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ABSTRACT

Federated learning (FL) faces challenges in ensuring both privacy and communi-
cation efficiency, particularly in resource-constrained environments such as Inter-
net of Things (IoT) and edge networks. While sign-based methods, such as sign
stochastic gradient descent with majority voting (SIGNSGD-MV), offer substan-
tial bandwidth savings, they remain vulnerable to inference attacks due to expo-
sure of gradient signs. Existing secure aggregation techniques are either incom-
patible with sign-based methods or incur prohibitive overhead. To address these
limitations, we propose Hi-SAFE, a lightweight and cryptographically secure ag-
gregation framework for sign-based FL. Our core contribution is the construction
of efficient majority vote polynomials for SIGNSGD-MV, derived from Fermat’s
Little Theorem. This formulation represents the majority vote as a low-degree
polynomial over a finite field, enabling secure evaluation that hides intermedi-
ate values and reveals only the final result. We further introduce a hierarchical
subgrouping strategy that ensures constant multiplicative depth and bounded per-
user complexity, independent of the number of users n. Hi-SAFE reduces per-user
communication by over 94% when n ≥ 24, and total cost by up to 52% at n = 24,
while preserving model accuracy. Experiments on benchmark datasets confirm the
scalability, robustness, and practicality of Hi-SAFE in bandwidth-constrained FL
deployments.

1 INTRODUCTION

Federated learning (FL) facilitates collaborative model training across decentralized clients with-
out exposing raw data (McMahan et al., 2017; Li et al., 2020; Hong & Chae, 2021; Kwon et al.,
2023; Lim et al., 2020; Yang et al., 2023), offering intrinsic privacy benefits that make it particu-
larly attractive for sensitive domains such as healthcare, finance, and the Internet of Things (IoT).
Nonetheless, deploying FL on real-world edge or IoT devices introduces significant challenges due
to limited communication bandwidth, computational capacity, and vulnerability to privacy leakage
through shared model updates (Lyu et al., 2022; Nguyen et al., 2021; Aledhari et al., 2022; Kairouz
et al., 2021). Although FL effectively preserves data locality, numerous studies have shown that in-
termediate model updates, such as gradients, can be exploited by adversaries to reconstruct sensitive
inputs or perform membership inference (Zhu et al., 2019; Hitaj et al., 2017; Geiping et al., 2020;
Nasr et al., 2019; Wei & Liu, 2021). These threats are especially pronounced in resource-constrained
environments where devices continuously collect and transmit private information.

To address this, various secure aggregation methods have been proposed. Pairwise additive mask-
ing (Bonawitz et al., 2017; So et al., 2022) protects individual updates via secret sharing but may
still expose intermediate aggregation results under semi-honest assumptions. Differential privacy
(DP) (Truex et al., 2019; Lyu, 2021) provides formal privacy guarantees but often compromises
model accuracy due to added noise. Homomorphic encryption (HE) (Cheon et al., 2017; Fang
& Qian, 2021) provides strong cryptographic guarantees by enabling computations directly on en-
crypted data without decryption. However, this approach entails substantial computational and com-
munication costs, which significantly limits its practicality in resource-constrained edge devices.

In parallel, sign-based methods such as SIGNSGD and its majority vote variant SIGNSGD-
MV (Seide et al., 2014; Bernstein et al., 2018a;b; Park & Lee, 2023; Jin et al., 2024; Joo et al.,
2025) provide exceptional communication efficiency by quantizing updates to 1 bit per parameter.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Overview of Hi-SAFE. Sign-based local gradients are securely aggregated in a two-
level hierarchy through polynomial evaluation. Each user contributes its 1-bit gradient for privacy-
preserving intra-subgroup aggregation, and only the final majority vote is revealed to the server,
ensuring end-to-end privacy without exposing individual inputs.

These methods are both scalable and robust to noise; however, they expose raw sign gradients to
the server, rendering them susceptible to inference attacks (Geiping et al., 2020). Moreover, most
existing secure aggregation protocols are either inefficient or fundamentally incompatible with sign-
based methods. Specifically, masking-based approaches permit the server to access intermediate
summation values during the computation of the final majority vote, which may lead to information
leakage. HE cannot directly support nonlinear operations—such as the sign function and majority
voting—required by SIGNSGD-MV. Additionally, the large ciphertext sizes in HE undermine the
key benefit of 1-bit update protocols. A comprehensive comparative summary of these approaches
is presented in Appendix B, highlighting their limitations in the context of sign-based FL.

These limitations motivate the necessity for a novel class of secure aggregation frameworks that not
only preserve the communication efficiency characteristic of sign-based methods but also provide
strong privacy guarantees.

Contributions. To address this challenge, we propose Hi-SAFE (Hierarchical Secure Aggregation
for FEderated Learning)—a lightweight and cryptographically secure aggregation framework tai-
lored to SIGNSGD-MV. Hi-SAFE minimizes communication cost, protects against inference at-
tacks by revealing only the final majority vote, and scales efficiently in resource-constrained envi-
ronments. As illustrated in Figure 1, each user contributes a 1-bit signed update that is securely
processed through evaluation of majority vote polynomial in a hierarchical structure. Our main
contributions are summarized as follows:

• Cryptographic Secure Aggregation: We design a privacy-preserving protocol for sign-based FL
that discloses only the final majority vote to the server, thereby ensuring protection against inference
attacks under the semi-honest model. To the best of our knowledge, this is the first work to provide
end-to-end privacy within sign-based FL frameworks.

• Efficient Majority Vote Polynomial: Based on Fermat’s Little Theorem, we construct the majority
vote as a low-degree polynomial over a finite field and show that its secure evaluation is equivalent
to the standard (non-private) SIGNSGD-MV, guaranteeing both correctness and privacy.

• Hierarchical Scalability: We introduce a subgrouping strategy that maintains constant multiplica-
tive depth (about two subrounds) and a bounded secure multiplication cost (≤ 6 per user), indepen-
dent of the total number of users n.

• Communication-Efficient and Robust Framework: Hi-SAFE reduces per-user communication
costs by over 94% when n ≥ 24, and achieves up to 52% reduction in total communication at
n=24 compared with the non-subgrouping, while preserving or even improving model accuracy.
Extensive experiments on benchmark datasets confirm its scalability, robustness, and practicality
in bandwidth-constrained FL deployments.
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2 HI-SAFE DESIGN

2.1 PROBLEM SETTING AND DESIGN CRITERIA

We design Hi-SAFE under the following FL environment. We adopt the semi-honest model, in
which all users comply with the protocol, although some may attempt to infer private information
from the exchanged messages (Bonawitz et al., 2017; Zhang et al., 2023; Zhao, 2023; Jiang et al.,
2024; Liu et al., 2024). In addition, we employ the SIGNSGD-MV update rule, whereby each
user transmits only the 1-bit sign of its local gradient, and the server determines the global update
direction by performing a majority vote over all received signs (Seide et al., 2014; Bernstein et al.,
2018a;b; Park & Lee, 2023; Jin et al., 2024).

Based on this setting, Hi-SAFE is designed to achieve both communication efficiency and strong
cryptographic privacy through the following core components.

1. Majority Vote Polynomial F (x) (see Section 2.2.1): Based on Fermat’s Little Theorem, we
propose a finite field polynomial F (x) that performs majority voting over sign gradients. This
polynomial reproduces the standard majority vote result directly, without the need to compute
any intermediate values.

2. Secure Polynomial Evaluation (see Section 2.2.2): Each user securely evaluates its additive
secret share of the polynomial F (x) without revealing its input x. In this work, we adopt Beaver
triples (Beaver, 1991) for secure multiplication, which mask the user’s input and yield encrypted
shares for aggregation; however, other secure multiplication techniques (e.g., DN (Damgård &
Nielsen, 2007) and ATLAS (Goyal et al., 2021)) can be seamlessly integrated into our framework.

3. Secure Aggregation and Broadcasting (see Section 2.3): The server aggregates the encrypted
shares by summation to compute the final majority vote F (x), which is then broadcast to users
for model update. Only the final result is revealed; all intermediate values remain hidden.

4. Hierarchical Aggregation via Subgrouping (see Section 2.4): To mitigate the overhead asso-
ciated with secure polynomial evaluation using techniques such as Beaver triples, which grows
significantly as the number of users increases, we divide users into subgroups that perform inde-
pendent intra-subgroup aggregation. The final result is then obtained by aggregating the outputs
of each subgroup, enabling both scalability and privacy while keeping the computational and
communication costs manageable.

2.2 SECURE EVALUATION OF MAJORITY VOTE POLYNOMIAL F (x) OVER Fp

This section presents how to construct and securely evaluate the majority vote polynomial F (x) over
Fp in an FL setting where Fp is a prime field for a prime p. The primary goal is to compute majority
votes over sign gradients while preserving each user’s input privacy under an honest-but-curious
setting. Appendix C presents an illustrative example for further clarification.

2.2.1 MAJORITY VOTE POLYNOMIAL CONSTRUCTION VIA FERMAT’S LITTLE THEOREM

Fermat’s Little Theorem enables the construction of an indicator polynomial over Fp, which eval-
uates to 1 if the input equals a target value and 0 otherwise (Smith, 2020). Building upon this
principle, we define the majority vote polynomial F (x) = sign (x), where x =

∑n
i=1 xi ∈ Fp for

xi ∈ {−1,+1}d, and d denotes the vector dimension. Let p be the smallest prime greater than n.
The challenge lies in expressing this discrete decision function as a finite field polynomial.

When n is even, a tie (x = 0) may occur. Two common tie-breaking rules are:

• sign(0) ∈ {−1,+1}: tie resolved to binary decision (1-bit output of F (x)),
• sign(0) = 0: tie represented as a distinct third state (2-bit output of F (x)).

This choice affects both the structure of F (x) and the required communication bandwidth. We
propose the majority vote polynomial with d-dimensional; its i-th component is defined as:

F (x) =
∑

m∈{−n,−n+2,...,n−2,n}

sign(m) ·
[
1− (x−m)

p−1
]

(mod p), (1)

where m =
∑n

i=1 mi with mi ∈ {−1,+1} and sign(0) is defined by the tie-breaking policy.
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Lemma 1 (Correctness of the Majority Vote Polynomial). Let xi ∈ {−1,+1}d for all i ∈ [n] :=
{1, 2, ..., n}, and define the aggregated value x =

∑n
i=1 xi. Then the polynomial F (x) defined in

Eq. (1) satisfies F (x) = sign(x) if p > n.

