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ABSTRACT

Training autonomous agents with sparse rewards is a long-standing problem in
online reinforcement learning (RL), due to low-data efficiency. Prior work over-
comes this challenge by extracting useful knowledge from offline data, often ac-
complished through the learning of action distribution from offline data and utiliz-
ing the learned distribution to facilitate online RL. However, since the offline data
are given and fixed, the extracted knowledge is inherently limited, making it diffi-
cult to generalize to new tasks. We propose a novel approach that leverages offline
data to learn a generative diffusion model, coined as Adaptive Trajectory Diffuser
(ATraDiff). This model generates synthetic trajectories, serving as a form of data
augmentation and consequently enhancing the performance of online RL methods.
The key strength of our diffuser lies in its adaptability, allowing it to effectively
handle varying trajectory lengths and mitigate distribution shifts between online
and offline data. Because of its simplicity, ATraDiff seamlessly integrates with a
wide spectrum of RL methods. Empirical evaluation shows that ATraDiff consis-
tently achieves state-of-the-art performance across a variety of environments, with
particularly pronounced improvements in complicated settings.

1 INTRODUCTION

Deep reinforcement learning (RL) has shown great promise in various applications, such as au-
tonomous driving (Wang et al., 2019), chip design (Mirhoseini et al., 2021), and energy optimiza-
tion (Specht & Madlener, 2023). Despite its impressive performance, RL often requires extensive
online interactions with the environment, which can be prohibitively costly in practice. Such down-
side of RL is aggravated by the fact that in real-world scenarios, environments are often characterized
by sparse rewards, which further necessitates an exceptionally large number of samples for effective
exploration; for example, when manipulating a robotic arm to move an item, oftentimes the only
reward feedback given is at the success moment of the task, which may take hundreds of steps to
obtain. Consequently, a persistent challenge in RL is addressing the high sample costs, particularly
in contexts with sparse rewards.

One prevalent solution to this challenge is leveraging offline data, by directly learning policies from
offline data (Kostrikov et al., 2022; Ball et al., 2023a) or extracting experiences that can enhance
online training (Pertsch et al., 2020b), especially in the context of exploration. However, such
solutions can only extract limited knowledge as the offline data are given and fixed, and thus are
difficult to generalize to new tasks. In contrast to prior work, this paper takes a different perspective
inspired by the recent advances in generative modeling – can we harness modern generative models,
such as diffusion models, trained on offline data and synthesize useful data that facilitate online RL?

Indeed, diffusion models have emerged as powerful deep generative models, demonstrating impres-
sive capabilities in data synthesis across vision and language applications (Ho et al., 2020; Gong
et al., 2023; Li et al., 2022). Nevertheless, their investigation in RL has been relatively limited.
Studies in offline RL mainly tap into the generative capabilities of diffusion models to enhance
long-term planning (Janner et al., 2022; Ajay et al., 2023) and amplify policy expressiveness (Wang
et al., 2023; Chen et al., 2023). Recently, Lu et al. (2023) have started to utilize diffusion models
specifically for RL data augmentation, by upsampling the replay buffer of online RL with a dif-
fusion model trained on offline data. However, such an approach primarily focuses on generating
transitions rather than complete trajectories. This under-utilizes the generative potential of diffusion
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Figure 1: Illustration and performance showcase of our proposed ATraDiff. ATraDiff can seamlessly
integrate with a wide range of RL methods and consistently improve their performance, by augment-
ing the replay buffer with synthesized trajectories. Left: Overview of online RL with ATraDiff.
Right: Performance comparison of RL methods with and without ATraDiff in D4RL Kitchen.

models and limits the benefits of augmented data for RL. In contrast, full trajectories offer a more
comprehensive source of information, enabling RL agents to better learn from past experiences.

To overcome these issues, we propose Adaptive Trajectory Diffuser (ATraDiff), a novel method
designed to synthesize full trajectories for online RL. As depicted in Figure 1, our approach trains
a diffusion model using offline data, which then synthesizes complete trajectories conditioned on
the current state. By employing this diffusion model to produce additional trajectories, we aim to
significantly accelerate the online RL process. Notably, because of its simplicity in augmenting the
replay buffer by adding useful data, ATraDiff seamlessly integrates with a wide range of RL methods
and consistently elevates their performance.

The key property of our diffuser lies in its adaptability to effectively handle varying trajectory
lengths and address the distribution shifts between online and offline data. Unlike generating tran-
sitions, managing the uncertainty in task length presents a significant new challenge in trajectory
generation. While longer trajectories can potentially lead to improved performance, excessive or
redundant segments may be detrimental. Ideally, we aim for a generation with precise trajectory
length. To this end, we introduce a simple coarse-to-precise strategy: initially, we train multiple
diffusion models with varying generation lengths. Prior to actual generation, we assess the required
length and subsequently prune any redundant segments. In dealing with the distribution shift be-
tween offline data and online evaluation tasks, we design our diffuser to be adaptable throughout the
RL process. This adaptability includes the capability to select more informative samples through the
use of an importance indicator, while also mitigating catastrophic forgetting during adaptation.

Our contributions are three-fold. (i) We propose ATraDiff, a novel diffusion-based approach that
leverages offline data to generate full synthetic trajectories and enhance the performance of online
RL methods. ATraDiff is general and can be seamlessly applied to accelerate any online RL al-
gorithms with a replay buffer. (ii) We introduce a simple coarse-to-precise strategy that ensures
generated trajectories precisely align with the length required for evaluation tasks. (iii) We devise an
online adaptation mechanism that effectively addresses challenges stemming from data distribution
shifts. Empirical evaluation shows that ATraDiff consistently achieves state-of-the-art performance
across a variety of environments, with particularly large improvements in complicated settings.

