecast ForecastBench – – 0.126 0.059 0.092 [0.073, 0.112] – 0%
Claude-3-5-Sonnet-20240620 Anthropic Freeze values Scratchpad 0.139 0.089 0.114 [0.092, 0.136] <0.01 31%
Public median forecast ForecastBench – – 0.156 0.072 0.114 [0.095, 0.133] <0.001 24%
Claude-3-5-Sonnet-20240620 Anthropic News with freeze values Scratchpad 0.144 0.094 0.119 [0.098, 0.141] <0.001 30%
GPT-4 OpenAI Freeze values Zero shot 0.164 0.079 0.121 [0.100, 0.143] <0.001 32%
Claude-3-5-Sonnet-20240620 Anthropic Freeze values Zero shot 0.145 0.099 0.122 [0.095, 0.149] <0.001 32%
GPT-4-Turbo-2024-04-09 OpenAI Freeze values Zero shot 0.170 0.077 0.124 [0.102, 0.145] <0.001 33%
GPT-4o OpenAI News with freeze values Scratchpad 0.168 0.082 0.125 [0.107, 0.144] <0.001 26%
Claude-3-5-Sonnet-20240620 Anthropic – Scratchpad 0.139 0.113 0.126 [0.104, 0.148] <0.001 29%
GPT-4o OpenAI Freeze values Scratchpad 0.163 0.093 0.128 [0.108, 0.148] <0.001 27%
Claude-3-5-Sonnet-20240620 Anthropic News Scratchpad 0.144 0.116 0.130 [0.109, 0.151] <0.001 26%
Claude-3-5-Sonnet-20240620 Anthropic News Superforecaster 2 0.159 0.103 0.131 [0.112, 0.150] <0.001 25%
Mistral-Large-Latest Mistral AI Freeze values Zero shot 0.170 0.096 0.133 [0.110, 0.156] <0.001 24%
Claude-3-5-Sonnet-20240620 Anthropic News Superforecaster 1 0.153 0.113 0.133 [0.112, 0.154] <0.001 26%
GPT-4o OpenAI – Scratchpad 0.163 0.103 0.133 [0.116, 0.150] <0.001 25%
Claude-3-Opus-20240229 Anthropic Freeze values Scratchpad 0.163 0.105 0.134 [0.116, 0.152] <0.001 24%
Claude-3-Opus-20240229 Anthropic Freeze values Zero shot 0.173 0.095 0.134 [0.110, 0.158] <0.001 26%
Mistral-Large-Latest Mistral AI Freeze values Scratchpad 0.161 0.109 0.135 [0.118, 0.152] <0.001 23%
GPT-4o OpenAI News Scratchpad 0.168 0.107 0.137 [0.117, 0.158] <0.001 22%
GPT-4-Turbo-2024-04-09 OpenAI Freeze values Scratchpad 0.179 0.104 0.141 [0.119, 0.163] <0.001 27%
Claude-3-5-Sonnet-20240620 Anthropic – Zero shot 0.145 0.138 0.141 [0.115, 0.168] <0.001 24%
Llama-3-70b-Chat-Hf Meta Freeze values Scratchpad 0.189 0.095 0.142 [0.126, 0.158] <0.001 25%
Gemini-1.5-Pro Google – Scratchpad 0.168 0.116 0.142 [0.124, 0.160] <0.001 23%
Gemini-1.5-Pro Google Freeze values Scratchpad 0.168 0.116 0.142 [0.124, 0.160] <0.001 23%
Gemini-1.5-Pro Google News with freeze values Scratchpad 0.172 0.113 0.142 [0.123, 0.161] <0.001 22%
GPT-4 OpenAI Freeze values Scratchpad 0.178 0.107 0.143 [0.124, 0.162] <0.001 21%
Llama-3-70b-Chat-Hf Meta Freeze values Zero shot 0.181 0.105 0.143 [0.118, 0.168] <0.001 26%
Claude-3-Opus-20240229 Anthropic – Scratchpad 0.163 0.124 0.144 [0.126, 0.161] <0.001 22%
GPT-4-Turbo-2024-04-09 OpenAI – Zero shot 0.170 0.118 0.144 [0.125, 0.163] <0.001 22%
Claude-3-Opus-20240229 Anthropic News Superforecaster 1 0.161 0.128 0.144 [0.124, 0.165] <0.001 23%
Claude-2.1 Anthropic Freeze values Scratchpad 0.213 0.077 0.145 [0.128, 0.162] <0.001 26%
GPT-4-Turbo-2024-04-09 OpenAI – Scratchpad 0.179 0.111 0.145 [0.129, 0.161] <0.001 23%
Gemini-1.5-Flash Google Freeze values Zero shot 0.183 0.107 0.145 [0.118, 0.172] <0.001 24%
Gemini-1.5-Pro Google News Scratchpad 0.172 0.119 0.145 [0.127, 0.164] <0.001 22%
GPT-4o OpenAI Freeze values Zero shot 0.201 0.091 0.146 [0.121, 0.170] <0.001 28%
Mixtral-8x22B-Instruct-V0.1 Mistral AI Freeze values Scratchpad 0.183 0.108 0.146 [0.129, 0.163] <0.001 21%
Gemini-1.5-Pro Google Freeze values Zero shot 0.186 0.106 0.146 [0.120, 0.172] <0.001 25%
Qwen1.5-110B-Chat Qwen Freeze values Zero shot 0.195 0.097 0.146 [0.125, 0.167] <0.001 22%
GPT-4 OpenAI – Scratchpad 0.178 0.116 0.147 [0.132, 0.162] <0.001 18%
GPT-4-Turbo-2024-04-09 OpenAI News with freeze values Scratchpad 0.188 0.108 0.148 [0.126, 0.170] <0.001 26%
Mixtral-8x22B-Instruct-V0.1 Mistral AI Freeze values Zero shot 0.189 0.111 0.150 [0.124, 0.176] <0.001 26%
Mistral-Large-Latest Mistral AI – Scratchpad 0.161 0.143 0.152 [0.134, 0.169] <0.001 22%
GPT-4 OpenAI – Zero shot 0.164 0.141 0.152 [0.134, 0.170] <0.001 24%
Claude-2.1 Anthropic – Scratchpad 0.213 0.092 0.152 [0.134, 0.171] <0.001 23%
Imputed Forecaster ForecastBench – – 0.250 0.056 0.153 [0.136, 0.170] <0.001 28%
Qwen1.5-110B-Chat Qwen Freeze values Scratchpad 0.193 0.116 0.154 [0.137, 0.172] <0.001 20%
Claude-2.1 Anthropic Freeze values Zero shot 0.220 0.090 0.155 [0.133, 0.177] <0.001 27%
Qwen1.5-110B-Chat Qwen News with freeze values Scratchpad 0.185 0.126 0.155 [0.137, 0.174] <0.001 22%
Mixtral-8x22B-Instruct-V0.1 Mistral AI News with freeze values Scratchpad 0.197 0.115 0.156 [0.138, 0.174] <0.001 23%
GPT-4-Turbo-2024-04-09 OpenAI News Scratchpad 0.188 0.125 0.156 [0.136, 0.177] <0.001 24%
Notes:

1. For resolved questions, predictions are compared against ground truth, while for unresolved questions, predictions are compared to community aggregates.
2. The overall score is calculated as the average of the mean dataset Brier score and the mean market Brier score.
3. Pct. more accurate than No. 1: The percent of questions where this forecaster had a better overall score than the best forecaster (with rank 1).
4. Pairwise p-value comparing to No. 1 (bootstrapped): The p-value calculated by bootstrapping the differences in overall score between each model and the best

forecaster (the group with rank 1) under the null hypothesis that there’s no difference.

Information Retrieval We use the same information retrieval system from Halawi et al. (2024).
The pipeline consists of four steps: search query generation, news retrieval, relevance filtering and
re-ranking, and text summarization. One must acquire a Newscatcher API key to implement the same
retrieval method.

Information Retrieval Hyperparameters The hyperparameters were selected following the results
in Section E.1 of Halawi et al. (2024), in which they used a greedy search approach to identify the
optimal hyperparameters. We display the hyperparameters below:

NUM_SEARCH_QUERY_KEYWORDS: The number of keywords used in the search query. For our
system, this is set to 6.

MAX_WORDS_NEWSCATCHER: The maximum number of words allowed in search queries for the
NewsCatcher API. This is set to 5.

MAX_WORDS_GNEWS: The maximum number of words allowed in search queries for the Google
News API. This is set to 8.

SEARCH_QUERY_MODEL_NAME: The name of the model used to generate search queries. We use
gpt-4-1106-preview.

SEARCH_QUERY_TEMPERATURE: The temperature setting for the search query model, which
controls the randomness of the output. We set this to 0.0 for deterministic outputs.
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Table 19: Leaderboard: LLM question set (Top 50)

Brier Score ↓

Model Organization Information
provided Prompt Dataset

(N=4,107)
Market
(N=907)

Overall
(N=5,014)