Proof. By Fermat’s Little Theorem, for any prime p > n, the indicator term 1−(x−m)p−1 (mod p)
evaluates to 1 if x=m, and 0 otherwise. Hence, in the summation of Eq. (1), all terms vanish except
the one satisfying x = m. Therefore, we obtain F (x)=sign (

∑n
i=1 xi)=sign(x), which coincides

with the standard majority vote result.

Once the number of users n and the tie-breaking policy are specified, the majority vote polynomial
F (x) can be systematically constructed and efficiently precomputed according to Eq. (1). Repre-
sentative precomputed polynomials are listed in Table 4 in Appendix D.

2.2.2 SECURE EVALUATION OF MAJORITY VOTE POLYNOMIAL F (x)

In the FL setting, each user holds a private input xi (e.g., sign gradient), and the goal is to securely
evaluate a majority vote polynomial F (x) over the aggregated value x=

∑n
i=1 xi, without revealing

any input xi. To perform secure multiplications during polynomial evaluation, we employ additive
secret sharing techniques, instantiated for example via Beaver triples (Beaver, 1991), as a practical
realization.

For simplicity, we omit the (mod p) operation and the explicit coefficients of F (x). Let deg(F )
denote the degree of F (x) over Fp. In the offline (initialization) phase, the users collaboratively
generate Beaver triples {(JarKi, JbrKi, JcrKi) : r ∈ [R]} via MPC, and each user locally retains
its own share, where R is the number of multiplications for securely evaluating the majority vote
polynomial. During the online phase (subround) for secure polynomial evaluation, each user i
recursively computes the shares JxkKi of powers xk for k=1, 2,. . . , deg(F ) as

JxkKi =

{
xi, k = 1,

JcrKi + δrk−vk
· JbrKi + ϵrvk · Ja

rKi + δrk−vk
· ϵrvk , k > 1,

(2)

where vk = max{j ∈ N | 2j ≤ k − 1} and (δrk−vk
, ϵrvk) are obtained by aggregating the masked

differences. A fresh Beaver triple is consumed for each multiplication, ensuring that higher-order
terms of F (x) are securely computed without exposing any individual input.

The subround procedure for the secure evaluation of F (x) within the FL framework is as follows:

Step 1) Evaluation of Shares JxkKi for k = 2 to deg(F ):

• For each k, each user i computes the masked differences Jxk−vkKi− JarKi and JxvkKi− JbrKi based
on Eq. (2), and sends them to Server.

• Server aggregates the received masked values to compute: δrk−vk
=
∑n

i=1(Jx
k−vkKi− JarKi) =

xk−vk−ar and ϵrvk=
∑n

i=1(Jx
vkKi−JbrKi)=xvk−br, and broadcasts bothδrk−vk

andϵrvk to all users.

Step 2) Local Polynomial Encryption: Using all received pairs {(δrk−vk
, ϵrvk) : k =

2,...,deg(F ), r∈ [R]}, each user i locally computes its encrypted share of the evaluated F (x) as:

Enc(xi)=JF (x)Ki=
deg(F )∑
k=2

R∑
r=1

(
JcrKi+δrk−vk

·JbrKi+ϵrvk
·JarKi+δrk−vk

· ϵrvk
)
+xi (mod p). (3)

The overall encryption procedure is summarized in Algorithm 1, which covers only the user-side
encryption steps based on Beaver triples according to the subround in FL framework. For a concrete
illustration, see Appendix C.

2.3 SECURE MULTIPLICATION-BASED FL FRAMEWORK

In this section, we introduce a novel FL framework that integrates secure aggregation via secure
multiplications to preserve user privacy while maintaining aggregation correctness. To clarify the
internal mechanisms of the proposed framework, we first describe the key update procedures exe-
cuted by the users and the central server, respectively.
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Algorithm 1 Encryption of Majority Vote Polynomial F (x) via Secure Multiplication (Subround)

1: Input: # selected users n, majority vote polynomial F (x), # multiplications R
2: Online Phase: Encryption of majority vote polynomial F (x)
3: for k = 2 to deg(F ) do (subrounds for evaluating the shares)
4: [On User i] compute Jxk−vKi − JarKi and JxvKi − JbrKi, and send them to Server.
5: [On Server] aggregate masked values to obtain δrk, ϵrk, and broadcast them to all users.
6: end for
7: [On User i] compute secret share JF (x)Ki using Eq. (3).
8: Output: (Generation of JF (x)Ki for user i) Enc(xi) = JF (x)Ki

Algorithm 2 Secure Majority Vote Aggregation via Secure Multiplication

1: Input: Initial model θ0, learning rate η, # selected users n, majority vote polynomial F (x)
2: for t = 0 to T − 1 do
3: [On User i]
4: compute local gradient: gi(t)
5: quantize gradient: xi(t) = q(gi(t)) ∈ {−1, 1}d
6: generate secret share: Enc(xi(t))←JF (x(t))Ki using Algorithm 1 for x(t)=

∑n
i=1 xi(t)

7: transmit Enc(xi(t)) to Server
8: [On Server]
9: aggregate encrypted shares:F (x(t)) =

∑n
i=1 Enc(xi(t)) (see Eq. (5))

10: obtain majority vote: g̃(t) = sign (
∑n

i=1 xi(t))← F (x(t))
11: broadcast g̃(t) to all users
12: [On User i] update model: θ(t+ 1)← θ(t)− ηg̃(t)
13: end for
14: Output: θ(T )

2.3.1 USER UPDATE PROCEDURE

Step 1 (Sign Gradient Calculation): The user i computes the gradient gi(t) using the global
model θ(t) and performs 1-bit quantization to obtain the locally updated sign gradient xi(t):

xi(t) = sign(gi(t)), xi(t) ∈ {−1, 1}d (4)

where d denotes the size of the global model.

Step 2 (Secure Evaluation of JF (x)Ki): At subround, each user i employs Beaver triples, as an
example instantiation of secure multiplication, pre-distributed to securely evaluate its share of the
majority vote polynomial F (x(t)) for x(t) =

∑n
i=1 xi(t), represented as JF (x(t))Ki. This share

is then used to compute the sign of the aggregated input vectors. Notably, this computation is
performed without revealing any individual input xi(t). Further details are provided in Section 2.2
and Algorithm 1. Finally, each user i sends its encrypted share of the majority vote polynomial to
the server: Enc(xi(t)) = JF (x(t))Ki.

2.3.2 MODEL AGGREGATION PROCEDURE

From the encrypted local updates {Enc(xi(t)) : i ∈ [n]}, Server computes the final majority vote
result g̃(t) and broadcasts it to all users as follows:

Aggregation: F (x(t)) =

n∑
i=1

Enc(xi(t)) =

n∑
i=1

JF (x(t))Ki (mod p), (5)

where x(t)=
∑n

i=1 xi(t) and
∑n

i=1JF (x(t))Ki=sign(x(t)).

Broadcasting: g̃(t) = F (x(t)) = sign(x(t)). (6)

The overall aggregation procedure is summarized in Algorithm 2. Each user encrypts and transmits
its share of the majority vote polynomial F (x), while the server aggregates the received shares as in
Eq. (5) and broadcasts the resulting global direction g̃(t) to all users for model update.

5
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2.4 SUBGROUP-BASED SECURE FL FRAMEWORK

To mitigate the overhead of securely evaluating the majority vote polynomial F (x) with secure
multiplication techniques (e.g., Beaver triples, DN, ATLAS), whose cost grows significantly with
the number of users, we propose a subgrouping strategy that partitions users into smaller subsets
Gj . Each subgroup securely aggregates its inputs independently, and the final result is obtained by
combining all subgroup outputs. This reduces the polynomial degree, latency, and bandwidth, while
ensuring scalability and privacy with manageable computational and communication costs.

Subgrouping and Hierarchical Majority Vote Aggregation: As the number of users n increases,
the degree of the majority vote polynomial F (x) also grows, which raises the number of secure
multiplication subrounds required for polynomial evaluation. This results in higher uplink commu-
nication cost and latency, thereby limiting scalability. In addition, a larger prime modulus p > n
must be chosen, which further increases the complexity of evaluating F (x) over Fp. To address
these limitations, we propose a subgrouping strategy that partitions the total n users into ℓ disjoint
subgroups, each of size n1=n/ℓ. Within each subgroup, a small majority vote polynomial is evalu-
ated independently based on local inputs. Since the polynomial degree now depends on the smaller
subgroup size n1, the number of required secure subrounds is reduced and a smaller prime modulus
p1(> n1) is adopted. Consequently, subgrouping leads to significant reductions in both computa-
tional and communication costs. Nevertheless, additional protection of subgroup outputs is required
to ensure end-to-end privacy. We further analyze the impact of tie-breaking policies and hierarchical
aggregation on communication and computation, as detailed in Appendix G.

The proposed aggregation procedure is executed in two hierarchical steps:

Step 1 (Intra-subgroup Majority Vote): Within each subgroup Gj , j ∈ [ℓ], the local majority vote
is securely evaluated as

F (xj(t)) =

n1∑
i=1

Enc(xi,j(t)) =

n1∑
i=1

JF (xj(t))Ki (mod p1), (7)

where
∑n1

i=1JF (xj(t))Ki = sign (xj(t)) for xj(t) =
∑n1

i=1 xi,j(t).

Step 2 (Inter-subgroup Majority Vote): The global majority vote is computed by aggregating the
results across all subgroups:

g̃(t) = sign
( ℓ∑

j=1

F
(
xj(t)

))
= sign

( ℓ∑
j=1

sign
( n1∑

i=1

xi,j(t)

))
. (8)

The global majority vote result g̃(t) is subsequently broadcast to all users. The overall protocol is
summarized in Algorithm 3.