2 RELATED WORK

Offline pre-training for online RL. Leveraging prior experience to expedite online learning for
subsequent tasks has been a persistent challenge (Nair et al., 2021). Past research has proposed
numerous solutions to tackle this issue. Some studies suggest treating offline data similarly with
data collected online. For instance, representative approaches employ offline data to initialize a
replay buffer (Večerı́k et al., 2017; Hester et al., 2018). Meanwhile, others advocate for a balanced
sampling strategy, drawing from both offline and online sources (Nair et al., 2018; Kalashnikov
et al., 2018; Hansen et al., 2022; Zhang et al., 2023; Ball et al., 2023a).
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One prevalent approach is to establish a behavior prior, which captures the action distribution in
prior experiences to mitigate overestimation for actions outside the training data distribution (Singh
et al., 2020; Siegel et al., 2020). An alternative strategy involves extracting skills from offline data
and adapting them to new tasks (Gupta et al., 2019b; Merel et al., 2019; Kipf et al., 2019; Whitney
et al., 2020; Pertsch et al., 2020b). These studies typically represent the acquired skills within an
embedding space and then train a policy to select the most appropriate skills based on the current
state. In contrast, ATraDiff synthesizes the complete trajectory based on the current state and aug-
ments the replay buffer with these additional data. Our approach offers broader applicability across
a diverse set of RL methodologies.

Diffusion models in RL. Previously, the focus of employing diffusion models in RL has primarily
centered on enhancing long-term planning and amplifying policy expressiveness. For instance, Dif-
fuser (Janner et al., 2022) constructs a full trajectory of transitions, through conditioned sampling
guided by higher rewards and goal-oriented navigation. This leverages the diffusion model’s capa-
bility in generating extensive trajectories, addressing challenges such as long horizons and sparse
rewards in RL planning. Similarly, several other studies (Ajay et al., 2023; Du et al., 2023; He
et al., 2023) have adopted this paradigm, particularly in the context of visual data. Another notable
work (Pearce et al., 2023) suggests a diffusion-based method for generating full trajectories by im-
itating human behavior. Different from prior work, our approach is oriented towards synthesizing
trajectories in evaluation scenarios that may differ from the training scenarios.

Data augmentation in RL. Data augmentation is a common technique that has demonstrated effec-
tiveness in RL. Previous methods (Yarats et al., 2021; Laskin et al., 2020; Sinha et al., 2021) typically
focus on perturbing original data on observations for visual-based RL, such as adding noise and ap-
plying random translation. This enables agents to learn from multiple views of the same observation
and increase their robustness. Different from prior work on diffusion models in RL, recent efforts
have focused on upsampling the replay buffer with the diffusion model. A closely related work by
Lu et al. (2023) generates transitions to augment the replay buffer via a diffusion model. However,
our ATraDiff operates at the trajectory level, employing a visual-based diffusion model, and has the
capability to synthesize training data through state and task-conditioned generation.

3 BACKGROUND

MDP. In this paper, we consider sequential decision-making tasks that can be modeled as a Markov
Decision Process (MDP) defined as M = ⟨S,A, T,R, γ⟩, where S is the set of states, A is the
set of actions, and γ ∈ [0, 1) is the discount factor. T (s′|s, a) and R(s, a) represent the dynam-
ics and reward functions, respectively. At each stage t, the agent takes an action a ∈ A, which
leads to a next state s′ according to the transition function T (s′|s, a) and an immediate reward
R(s, a). A trajectory of such a task is defined as a sequence composed of states and actions given by
(s1, a1, s2, a2, . . . , st, at), where st and at denote the state and action at time-step t, respectively.

Diffusion models. Diffusion probabilistic models pose the data-generating process as an itera-
tive denoising procedure pθ(τ

i−1|τ i). This denoising is the reverse of a forward diffusion process
q(τ i|τ i−1) that slowly corrupts the structure in data by adding noise. The data distribution induced
by the model is given by:

pθ(τ
0) =

∫
p(τN )

N∏
i=1

pθ(τ
i−1|τ i)dτ1:N ,

where p(τN ) is a standard Gaussian prior and p(τ0) denotes noiseless data. Parameters θ are op-
timized by minimizing a variational bound on the negative log-likelihood of the reverse process:
θ∗ = argminθ −Eτ0 [log pθ(τ

0)]. The reverse process is often parameterized as Gaussian with
fixed timestep-dependent covariances:

pθ(τ
i−1|τ i) = N (τ i−1|µθ(τ

i, i),Σi).

Replay buffers. Many algorithms in RL employ replay buffers, denoted as D, to retain trajectories
derived from executing a sample policy within an environment parameterized by MDP. Throughout
the training process, these replay buffers are accessed to extract samples (transitions or trajectories)
for the update of the learned execution policy.
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Figure 2: An illustrative overview of ATraDiff framework. Left: A generator containing multiple
diffusers, a length estimator, and a trajectory pruner. Right: Workflow of the online adaptation.

4 METHOD

We now present our approach to accelerating online reinforcement learning by training our gener-
ative model ATraDiff on the offline data to synthesize trajectories. We begin by introducing how
we design and train ATraDiff (Sec. 4.1) and then how we apply ATraDiff to accelerate online rein-
forcement learning (Sec. 4.2). Finally, we will introduce how this generator could be dynamically
adapted during the online training process (Sec. 4.3). Figure 2 illustrates the overall framework of
our approach.

