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Abstract

Unsupervised anomaly detection (AD) methods typically assume clean training
data, yet real-world datasets often contain undetected or mislabeled anomalies,
leading to significant performance degradation. Existing solutions require access
to the training pipelines, data or prior knowledge of the proportions of anomalies
in the data, limiting their real-world applicability. To address this challenge, we
propose EPHAD, a simple yet effective test-time adaptation framework that updates
the outputs of AD models trained on contaminated datasets using evidence gath-
ered at test time. Our approach integrates the prior knowledge captured by the
AD model trained on contaminated datasets with evidence derived from multi-
modal foundation models like Contrastive Language-Image Pre-training (CLIP),
classical AD methods like the Latent Outlier Factor or domain-specific knowledge.
We illustrate the intuition behind EPHAD using a synthetic toy example and vali-
date its effectiveness through comprehensive experiments across eight visual AD
datasets, twenty-six tabular AD datasets, and a real-world industrial AD dataset.
Additionally, we conduct an ablation study to analyse hyperparameter influence
and robustness to varying contamination levels, demonstrating the versatility and
robustness of EPHAD across diverse AD models and evidence pairs. To ensure
reproducibility, our code is publicly available2.

1 Introduction

Anomaly detection (AD) is the basis of many critical applications, including cybersecurity (Xiao
et al., 2024; Li et al., 2023a), healthcare (Bijlani et al., 2024; Huang et al., 2024), and industrial
maintenance (Schwarz et al., 2025; Patra et al., 2024). By enabling the identification of abnormalities,
potential threats, or critical system failures, AD contributes to the robustness and safety of real-world
systems. Despite its significance, AD remains a challenging task due to the inherent difficulty in
characterising anomalous behaviours and the lack of prior knowledge about anomalous samples (Ruff
et al., 2021). Consequently, AD is commonly approached as an unsupervised representation learning
problem without access to labelled anomalies (Batzner et al., 2024; You et al., 2022).

A standard approach in unsupervised AD involves training a model to learn a “compact” representation
of the normal samples from a training dataset under the assumption that the training data is “clean",
i.e. contains only normal samples (Ruff et al., 2021). Then, anomalies are identified as deviations
from this learned normality. One-class (OC) classification methods (Ruff et al., 2018; Tax and Duin,
2004) learn a decision boundary that encompasses all the normal samples. In contrast, density-based
methods (Gudovskiy et al., 2022; Yu et al., 2021) learn the probability distribution of normal samples.
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Furthermore, memory bank-based approaches (Roth et al., 2022) store the features corresponding
to normal samples in a memory bank. However, real-world datasets are often contaminated with
undetected anomalies (Das et al., 2025; Hien et al., 2024; Qiu et al., 2022). For example, a dataset
collected for industrial maintenance may already include unnoticed defects. This leads to biased AD
models that struggle to reliably distinguish between normal and anomalous instances.

We consider the more realistic setting where the training data may be contaminated with anomalies.
Existing approaches to handle contamination in the unsupervised setting primarily follow two
strategies. The first employs an auxiliary OC classifier to filter out suspected anomalies (Yoon et al.,
2022; Jiang et al., 2022), while the second modifies the training pipeline to enhance robustness against
contamination (Qiu et al., 2022; Eduardo et al., 2020). Although effective, these methods rely on prior
knowledge of the proportion of anomalies in the training data, i.e. the contamination ratio, which is
typically unknown. Also, such methods are often computationally expensive. In the semi-supervised
setting, methods leverage additional labelled datasets containing normal and anomalous samples
(Hien et al., 2024; Ruff et al., 2020). However, their effectiveness diminishes when the anomalous
instances encountered during training do not replicate real-world anomalies (Perini et al., 2025).