Algorithm 3 Hierarchical Secure Majority Vote Aggregation with Subgrouping

1: Input: Initial model θ0, learning rate η, # selected users n, # subgroups ℓ, majority vote poly-
nomial F (xj) for each subgroup

2: for t = 0 to T − 1 do
3: [On User i in subgroup Gj]
4: compute local gradient: gi,j(t)
5: quantize gradient: xi,j(t) = q(gi,j(t)) ∈ {−1, 1}d
6: generate secret share:Enc(xi,j(t))←JF (xj(t))Ki for xj(t)=

∑n1

i=1xi,j(t) using Algorithm 1
7: transmit Enc(xi,j(t)) to Server
8: [On Server]
9: reconstruct F (xj(t)) from received shares for each subgroup Gj (see Eq. (7))

10: compute global vote: g̃(t) = sign(
∑ℓ

j=1 F (xj(t))) ∈ {−1, 1}d
11: broadcast g̃(t) to all users
12: [On User i] update model: θ(t+ 1)← θ(t)− ηg̃(t)
13: end for
14: Output: θ(T )

6
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3 THEORETICAL ANALYSIS

In this section, we present an analysis of the convergence and the security properties of the proposed
Hi-SAFE method. The main theoretical results are proved in Appendices E and F, which also
provide a formal proof of corruption tolerance along with additional proofs that support the main
analysis. Furthermore, we provide a computational complexity analysis and runtime evaluation of
the proposed method in Appendix H.

3.1 CONVERGENCE ANALYSIS

We analyze the convergence of the proposed Hi-SAFE, a SIGNSGD algorithm with hierarchical
majority vote. The analysis builds upon standard stochastic optimization assumptions and extends
the convergence result of (Bernstein et al., 2018a) to a hierarchical subgrouping framework.

Let n users be partitioned into ℓ subgroups of equal size n1 = n/ℓ. Suppose that each subgroup
outputs the correct majority vote per coordinate with probability q ∈ (0.5, 1], independently across
subgroups. Let f⋆ and f0 be the minimum and initial values of the global objective, respectively,
and let L⃗ and σ⃗ denote the coordinate-wise smoothness and variance bound vectors, respectively.

Theorem 1 (Convergence of SIGNSGD with Hierarchical Majority Vote). Run Algorithm 3 for K

iterations with learning rate η=1/

√
K∥L⃗∥1, mini-batch size mk =K, and let Nt denote the total

number of stochastic gradient evaluations per user. Then the algorithm achieves the following bound:

E

[
1

K

K−1∑
k=0

∥gk∥1

]2
≤ 1√

Nt

(√
∥L⃗∥1(f0 − f⋆ + 1

2 ) +
2
√
n1
∥σ⃗∥1 + c′ℓ−1/4 exp

(
−
ℓα2

q

4

))2

,

where αq := (2q−1)

2
√

q(1−q)
> 0 and c′ > 0 is a constant depending on global aggregation perturbations.

Remark 1 (Convergence–Communication Trade-off). Subgrouping offers a flexible trade-off: fewer
subgroups (larger n1) yield lower variance and faster convergence, while more subgroups reduce
per-user communication and support scalable deployment.

Remark 2 (Subgrouping under q > 1/2). If each subgroup outputs the correct majority vote with
probability q>1/2, then the global aggregation error decays as exp(−2ℓ(q−0.5)2), local robustness
improves with accuracy gap scaling as O(1/√n1), and the hierarchical structure reduces per-user
communication compared to the non-subgrouping scheme. Subgrouping thus enables an effective
trade-off between convergence and communication efficiency.

3.2 SECURITY ANALYSIS

We show that Hi-SAFE preserves input privacy under the semi-honest model with deterministic
tie-breaking sign(0) = τ ∈ {−1, 0,+1}. The server learns nothing beyond the final majority s.

Consider n users partitioned into ℓ subgroups {Gj}ℓj=1 of size n1 = n/ℓ. Each user i ∈ Gj holds
xi,j ∈ {−1,+1}d, with subgroup aggregate xj =

∑n1

i=1 xi,j and majority sj = sign(xj). Secure
multiplications use Beaver triples with offline randomness independent of inputs. The adversary
may corrupt at most t≤n−1 users, with at least one honest user per subgroup. We employ moduli
p1 > n1 for subgroup computation and p2 > ℓ for inter-group aggregation. In the local stage,
subgroups output only secret shares {JF (xj)Ki} of the majority polynomial. The global stage se-
curely computes s = sign

(∑ℓ
j=1 sj

)
=
∑ℓ

j=1

∑n1

i=1JF (xjKi over Fp2
. We denote by REALΠ,A

the adversary’s view during protocol execution, including corrupted inputs, randomness, and mes-
sages. SIMA denotes the output of a PPT simulator with access only to corrupted inputs and the
final result s.

Theorem 2 (Security of Hi-SAFE Aggregation). For any PPT semi-honest adversaryA corrupting
at most t ≤ n− 1 users, let C ⊆ [n] be the set of corrupted users. Then there exists a PPT simulator
SIM such that

REALΠ,A({xi,j}i∈C) ≈c SIMA({xi,j}i∈C , s),

where ≈c denotes the computational indistinguishability.

7
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Remark 3 (Residual Leakage Probability). If each xi,j is chosen independently and uniformly at
random, the only case where inputs can be inferred from the final majority vote result s is when all n
inputs are identical, which occurs with probability Pr[all inputs identical] = 2·

(
1
2

)n
= 1

2n−1 . Thus,
input privacy failure occurs with negligible probability O(2−n). Unlike masking-based methods,
which reveal intermediate sums and fully expose inputs in such extreme cases, Hi-SAFE keeps all
intermediate computations secret-shared and reveals only the final majority vote result s, ensuring
no additional leakage even under extreme input distributions.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

To evaluate the effectiveness and practicality of the proposed HiSAFE, we conducted experiments on
multiple benchmark datasets, including MNIST (LeCun et al., 1998), FMNIST (Xiao et al., 2017),
and CIFAR-10 (Krizhevsky et al., 2009). Our experiments are conducted on a GPU server with
2 NVIDIA RTX 3090 GPUs. Each experiment is executed three independent trials with distinct
random seeds to calculate average metrics and ensure the reproducibility of our results. The detailed
training parameters are described in Appendix I.1.

4.2 EXPERIMENT RESULTS

Figure 2 compares the model performance under different tie-breaking policies for non-subgrouping
and optimal subgrouping with n=24 users. Figure 2a shows the baseline setting in which 1-bit tie-
breaking is applied to both intra- and inter-subgroup aggregation, while Figure 2b applies 2-bit tie-
breaking only to intra-subgroup aggregation. The experimental results indicate that both 1-bit and
2-bit tie-breaking strategies yield comparable model accuracy, each exhibiting distinct trade-offs.
While 1-bit tie-breaking reduces computational complexity, 2-bit tie-breaking1 slightly reduces the
number of terms in F (x) and improves computational precision, albeit at the cost of increased
server-side complexity. Accordingly, the choice between the two strategies should be guided by the
desired balance between computational efficiency and model accuracy. Hi-SAFE achieves compa-
rable performance under 1-bit tie-breaking and improved accuracy under 2-bit tie-breaking, owing
to enhanced computational precision on the server side—especially when subgrouping is applied.
Note that, under the 1-bit tie-breaking setting, the non-subgrouping configuration of Hi-SAFE is
equivalent to naive SIGNSGD-MV, except for its privacy guarantees. To support these findings,
additional experimental results under various FL settings are provided in Appendix I.2.

(a) 1-bit tie-breaking (sign(0) ∈ {−1,+1}) (b) 2-bit tie-breaking (sign(0) = 0)

Figure 2: Performance comparison of different tie-breaking policies on the FMNIST dataset.

4.3 EVALUATION OF OPTIMAL SUBGROUPING STRATEGY

Table 1 summarizes the optimal subgroup configurations ℓ⋆ that minimize the total communication
cost CT for various user counts n. Parentheses denote the percentage reduction relative to the

1Since intra-subgroup computations are performed entirely on the server side, they incur no additional
uplink communication cost (refer to Appendix G).
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Table 1: Optimal subgroup configuration and communication cost

n ℓ⋆ n1 ⌈log p1−1⌉ #multiplications CT (%) Cu (%)
24 8 3 2 4 96(52.0%) 12(94.0%)
36 12 3 2 4 144(47.8%) 12(95.7%)
60 20 3 2 4 240(44.4%) 12(97.2%)
90 30 3 2 4 360(50.5%) 12(98.4%)
100 25 4 2 6 450(43.6%) 18(97.7%)

(a) Per-user secure multiplications (b) Latency ⌈log p1−1⌉ for secure multiplication

Figure 3: Impact of optimal subgrouping on secure multiplication cost and latency.

non-subgrouping baseline. These results demonstrate that Hi-SAFE achieves substantial reductions
in both total and per-user communication costs (Cu) without degrading model accuracy. Notably,
for n ≥ 24, the per-user communication cost consistently decreases by more than 94%, with up
to 52.0% reduction in total communication cost observed at n = 24. These findings validate the
scalability and communication efficiency of the proposed framework.

Figure 3 illustrates the effect of optimal subgrouping on per-user secure multiplications and their
latency. In the non-subgrouping setting (Figure 3a), a global majority vote polynomial must be eval-
uated over all n users, resulting in a per-user cost that increases linearly with n. In contrast, the
proposed subgrouping strategy partitions users into subgroups of size n1, enabling each group to
evaluate a small majority vote polynomial. This approach keeps the per-user cost constant and low
(≤ 6), regardless of system scale. Figure 3b shows the latency, defined as the serial depth ⌈log p1−1⌉
for Beaver triple multiplication. In the non-subgrouping case, larger finite fields are needed to sup-
port global majority vote polynomials, which results in increased latency. Subgrouping, on the other
hand, confines computation to smaller groups, enabling the use of smaller fields and consistently
achieving low latency—often as low as 2. To complement these findings, we further evaluate the
effect of varying subgrouping configurations, parameterized by ℓ, in Appendix I.3.