Confidence
Interval

Pairwise
p-value
comparing
to No. 1

Pct. more
accurate
than No. 1

Claude-3-5-Sonnet-20240620 Anthropic Freeze values Scratchpad 0.171 0.062 0.116 [0.111, 0.122] – 0%
GPT-4-Turbo-2024-04-09 OpenAI Freeze values Scratchpad 0.171 0.065 0.118 [0.112, 0.123] 0.243 42%
GPT-4o OpenAI Freeze values Scratchpad 0.191 0.054 0.123 [0.117, 0.128] <0.001 43%
Gemini-1.5-Pro Google Freeze values Scratchpad 0.162 0.089 0.125 [0.120, 0.131] <0.001 35%
GPT-4o OpenAI News with freeze values Scratchpad 0.192 0.066 0.129 [0.123, 0.134] <0.001 39%
Gemini-1.5-Pro Google News with freeze values Scratchpad 0.167 0.094 0.131 [0.125, 0.136] <0.001 34%
Claude-3-Opus-20240229 Anthropic Freeze values Zero shot 0.190 0.076 0.133 [0.126, 0.139] <0.001 41%
Qwen1.5-110B-Chat Qwen Freeze values Scratchpad 0.176 0.092 0.134 [0.128, 0.139] <0.001 31%
GPT-4-Turbo-2024-04-09 OpenAI – Scratchpad 0.171 0.097 0.134 [0.129, 0.139] <0.001 31%
Claude-3-5-Sonnet-20240620 Anthropic News with freeze values Scratchpad 0.187 0.083 0.135 [0.129, 0.141] <0.001 32%
Claude-3-5-Sonnet-20240620 Anthropic – Scratchpad 0.171 0.101 0.136 [0.130, 0.142] <0.001 10%
Claude-3-5-Sonnet-20240620 Anthropic Freeze values Zero shot 0.195 0.077 0.136 [0.130, 0.143] <0.001 42%
Gemini-1.5-Pro Google – Scratchpad 0.162 0.111 0.137 [0.131, 0.142] <0.001 32%
GPT-4-Turbo-2024-04-09 OpenAI Freeze values Zero shot 0.206 0.068 0.137 [0.131, 0.144] <0.001 41%
Gemini-1.5-Pro Google News Scratchpad 0.167 0.109 0.138 [0.132, 0.144] <0.001 32%
GPT-4 OpenAI Freeze values Scratchpad 0.196 0.083 0.139 [0.133, 0.145] <0.001 36%
Imputed Forecaster ForecastBench – – 0.250 0.034 0.142 [0.138, 0.145] <0.001 47%
GPT-4-Turbo-2024-04-09 OpenAI News with freeze values Scratchpad 0.210 0.074 0.142 [0.137, 0.148] <0.001 35%
GPT-4o OpenAI – Scratchpad 0.191 0.094 0.143 [0.137, 0.148] <0.001 31%
Gemini-1.5-Pro Google Freeze values Zero shot 0.219 0.066 0.143 [0.137, 0.149] <0.001 39%
GPT-4o OpenAI News Scratchpad 0.192 0.095 0.143 [0.137, 0.149] <0.001 31%
Llama-3-70b-Chat-Hf Meta Freeze values Zero shot 0.207 0.084 0.146 [0.139, 0.152] <0.001 33%
Claude-3-5-Sonnet-20240620 Anthropic News Scratchpad 0.187 0.104 0.146 [0.140, 0.151] <0.001 30%
LLM Crowd ForecastBench News – 0.240 0.052 0.146 [0.143, 0.149] <0.001 38%
Qwen1.5-110B-Chat Qwen – Scratchpad 0.176 0.116 0.146 [0.141, 0.151] <0.001 29%
GPT-4 OpenAI Freeze values Zero shot 0.222 0.071 0.146 [0.140, 0.152] <0.001 38%
Mistral-Large-Latest Mistral AI Freeze values Scratchpad 0.199 0.096 0.148 [0.142, 0.153] <0.001 26%
LLM Crowd ForecastBench News – 0.241 0.055 0.148 [0.145, 0.152] <0.001 38%