4.1 ADAPTIVE TRAJECTORY DIFFUSER

Our primary objective with the generator is to train a diffusion model p(x) that captures the trajec-
tory data distribution present within the offline data. By doing so, we can synthesize new trajectories
(s1, a1, s2, a2, . . . , st, at) with the learned diffusion model. To harness the diffusion model more ef-
fectively, we advocate for the synthesis of trajectory images rather than direct generation of states
and actions. Our strategy entails initially generating images m1,m2,m3, . . . ,mk spanning continu-
ous k frames, where k is a fixed generation length preset for a given generator. Subsequently, we can
extract the state si from the resultant images using an environment-specific recognizer that converts
images into states using object detection, and retrieve actions from adjacent states using physical
simulation. Conversely, to provide ground-truth images for our generator, we use another renderer
to convert states into images. We implement the recognizer by detecting the 3D position of key
points in the figure, including points of the object boundary and the junctura of the robot arm. And
the renderer is implemented by simple ray tracing (Shirley, 2000).

Image diffusion models. For the architecture design of our image diffuser, we use Stable Diffu-
sion (Rombach et al., 2022) as the pretrained model and fine-tune it on the specific dataset. To
generate images of k continuous frames, we concatenate the k single images m1,m2, . . . ,mk into
one larger 2D image M by aligning them in order and use the diffusion model to generate the
concatenated image M . Furthermore, we use the information of the first frame as the generation
condition, including the current state, task, etc., so that the generated trajectory will be closely re-
lated to our learning process, where our online learning could benefit more from those synthesized
data.

Flexible task-length generation. Due to the property of diffusion models, our diffuser described
above could only get trajectories with fixed length k; however, in order to generate a complete
trajectory where the horizon is indefinite, we would require the diffuser to output trajectories with
flexible lengths, which becomes the crucial problem. To solve this, we introduce a simple coarse-
to-precise strategy. We initially train multiple diffusion models regarding different lengths k =
5, 10, 15, . . . . Before generation, we first estimate the possible length we need for the current state
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Algorithm 1 Modified Replay Buffer for RL

Require: D = (Ds, Do, ρ, L), ATraDiff.
1: function STORE(D, z = (s, a′, s′, r))
2: ReplayBufferStore(Do, z)
3: if with probability ρ

(1−ρ)L then
4: (s1, a1, . . . , st, at)← ATraDiff(s′)
5: for ∀i do
6: zi = (si, ai, s

′
i, R(si, ai))

7: ReplayBufferStore(Ds, zi)
8: end for
9: end if

10: end function

11:
12: function SAMPLE(D)
13: if with probability ρ then
14: z ← ReplayBufferSample(Ds)
15: else
16: z ← ReplayBufferSample(Do)
17: end if
18: return z
19: end function
20:
21:

with a pre-trained network and use the diffuser with the closest generation length, minimizing the
length of redundant transitions to cut. To cut this part after generation, we use a non-parametric
algorithm to find the best ending position.

Specifically, we first pad the training data: given a full trajectory m1,m2, . . . ,mt, we will pad
k more frames identical to the last frame mt after the end of the trajectory, so it becomes
m1,m2, . . . ,mt,mt,mt, . . . ,mt. Hence for the sub-trajectories starting after time t − k, the
last part of it should always be the same. For example, for data starting with t − 3, the data
should be mt−3,mt−2,mt−1,mt,mt,mt, . . . . Therefore, in our generated result, the redun-
dant part tends to become some similar states. For a generated trajectory, we first calculate the
similarity between each of two adjacent states, sim(s1, s2), sim(s2, s3), . . . , sim(sk−1, sk). Then
we compute the prefix average prei and suffix average sufi of this similarity sequence, where

prei =
∑i

j=1 sim(sj ,sj+1)

i , sufi =
∑k

j=i sim(sj−1,sj)

t−i+1 . Then we get the difference between the prefix
average and suffix average prei − sufi of each position and find the one with the largest difference
to be the ending position. This algorithm works based on the fact that the average similarity before
the ending point should be significantly larger than the one after the ending point.

4.2 DIFFUSER DEPLOYMENT

With the diffuser of ATraDiff explained, we now delve into how the diffuser can be seamlessly
integrated with any online RL method with a replay buffer. Intuitively, ATraDiff augments the
replay buffer with the data synthesized by its diffuser, and leaves the RL algorithm itself untouched;
thus, our approach is orthogonal to any online RL method equipped with a replay buffer.

More specifically, consider any RL algorithm with a replay buffer denoted as Do. Typically, RL
methods engage with the replay buffer through two primary actions: store - which archives a new
transition into the replay buffer, and sample - which extracts a transition randomly from the replay
buffer. With this in mind, we substitute the original buffer Do with a new replay buffer D =
Do ∪Ds, where Ds is the augmenting buffer synthesized by ATraDiff. This modified replay buffer
D is characterized by two hyperparameters: ρ ∈ [0, 1], denoting the probability of sampling from
synthesized data Ds in RL, and L ∈ N, indicating the expected length of synthesized trajectories.