5 CONCLUSION

In this paper, we have proposed Hi-SAFE, a lightweight and cryptographically secure aggregation
framework for communication-efficient and privacy-preserving FL. By securely evaluating majority
vote polynomials under additive secret sharing, instantiated for example via Beaver triples, Hi-SAFE
achieves end-to-end privacy for sign-based FL, revealing only the final majority vote to the server
under the semi-honest model. Furthermore, the proposed hierarchical subgrouping strategy ensures
constant latency and a bounded secure multiplication cost per user, independent of the total num-
ber of users. Extensive theoretical and experimental analyses demonstrate that Hi-SAFE reduces
per-user communication cost by over 94% when n ≥ 24, and achieves up to 52% reduction in total
communication cost at n = 24, while preserving model accuracy. These results confirm the scalabil-
ity, robustness, and practicality of Hi-SAFE, especially in bandwidth-constrained FL deployments.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility, we include the complete source code in the supplementary material. The
main text describes the overall methodology and experimental setup, while the appendix provides
detailed proofs of theoretical claims and extended evaluations. Furthermore, the appendix contains
additional experimental results across diverse environments and datasets, as well as a full descrip-
tion of dataset preprocessing steps and instructions for reproducing the reported results. We also
provide explanatory documentation within the codebase to facilitate understanding and reuse by
other researchers in the supplementary material.
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A NOTATION

The notations used throughout this paper are summarized in Table 2. Standard mathematical sym-
bols are employed unless otherwise specified.

Table 2: Summary of frequently used notations

Notation Description
Fp Finite field of prime order p

mod p Modulo operation over a prime p

[n] Index set {1, 2, . . . , n}
x, y Scalars (denoted in regular lowercase letters)
x,y Vectors (denoted in bold lowercase letters)
f(θ) Global objective function evaluated at θ
f⋆ Minimum value of the global objective function
L⃗ Smoothness vector [L1, . . . , Ld] for function f

σ⃗ Variance bound vector for stochastic gradients
JxKi Share of x for user i
∥ · ∥1 ℓ1-norm
Cu Per-user communication cost
CT Total communication cost
R Total number of secure multiplications
E[·] Expectation operator for random variables

B RELATED WORK

Numerous secure aggregation strategies have been developed to mitigate privacy risks in FL, includ-
ing masking, DP, and HE. While each of these methods provides certain privacy guarantees, they
exhibit significant limitations concerning communication efficiency, compatibility with sign-based
protocols, and robustness against inference attacks.

Masking-based methods (Bonawitz et al., 2017; So et al., 2022) typically employ pairwise secret
sharing to cryptographically protect individual updates while ensuring correct aggregation. Al-
though these methods are scalable, they expose intermediate aggregation results to the server or aux-
iliary nodes, potentially leading to information leakage under semi-honest assumptions unless addi-
tional mechanisms, such as double masking, are employed. Local DP methods (Truex et al., 2019;
Byrd & Polychroniadou, 2020; Lyu, 2021) perturb local model updates with noise prior to aggre-
gation, thereby providing formal privacy guarantees. For instance, DP-SIGNSGD (Lyu, 2021) adds
Gaussian noise before applying the sign function. However, the presence of noisy sign gradients
remains visible to the server, and achieving strong privacy often requires substantial noise, which
can degrade model accuracy—especially problematic in data-sparse IoT environments. HE (Cheon
et al., 2017; Zhang et al., 2020; Fang & Qian, 2021; Jiang et al., 2021; Ma et al., 2022; Gentry,
2009) allows for computation directly over encrypted data, offering strong cryptographic security.
However, HE-based schemes incur significant computational overhead and produce large cipher-
texts (e.g., thousands of bits per coordinate), which render them impractical for bandwidth-limited
FL deployments. Additionally, HE does not support nonlinear functions, such as the sign function or
majority vote, which are essential for the functionality of sign-based protocols like SIGNSGD-MV.

Despite their strengths, existing secure aggregation methods are not directly compatible with sign-
based protocols. Specifically, masking-based approaches permit the server to access intermediate
summation values during the computation of the final majority vote, which may result in informa-
tion leakage. HE-based schemes are fundamentally incompatible with nonlinear vote operations.
Moreover, the high communication cost associated with HE undermines the primary advantage of
SIGNSGD-MV—its 1-bit update efficiency. A detailed comparison is provided in Appendix B.1.
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To address these limitations, we propose Hi-SAFE, a cryptographic secure aggregation framework
for SIGNSGD-MV. Hi-SAFE privately evaluates majority votes via secure multiplications, thereby
preserving communication efficiency and enabling scalable, privacy-preserving FL under the semi-
honest model.

B.1 COMPARISON WITH EXISTING SECURE AGGREGATION METHODS

Table 3 provides a comparative summary of the proposed Hi-SAFE framework and existing secure
aggregation methods in FL. The comparison considers multiple criteria including the type of pri-
vacy guarantee, exposure level to the server, accuracy preservation, and overall communication and
computational efficiency.

As summarized, existing methods such as masking and local DP offer partial protection but exhibit
key limitations when applied to sign-based protocols. In particular, masking-based approaches ex-
pose intermediate summation values during majority vote computation, and DP schemes suffer from
accuracy degradation due to the addition of noise. HE, while cryptographically strong, is compu-
tationally intensive and fundamentally incompatible with nonlinear operations such as sign(·) or
majority vote.

By contrast, the proposed Hi-SAFE framework achieves privacy-preserving aggregation tailored to
1-bit SIGNSGD-MV by securely evaluating majority vote polynomials, instantiated for example
via Beaver triples. It reveals only the final majority vote result, preserves communication efficiency,
and scales well under semi-honest assumptions. Moreover, unlike masking-based methods that fully
leak inputs in extreme cases (e.g., all users submit −1 or all submit +1), Hi-SAFE prevents such
leakage by keeping all intermediate computations secret-shared. Under a uniform input distribution,
the probability of accidental input privacy loss is at most 1/2n−1, which is negligible in the number
of users n.

Table 3: Comparison of the proposed method with the existing privacy-preserving aggregation ap-
proaches

Method
Privacy

Type
Server

Observes
Accuracy

Loss
Comm.

Efficiency
Comp.
Cost Scalability

Masking
(Bonawitz et al., 2017)

Cryptographic
(Double Masking)

✓
(Summation Values) ✗ Low High Limited

DP
(Lyu, 2021)

Formal
(Local DP)

✓
(Noisy Sign
Gradients)

✓
(High) High Low High

HE
(Cheon et al., 2017)

Cryptographic
(RLWE-based HE)

✗
(Fully Encrypted) ✗

Very
Low

Very
High

Very
Limited

SIGNSGD-MV
(Bernstein et al., 2018a) -

✓
(All Raw Sign

Gradients) ✗
Very
High

Very
Low

Very
High

Proposed
Method

Cryptographic
(Beaver triples)

✓
(Final Majority

Vote Only) ✗ High Low High

C ILLUSTRATIVE EXAMPLE: SECURE EVALUATION OF THE MAJORITY
VOTE POLYNOMIAL

To aid understanding, we present a step-by-step example of securely computing the majority vote
polynomial F (x) using Beaver triples. In particular, we describe the detailed procedure by which
each user i securely evaluates an encrypted share JF (x)Ki, which is subsequently transmitted to
Server for aggregation.
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C.1 SECURE EVALUATION OF F (x) = 2x3 + 4x (mod 5) WITH n = 3

As a concrete example, consider the evaluation of the polynomial F (x) = 2x3 + 4x (mod 5) over
the finite field F5, assuming n = 3 users. Each user holds a private input xi ∈ {−1,+1} such that:

x =

3∑
i=1

xi.

For simplicity, we assume the following scalar user inputs:

x1 = 1, x2 = −1, x3 = 1,

which yield the majority vote result:

sign

(
3∑

i=1

xi

)
= sign(1− 1 + 1) = sign(1) = 1.

To evaluate F (x) securely, we adopt a Beaver triple-based protocol. In this example, the following
Beaver triples are pre-shared among users during the offline phase:

ar =

3∑
i=1

JarKi, br =

3∑
i=1

JbrKi, cr = ar · br =

3∑
i=1

JcrKi, r ∈ {1, 2},

with each share lying in the field F5. The specific shares are given by:

Ja1K1 = 0, Ja1K2 = 3, Ja1K3 = 2, Ja2K1 = 4, Ja2K2 = 3, Ja2K3 = 1,

Jb1K1 = 2, Jb1K2 = 2, Jb1K3 = 0, Jb2K1 = 0, Jb2K2 = 1, Jb2K3 = 4,

Jc1K1 = 1, Jc1K2 = 1, Jc1K3 = 3, Jc2K1 = 1, Jc2K2 = 2, Jc2K3 = 2.

To evaluate F (x) securely, it is necessary to first compute the shared cubic term x3, which can be
decomposed as:

x3 = x · x2 = (x− a2 + a2)(x2 − b2 + b2)

= (x− a2)(x2 − b2) + a2(x2 − b2) + b2(x− a2) + c2 (mod 5),
(9)

where x2 itself is computed via:

x2 = x · x = (x− a1 + a1)(x− b1 + b1)

= (x− a1)(x− b1) + a1(x− b1) + b1(x− a1) + c1 (mod 5).
(10)

As the computation of x3 requires the intermediate value x2, the evaluation proceeds in two secure
multiplication subrounds. We now describe each subround in detail.

• In subround 0: each user i prepares the necessary values for computing x2 using Beaver
triples. Specifically, each user locally computes the following masked values:

(xi − Ja1Ki) and (xi − Jb1Ki) (mod 5).

The local computations for each user are given below:

User 1: x1 − Ja1K1 = 1− 0 = 1 (mod 5),

x1 − Jb1K1 = 1− 2 = −1 ≡ 4 (mod 5),

User 2: x2 − Ja1K2 = −1− 3 = −4 ≡ 1 (mod 5),

x2 − Jb1K2 = −1− 2 = −3 ≡ 2 (mod 5),

User 3: x3 − Ja1K3 = 1− 2 = −1 ≡ 4 (mod 5),

x3 − Jb1K3 = 1− 0 = 1 (mod 5).
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Each user transmits the computed masked values to Server, which then aggregates the re-
sults to obtain:

x− a1 =

3∑
i=1

(xi − Ja1Ki) = 1 + 1 + 4 = 6 ≡ 1 (mod 5),

x− b1 =

3∑
i=1

(xi − Jb1Ki) = 4 + 2 + 1 = 7 ≡ 2 (mod 5).