LLM Crowd ForecastBench News – 0.241 0.055 0.148 [0.145, 0.152] <0.001 37%
Claude-3-Opus-20240229 Anthropic Freeze values Scratchpad 0.204 0.093 0.149 [0.143, 0.155] <0.001 28%
Gemini-1.5-Flash Google Freeze values Scratchpad 0.193 0.107 0.150 [0.143, 0.157] <0.001 31%
Gemini-1.5-Pro Google News Superforecaster 1 0.188 0.112 0.150 [0.144, 0.156] <0.001 32%
GPT-4 OpenAI – Scratchpad 0.196 0.105 0.150 [0.145, 0.155] <0.001 28%
Claude-3-5-Sonnet-20240620 Anthropic News Superforecaster 2 0.193 0.109 0.151 [0.145, 0.157] <0.001 29%
Gemini-1.5-Pro Google – Zero shot 0.219 0.083 0.151 [0.145, 0.158] <0.001 36%
GPT-4-Turbo-2024-04-09 OpenAI – Zero shot 0.206 0.098 0.152 [0.146, 0.159] <0.001 31%
GPT-4-Turbo-2024-04-09 OpenAI News Scratchpad 0.210 0.095 0.152 [0.147, 0.158] <0.001 27%
Llama-3-70b-Chat-Hf Meta Freeze values Scratchpad 0.216 0.090 0.153 [0.148, 0.158] <0.001 25%
GPT-4-Turbo-2024-04-09 OpenAI News Superforecaster 2 0.208 0.098 0.153 [0.148, 0.158] <0.001 28%
Claude-3-Opus-20240229 Anthropic – Zero shot 0.190 0.120 0.155 [0.148, 0.161] <0.001 34%
Qwen1.5-110B-Chat Qwen News with freeze values Scratchpad 0.207 0.103 0.155 [0.150, 0.161] <0.001 26%
Claude-3-5-Sonnet-20240620 Anthropic – Zero shot 0.195 0.116 0.156 [0.149, 0.163] <0.001 34%
Mistral-Large-Latest Mistral AI Freeze values Zero shot 0.207 0.104 0.156 [0.149, 0.163] <0.001 31%
Gemini-1.5-Flash Google Freeze values Zero shot 0.232 0.082 0.157 [0.150, 0.164] <0.001 40%
GPT-4o OpenAI News Superforecaster 3 0.211 0.104 0.157 [0.152, 0.163] <0.001 27%
Mixtral-8x22B-Instruct-V0.1 Mistral AI Freeze values Scratchpad 0.211 0.105 0.158 [0.152, 0.164] <0.001 30%
Gemini-1.5-Flash Google – Scratchpad 0.193 0.125 0.159 [0.152, 0.165] <0.001 28%
Llama-3-70b-Chat-Hf Meta – Zero shot 0.207 0.111 0.159 [0.153, 0.164] <0.001 28%
Claude-2.1 Anthropic – Scratchpad 0.236 0.085 0.160 [0.155, 0.166] <0.001 38%
Claude-3-5-Sonnet-20240620 Anthropic News Superforecaster 1 0.211 0.113 0.162 [0.156, 0.168] <0.001 30%
Notes:

1. For resolved questions, predictions are compared against ground truth, while for unresolved questions, predictions are compared to community aggregates.
2. The overall score is calculated as the average of the mean dataset Brier score and the mean market Brier score.
3. Pct. more accurate than No. 1: The percent of questions where this forecaster had a better overall score than the best forecaster (with rank 1).
4. Pairwise p-value comparing to No. 1 (bootstrapped): The p-value calculated by bootstrapping the differences in overall score between each model and the best

forecaster (the group with rank 1) under the null hypothesis that there’s no difference.