Whenever we store a transition (s, a, s′, r) into D during the RL algorithm, the following three steps
are performed:

• We first store it into Do;

• With probability ρ
(1−ρ)L , a full trajectory (s1, a1, s2, a2, . . . , st, at) is synthesized with the

diffuser, with state s′ as the initial state (i.e., s′ = s1). Note the probability ρ
(1−ρ)L is

designed to keep the ratio between the total size of Ds and Do to be ρ
1−ρ ;

• All synthesized transitions (si, ai, si+1, R(si, ai)) will be stored to the replay buffer Ds,
where the reward R(si, ai) is calculated from the environment.
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When we sample from D, we sample from Ds with probability ρ and from Do with probability
1− ρ. See Alg. 1 for pseudo-code. Note the sample process can be arbitrary, i.e., our method is also
orthogonal to other sampling techniques such as prioritized buffer (Schaul et al., 2016).

4.3 ONLINE ADAPTATION

Although the fixed ATraDiff can improve the performance of RL methods in some simple environ-
ments, we may still face the problem of distribution shift between the evaluation task and the offline
data in complicated environments. To overcome this issue and further improve the generation qual-
ity, we propose an online adaptation technique by continually training the diffusion model on new
experiences.

Concretely, ATraDiff is periodically updated on the real transitions stored in Do and then used to
generate new trajectories. Meanwhile, we will keep a copy of the original version of the diffuser to
mitigate potential catastrophic forgetting.

Furthermore, we will use more valuable samples to adapt our ATraDiff during online training.
Specifically, we design some indicators to measure the importance of each sample for our online
learning, and a pick-up strategy to choose samples from Do. By default, we are introducing two
indicators, the TD-error indicator, and the Reward indicator. For the TD-error indicator, the impor-
tance of a transition (s, a, s′, r) is defined to be |r + γmaxa′ Q(s′, a′) − Q(s, a)|. The TD-error
indicator performs better in most cases, while it could only be used in some value-based RL methods.
The Reward indicator would be more general to all RL methods, as the importance of a transition is
defined to be the total reward collected in the full trajectory. The primary pick-up strategy is to main-
tain a subset of samples with higher importance, but part of the samples are always used to update
the diffuser. Hence, we will randomly drop some samples from the maintained subset regardless of
their importance. We further conduct experiments to analyze the effectiveness of our indicator and
pick-up strategy and the effect of different design choices in the ablation study.

5 EXPERIMENTS

In this section, we conduct comprehensive experiments to evaluate the effectiveness of our data
generator ATraDiff. First, we validate that our approach is able to improve the performance of
both basic and state-of-the-art online RL methods by combining them with our ATraDiff (Sec. 5.1).
Next, we show that our method can further improve the performance of a variety of state-of-the-art
offline-to-online RL algorithms in complicated environments using online adaptation. Finally, we
conduct some ablation studies to validate the effectiveness of different components in our approach.
For evaluation, all results in this section are presented with the median performance over 5 random
seeds as well as the 25%-75% percentiles.

5.1 ATRADIFF IMPROVES ONLINE RL

In this section, we show that the performance of state-of-the-art online RL methods can be improved
by our ATraDiff learned with the offline data. We consider 3 environments from D4RL Locomo-
tion (Fu et al., 2020), including 12 different offline data with varying levels of expertise. For com-
parison, we choose SAC (Haarnoja et al., 2018) as the basic online RL algorithm and REDQ (Chen
et al., 2021) as state-of-the-art sample-efficient algorithm. We run two baselines and the versions
combined with our ATraDiff for 250K steps.

The overall result is summarized in Figure 3. We see that the performance of the two baselines is
both significantly improved by our ATraDiff, especially on the halfcheetah and walker2d environ-
ments. This validates the strength of ATraDiff. If we run these online RL methods for enough time,
they can also achieve comparable results, while ATraDiff improves the sample efficiency. Here, we
only use the fixed diffuser instead of using online adaption, which indicates that our fixed diffuser
could already be used to accelerate the online RL in some simple environments.
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Figure 3: Learning curves on the D4RL Locomotion benchmark. ATraDiff (denoted as ‘w/’) con-
sistently and significantly improves the performance of the two representative RL methods across
all three environments, irrespective of whether basic or advanced algorithms are employed. These
results validate the effectiveness and generalizability of our diffuser.

5.2 ATRADIFF IMPROVES OFFLINE-TO-ONLINE RL IN COMPLICATED ENVIRONMENTS

In this section, we show that ATraDiff with online adaptation could be used to improve the perfor-
mance of state-of-the-art offline-to-online RL methods. We further consider the following environ-
ments:

• D4RL AntMaze (Fu et al., 2020). There are 6 sparse reward tasks that require the agent to
learn to walk with controlling an 8-DoF Ant robot and navigate through a maze to reach
the goal.

• D4RL Kitchen (Fu et al., 2020). A simulated kitchen environment first proposed by Gupta
et al. (2019a), which involves controlling a 9-DoF robot that manipulates different objects
in a kitchen environment (e.g., slide cabinet door, switch overhead light, open microwave).
The downstream task is to complete a sequence of multiple subtasks in order with a sparse,
binary reward for each successfully completed subtask. The offline dataset only contains
part of the full sequence, meaning that the agent needs to learn to compose sub-trajectories.

• Meta-World Environment (Yu et al., 2019). By combining the modified tasks using a single
camera viewpoint consistently over all the 15 subtasks generated by Seo et al. (2022),
we create two challenging tasks. The first one is a multi-task setting, where the offline
data contain the trajectories of 14 subtasks and evaluates on the remaining 1 subtask. The
second one is a harder version of the D4RL Kitchen task, where the agent needs to complete
a sequence of 8 subtasks with medium difficulty in the correct order, while the offline data
only contain trajectories for single subtasks. For both tasks, the trajectories of any single
subtask are consisted the provided data and collected data from the online training.