Server then broadcasts the aggregated values (x−a1) and (x− b1) to all users to complete
the secure multiplication step for computing x2.

• In subround 1: each user i prepares the values necessary to compute x3 using Beaver
triples. To this end, the following quantities must be obtained:

(xi − Ja2Ki) and (Jx2Ki − Jb2Ki) (mod 5).

Here, each user computes Jx2Ki based on the pre-shared Beaver triples (Ja1Ki, Jb1Ki, Jc1Ki)
and the publicly computable term (x− a1)(x− b1), as defined in Eq. (10):

Jx2Ki = (x− a1)(x− b1) + Ja1Ki(x− b1) + Jb1Ki(x− a1) + Jc1Ki (mod 5).

Since the product (x− a1)(x− b1) is constant across all users, only a single user needs to
compute and broadcast it to the server. Without loss of generality, we assume that User 1
performs this computation.
Based on the received values, the users compute Jx2Ki as follows:

User 1: Jx2K1 = 1 · 2 + 0 · 2 + 2 · 1 + 1 = 5 ≡ 0 (mod 5),

User 2: Jx2K2 = 3 · 2 + 2 · 1 + 1 = 9 ≡ 4 (mod 5),

User 3: Jx2K3 = 3 · 2 + 2 · 1 + 1 = 9 ≡ 4 (mod 5).

Next, each user computes the masked values required for secure multiplication of x · x2:

User 1: x1 − Ja2K1 = 1− 4 = −3 ≡ 2 (mod 5),

Jx2K1 − Jb2K1 = 0− 0 = 0 (mod 5),

User 2: x2 − Ja2K2 = −1− 3 = −4 ≡ 1 (mod 5),

Jx2K2 − Jb2K2 = 4− 1 = 3 (mod 5),

User 3: x3 − Ja2K3 = 1− 1 = 0 (mod 5),

Jx2K3 − Jb2K3 = 4− 4 = 0 (mod 5).

Each user then transmits the above masked values to Server. The server aggregates the
results to reconstruct the global masked values:

x− a2 =

3∑
i=1

(xi − Ja2Ki) = 2 + 1 + 0 = 3 (mod 5),

x2 − b2 =

3∑
i=1

(Jx2Ki − Jb2Ki) = 0 + 3 + 0 = 3 (mod 5).

Server then broadcasts these aggregated values (x − a2) and (x2 − b2) to all users to
complete the secure multiplication step for computing x3.

Global computation: After completing the two subrounds, each user proceeds to compute a share
of the final majority vote polynomial F (x) = 2x3 + 4x (mod 5). Using the broadcast values
(x− a2) and (x2 − b2) from Server, and their local input xi, each user locally evaluates the masked
cubic term Jx3Ki as follows:

Jx3Ki = (x− a2)(x2 − b2) + Ja2Ki(x2 − b2) + Jb2Ki(x− a2) + Jc2Ki (mod 5).
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The individual computations are given below:

User 1: Jx3K1 = 3 · 1 + 4 · 1 + 0 · 3 + 1 = 8 ≡ 3 (mod 5),

User 2: Jx3K2 = 3 · 1 + 1 · 3 + 2 = 8 ≡ 3 (mod 5),

User 3: Jx3K3 = 1 · 1 + 4 · 3 + 2 = 15 ≡ 0 (mod 5).

Each user then substitutes the locally computed values into the final polynomial:

JF (x)Ki = 2Jx3Ki + 4xi (mod 5).

The share computations are as follows:

User 1: JF (x)K1 = 2 · 3 + 4 · 1 = 10 ≡ 0 (mod 5),

User 2: JF (x)K2 = 2 · 3 + 4 · (−1) = 2 (mod 5),

User 3: JF (x)K3 = 2 · 0 + 4 · 1 = 4 (mod 5).

Each user sends their computed share JF (x)Ki to Server. The server aggregates the values to obtain
the final result:

F (x) =

3∑
i=1

JF (x)Ki =
3∑

i=1

(
2Jx3Ki + 4xi

)
(mod 5)

= 0 + 2 + 4 = 6 ≡ 1 (mod 5).

This demonstrates that the majority vote polynomial F (x) can be securely computed via Beaver
triples without revealing any individual user’s input, while producing an output equivalent to that of
the standard non-secure majority voting protocol.

D PRECOMPUTED TABLE OF MAJORITY VOTE POLYNOMIALS F (x)

The majority vote polynomial F (x) can be efficiently precomputed once the number of users n and
the tie-breaking policy are determined in the offline phase. Specifically, for each given n and the
tie-breaking rule, the corresponding polynomial can be systematically derived using Eq. 1.

Table 4 presents representative examples of precomputed polynomials according to tie-breaking
policies.

Table 4: Precomputed majority vote polynomials F (x) according to tie-breaking policies

#Users sign(0) ∈ {−1,+1} sign(0) = 0
n = 2 x2 + 2x+ 2 (mod 3) 2x (mod 3)
n = 3 2x3 + 4x (mod 5) 2x3 + 4x (mod 5)
n = 4 x4 + 3x3 + x+ 4 (mod 5) 3x3 + x (mod 5)
n = 5 3x5 + 2x3 + 3x (mod 7) 3x5 + 2x3 + 3x (mod 7)
n = 6 x6 + 4x5 + 5x3 + 4x+ 6 (mod 7) 4x5 + 5x3 + 4x (mod 7)

E PROOF OF THEOREM 1

We analyze the convergence of the proposed SIGNSGD algorithm with subgroup-based majority
vote. The analysis builds upon standard assumptions from stochastic optimization, and extends the
convergence result in (Bernstein et al., 2018a) to a hierarchical subgrouping framework.

E.1 ASSUMPTIONS

Assumption 1 (Lower bound). For all θ, there exists a constant f⋆ such that f(θ) ≥ f⋆.
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Assumption 2 (L-Smoothness). Let∇f(θ) denote the gradient of the objective f(·) at θ. Then for
all θ,ϕ ∈ Rd, we have:

|f(ϕ)− f(θ)−∇f(θ)T (ϕ− θ)| ≤ 1

2

d∑
i=1

Li(ϕi − θi)
2,

for some non-negative vector L⃗ := [L1, . . . , Ld].

Assumption 3 (Variance bound). Given θ ∈ Rd, the stochastic gradient oracle returns an unbiased
estimate ∇f̃(θ) such that:

E[∇f̃(θ)] = ∇f(θ), E[(∇f̃i(θ)−∇fi(θ))2] ≤ σ2
i ,

for a vector of non-negative constants σ⃗ := [σ1, . . . , σd].

Assumption 4 (Unimodal, symmetric noise). Each coordinate of the stochastic gradient ∇f̃(θ)
has a symmetric and unimodal distribution centered at the true gradient component.

E.2 PROOF OF CONVERGENCE FOR THE PROPOSED HI-SAFE FRAMEWORK

Proof. We first recall the original convergence guarantee for SIGNSGD-MV.

Theorem 3 (Convergence of SIGNSGD-MV (Bernstein et al., 2018a)). Run Algorithm 2 for K

iterations with learning rate η = 1/

√
K∥L⃗∥1 and mini-batch size mk = K. Let Nt = K2 be the

total number of stochastic gradient evaluations per user. Then the algorithm satisfies the following
convergence guarantee:

E

[
1

K

K−1∑
k=0

∥gk∥1

]2
≤ 1√

Nt

(√
∥L⃗∥1(f0 − f⋆ + 1

2 ) +
2√
n
∥σ⃗∥1

)2

.

We now extend this result to the hierarchical majority vote with subgrouping algorithm.

We extend Theorem 3 to the case where the n users are partitioned into ℓ subgroups G1, . . . ,Gℓ of
equal size n1 = n/ℓ.

At each iteration k, each user i ∈ Gj computes a stochastic gradient ∇f̃ (i)(θk), and the subgroup
Gj computes the coordinate-wise majority vote:

ĝ
(j)
k := sign

∑
i∈Gj

sign
(
∇f̃ (i)(θk)

) ∈ {±1}d.
The server then computes the global update direction as:

ĝk = sign

 ℓ∑
j=1

ĝ
(j)
k

 .

Error Probability per User and Subgroup. From Assumption 4 and (Bernstein et al., 2018a,
Lemma D.1), the sign of a single user’s coordinate is incorrect with probability at most:

P
[
sign(∇f̃ (i)

j (θk)) ̸= sign(∇fj(θk))
]
≤ exp

(
−
g2k,j
2σ2

j

)
.

Using Hoeffding-type concentration for the sum of n1 independent user signs in subgroup Gj , the
probability that the majority vote in coordinate j within subgroup Gj is incorrect satisfies:

P
[
ĝ
(j)
k,j ̸= sign(∇fj(θk))

]
≤ exp

(
−
g2k,jn1

2σ2
j

)
.
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Global Majority over Subgroups. Since each ĝ
(j)
k is obtained independently from its subgroup,

the aggregated sign vector ĝk reflects the majority of ℓ independent majority-vote sign vectors.

We now incorporate two sources of errors:

• Subgroup-level (intra-subgroup) aggregation noise, scaling as 1/
√
n1 per subgroup.

• Global (inter-subgroup) aggregation noise across ℓ subgroups, which can be expressed asymp-
totically as a function of ℓ.

Following the standard analysis in (Bernstein et al., 2018a), the per-coordinate error probability at
the subgroup level leads to a variance term proportional to:

2
√
n1
∥σ⃗∥1.

Additionally, the global aggregation error, where each subgroup’s output is assumed to be correct
with probability q ∈ (0.5, 1], is given by:

P(global error) ≈ Φ
(
−
√
ℓ · αq

)
≈ 1√

2πℓ · αq

· exp

(
−
ℓα2

q

2

)
, (11)

where

αq :=
(2q − 1)

2
√

q(1− q)
> 0.

Accordingly, the global aggregation noise term in the convergence bound behaves as:

c′ ·
√

P(global error) = O

(
ℓ−1/4 · exp

(
−
ℓα2

q

4

))
.