In this work, we aim to mitigate the possible adverse effects of data contamination on the performance
of unsupervised AD models (Bouman et al., 2024). Specifically, we address the challenging setting
in which training pipelines, data, or prior knowledge of the proportions of anomalies cannot be
accessed. This scenario reflects the growing trend of deploying proprietary AD models in real-world
applications, where access to internal model components is often restricted. Even when fine-tuning is
permitted, it is not only computationally intensive but also unreliable due to the absence of guaranteed
clean training data, as anomalies are inherently unknown a priori. This setup aligns with preparation-
agnostic test-time adaptation (TTA) methods (Karmanov et al., 2024; Zhang et al., 2023; Xiao and
Snoek, 2024) , which remain largely unexplored in the context of AD. To address this gap, we
introduce the Evidence-based Post-Hoc Adjustment Framework for Anomaly Detection (EPHAD),
a simple yet effective method that adjusts the outputs of a pretrained AD model post-hoc, using
evidence collected at test time.

Notably, we establish conceptual links between EPHAD and recent advances in test-time alignment
for generative models (Mudgal et al., 2024; Li et al., 2024; Korbak et al., 2022), underscoring its
broader significance. EPHAD is flexible and can incorporate various forms of evidence, including
foundation models like Contrastive Language–Image Pre-training (CLIP) (Zhou et al., 2024; Jeong
et al., 2023), classical AD methods such as Latent Outlier Factor (LOF) (Breunig et al., 2000), and
domain-specific knowledge. Our core contributions are summarised below:

• We introduce EPHAD, a simple yet effective TTA framework for unsupervised AD models
trained on contaminated datasets. Unlike existing approaches, it requires no access to
training pipelines, data or prior knowledge of the proportions of anomalies in the data,
making it highly practical for real-world deployments.

• EPHAD performs TTA by combining the prior knowledge captured by the AD model trained
on the contaminated dataset and an evidence gathered at test-time. This principled formula-
tion allows for conceptual connections to recent test-time alignment techniques in generative
modelling.

• We illustrate the intuition behind EPHAD using a carefully designed toy example. Further-
more, extensive experiments across eight visual AD, twenty-six tabular AD datasets, and
a real-world industrial AD dataset demonstrate the effectiveness of EPHAD across diverse
unsupervised AD models, evidence pairs.

2 Related work

Unsupervised AD. Over the years, numerous approaches have been developed for unsupervised
AD, which can be broadly categorised into four main families: one-class classifiers (OCCs), feature
embedding-based, density-based, and reconstruction-based methods. OCCs aim to learn a decision
boundary that encapsulates all normal samples. Classical OCC approaches employ shallow models
such as support vector-based methods that learn a maximum-margin hyperplane (Schölkopf et al.,
2001) or a hypersphere (Tax and Duin, 1999). To mitigate the limitations of manual feature engi-
neering and extend to high-dimensional data, deep learning-based variants like DeepSVDD (Ruff
et al., 2018) have been introduced. Feature embedding-based methods, on the other hand, leverage
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pre-trained deep models to extract representations of input data. These representations are then either
stored in a memory bank (Roth et al., 2022; Lee et al., 2022) or used to train a student-teacher network
(Zhang et al., 2024; Batzner et al., 2024; Patra and Ben Taieb, 2024). Density-based methods detect
anomalies by estimating the probability distribution of normal samples, assuming that anomalies
reside in low-density regions. While early methods include KDE (Kim and Scott, 2012), more recent
deep-learning-based variants include DAGMM (Zong et al., 2018), CFLOW (Gudovskiy et al., 2022),
and FastFlow (Yu et al., 2021). Lastly, reconstruction-based approaches learn to map normal samples
into a lower-dimensional bottleneck and reconstruct them. The inability to accurately reconstruct
samples during inference serves as a detection criterion. For a more comprehensive survey, we refer
readers to Liu et al. (2024) and Ruff et al. (2021).

Data contamination. Handling dataset contamination in AD typically assumes a low proportion
of anomalies, allowing methods to prioritise normal instances (inlier priority) (Wang et al., 2019).
However, in practice, this assumption is difficult to ensure since anomalies are often unknown. To
mitigate contamination, Yoon et al. (2022) proposed a data refinement approach using an ensemble
of one-class classifiers (OCCs) to filter suspected anomalies and create a cleaner dataset. While
effective, this method incurs high computational costs and discards anomalies rather than leveraging
them for improved generalisation via Outlier Exposure (Hendrycks et al., 2019). To address this, Qiu
et al. (2022) introduced Latent Outlier Exposure (LOE), which iteratively assigns anomaly scores and
infers labels using block coordinate descent while incorporating the contamination ratio to prevent
degenerate solutions. However, estimating the contamination ratio remains a challenge. Perini et al.
(2022) tackled this by leveraging an auxiliary dataset with a known contamination ratio, assuming
domain similarity. Alternatively, Perini et al. (2023) fits a Dirichlet Process Gaussian Mixture Model
to anomaly scores, though this approach lacks a closed-form solution. Despite these advancements,
existing methods introduce computational overhead and are often impractical for modern pre-trained
proprietary models, limiting their real-world applicability.