We consider a set of strong baselines from prior work on offline-to-online RL, including skilled-
based method (SPiRL (Pertsch et al., 2020a)), behavior-prior-based method (PARROT (Singh et al.,
2021)), balanced sampling method (RLPD (Ball et al., 2023b). We run these baselines and the
versions combined with our diffuser.

As shown in Figure 4, our diffuser could significantly improve the performance of some methods,
and get at least comparable results for all these methods. For all these environments, the best one
is always some method combined with our diffuser, which shows that our online adapted diffuser
could further improve the performance of current offline-to-online methods. Moreover, we intro-
duce two advanced tasks within the Meta-World environment to accentuate the challenges posed
by distribution shifts. Our motivation is to understand how our method responds under conditions
where distribution shift problems are more pronounced. As demonstrated in Figure 5, our approach
exhibits superior performance, suggesting that our method holds significant promise in effectively
addressing such shifts.

5.3 ABLATION STUDY AND ANALYSIS

In this section, we carry out ablation studies to justify the effect of different components of our
ATraDiff.
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Figure 4: Learning curves on the D4RL benchmark. ATraDiff (denoted as ‘w/’) further boosts the
performance of advanced and recent offline-to-online RL baselines across all three environments,
leading to state-of-the-art results especially in complex settings, where the improvements are partic-
ularly noteworthy. This shows the importance of our online adapted diffuser.
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Figure 5: Learning curves on the Meta-World benchmark. While the two tasks within the Meta-
World environment are designed purposefully to be very changeling with considerable distribution
shifts, ATraDiff (denoted as ‘w/’) is still effective and significantly improves the performance of
advanced and recent offline-to-online RL baselines. This further validates the strength of ATraDiff
in tacking distribution shifts between offline data and online tasks.
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Figure 6: Ablation study on
image-level generation and state-
level generation on the D4RL
Locomotion Environment. The
image-level diffuser outperforms
the state-level diffuser in compli-
cated tasks, with noticeable per-
formance gains.

Image-level generation vs. state-level generation. We now
illustrate the importance of image-level diffuser by comparing
it with the results conducted by a state-level diffuser. As shown
in Figure 6, the image-level diffuser generally outperforms the
state-level diffuser on the D4RL Locomotion environment (Fu
et al., 2020). We usually need to synthesize longer and more
flexible trajectories in such complicated environments, where
the image-level diffuser performs better compared with simpler
diffusion models.

Is online adaptation beneficial for our diffuser? We now
examine the effect of online adaptation on performance. We
revisit the experiments in Section 5.1 and replace the fixed
diffuser with an online adapted one. As shown in Figure 7,
we found that the online diffuser significantly outperforms the
fixed diffuser in complicated tasks. In tasks of D4RL Locomo-
tion and D4RL AntMaze (Fu et al., 2020), the online diffuser
achieves comparable results to the fixed diffuser. However, in task of D4RL Kitchen and two tasks
in Meta-world (Yu et al., 2019), the online diffuser has fully demonstrated its superiority, which
validates that the online adaptation can indeed mitigate the problem of data distribution shift and
focus on the evaluation task.

Effect of different importance indicators over online adaptation. Here we show that different on-
line adaptation strategies have noticeable impacts on performance. We conduct experiments to test
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Figure 7: Ablation study on online adaptation of ATraDiff. In simple tasks, we observe that the on-
line diffuser achieves results comparable to the fixed diffuser. However, online adaptation mitigates
the problem of data distribution shift and becomes critical in complicated environments.

0 200 400 600 800 1000
Steps(K)

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

multitask

0 200 400 600 800 1000
Steps(K)

0.0

0.2

0.4

0.6

0.8

1.0
Re

tu
rn

sequencetask
RLPD_TDerror RLPD_Reward

Figure 8: Ablation study on the importance indicator together with its associated pick-up strategy.
Different types of indicators lead to varied behavior and performance. While the Reward indicator
is in principle more general to RL methods, our indicator based on TD-error achieves better perfor-
mance in the complicated Meta-World benchmark.

the effect of different design choices in the online adaptation, focusing on the indicator used to mea-
sure the importance of collected samples together with its associated pick-up strategy determining
the samples according to the importance. We include the Reward indicator and its corresponding
pick-up strategy. The result shown in Figure 8 demonstrates that different choices of the online
adaptation indeed affects the performance.

6 CONCLUSION

This paper introduces ATraDiff, a novel diffusion-based approach that synthesizes full trajectories.
By training a set of diffusion models that generate different lengths of trajectories and selecting
the most suitable model with non-parametric similarity comparison, we obtain a generator that pro-
duces trajectories with varied lengths. By applying such a generator to transitions stored in the
replay buffer and augmenting the buffer with generated data, ATraDiff can accelerate any online
RL algorithms with a replay buffer using imaginary data. In multiple environments, we found that
ATraDiff significantly improves existing online and offline-to-online RL algorithms. We believe that
our work is useful to the online RL community on the long-standing data efficiency problem.

Limitations and future work. One limitation of ATraDiff is that the training of multiple diffusion
models can be computationally intensive, and the problem grows with longer generated trajectories.
Thus, an interesting future direction is to learn a single diffuser that directly generates trajectories
of varied lengths instead of selecting from a collection of models.