Concluding the Bound. Combining the intra- and inter-subgroup error terms, we obtain the follow-
ing convergence guarantee:

E

[
1

K

K−1∑
k=0

∥gk∥1

]2
≤ 1√

Nt

(√
∥L⃗∥1(f0 − f⋆ + 1

2 ) +
2
√
n1
∥σ⃗∥1 + c′ · ℓ−1/4 · exp

(
−
ℓα2

q

4

))2

,

where c′ > 0 is a constant reflecting the global aggregation perturbation scale.

This completes the proof.

F SECURITY PROOF OF THEOREM 2

F.1 PRELIMINARIES AND NOTATION

Let Fp1 and Fp2 be prime fields with p1 > n1 and p2 > ℓ, respectively. For each subgroup Gj of size
n1, define the subgroup aggregate xj :=

∑n1

i=1 xi,j and its majority sj := sign(xj) ∈ {−1, 0,+1}
(tie-breaking via τ ). Let F (·) denote the finite-field majority polynomial (constructed via FLT) so
that F (xj) = sj (mod p1) and, at the inter-group layer, the analogous polynomial produces the
final majority s = sign(

∑ℓ
j=1 sj) ∈ {−1, 0,+1}.

We assume additive secret sharing and Beaver triples (a, b, c) with c = a · b, generated via MPC
among users, as the basis for secure multiplications. For a secret value z, the parties hold shares
{JzKi}i∈S with

∑
i∈SJzKi = z. Masked openings are computed as

δ = x− a, ϵ = y − b,

which are publicly revealed as sums of masked share-differences.

Throughout, we consider a semi-honest adversary A corrupting at most t ≤ n − 1 users globally,
and assume every subgroup contains at least one honest user, i.e., tj ≤ n1 − 1 in each Gj .
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F.2 LEMMA A: PRIVACY OF BEAVER MASKED-OPENINGS (LOCAL)

Claim. Consider a single multiplication in subgroup Gj under additive sharing over Fp1 . If at
most tj ≤ n1 − 1 users are corrupted in Gj , then the publicly opened masked differences (δ, ϵ) =
(x − a,y − b) are (computationally) indistinguishable from uniform over F2

p1
and independent of

the true inputs (x,y).

Proof. Let the parties hold additive shares of x,y and of the Beaver triple (a,b, c) with c = a · b,
where a,b←R Fp1 are sampled independently of (x,y) in preprocessing. With tj ≤ n1 − 1, there
exists at least one honest party h ∈ Gj . From A’s view, the contributions of h’s unknown mask-
shares (ah, bh) make (xh − ah,yh − bh) uniformly random in F2

p1
, independent of (x,y). Since

(δ, ϵ) are sums of per-party masked differences, they equal a fixed (adversary-known) offset plus an
independent uniform pair, hence are uniform and input-independent. Thus a simulator can sample
(δ̂, ϵ̂)←R F2

p1
to reproduce indistinguishable openings.

F.3 LEMMA B: PRIVACY OF INTRA-SUBGROUP EVALUATION WITHOUT PLAINTEXT sj

Claim. In subgroup Gj , suppose F (xj) is evaluated via an arithmetic circuit using Beaver-based
multiplications over Fp1 and the output remains secret-shared (no plaintext reconstruction of sj).
Under Lemma F.2, the entire intra-subgroup transcript is simulatable without knowing sj in plain-
text. In particular, there exists a simulator that outputs a view indistinguishable from the real one
while producing secret shares that add up to some dummy value ŝj ∈ {−1, 0,+1}, which is never
revealed.

Proof. The circuit for F (xj) consists of additions on shares (perfectly private) and Beaver-based
multiplications. By Lemma F.2, for each multiplication gate g, the opened masks (δg, ϵg) are uni-
form and input-independent, hence simulatable by random draws in F2

p1
. Since the subgroup output

is not reconstructed, the simulator may fix an arbitrary dummy outcome ŝj ∈ {−1, 0,+1} and
secret-share it by picking {JŝjKi}i∈Gj

uniformly at random subject to
∑

iJŝjKi = ŝj . It then gen-
erates per-gate masked openings uniformly at random and updates local (simulated) shares using
the Beaver correctness relation to be consistent with the chosen {JŝjKi}. Because no plaintext sj
is ever revealed and all public openings are input-independent uniforms, the resulting transcript is
indistinguishable from the real execution.

F.4 LEMMA C: PRIVACY OF INTER-SUBGROUP COMPOSITION GIVEN ONLY s

Claim. Assume each subgroup Gj produces a secret sharing of its (not-opened) output F (xj) as in
Lemma F.3. At the inter-group stage over Fp2 , where the final plaintext majority s is revealed, the
entire transcript is simulatable given only s.

Proof. The inter-group computation takes as inputs the secret shares {JF (xj)Ki}i arriving from all
subgroups (no plaintext sj is available to the server/adversary). In simulation, we first choose dummy
subgroup outcomes {ŝj}ℓj=1 ∈ {−1, 0,+1}ℓ such that

sign
( ℓ∑

j=1

ŝj

)
= s.

(If s = +1, pick any vector with a strict positive sum, etc.) We then secret-share each ŝj among
parties (including corrupted ones) by sampling shares uniformly at random conditioned on summing
to ŝj . Next, we simulate every Beaver-based multiplication gate at the inter-group layer by sampling
masked openings (δg, ϵg) ←R F2

p2
independently and updating shares according to the Beaver

algebra so that the final reconstruction equals the required plaintext s. This is always possible since
(i) masked openings are uniform (input-independent) by the same argument as Lemma F.2 (now
over Fp2

), and (ii) we control the dummy inputs {ŝj} and their shares. Therefore, the inter-group
transcript (including all public masked openings and the final revealed s) is indistinguishable from
the real one given only s.
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F.5 PROOF OF THEOREM 2

Proof. Simulator construction (explicit steps). Given the corrupted inputs {xi,j}i∈C and the final
plaintext majority s:

1. Preprocessing (both layers). Sample all Beaver triples (a,b, c) gate-wise with a,b ←R

uniform, and secret-share them to parties (including corrupted ones) as in the real protocol.

2. Intra-subgroup stage. For each subgroup Gj :

(a) Pick a dummy ŝj ∈ {−1, 0,+1} arbitrarily (independent of real sj).
(b) Secret-share ŝj among the n1 users by sampling {JŝjKi}i∈Gj

uniformly at random
subject to summing to ŝj .

(c) For each multiplication gate, sample (δ̂g, ϵ̂g)←R F2
p1

and produce the corresponding
public openings; update simulated shares via Beaver’s correctness relation so that the
final (unopened) output shares equal {JŝjKi}.

3. Inter-group stage. Choose the vector {ŝj}ℓj=1 such that sign(
∑

j ŝj) = s (override any
previous arbitrary choices if necessary). Using the existing secret shares of ŝj , simulate the
inter-group circuit: for each multiplication gate over Fp2

, sample (δ̂g, ϵ̂g)←R F2
p2

, update
shares accordingly, and finally reconstruct the plaintext output s.

Indistinguishability. By Lemma F.2, all public masked openings at both layers are input-independent
uniforms; thus replacing them by uniform samples preserves distribution. By Lemma F.3, since
sj are never opened, substituting dummy (secret) outputs ŝj yields an indistinguishable view. By
Lemma F.4, the inter-group transcript is simulatable given only s. Therefore,

REALΠ,A
(
{xi,j}i∈C

)
≈c SIMA

(
{xi,j}i∈C , s

)
.

F.6 COROLLARY: END-TO-END PRIVACY (SHARE-sj )

Under the assumptions above, Hi-SAFE achieves end-to-end privacy in the Share-sj setting:

REALΠ ≈c SIMΠ, leak = {s}.

No adversary corrupting at most t ≤ n−1 users can distinguish the real transcript from the simulated
one, beyond the final s.

F.7 CORRUPTION TOLERANCE OF HI-SAFE

Based on Theorem 2, we derive the maximum privacy threshold of Hi-SAFE under the semi-honest
security model.

Corollary 3.1 (Privacy Corruption Tolerance of Hi-SAFE). Consider a federated learning system
with n users applying the Hi-SAFE protocol.

• Flat Majority Vote (Non-Subgrouping): Hi-SAFE preserves privacy against any coalition of

t ≤ n− 1

corrupted users, revealing only the final majority vote F (x).

• Hierarchical Majority Vote (Subgrouping): Partition the n users into ℓ subgroups, each of size
n1 = n/ℓ. If every subgroup contains at least one honest user (i.e., tj ≤ n1 − 1 for all j), then
Hi-SAFE preserves privacy against

t ≤ n− 1

corrupted users in total, revealing only the global majority F (x).
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Proof Sketch. In the flat case, additive n-out-of-n secret sharing ensures that even if n − 1 shares
are known, the remaining share perfectly hides the honest input. The MPC-based Beaver triple
generation guarantees that the masked openings (δ, ϵ) are input-independent. Thus, privacy holds
up to t = n− 1 corruptions.

In the hierarchical case, each subgroup performs local aggregation securely. Compromising all n1

users of one subgroup reveals no additional information about honest inputs outside that group.
Provided that every subgroup contains at least one honest user, the end-to-end privacy proof (Theo-
rem 2) extends directly, and the overall system preserves privacy against up to t = n− 1 corrupted
users.

F.7.1 CORRUPTION TOLERANCE AND SUBGROUPING

Table 5: Summary of corruption tolerance

Scenario Tolerance Threshold
Flat Majority Vote (Non-Subgrouping) t ≤ n− 1

Hierarchical Majority Vote (Subgrouping) t ≤ n− 1

Flat majority vote aggregation allows for a maximum corruption tolerance of up to t = n−1, but in-
curs a per-user communication cost ofO(log2 p). In contrast, hierarchical majority vote aggregation
reduces the per-user communication complexity to O(log2 p1), where p1 ≪ p, while maintaining
the same maximum corruption tolerance of t = n − 1 (see Table 6 in Appendix G). Therefore, the
hierarchical aggregation can be a good choice when network scalability is a critical requirement.