3 Background

Let X ∈ X and Y ∈ Y denote a pair of random variables following a joint probability distribution
PX,Y over the space X × Y , where X ⊆ Rd and Y := {−1,+1}. Here, Y = +1 corresponds to
the normal class, while Y = −1 represents the anomalous class. The conditional distribution of
normal samples is PX|Y=+1 denoted as P+

X with PDF f+
X . Likewise, the conditional distribution of

anomalous samples is PX|Y=−1 denoted as P−
X , with PDF f−

X . The training dataset D+
train := {xi}mi=1

contains only normal samples (uncontaminated) i.e., xi
iid∼ P+

X . We denote the test dataset as

Dtest := {(xi, yi)}ni=1 which contains both normal and anomalous samples i.e, (xi, yi)
iid∼ PX,Y .

Density-based anomaly detection. An anomaly can be defined as “an observation that deviates
significantly from some concept of normality” (Ruff et al., 2021). This definition comprises two
key aspects: the concept of normality and the significant deviation from it, which can be formalised
using a probabilistic framework. The concept of normality is defined as the probability distribution of
normal samples P+

X . To formalise this further, we adopt the concentration assumption (Steinwart et al.,
2005), which posits that although the data space X is unbounded, the high-density regions of P+

X are
bounded and concentrated. In contrast, P−

X is assumed to be non-concentrated (Schölkopf and Smola,
2002), and is often approximated by a uniform distribution over X (Tax, 2001). Given the PDF f+

X

associated with P+
X , which we refer to as inlier density, a data point x ∈ X is identified as an anomaly

if it deviates substantially from this concept of normality, i.e., if it resides in a low-probability region
under P+

X . However, since f+
X is typically unknown in practice, density-based methods approximate

it using a density estimator.

Score-based anomaly detection. Density estimation poses significant challenges, particularly in
high-dimensional spaces or when data is sparse, and often incurs substantial computational cost.
Fortunately, in the context of anomaly detection, the goal is typically not to recover the exact data
likelihood but rather to establish a ranking of data points based on their degree of normality. This
motivates an alternative strategy: learning an anomaly score function sout(x) : X → R , which directly
assigns an anomaly score to a data point x ∈ X , thereby quantifying its degree of anomalousness
(Ruff et al., 2021). To complement this, the inlier score function is defined as sin(x) = −sout(x) ,
capturing the degree of normality, where higher values indicate that x is normal. For AD, first, we
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train a model to learn the anomaly score function s+out(x) using D+
train. Then, we define the anomaly

detector as

gλs
(x) =

{
+1, if s+out(x) ≤ λs

−1, if s+out(x) > λs
(1)

where λs ≥ 0 is a pre-determined threshold (Perini et al., 2023, 2022). The density-based AD method
can also be interpreted as a specific case of the score-based AD methods where the anomaly score
s+out(x) = −ϕ(f+

X(x)) and ϕ(·) is an order-preserving transformation chosen to be the logarithm.

Data contamination. For training the AD method, a common assumption is that the training dataset
D+

train consists solely of i.i.d. samples from the normal data distribution P+
X , without anomalies.

However, this assumption is rarely satisfied in practice, since anomalies are typically unknown a
priori. As a result, the training dataset is often contaminated with undetected anomalies. A more
realistic assumption is that the dataset D±

train := {xi}mi=1 contains both normal and anomalous
samples drawn from a mixture distribution P±

X with PDF f±
X (Huber and Ronchetti, 2011; Huber,

1992). Letting ϵ = P(Y = −1) denote the contamination factor, P±
X can be written as

P±
X = ϵP−

X + (1− ϵ)P+
X . (2)

As ϵ increases, the model trained on D±
train becomes biased towards the anomalous regions, reducing

its ability to separate normal from anomalous samples (Qiu et al., 2022; Yoon et al., 2022). The
existing literature examining the impact of contamination on unsupervised AD methods (Jiang et al.,
2022; Qiu et al., 2022; Hien et al., 2024; Perini et al., 2023, 2022) typically considers contamination
levels ranging from 0% to 20%. Additionally, an analysis of 57 datasets spanning Natural Language
Processing and Computer Vision in ADBench (Han et al., 2022) [Appendix B.2, Figure B1] revealed
that nearly 70% of the datasets exhibit anomaly ratios below 10%, with a median of 5%.