9
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Matej Večerı́k, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot, Nicolas
Heess, Thomas Rothörl, Thomas Lampe, and Martin Riedmiller. Leveraging demonstrations for
deep reinforcement learning on robotics problems with sparse rewards. arXiv, July 2017. 2

Sen Wang, Daoyuan Jia, and Xinshuo Weng. Deep reinforcement learning for autonomous driving,
2019. 1

12

https://openreview.net/pdf?id=Pv1GPQzRrC8
https://proceedings.mlr.press/v155/pertsch21a.html
https://proceedings.mlr.press/v155/pertsch21a.html
https://proceedings.mlr.press/v205/seo23a.html
https://openreview.net/forum?id=Ysuv-WOFeKR
https://proceedings.mlr.press/v164/sinha22a.html
https://proceedings.mlr.press/v164/sinha22a.html
https://www.sciencedirect.com/science/article/pii/S2666546822000611
https://www.sciencedirect.com/science/article/pii/S2666546822000611


Under review as a conference paper at ICLR 2024

Zhendong Wang, Jonathan J. Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. In The Eleventh International Conference on Learn-
ing Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL
https://openreview.net/pdf?id=AHvFDPi-FA. 1

William Whitney, Rajat Agarwal, Kyunghyun Cho, and Abhinav Gupta. Dynamics-aware embed-
dings, 2020. 3

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. In 9th International Conference on Learning Repre-
sentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL
https://openreview.net/forum?id=GY6-6sTvGaf. 3

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learn-
ing. In Leslie Pack Kaelbling, Danica Kragic, and Komei Sugiura (eds.), 3rd Annual Conference
on Robot Learning, CoRL 2019, Osaka, Japan, October 30 - November 1, 2019, Proceedings,
volume 100 of Proceedings of Machine Learning Research, pp. 1094–1100. PMLR, 2019. URL
http://proceedings.mlr.press/v100/yu20a.html. 7, 8, 15, 16

Haichao Zhang, Wei Xu, and Haonan Yu. Policy expansion for bridging offline-to-online reinforce-
ment learning. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=-Y34L45JR6z. 2

13

https://openreview.net/pdf?id=AHvFDPi-FA
https://openreview.net/forum?id=GY6-6sTvGaf
http://proceedings.mlr.press/v100/yu20a.html
https://openreview.net/forum?id=-Y34L45JR6z


Under review as a conference paper at ICLR 2024

A ALGORITHM DETAILS

A.1 PICK-UP STRATEGIES FOR THE ONLINE ADAPTATION

In our training methodology, we have designed different pick-up strategies for handling different
importance indicators, recognizing their unique properties and implications for the learning process.

For the TD-error indicator, a dynamic approach is employed due to the variable nature of its im-
portance, which can change as the critic function updates during training. To manage this, a heap
structure is used to maintain a buffer of 50,000 samples. This buffer is continuously updated to
reflect the current importance of each sample, ensuring that even those with initially low importance
are retained for potential future relevance. When it comes time to update the diffuser, a selection of
5,000 high-importance samples is drawn from this buffer, aligning the update process with the most
pertinent data at that moment.

In contrast, the strategy for reward importance takes into account its static characteristic – the im-
portance of these indicators does not change throughout the training. Here, a smaller buffer of 5,000
samples is employed, updated similarly based on importance. However, to counter the risk of high-
importance samples perpetually dominating the buffer, a rotation system is implemented. After each
update, some samples, particularly the older ones, are dropped. This system ensures that each sam-
ple contributes to the diffuser update only a limited number of times, thus maintaining a fresh and
current dataset for training, reflective of the latest environmental interactions.

These tailored strategies highlight a nuanced understanding of how different indicators behave and
affect the learning process, ensuring that both dynamic and static aspects of the training data are
optimally utilized for updating the diffuser.

A.2 STATE-LEVEL TRAJECTORY GENERATION

In the state-level generation, we directly generate trajectories consisting of states and actions,
{st, at, st+1, at+1, . . . }. For the architecture of the diffusion model used in the state-level gen-
eration, we directly refer to the architecture used in Lu et al. (2023), while we omit the generation of
the reward. Meanwhile, we extend the size of the network used from 24 to 128 to support the larger
result of a trajectory.

A.3 RENDERER AND RECOGNIZER

In the image-level generation, a renderer and a recognizer are employed for image rendering and key
point detection tasks, respectively. The renderer, based on previous work (Lu et al., 2022; Hansen
et al., 2022; Seo et al., 2022), captures observations in an environment where an AI agent operates.
The images rendered, set at a resolution of 84× 84, serve as input of the generation model.

The recognizer is a neural network consisting of two components. The first component utilizes a
CNN to extract features from the images. In the second component, separate 5-layer MLP net-
works are used to determine the 3D positions of specific key points, which are selected based on the
requirements of different tasks. This two-component design of the recognizer allows for efficient
processing of the images, first by identifying relevant features through CNN and then pinpointing
key points’ positions using MLP networks, so that we can calculate the proprioceptive state.

B DETAILS OF EXPERIMENT SETUP

B.1 D4RL

We basically consider 3 different environments from D4RL (Fu et al., 2020). We use the original
offline dataset from D4RL (Fu et al., 2020).

AntMaze. This domain steps up the complexity by replacing the 2D ball in Maze2D with an 8-
DoF “Ant” quadruped robot, adding a layer of morphological complexity. It is a navigation domain
that closely resembles real-world robotic navigation tasks. We followed the design of a sparse 0-
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Task Name Subtasks

Multitask evaluation task: Push
Sequencetask Sweep, Sweep Into, Coffee Push, Box Close, Push Wall, Peg Insert Side, Basketball, Soccer,

Table 1: Meta-World task setting. We select push task as the evaluation task for the multitask
environment. We arrange all the 8 medium to form the Sequencetask environment.