SEARCH_QUERY_PROMPT_TEMPLATES: The templates used to generate search queries.
In our configuration, we use PROMPT_DICT["search_query"]["0"] and
PROMPT_DICT["search_query"]["1"]. The exact search query can be found in
search_query.py.

NUM_ARTICLES_PER_QUERY: The number of articles retrieved per search query. This is set to
10.

SUMMARIZATION_MODEL_NAME: The name of the model used for summarizing articles. We use
gpt-3.5-turbo-1106.

SUMMARIZATION_TEMPERATURE: The temperature setting for the summarization model, which
controls the randomness of the output. We set this to 0.2.

SUMMARIZATION_PROMPT_TEMPLATE: The template used for summarizing articles. In our
configuration, we use PROMPT_DICT["summarization"]["9"]. The exact search query
can be found in summarization.py.

NUM_SUMMARIES_THRESHOLD: The threshold number of summaries to generate. This is set to
10.

PRE_FILTER_WITH_EMBEDDING: A boolean flag indicating whether to pre-filter articles using
embeddings. This is set to True.
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Table 20: Leaderboard: Human question set with LLM question set combination questions (Top 50)

Brier Score ↓

Model Organization Information
provided Prompt Dataset

(N=1,312)
Market
(N=301)

Overall
(N=1,613)