4 EPHAD: An evidence-based post-hoc adjustment framework

We consider the realistic scenario in which an AD model has already been trained on a possibly
contaminated dataset D±

train. Instead of retraining the model, our goal is to adapt its test-time
predictions to mitigate the impact of contamination. To this end, we introduce a novel Evidence-based
Post-Hoc Adjustment Framework for Anomaly Detection (EPHAD), that corrects model predictions
using an evidence function at test-time. The evidence function T (x) : X → R assigns higher values
to samples deemed more likely to be normal and can incorporate domain-specific knowledge. Thus,
EPHAD aligns with preparation-agnostic TTA methods (Xiao and Snoek, 2024).

For density-based AD (refer to Section 3), anomalies are identified as samples lying in the low-density
regions under the distribution of normal samples P+

X . However, due to data contamination, the trained
model estimates the PDF f±

X of the contaminated distribution P±
X , as defined in (2), rather than

the inlier PDF f+
X . Given an evidence function T (x), EPHAD computes a revised PDF f̌±

X using
exponential tilting as:

f̌±
X (x) =

f±
X (x) exp(T (x)/β)

Zβ
X

, (3)

where exp(T (x)/β) is the evidence scaled by a temperature parameter β ∈ R and Zβ
X =∫

X f±
X (x) exp(T (x)/β) dx is the normalising constant. This formulation upweights normal samples

according to the evidence while maintaining consistency with the model’s original density.

Proposition 4.1 provides a condition under which the revised PDF f̌±
X is closer to the inlinear PDF of

normal samples f+
X than the contaminated PDF f±

X , in terms of Kullback–Leibler (KL) divergence.

Proposition 4.1. Let f+
X , f±

X , and f̌±
X be PDFs over the same domain X . Then the KL divergence

between f+
X and f̌±

X is strictly less than the divergence between f+
X and f±

X iff

Ex∼P+
X

[
log

exp(T (x)/β)

Zβ
X

]
> 0. (4)

The proof is provided in Appendix A.1. Consequently, when condition (4) holds, the revised
density f̌±

X (x) assigns higher relative likelihoods to true inliers, leading to improved separation

4



between normal and anomalous samples. Hence, we expect EPHAD to yield better anomaly detection
performance than the unadjusted model f±

X (x), provided that a suitable detection threshold is used.

Moreover, it can be shown that (3) is the optimal solution to the KL-regularised objective

JKL(f̌
±
X ) := Ex∼f̌±

X
[T (x)]− β KL(f̌±

X∥f±
X ). (5)

This objective balances two competing goals: aligning the adjusted PDF with the evidence (first
term) and maintaining fidelity to the original PDF (second term). The temperature parameter β
controls this trade-off, recovering the evidence-driven solution as β → 0 and reverting to the original
model as β → ∞. For the proof of (5), see Korbak et al. (2022). This interpretation also highlights
a close connection to well-established TTA approaches used in generative models (Korbak et al.,
2022; Mudgal et al., 2024; Li et al., 2024), where the model is viewed as an RL policy fine-tuned
with a reward function encoding evidence or alignment criteria. In this view, EPHAD performs a
KL-regularised shift of the contaminated density f±

X toward regions favored by the evidence function
T (x) while preserving consistency with f±

X through the KL term.

4.1 Extension to score-based anomaly detection

Since estimating explicit densities is often infeasible in high-dimensional spaces, most modern AD
methods rely on scores rather than PDFs. Recall that the inlier score function is an order-preserving
transformation of the inlier PDF, i.e., s+in (x) = ϕ(f+

X(x)), where ϕ(·) is a monotonic transformation
such as the logarithm. When trained on contaminated data D±

train, the model learns a contaminated
inlier score s±in (x) = ϕ(f±

X (x)). Although ϕ is typically unknown and possibly non-invertible, the
sample ranking induced by s±in (x) is identical to that induced by f±

X (x)).