1 reward system in this environment, activated only upon reaching the goal, to test the stitching
challenge under more complex conditions.

Locomotion. Comprising tasks like Hopper, HalfCheetah, and Walker2d, the Locomotion domain
is a staple in offline deep RL benchmarks. We used the same datasets in D4RL (Fu et al., 2020) for
consistency with previous studies, and also experimented with a variety of datasets to observe the
effects of different data qualities.

Kitchen. This environment involves controlling a 9-DoF Franka robot in a kitchen setting, inter-
acting with everyday household items like a microwave, kettle, cabinets, an overhead light, and an
oven. Each task aims to achieve a specific goal configuration, like opening the microwave and slid-
ing cabinet door, placing the kettle on the burner, and turning on the overhead light. The Kitchen
domain serves as a benchmark for multitask behavior in a realistic, non-navigation setting. Here,
the stitching challenge is amplified due to the complexity of the trajectories through the state space,
compelling algorithms to generalize to unseen states rather than rely solely on training trajectories.

B.2 META-WORLD

The Meta-World benchmark (Yu et al., 2019) is a comprehensive suite designed for evaluating and
advancing reinforcement learning and multi-task learning algorithms. It features 50 distinct robotic
manipulation tasks, offering a diverse and challenging environment for testing the ability of algo-
rithms to generalize and quickly acquire new skills. By providing a broad range of tasks, Meta-World
seeks to address the limitations of existing benchmarks that focus on narrow task distributions. This
benchmark is instrumental in fostering research that moves towards meaningful generalization, en-
abling algorithms to effectively learn multiple tasks and adapt to entirely new behaviors, which
is crucial for the practical application of reinforcement learning in dynamic real-world scenarios.
Following previous work (Hansen et al., 2022), we selected a total of 15 tasks from Meta-World
based on their difficulty according to one previous work (Seo et al., 2022), which categorizes tasks
into easy, medium, hard, and very hard categories. Same as Hansen et al. (2022), we discard easy
tasks and select all tasks from the remaining 3 categories. Our approach differs from previous stud-
ies (Hansen et al., 2022; Seo et al., 2022) in that we solely utilize proprioceptive state information
as input, rather than RGB frames or combined state information. This choice allows for easier
application to general reinforcement learning methods. Following the previous settings, we use a
sparse-reward signal that only provides a reward of 1 when the current task is solved and 0 other-
wise. For the success criteria, we follow the original setting in Meta-World (Yu et al., 2019). Table 1
offers a detailed setting of our multitask and sequence task.

Training Dataset. The dataset is acquired by training an RL agent with SAC on each single task.
For the multi-task setting, the entire dataset is combined by all 14 single tasks. For the sequence
task, the entire dataset is combined by all 8 single tasks, without any trajectory change.

C ADDITIONAL EXPERIMENTAL RESULTS

This section includes additional experimental results, which are ablation studies and detailed results
that help to better understand the properties of different methods and components.

C.1 OFFLINE EXPERIMENTS

In this section, we present experiments designed to evaluate the performance of our ATraDiff model
in an offline setting.
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Comparison with transition-level generation SynthER. Our objective is to verify whether ATraD-
iff can match or surpass the results achieved in previous research, specifically referencing the work
SynthER (Lu et al., 2023). To ensure a fair and accurate comparison, we meticulously replicated the
experimental settings used in Lu et al. (2023).

Our testing ground is the D4RL Locomotion benchmark, as detailed in (Fu et al., 2020). We also
extend the original dataset to 5M samples, following the settings in Lu et al. (2023).

The findings, as outlined in Table 2, are quite revealing. They indicate that our ATraDiff method gen-
erally outperforms SynthER across various datasets. This performance improvement is particularly
pronounced in high-quality datasets, underscoring the effectiveness of our approach in generating
helpful trajectories and the benefits of trajectory-level generation over transition-level generation.

Learned reward predictor. Furthermore, we introduce a reward predictor to avoiding accessing
the ground-truth reward function. Following previous work (Konyushkova et al., 2020), we use a
supervised learning from demonstrations, by minimizing the loss:

Lsup(D0) = Est∼D0
[rt −R(st, at, s

′
t)]

2,

where D0 represent the demonstration dataset with reward label, (st, at, s′t) is the state with reward
label rt, and R(st, at, s

′
t) is the learned reward function.

Results shown in Table 3 illustrate that with the reward predictor, our method could still improve the
performance of offline RL methods, but slightly worse than the result with ground-truth reward.

Task Name TD3+BC TD3+BC+SynthER TD3+BC+ours IQL IQL+SynthER IQL+ours
halfcheetah-random 11.3 12.2 12.5 15.2 17.2 17.1
halfcheetah-medium 48.1 49.9 52.3 48.3 49.6 53.1
halfcheetah-replay 44.8 45.9 46.5 43.5 46.7 49.2
halfcheetah-expert 90.8 87.2 93.6 94.6 93.3 95.2

hopper-random 8.6 14.6 15.2 7.2 7.7 8.1
hopper-medium 60.4 63.4 65.7 62.8 72.0 72.4
hopper-replay 64.4 53.4 64.7 84.6 103.2 103.6
hopper-expert 101.1 105.4 111.2 106.2 90.8 113.6
walker-random 0.6 2.3 2.1 4.1 4.2 4.3
walker-medium 82.7 84.8 87.5 84.0 84.7 89.1
walker-replay 85.6 90.5 86.3 82.6 83.3 85.4
walker-expert 110.0 110.2 111.2 111.7 111.4 111.7

Table 2: Results of the offline experiments on the D4RL Locomotion benchmark (Fu et al., 2020).
We show that ATraDiff outperforms SynthER on almost all the tasks and dataset.