G TIE-BREAKING POLICIES AND EFFECT OF HIERARCHICAL AGGREGATION

G.1 TIE-BREAKING POLICIES IN MAJORITY VOTE ENCRYPTION

In the proposed subgroup-based FL framework, the tie-breaking policy adopted in the majority
voting process significantly influences both computational efficiency and communication cost. We
distinguish two levels of majority vote—intra-subgroup and inter-subgroup—each of which may
apply different tie-breaking rules.

Intra-Subgroup Majority Vote:

• Case A: sign(0) ∈ {−1, 1} (tie deterministically mapped to binary decision (requiring only
1-bit precision))

• Case B:sign(0) = 0 (tie represented as third state (requiring 2-bit precision))

Note that Case B increases the computational resolution for intra-subgroup aggregation, but incurs
no additional uplink communication cost since these computations are entirely internal to the server.

Inter-Subgroup Majority Vote:

• Case 1: sign(0) ∈ {−1, 1} (tie mapped to binary decision (resulting in a 1-bit downlink))

• Case 2: sign(0) = 0 (tie represented as third state (increasing the downlink to 2 bits))

Combined Tie-Breaking Configurations: We consider the following four configurations that com-
bine the intra- and inter-subgroup tie-breaking policies:

• Case A-1 (1-bit tie-breaking): 1-bit Intra/1-bit Inter (most efficient)

• Case B-1 (2-bit tie-breaking): 2-bit Intra/1-bit Inter (higher resolution within subgroup ag-
gregation without increasing communication cost)

• Case A-2: 1-bit Intra/2-bit Inter (higher resolution in global aggregation, but increasing com-
munication cost)

• Case B-2: 2-bit Intra/2-bit Inter (maximum resolution, but increasing communication cost)
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Remark: Configurations involving Case 2 (2-bit downlink) are incompatible with the SIGNSGD-
MV protocol considered in this work, which strictly assumes a 1-bit communication model for both
uplink and downlink. Accordingly, our analysis primarily focuses on the tie-breaking policies within
the 1-bit communication constraint regime, i.e., Cases A-1 and B-1.

G.1.1 EFFECT OF HIERARCHICAL AGGREGATION

To reduce the overhead of secure multiparty computation, the proposed hierarchical aggregation
technique partitions the total of n users into ℓ disjoint subgroups, each of size n1 = n/ℓ. Within
each subgroup, secure aggregation is performed using a smaller prime modulus p1, which signifi-
cantly reduces the number of required Beaver multiplication subrounds and the corresponding com-
munication overhead:

# Secure multiplication subrounds = O(⌈log p1 − 1⌉), Communication cost = O(log2 p1).

Although the total communication cost across all subgroups becomes O(ℓ · log2 p1), it remains
asymptotically lower than that of the flat aggregation scheme, which requiresO(log2 p) when secure
aggregation is performed over all n users without subgrouping. This gap widens as the number of
users n increases, since the majority vote polynomial F (x) becomes more complex, resulting in a
larger number of multiplication terms and hence higher communication and computation overhead
under flat aggregation.

Table 6 summarizes the key differences between the flat and hierarchical aggregation schemes. The
proposed hierarchical framework achieves scalable and bandwidth-efficient secure aggregation, es-
pecially under large-scale FL settings. Notably, when the number of subgroups ℓ is optimally se-
lected, the per-user communication cost approaches that of the baseline SIGNSGD-MV protocol.
Therefore, this framework is well-suited for resource-constrained FL systems that require both high
privacy guarantees and low communication overhead.

Table 6: Comparison between flat and hierarchical aggregation schemes

Metric Flat Aggregation Hierarchical Aggregation (Optimal ℓ⋆)
# Users n n1 = n/ℓ≪ n

Prime Modulus p (> n) p1 ≪ p

Latency ⌈log p− 1⌉ ⌈log p1 − 1⌉ ≈ 2

Per-User Comm. Cost O(log2 p) O(log2 p1) ≈ O(1)
Total Comm. Cost O(log2 p) O(ℓ · log2 p1) ≈ O(ℓ)

Corruption Tolerance t ≤ n− 1 t ≤ n− 1

H COMPUTATION AND RUNTIME OVERHEAD IN SECURE EVALUATION

To evaluate the efficiency of the proposed secure evaluation scheme (Algorithm 1), we measured the
offline preprocessing cost, corresponding to Beaver triple generation, as well as the online execution
cost for secure polynomial evaluation under optimal subgrouping. The results are summarized in
Table 7.

Table 7: Runtime and computational complexity of Algorithm 1 under practical FL settings.

Phase Operation Complexity Average Runtime (sec)
Offline Beaver triple generation O(Rn) < 0.01
Offline Precomputation of F (x) O(n1 · log p1) < 0.01
Online Secure evaluation of F (x) O(Rn+ deg(Fsub)) 0.01−0.02
Total (Offline + Online) O(Rn+ deg(Fsub)) < 0.03

As shown in Table 7, the total runtime of Algorithm 1 consistently remains below 0.03 seconds
on average, encompassing both Beaver triple generation and polynomial evaluation. This compu-

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

tational cost is negligible when compared with that of Algorithm 2 (secure aggregation with local
training and sign processing), which typically incurs more than 10 seconds per global round in FL
scenarios such as FMNIST under non-IID settings. Consequently, the overhead introduced by Al-
gorithm 1 is unlikely to constitute a performance bottleneck in practical deployments, even in large-
scale FL environments. In particular, the runtime difference between Algorithm 1 and Algorithm 2
highlights the advantage of employing a lightweight cryptographic aggregation strategy, as the se-
cure evaluation component adds only a marginal cost relative to the overall training process. Fur-
thermore, it is important to note that no low-level optimizations were incorporated into the current
implementation; hence, the reported runtime should be regarded as a conservative baseline. With
carefully engineered software or hardware acceleration (e.g., vectorized operations, parallelization
on GPUs, or dedicated secure computation libraries), the runtime can be further reduced, thereby
reinforcing the practicality of Algorithm 1 for real-world FL applications.

H.1 COMPUTATIONAL COMPLEXITY ANALYSIS OF MAJORITY VOTE POLYNOMIAL

We analyze the computational complexity of evaluating the majority vote polynomial F (x), which
plays a central role in our secure aggregation scheme. Let m =

∑
i mi takes only n + 1 distinct

values from {−n,−n+ 2, . . . , n}.

F (x) =
∑

m∈{−n,−n+2,...,n−2,n}

sign(m) ·
[
1− (x−m)

p−1
]

(mod p),

This is the number of terms to O(n), and per-term cost becomes:

• sign(m): O(1)
• (x−m)p−1: O(log p)

Naive complexity: O(n · log p)

Further Reduction via Subgrouping. To further reduce computational overhead, our protocol
employs a subgrouping mechanism where users are partitioned into subgroups of size n1 ≪ n. The
majority vote polynomial is locally constructed within each subgroup. This results in a much smaller
polynomial degree and field size (p1 ≪ p), and complexity becomes:

With subgrouping: O(n1 · log p1) .

Moreover, this polynomial is generated once in the offline phase and reused across rounds, incurring
no additional cost during the online aggregation.

Table 8: Comparison of Computational Complexity

Method # Terms Total Complexity
Naive Enumeration ≤ n+ 1 O(n · log p)
With Subgrouping ≤ n1 + 1 O(n1 · log p1)

Complexity Comparison. These optimizations enable efficient and scalable polynomial evalua-
tion, making our approach practical for large-scale FL deployments.

I ADDITIONAL EXPERIMENT RESULTS

I.1 FURTHER DETAILS ABOUT EXPERIMENT SET-UP

Experimental Settings. We validate Hi-SAFE on MNIST (LeCun et al., 1998), FMNIST (Xiao
et al., 2017), and CIFAR-10 (Krizhevsky et al., 2009) datasets, in the presence of adversaries. The
datasets are divided as follows: 60,000 training and 10,000 testing samples for both MNIST and
FMNIST, and 50,000 training and 10,000 testing samples for CIFAR-10. We consider N = 100

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

users, each having the same number of data samples. As described in (McMahan et al., 2017),
two classes are randomly assigned to each user to induce non-IID situations. Batch normalization
layers were omitted during the training of CIFAR-10. At each global round, a fraction C of users is
randomly selected to participate. We set C between 0.12 and 0.36 at each global round. Additionally,
the details of the hyperparameters for Hi-SAFE are shown in Table 9.

Table 9: Hyperparameters for Hi-SAFE

Method Dataset η (learning rate) Batch Size Local Epoch

Non-
Subgrouping

MNIST 0.001
FMNIST 0.005 100 1

CIFAR-10 0.0001

Subgrouping
MNIST 0.001

FMNIST 0.005 100 1
CIFAR-10 0.0001

I.2 ADDITIONAL EXPERIMENT RESULTS

To validate the generality of our findings, we conducted extensive experiments under various feder-
ated learning environments. Specifically, we evaluated the proposed hierarchical aggregation frame-
work across different datasets (FMNIST, MNIST, and CIFAR-10), data distributions (IID and non-
IID), and user scales ranging from n = 12 to n = 36, as illustrated in Figures 4–9.

For each configuration, we compared model performance under 1-bit (sign(0)∈ {−1,+1}) and 2-
bit (sign(0) = 0) tie-breaking, using both non-subgrouping and optimal subgrouping strategies. In
the non-subgrouping case, all users are aggregated as a single group, effectively treating the entire
population as one subgroup. As a result, inter-subgroup aggregation becomes unnecessary.

The results consistently show that the proposed subgrouping strategy maintains model accuracy
comparable to the flat (non-subgrouping) setting while significantly reducing the cost of secure
computation. Under the 1-bit tie-breaking setting, the non-subgrouping configuration of Hi-SAFE
is functionally equivalent to naive SIGNSGD-MV, except for the added privacy guarantees. Ac-
cordingly, we observe that Hi-SAFE achieves performance comparable to existing methods in this
setting. In contrast, applying 2-bit tie-breaking improves computational precision on the server
side and leads to a slight improvement in model accuracy, with the performance gains being more
pronounced under the subgrouping strategy. These results demonstrate that, under the 2-bit tie-
breaking setting, Hi-SAFE can outperform conventional methods in terms of both accuracy and
privacy preservation.