Confidence
Interval

Pairwise
p-value
comparing
to No. 1

Pct. more
accurate
than No. 1

Superforecaster median forecast ForecastBench – – 0.093 0.048 0.071 [0.062, 0.079] – 0%
Public median forecast ForecastBench – – 0.123 0.057 0.090 [0.082, 0.099] <0.001 24%
Claude-3-5-Sonnet-20240620 Anthropic Freeze values Scratchpad 0.158 0.090 0.124 [0.112, 0.136] <0.001 24%
GPT-4-Turbo-2024-04-09 OpenAI Freeze values Scratchpad 0.163 0.085 0.124 [0.113, 0.136] <0.001 24%
GPT-4o OpenAI Freeze values Scratchpad 0.182 0.069 0.125 [0.115, 0.136] <0.001 25%
GPT-4o OpenAI News with freeze values Scratchpad 0.175 0.084 0.129 [0.118, 0.140] <0.001 24%
Gemini-1.5-Pro Google Freeze values Scratchpad 0.155 0.111 0.133 [0.122, 0.144] <0.001 22%
Claude-3-5-Sonnet-20240620 Anthropic News with freeze values Scratchpad 0.163 0.109 0.136 [0.124, 0.148] <0.001 20%
Gemini-1.5-Pro Google News with freeze values Scratchpad 0.157 0.117 0.137 [0.126, 0.147] <0.001 21%
GPT-4-Turbo-2024-04-09 OpenAI – Scratchpad 0.163 0.113 0.138 [0.128, 0.148] <0.001 18%
Claude-3-5-Sonnet-20240620 Anthropic Freeze values Zero shot 0.177 0.101 0.139 [0.126, 0.152] <0.001 23%
Gemini-1.5-Pro Google – Scratchpad 0.155 0.125 0.140 [0.130, 0.150] <0.001 20%
Gemini-1.5-Pro Google News Scratchpad 0.157 0.124 0.141 [0.129, 0.152] <0.001 21%
Claude-3-5-Sonnet-20240620 Anthropic – Scratchpad 0.158 0.123 0.141 [0.129, 0.152] <0.001 19%
Claude-3-Opus-20240229 Anthropic Freeze values Zero shot 0.178 0.104 0.141 [0.128, 0.154] <0.001 23%
Qwen1.5-110B-Chat Qwen Freeze values Scratchpad 0.172 0.112 0.142 [0.131, 0.152] <0.001 17%
GPT-4o OpenAI – Scratchpad 0.182 0.102 0.142 [0.132, 0.152] <0.001 20%
GPT-4o OpenAI News Scratchpad 0.175 0.109 0.142 [0.131, 0.153] <0.001 20%
GPT-4-Turbo-2024-04-09 OpenAI Freeze values Zero shot 0.200 0.085 0.142 [0.130, 0.154] <0.001 25%
Claude-3-5-Sonnet-20240620 Anthropic News Scratchpad 0.163 0.127 0.145 [0.134, 0.156] <0.001 19%
Imputed Forecaster ForecastBench – – 0.250 0.045 0.147 [0.140, 0.154] <0.001 24%
GPT-4 OpenAI Freeze values Zero shot 0.212 0.083 0.147 [0.136, 0.159] <0.001 23%
Gemini-1.5-Pro Google Freeze values Zero shot 0.207 0.090 0.148 [0.136, 0.161] <0.001 21%
GPT-4 OpenAI Freeze values Scratchpad 0.191 0.106 0.149 [0.137, 0.161] <0.001 19%
Claude-3-Opus-20240229 Anthropic Freeze values Scratchpad 0.187 0.113 0.150 [0.139, 0.161] <0.001 18%
Claude-3-5-Sonnet-20240620 Anthropic News Superforecaster 2 0.172 0.129 0.150 [0.138, 0.162] <0.001 17%
LLM Crowd ForecastBench News – 0.238 0.064 0.151 [0.144, 0.158] <0.001 19%
GPT-4-Turbo-2024-04-09 OpenAI News with freeze values Scratchpad 0.210 0.095 0.152 [0.141, 0.163] <0.001 22%
LLM Crowd ForecastBench News – 0.239 0.067 0.153 [0.146, 0.160] <0.001 19%
LLM Crowd ForecastBench News – 0.240 0.066 0.153 [0.146, 0.160] <0.001 19%
Mistral-Large-Latest Mistral AI Freeze values Scratchpad 0.186 0.121 0.154 [0.144, 0.164] <0.001 16%
Llama-3-70b-Chat-Hf Meta Freeze values Zero shot 0.196 0.112 0.154 [0.141, 0.167] <0.001 20%
Gemini-1.5-Flash Google Freeze values Scratchpad 0.178 0.132 0.155 [0.142, 0.168] <0.001 19%
Gemini-1.5-Pro Google News Superforecaster 1 0.178 0.132 0.155 [0.144, 0.166] <0.001 19%
Llama-3-70b-Chat-Hf Meta Freeze values Scratchpad 0.203 0.108 0.156 [0.146, 0.166] <0.001 17%
Qwen1.5-110B-Chat Qwen – Scratchpad 0.172 0.140 0.156 [0.147, 0.165] <0.001 15%
Gemini-1.5-Pro Google – Zero shot 0.207 0.106 0.157 [0.145, 0.169] <0.001 18%
Gemini-1.5-Flash Google – Scratchpad 0.178 0.136 0.157 [0.146, 0.168] <0.001 15%
GPT-4 OpenAI – Scratchpad 0.191 0.123 0.157 [0.148, 0.166] <0.001 15%
GPT-4-Turbo-2024-04-09 OpenAI – Zero shot 0.200 0.117 0.159 [0.147, 0.170] <0.001 19%
Claude-2.1 Anthropic – Scratchpad 0.227 0.091 0.159 [0.149, 0.168] <0.001 20%
Gemini-1.5-Flash Google Freeze values Zero shot 0.217 0.103 0.160 [0.146, 0.174] <0.001 23%
GPT-4-Turbo-2024-04-09 OpenAI News Scratchpad 0.210 0.109 0.160 [0.149, 0.170] <0.001 17%
Claude-3-Opus-20240229 Anthropic – Zero shot 0.178 0.144 0.161 [0.148, 0.175] <0.001 19%
GPT-4-Turbo-2024-04-09 OpenAI News Superforecaster 2 0.204 0.120 0.162 [0.151, 0.173] <0.001 18%
Qwen1.5-110B-Chat Qwen News with freeze values Scratchpad 0.199 0.125 0.162 [0.152, 0.172] <0.001 16%
Mistral-Large-Latest Mistral AI Freeze values Zero shot 0.201 0.125 0.163 [0.149, 0.176] <0.001 19%
Claude-3-5-Sonnet-20240620 Anthropic – Zero shot 0.177 0.151 0.164 [0.150, 0.178] <0.001 18%
GPT-4o OpenAI News Superforecaster 3 0.206 0.125 0.166 [0.156, 0.176] <0.001 17%
Claude-2.1 Anthropic Freeze values Scratchpad 0.227 0.105 0.166 [0.154, 0.177] <0.001 21%
Notes:

1. This shows performance on all 200 standard questions from the human question set plus those combination questions from the LLM question set where humans
provided forecasts on both components (Q1 and Q2). LLM scores are only for this combined question set. Human forecasts for combination questions are generated
from their forecasts on the component questions by assuming independence (which is not always the case, putting humans at a disadvantage).
2. For resolved questions, predictions are compared against ground truth, while for unresolved questions, predictions are compared to community aggregates.
3. The overall score is calculated as the average of the mean dataset Brier score and the mean market Brier score.
4. Pct. more accurate than No. 1: The percent of questions where this forecaster had a better overall score than the best forecaster (with rank 1).
5. Pairwise p-value comparing to No. 1 (bootstrapped): The p-value calculated by bootstrapping the differences in overall score between each model and the best

forecaster (the group with rank 1) under the null hypothesis that there’s no difference.

PRE_FILTER_WITH_EMBEDDING_THRESHOLD: The threshold for pre-filtering articles using
embeddings. This is set to 0.32.

RANKING_MODEL_NAME: The name of the model used for ranking articles. We use
gpt-3.5-turbo-1106.

RANKING_TEMPERATURE: The temperature setting for the ranking model, which controls the
randomness of the output. We set this to 0.0 for deterministic outputs.

RANKING_PROMPT_TEMPLATE: The template used for ranking articles. In our configuration, we
use PROMPT_DICT["ranking"]["0"].

RANKING_RELEVANCE_THRESHOLD: The relevance threshold for ranking articles. This is set to
4.

RANKING_COSINE_SIMILARITY_THRESHOLD: The cosine similarity threshold used in rank-
ing. This is set to 0.5.

SORT_BY: The criterion used to sort articles. We sort by date.

RANKING_METHOD: The method used for ranking articles. We use llm-rating.
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RANKING_METHOD_LLM: The specific method for ranking articles using the LLM. We use
title_250_tokens, meaning ranking articles based on their titles and the first 250 tokens.

NUM_SUMMARIES_THRESHOLD: The threshold number of summaries to generate for final output.
This is set to 20.

EXTRACT_BACKGROUND_URLS: A boolean flag indicating whether to extract background URLs
from the articles. This is set to True.

Inference Hyperparameters: We set the maximum output token length to 2000 to accommodate
reasoning and probabilistic forecasts. We set the model temperature to 0 to ensure stable outputs.

How to reproduce To run the Scratchpad with Information Retrieval baseline, follow these steps:

1. To run the information retrieval part:
(a) Insert all the necessary API keys in llm_retrieval/forecasting-llm-retrieval/config/keys.py.

Specifically, add the Newscatcher and OpenAI API keys.
(b) Run llm_retrieval/notebooks/retrieval_cache.ipynb.
(c) Save all the retrieved news under a folder called "news".

2. To run the scratchpad with the information retrieval baseline:
(a) Insert all the necessary API keys in src/helpers/constants.py.
(b) Place the "news" folder in the same directory as

src/base_eval/all_recurrent_llm_baselines/main.py.
(c) Run src/base_eval/all_recurrent_llm_baselines/main.py.

J.3 LLM "CROWD" BASELINE

To produce the LLM crowd forecast, we query three models: GPT-4o, Claude-3.5-Sonnet, and Gemini-
1.5-Pro. We use three prompts crafted by superforecasters who were given explicit instructions to
write prompts that would help an LLM produce accurate forecasts This results in 3× 3 = 9 forecasts
per question. We then show 3 LLM crowd baselines using the median, geometric mean, and geometric
mean of log odds.

Prompts We use the 3 superforecaster-written prompts shown in the appendix of our paper as
Superforecaster Prompt 1-3.

Inference hyperparameters We set the maximum output token length to 2000 to accommodate
reasoning and probabilistic forecasts. We initially considered a high token length of 3000, but after
observing that the maximum response length was around 1950, we finalized 2000 as the optimal
maximum token length. We set the model temperature to 0 to ensure stable outputs.