Following energy-based model (EBM) formulations (LeCun et al., 2006), we can define the associated
contaminated PDF as

f̃±
X (x) =

exp(s±in (x))

Ze
X

, (6)

where Ze
X =

∫
X
exp(s±in (x)) is the normalising constant. Applying exponential tilting to f̃±

X (x) as
in (3), we obtain:

ˇ̃
f±
X (x) =

f̃±
X (x) exp(T (x)/β)

Zβ
X

=
exp(s±in (x)) exp(T (x)/β)

Zβ
XZe

X

. (7)

Under Proposition 4.1, when condition (4) holds, the revised ˇ̃
f±
X is closer to the true inlier density

f+
X in KL divergence than the unadjusted f̃±

X . Because AD depends only on the relative ordering
of samples, the normalization constants in (7) can be ignored. The exponential mapping is strictly
monotonic, so ranking and decision regions are preserved. Consequently, we can write

ˇ̃
f±
X (x) ∝ exp(s±in (x) + T (x)/β) := š±in (x), (8)

where we define š±in as the revised inlier score. The anomaly detector in (1) can thus be redefined as

gλs
(x) =

{
+1, if š±in (x) ≥ λs,

−1, otherwise.
(9)

This extension allows EPHAD to operate directly on score-based AD models, enabling post-hoc
correction of models trained on contaminated datasets without requiring retraining or access to the
original training procedure. In all subsequent experiments, we adopt this score-based formulation of
EPHAD, reflecting the dominance of score-based methods in modern anomaly detection practice.

4.2 An illustrative example

To illustrate the effect of EPHAD, we use a toy dataset inspired by Qiu et al. (2022). The dataset
is generated using a two-dimensional mixture model comprising three Gaussian components:
c1 := N (µ1,Σ1), c2 := N (µ2,Σ2), c3 := N (µ3,Σ3). Here, each component follows a Gaus-
sian distribution N (µ,Σ) with mean µ and covariance Σ. Normal samples are drawn from f+

X = c1,
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Figure 1: DeepSVDD trained on 2D synthetic contaminated training data with different configurations:
(I) Supervised AD with ground truth labels for reference, (ii)“Blind” considering all samples as
normal, (iii) “Refine” filtering out a fraction of the anomalies, and (iv) EPHAD updating the “Blind”
anomaly detector using evidence computed on the samples available at test-time.

with µ1 = [1, 1]T and Σ1 = 0.07 I2. Anomalous samples are drawn from a mixture distribution
f−
X := 0.5c2 + 0.5c3 where µ2 = [−0.25, 2.5]T , µ3 = [−1, 0.5]T and Σ2 = Σ3 = 0.03 I2. The

extended implementation details is provided in Appendix B.2. Using this setting, we create a contam-
inated dataset consisting 100 data points. We compare the baseline DeepSVDD (Ruff et al., 2018)
across three configurations as illustrated in Figure 1: (i) “Blind”, (ii) “Refine”, and (iii) with EPHAD.
We refer to the baseline model that treats all samples as normal as “Blind”, while “Refine” denotes
a model that iteratively filters out suspected anomalies during training. As an evidence function in
EPHAD, LOF (Breunig et al., 2000) is computed on test samples at test time. The results in Figure
1 demonstrate that the “Blind” configuration mistakenly considers all anomalies as normal. The
“Refine” configuration improves performance by filtering out a subset of anomalies. Finally, EPHAD
establishes a clearer boundary around normal samples.