Task Name TD3+BC TD3+BC+ours TD3+BC+ours w/ IQL IQL+ours IQL+ours w/
learned reward learned reward

halfcheetah-random 11.3 12.5 11.7 15.2 17.1 16.8
halfcheetah-medium 48.1 52.3 49.3 48.3 53.1 50.2
halfcheetah-replay 44.8 46.5 45.3 43.5 49.2 45.6
halfcheetah-expert 90.8 93.6 91.9 94.6 95.2 94.5

hopper-random 8.6 15.2 14.8 7.2 8.1 8.3
hopper-medium 60.4 65.7 64.5 62.8 72.4 72.2
hopper-replay 64.4 64.7 65.2 84.6 103.6 97.0
hopper-expert 101.1 111.2 108.7 106.2 113.6 108.3
walker-random 0.6 2.1 3.4 4.1 4.4 4.0
walker-medium 82.7 87.5 85.0 84.0 89.1 85.3
walker-replay 85.6 86.3 87.5 82.6 85.4 84.9
walker-expert 110.0 111.2 111.1 111.7 111.7 111.6

Table 3: Ablation study on the reward predictor. We show that with the learned reward predictor,
our ATraDiff can still improve the performance of the offline RL methods.

C.2 ABLATION STUDIES

Effect of different task prompts. Here we show that different task prompts have noticeable impacts
on performance. We conduct experiments on the Meta-World environments (Yu et al., 2019) to test
the effect of different design choices for the task prompts, focusing on how to represent the task. We
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include three different strategies, language task prompt, one-hot task prompt, and no prompt, where
the one-hot prompt simply uses a one-hot vector to represent different tasks. The result shown in
Figure 9 demonstrates that different task prompts indeed affect the performance.
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Figure 9: Ablation study on the design choices of task prompt. Different types of task prompts lead
to varied behavior and performance.
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Figure 10: Ablation study on the
random dropping strategy. The
strategy can indeed improve the
performance.

Effect of the random dropping strategy. Here we show that
the random dropping strategy is very important in the online
adaptation process with the total reward indicator. In our online
adaptation phase, when using the total reward importance indi-
cator, the importance of any trajectory will never change during
the whole training process. Hence, trajectories with high impor-
tance might always be used to update the generator, which in-
spired us to introduce a random dropping strategy. The ablation
study conducted on the D4RL Locomotion Environments (Fu
et al., 2020) shown in Figire 10 illustrates that the random drop-
ping strategy can significantly improve the performance.

C.3 FULL RESULTS

Here we present the full results for D4RL Locomotion with all 4 different offline datasets. Figure 11
shows that our ATraDiff is comparable to or better than the original RL baseline method with low-
quality data (like random data), and the performance gap between our ATraDiff and the baseline
becomes much more pronounced with medium/high-quality data (like medium-expert data).

C.4 TRAINING TIME

The experiments are conducted on a single NVIDIA RTX 4090TI GPU. The training time of ATraD-
iff is listed in Table 4.

Walker2D Hopper Halfcheetal
SAC 6.5h 7h 7h

SAC with ATraDiff 15h 17h 16.5h
RDEQ 6h 6.5h 6.5h

RDEQ with ATraDiff 14.5h 16.5h 16h

Table 4: Time cost (hours) of training SAC and RDEQ with and without ATraDiff.

C.5 ONLINE EXPERIMENTS FOR SYNTHER

We now include comparisons between our method and SynthER (Lu et al., 2023) in the online
setting. We have conducted experiments on the Meta-World Environments. This experiment is
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Figure 11: Learning curves on the D4RL Locomotion benchmark. ATraDiff (denoted as ‘w/’) is
comparable to or better than the original RL baseline method with low-quality data, and the perfor-
mance gap between ATraDiff and the baseline becomes much more pronounced with medium/high-
quality data.

crucial to demonstrate the adaptability and effectiveness of our approach in dynamic and complex
settings. For a fair comparison, we treat SynthER same as our method, combining it with RL
methods using the method in Section 4.2. The results shown in Figure 12 indicate a significant
performance advantage of our method over SynthER in these online environments.
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Figure 12: Experiment on the Meta-World benchmark. ATraDiff performs significantly better than
SynthER on complicated environments.

C.6 REWARD PREDICTOR UNDER ONLINE SETTINGS

To verify that the learned reward predictor in Section C.1 also works under the online reinforcement
learning environments, we conduct experiments that compare SAC and SAC combined with our
method with a learned reward predictor. The experiments are done in 3 D4RL environments, with
the medium-expert datasets. The results in Figure 13 show that our method with the reward predictor
also improves the performance of RL methods under the online setting.
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Figure 13: Experiments on the learned reward predictor in online reinforcement learning. Our
method with the reward predictor still significantly improves the performance of online RL methods.

D VISUALIZATIONS

In this section, we show some representative visualizations of our generated image trajectories. We
present a variety of images generated under different conditions, including varying initial states and
a range of tasks. The labels in the left of the figures represent the task. The results demonstrate the
robustness and effectiveness of our image generation method, consistently performing well across
diverse scenarios and producing high-quality and temporally coherent image trajectories.
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