How to reproduce To run LLM "Crowd" baseline, follow the below steps:

1. Insert all the necessary API keys in src/helpers/constants.py.
2. Place the "news" folder in the same directory as src/base_eval/llm_crowd/notebook.ipynb.
3. Run src/base_eval/llm_crowd/notebook.ipynb.

K REPRODUCE RESOLUTION AND LEADERBOARD

Given the forecast files output from Appendix I and Appendix J, the forecasts can be resolved and
the leaderboard created as follows, after first having downloaded the benchmark codebase.

The Google Cloud Function in src/resolve_forecasts/main.py resolves all forecasts on
the questions from the question set in Section B.1. To do this, it depends on:

• the forecast files provided in Section B.2.1 and Section B.2.3;
• the complete resolution files from our Question Bank on GCP Cloud Storage, which we cannot

distribute freely because some providers do not allow us to distribute their data directly, rather
only modifications of their data. However, the code to create these resolution files is provided
under src/questions and can be created given the API keys to the data sources.
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Having resolved the forecasts for the day, either to ground truth if it was a forecast on a dataset ques-
tion, or the resolution value or market value for market questions from, we can now create the leader-
board. To do this, we use the Google Cloud Function defined in src/leaderboard/main.py.

L HUMAN SURVEY DEMOGRAPHICS

We collected demographic information from the 500 human forecasters in the public survey. Sum-
maries of participants’ age, gender, ethnicity, and country of residence are shown in the tables
below.

Table 21: Age Distribution

Age Percentage

18-24 years old 32.0%
25-34 years old 43.4%
35-44 years old 14.4%
45-54 years old 5.4%
Over 55 4.8%

Table 22: Gender Distribution

Gender Percentage

Male 53.4%
Female 46.2%
Prefer not to say 0.4%

Table 23: Ethnicity Distribution

Ethnicity Percentage

White 48.6%
Black 33.4%
Mixed 8.6%
Asian 4.4%
Other 3.4%
Prefer not to say 1.6%

Table 24: Country of Residence Distribution

Country Percentage

South Africa 31.2%
United States 15.4%
Poland 9.0%
Portugal 7.8%
United Kingdom 4.6%
Mexico 4.2%
Chile 3.8%
Italy 3.4%
Greece 3.0%
Hungary 3.0%
(25 others) 14.6%

We did not collect similar demographic information from the superforecasters participating in the
study, but are reasonably certain that the superforecasters in this study are roughly representative of
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superforecasters as a whole. Describing forecasters previously recruited by Good Judgment Project,
Mellers et al. (2015) noted that participants "tended to be men (83%) and U.S. citizens (74%), with
an average age of 40 years."

M PERFORMANCE BREAKDOWN

In tables Table 25 and Table 26 we look into how the best-performing LLM, Claude 3.5 Sonnet
(Scratchpad prompt with freeze values), and Superforecasters performed when assessing performance
by category and by forecast horizon.

In Table 25, we see that Claude 3.5 Sonnet slightly Superforecasters on Environment & Energy
questions and Sports questions.

As a reminder, we ask for forecasts on dataset questions at 8 diffreent forecast horizons, as explained
in Section 3.2. Here, we breakdown performance at the forecast horizons that have resolved by the
publication date: 7 days, 30 days, and 90 days. We see that Superforecasters outperformed Claude
3.5 Sonnet at all forecast horizons.

Table 25: Brier score by category

Category N Claude 3.5 Sonnet Superforecaster Difference

Arts & Recreation 8 0.086 0.053 0.033
Economics & Business 137 0.188 0.105 0.083
Environment & Energy 63 0.145 0.158 -0.013
Healthcare & Biology 37 0.003 0.001 0.002
Politics & Governance 17 0.061 0.017 0.044
Science & Tech 15 0.160 0.139 0.021
Security & Defense 73 0.049 0.027 0.022
Sports 43 0.020 0.034 -0.014

Table 26: Brier score by forecast horizon

Forecast Horizon N Claude 3.5 Sonnet Superforecaster Difference

7-day 104 0.159 0.132 0.027
30-day 106 0.150 0.138 0.012
90-day 183 0.098 0.083 0.015
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