4.3 Determining the temperature parameter β

As previously discussed, EPHAD has only a single hyperparameter, β, which controls the trade-off be-
tween reliance on the original AD model and the evidence function T (x). A straightforward approach
to selecting β would involve evaluating the AD performance of the prior and T (x) individually on a
validation set and choosing β accordingly. However, this strategy introduces additional computational
overhead at test time and requires access to a labelled validation set of sufficient size to ensure reliable
performance estimation – conditions often impractical in real-world deployments. To address this
limitation, we propose an adaptive extension of our approach, termed EPHAD-Ada, that determines
the optimal β in an unsupervised manner using only test data at test time. This adaptation is inspired
by the principle of Entropy Minimisation (EM) (Press et al., 2024), a widely-used technique in
test-time adaptation (Xiao and Snoek, 2024). Motivated by the observation from Wang et al. (2021)
that models tend to be more accurate when predictions are made with high confidence, we apply it
to compute the hyperparameter β. Specifically, the computation of β depends on the entropy of the
inlier probabilities derived from the scores of both the original model and the evidence function.

Computing inlier probability from the output scores. For an output score s ∈ R, the class label
given the score can be modelled as a conditional random variable Y | S = s. Following this, the
inlier probability can be expressed as

pY=+1(s) := P(Y = +1 | S = s) = P(S > s) = 1− ps, (10)

where ps := P(S ≤ s). Since ps is unknown in practice, we follow the approach of Perini et al.
(2021) and treat it as a random variable Ps with a prior distribution Beta(1, 1), corresponding to a
uniform prior over [0, 1]. Given that the label Y ∈ {+1,−1}, we model the conditional distribution
Y | S = s as a Bernoulli random variable. To estimate ps, we draw samples s′ ∼ S by first sampling
x ∼ X and then computing the corresponding anomaly score s′. We record a success (b = 1) if
s′ ≤ s, and a failure (b = 0) otherwise. Repeating this procedure n times yields t successes and
n− t failures. Then, according to Theorem 2 in Perini et al. (2021), the posterior distribution of Ps

given the observed binary outcomes b1, . . . , bn is Beta(1 + t, 1 + n− t). We estimate ps using the
posterior mean of Ps as

ps := E[Ps] =
1 + t

2 + n
. (11)
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In practice, the posterior is inferred from test samples, so the sample size n is constrained by the
number of available test points. Finally, combining Equations (10) and (11), we obtain the estimated
inlier probability for a data point x with anomaly score s as

pY=+1(s) = 1− ps = 1− 1 + t

2 + n
. (12)

Finally, using (12), we compute the inlier probabilities poY=+1(x) := pY=+1(s
±
in (x)) and

peY=+1(x) := pY=+1(T (x)) from the scores of the original model and the evidence function,
respectively.

Computing the value of the hyperparameter β. We define the empirical entropy of the binary
predictive PMF pY (x) as

H(pY ) = −
∑

x∈Dtest

[pY=+1(x) log pY=+1(x) + pY=−1(x) log pY=−1(x)] . (13)

The adaptive temperature parameter is then defined as

βada =
H(peY )

H(poY ) + δ
, (14)

where δ > 0 is a small constant introduced to ensure numerical stability. A low H(poY ) indicates that
the original AD model produces confident (low-entropy) predictions, suggesting that a higher value
of β should be used to place greater trust in this model. Conversely, a lower H(peY ) implies higher
confidence in the evidence function, motivating a smaller β. Through this formulation, EPHAD-Ada
enables unsupervised, test-time determination of β, thereby improving practicality and eliminating
the need for labelled validation data.

5 Experiments

We evaluate the effectiveness of EPHAD for unsupervised AD across a range of datasets, including
visual AD datasets (Section 5.1), tabular AD datasets (Section 5.2), and an industrial AD use case
(Appendix C.2). To systematically investigate the impact of contamination at different levels in a
rigorous and reproducible way, we introduce controlled contamination into the data, adhering to
the experimental design employed in several prior studies (Jiang et al., 2022; Wang et al., 2025;
Zhou and Wu, 2024). The evidence functions employed in the experiments are computed in an
unsupervised manner without utilising ground-truth labels in the test set Dtest, mitigating the risk
of overfitting. Unless stated otherwise, we use a contamination factor of ϵ = 0.1 and a parameter
β = 0.5. An ablation study on different values of ϵ and β is presented in Section 5.3. For image and
tabular datasets, we evaluate performance using the AUROC. Following prior work (Roth et al., 2022;
Gudovskiy et al., 2022), AUROC is averaged across all categories for each dataset.