Moreover, the results demonstrate that 1-bit and 2-bit tie-breaking generally lead to similar accuracy,
each exhibiting a trade-off between computational efficiency and numerical precision. While the 1-
bit method minimizes computation overhead, the 2-bit strategy improves robustness—particularly in
highly heterogeneous or complex tasks such as CIFAR-10, and when the subgroup size n1 is even.

Across all evaluated settings—including both IID and non-IID distributions—the proposed hierar-
chical scheme demonstrates stable convergence and enhanced communication efficiency, confirming
its robustness and adaptability to diverse FL environments.
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(a) 1-bit tie-breaking (Case A-1) (b) 2-bit tie-breaking (Case B-1)

Figure 4: Performance comparison of tie-breaking policies on the MNIST dataset under IID setting
with n=12.

(a) 1-bit tie-breaking (Case A-1) (b) 2-bit tie-breaking (Case B-1)

Figure 5: Performance comparison of tie-breaking policies on the FMNIST dataset under IID setting
with n=36.

(a) 1-bit tie-breaking (Case A-1) (b) 2-bit tie-breaking (Case B-1)

Figure 6: Performance comparison of tie-breaking policies on the CIFAR-10 dataset under IID
setting with n=24.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

(a) 1-bit tie-breaking (Case A-1) (b) 2-bit tie-breaking (Case B-1)

Figure 7: Performance comparison of tie-breaking policies on the CIFAR-10 dataset under IID
setting with n=36.

(a) 1-bit tie-breaking (Case A-1) (b) 2-bit tie-breaking (Case B-1)

Figure 8: Performance comparison of tie-breaking policies on the FMNIST dataset under non-IID
setting with n=24.

(a) 1-bit tie-breaking (Case A-1) (b) 2-bit tie-breaking (Case B-1)

Figure 9: Performance comparison of tie-breaking policies on the CIFAR-10 dataset under non-IID
setting with n=24.
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I.3 EXTENDED EVALUATION OF THE OPTIMAL SUBGROUPING STRATEGY

To quantify the effect of subgrouping on communication efficiency, we define the total communica-
tion cost CT and the per-user communication cost Cu as follows:

CT = ℓ · (R · ⌈log p1⌉) , Cu = R · ⌈log p1⌉ (bits), (12)
where:

• ℓ = n/n1: Number of subgroups (with ℓ = 1 representing the non-subgrouping case),
• n: Total number of users,
• n1: Number of users in each subgroup,
• p1: The smallest prime number strictly greater than n1,
• ⌈log p1⌉: Bit length of the modulus prime p1 used for field representation,
• ⌈log p1 − 1⌉: Number of sequential Beaver subrounds required for secure multiplication (i.e.,

latency),
• R: Total number of secure multiplications, which scales proportionally to ⌈log p1 − 1⌉.

Tables 10 and 11 present a comparison of the per-user communication cost Cu and total cost CT ,
as well as the associated latency and multiplication cost under various subgroup configurations.
Parentheses in the table denote the percentage reduction relative to the baseline case ℓ = 1, that
is, the non-subgrouping case. The results show that choosing an optimal ℓ leads to substantial
savings not only in total and per-user communication costs but also in the associated latency and
multiplication cost, thereby validating the effectiveness of the proposed subgrouping strategy for
scalable and communication-efficient secure aggregation in FL.
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Table 10: Key metrics across different subgroup configurations

n ℓ n1 p1 ⌈log p1⌉ ⌈log p1−1⌉ R CT (%) Cu (%)
12 1 12 13 4 3 18 72 (-) 72 (-)
12 2 6 7 3 2 10 60 (16.7%) 30 (58.3%)
12 3 4 5 3 2 6 54 (25.0%) 18 (75.0%)
12 4 3 5 3 2 4 48 (33.3%) 12 (83.3%)
15 1 15 17 5 4 18 90 (-) 90 (-)
15 3 5 7 3 2 8 48 (46.7%) 24 (73.3%)
15 5 3 5 3 2 4 60 (33.3%) 12 (86.7%)
16 1 16 17 5 4 20 100 (-) 100 (-)
16 2 8 11 4 3 14 112 (-12.0%) 56 (44.0%)
16 4 4 5 3 2 6 72 (28.0%) 18 (82.0%)
20 1 20 23 5 4 32 160 (-) 160 (-)
20 2 10 11 4 3 16 128 (20.0%) 64 (60.0%)
20 4 5 7 3 2 8 96 (40.0%) 24 (85.0%)
20 5 4 5 3 2 6 90 (43.8%) 18 (88.7%)
24 1 24 29 5 4 40 200 (-) 200 (-)
24 2 12 13 4 3 18 144 (28.0%) 72 (64.0%)
24 3 8 11 4 3 14 168 (16.0%) 56 (72.0%)
24 4 6 7 3 2 10 120 (40.0%) 30 (85.0%)
24 6 4 7 3 2 6 108 (46.0%) 18 (91.0%)
24 8 3 5 3 2 4 96 (52.0%) 12 (94.0%)
28 1 28 29 5 4 40 200 (-) 200 (-)
28 2 14 17 5 4 22 220 (-10.0%) 110 (45.0%)
28 4 7 11 4 3 14 224 (-12.0%) 56 (72.0%)
28 7 4 5 3 2 6 126 (37.0%) 18 (91.0%)
30 1 30 31 5 4 38 190 (-) 190 (-)
30 2 15 17 4 3 20 200 (-5.3%) 100 (47.4%)
30 3 10 11 4 3 16 192 (-1.1%) 64 (66.3%)
30 5 6 7 3 2 10 150 (21.1%) 30 (84.2%)
30 6 5 7 3 2 8 144 (24.2%) 24 (87.4%)
30 10 3 5 3 2 4 120 (36.8%) 12 (93.7%)
36 1 36 37 6 5 46 276 (-) 276 (-)
36 2 18 19 5 4 26 260 (5.8%) 130 (52.9%)
36 3 12 13 4 3 18 216 (21.7%) 72 (73.9%)
36 4 9 11 4 3 14 224 (18.8%) 56 (79.7%)
36 6 6 7 3 2 10 180 (34.8%) 30 (89.1%)
36 9 4 5 3 2 6 162 (41.3%) 18 (93.5%)
36 12 3 5 3 2 4 144 (47.8%) 12 (95.7%)
40 1 40 41 6 5 48 288 (-) 288 (-)
40 2 20 23 5 4 32 320 (-11.1%) 160 (44.4%)
40 4 10 11 4 3 16 256 (11.1%) 64 (77.8%)
40 5 8 11 4 3 14 280 (2.8%) 56 (80.6%)
40 8 5 7 3 2 8 192 (33.3%) 24 (91.7%)
40 10 4 5 3 2 6 180 (37.5%) 18 (93.8%)
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Table 11: Key metrics across different subgroup configurations (continue)

n ℓ n1 p1 ⌈log p1⌉ ⌈log p1 − 1⌉ R CT (%) Cu (%)
50 1 50 51 6 5 60 360 (-) 360 (-)
50 2 25 29 5 4 34 340 (5.6%) 170 (52.8%)
50 5 10 11 4 3 16 320 (11.1%) 64 (82.2%)
50 10 5 7 3 2 8 240 (33.3%) 24 (93.3%)
60 1 60 61 6 5 72 432 (-) 432 (-)
60 2 30 31 5 4 38 380 (12.0%) 190 (56.0%)
60 3 20 23 5 3 32 480 (-11.1%) 160 (63.0%)
60 5 12 13 4 3 18 360 (16.7%) 72 (83.3%)
60 6 10 11 4 2 16 384 (11.1%) 64 (85.2%)
60 10 6 7 3 2 10 300 (30.6%) 30 (93.1%)
60 12 5 7 3 2 8 288 (33.3%) 24 (94.4%)
60 20 3 5 3 2 4 240 (44.4%) 12 (97.2%)
70 1 70 71 7 6 84 588 (-) 588 (-)
70 2 35 37 6 5 44 528 (10.2%) 264 (55.1%)
70 5 14 17 5 4 22 550 (6.5%) 110 (81.3%)
70 7 10 11 4 3 16 448 (23.8%) 64 (89.1%)
70 10 7 11 4 3 14 560 (4.8%) 56 (90.5%)
70 14 5 7 3 3 8 336 (42.9%) 24 (95.9%)
80 1 80 81 7 6 92 644 (-) 644 (-)
80 2 40 41 6 5 48 576 (10.6%) 288 (55.3%)
80 4 20 23 5 4 32 640 (0.6%) 160 (75.2%)
80 5 16 17 5 4 20 500 (22.4%) 100 (84.5%)
80 8 10 11 4 3 16 512 (20.6%) 64 (90.1%)
80 10 8 11 4 3 14 560 (13.0%) 56 (91.3%)
80 16 5 7 3 2 8 384 (40.4%) 24 (96.3%)
80 20 4 5 3 2 6 360 (44.1%) 18 (97.2%)
90 1 90 91 7 6 104 728 (-) 728 (-)
90 2 45 47 6 5 54 648 (11.0%) 324 (55.5%)
90 3 30 31 5 4 38 570 (21.7%) 190 (73.9%)
90 5 18 19 5 4 26 650 (10.7%) 130 (82.1%)
90 6 15 17 5 4 18 540 (25.8%) 90 (87.6%)
90 9 10 11 4 3 16 576 (20.9%) 64 (91.2%)
90 10 9 11 4 3 14 560 (23.1%) 56 (92.3%)
90 15 6 7 3 2 10 450 (38.2%) 30 (95.9%)
90 18 5 7 3 2 8 432 (40.7%) 24 (96.7%)
90 30 3 5 3 2 4 360 (50.5%) 12 (98.4%)

100 1 100 101 7 6 114 798 (-) 798 (-)
100 2 50 51 6 5 60 720 (9.8%) 360 (54.9%)
100 4 25 29 5 4 34 680 (14.8%) 170 (78.7%)
100 5 20 23 5 4 32 800 (-0.3%) 160 (79.9%)
100 10 10 11 4 3 16 640 (19.8%) 64 (92.0%)
100 20 5 7 3 2 8 480 (39.9%) 24 (97.0%)
100 25 4 5 3 2 6 450 (43.6%) 18 (97.7%)
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