5.1 Experiments on visual AD datasets

Benchmark datasets. We assess the effectiveness of EPHAD in both sensory and semantic anomaly
detection. Sensory AD focuses on detecting physical defects or imperfections, such as a broken
capsule or a cut in a carpet, while semantic AD identifies anomalies belonging to a different semantic
class—for instance, treating cats as normal and any other animal as anomalous. For sensory AD
in industrial contexts, we evaluate performance using four well-established benchmark datasets:
MVTecAD (Bergmann et al., 2019), MPDD (Jezek et al., 2021), ViSA (Zou et al., 2022), and RealIAD
(Wang et al., 2024). For semantic AD, we utilise four commonly used datasets, including CIFAR-10,
Fashion-MNIST, MNIST, and SVHN. Following the one-vs-rest protocol (Qiu et al., 2022), we
construct k AD tasks per dataset, where k corresponds to the number of classes. For MVTecAD,
ViSA, MPDD and RealIAD, we adopt the “overlap” setting, introducing ϵ% contamination into the
training set by randomly selecting anomalous samples from the test set while retaining them in the test
set Jiang et al. (2022). For the remaining datasets, we follow the “non-overlapping” setting, excluding
anomalous samples used for contamination simulation from the test set. Our implementation is based
on the public codebase from Jiang et al. (2022). Additional details are provided in Appendix B.1.

Baseline AD methods. We evaluate the performance of several state-of-the-art unsupervised anomaly
detection methods, including PatchCore (Roth et al., 2022), PaDim (Defard et al., 2021), CFLOW
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Table 1: Performance on both sensory and semantic AD benchmarking datasets with 10% contamina-
tion ratio. Style: AUROC % (± SE). Best in bold.

Non-overlap OverlapMethod
MNIST FMNIST CIFAR10 SVHN RealIAD MVTec MPDD ViSA

CLIP 71.15 95.63 98.63 58.46 65.74 86.34 60.02 74.47
CFLOW 77.24 (± 1.01) 72.87 (± 0.48) 65.47 (± 0.02) 55.09 (± 0.09) 76.42 (± 0.47) 87.58 (± 0.77) 66.69 (± 2.06) 75.71 (± 1.28)

+ EPHAD 78.40 (± 0.81) 92.97 (± 0.19) 97.38 (± 0.01) 55.82 (± 0.06) 71.58 (± 0.17) 87.98 (± 0.12) 65.22 (± 0.93) 78.53 (± 0.27)

+ EPHAD-Ada 78.08 (± 0.91) 91.63 (± 0.29) 96.43 (± 0.0) 55.78 (± 0.04) 73.86 (± 0.24) 89.84 (± 0.3) 67.81 (± 1.63) 79.64 (± 0.63)

DRÆM 71.44 (± 0.29) 76.53 (± 0.18) 63.41 (± 0.26) 51.55 (± 0.07) 67.46 (± 0.21) 70.55 (± 1.97) 62.32 (± 1.96) 69.61 (± 1.57)

+ EPHAD 73.51 (± 0.39) 92.46 (± 0.25) 97.17 (± 0.02) 54.18 (± 0.07) 69.89 (± 0.23) 87.13 (± 0.39) 67.02 (± 0.29) 76.89 (± 0.99)

+ EPHAD-Ada 72.88 (± 0.33) 84.96 (± 0.97) 87.73 (± 1.52) 53.79 (± 0.36) 70.15 (± 0.05) 87.24 (± 0.39) 69.55 (± 0.42) 74.95 (± 1.15)

FastFlow 82.65 (± 0.43) 83.66 (± 0.06) 62.94 (± 0.37) 54.02 (± 0.11) 82.03 (± 0.08) 84.24 (± 1.07) 71.94 (± 0.87) 77.83 (± 0.22)

+ EPHAD 83.20 (± 0.43) 93.49 (± 0.07) 97.34 (± 0.02) 55.07 (± 0.07) 77.22 (± 0.08) 87.68 (± 0.5) 66.84 (± 0.34) 80.29(± 0.07)

+ EPHAD-Ada 82.83 (± 0.44) 92.10 (± 0.14) 96.24 (± 0.05) 55.26 (± 0.17) 81.1 (± 0.06) 88.07 (± 0.8) 70.08 (± 0.41) 80.71 (± 0.08)

PaDiM 87.50 (± 0.23) 86.84 (± 0.06) 62.53 (± 0.4) 55.49 (± 0.28) 80.39 (± 0.35) 77.85 (± 0.43) 36.58 (± 2.58) 73.07 (± 0.27)

+ EPHAD 87.45 (± 0.22) 94.66 (± 0.03) 97.10 (± 0.03) 56.94 (± 0.22) 75.94 (± 0.25) 86.58 (± 0.38) 55.48 (± 0.72) 77.73 (± 0.27)

+ EPHAD-Ada 87.56 (± 0.23) 92.87 (± 0.02) 90.23 (± 0.67) 57.09 (± 1.05) 79.56 (± 0.28) 86.10 (± 0.52) 49.06 (± 1.52) 76.62 (± 0.38)

PatchCore 86.33 (± 0.09) 78.97 (± 0.06) 75.69 (± 0.09) 69.64 (± 0.04) 70.08 (± 0.07) 70.51 (± 0.7) 53.58 (± 0.54) 27.2 (± 0.31)

+ EPHAD 86.36 (± 0.1) 94.73 (± 0.01) 97.74 (± 0.01) 61.31 (± 0.0) 69.76 (± 0.2) 86.45 (± 0.14) 60.58 (± 1.12) 62.94 (± 0.41)

+ EPHAD-Ada 86.38 (± 0.1) 89.99 (± 0.2) 96.63 (± 0.09) 68.4 (± 0.52) 77.18 (± 0.09) 83.53 (± 0.18) 56.97 (± 1.23) 48.60 (± 0.51)

RD 77.33 (± 0.09) 84.11 (± 0.72) 66.29 (± 0.31) 55.54 (± 0.58) 89.13 (± 0.18) 80.08 (± 1.32) 75.08 (± 1.75) 86.33 (± 0.46)

+ EPHAD 78.19 (± 0.28) 95.77 (± 0.03) 98.40 (± 0.0) 57.38 (± 0.14) 69.35 (± 0.26) 85.82 (± 0.31) 62.62 (± 0.27) 77.76 (± 0.19)

+ EPHAD-Ada 78.91 (± 0.21) 95.64 (± 0.04) 98.0 (± 0.17) 57.78 (± 0.5) 72.78 (± 0.43) 86.69 (± 0.38) 63.97 (± 0.88) 79.42 (± 0.34)

ULSAD 90.83 (± 0.08) 88.64 (± 0.13) 72.45 (± 0.18) 64.27 (± 0.22) 89.06 (± 0.01) 91.93 (± 0.15) 77.67 (± 0.42) 86.58 (± 0.13)

+ EPHAD 90.41 (± 0.06) 95.03 (± 0.07) 97.90 (± 0.02) 58.17 (± 0.18) 80.58 (± 0.06) 91.31 (± 0.06) 72.79 (± 1.05) 85.82 (± 0.1)

+ EPHAD-Ada 90.8 (± 0.07) 94.55 (± 0.08) 97.29 (± 0.02) 59.68 (± 0.16) 85.84 (± 0.04) 92.25 (± 0.07) 76.31 (± 1.04) 87.23 (± 0.05)

(Gudovskiy et al., 2022), FastFLOW (Yu et al., 2021), DRÆM (Zavrtanik et al., 2021), Reverse
Distillation (RD) (Deng and Li, 2022), and ULSAD (Patra and Ben Taieb, 2024), both with and
without the integration of EPHAD. Implementations for all methods, except ULSAD, are based on the
Anomalib library (Akcay et al., 2022), while ULSAD is implemented using its official public code.
Since, to the best of our knowledge, no existing AD method with contaminated data offers post-hoc
adaptation in the same manner as EPHAD, our primary objective is to demonstrate the effectiveness of
EPHAD by comparing its relative performance against the AD model and the evidence function alone.
We also provide comparative analyses with three existing frameworks “Refine” (Yoon et al., 2022),
Latent Outlier Exposure (LOE) (Qiu et al., 2022), and SoftPatch (Jiang et al., 2022) in Appendix C.3.

Evidence function. For the experiments, we employ Contrastive Language-Image Pre-training (CLIP)
(Radford et al., 2021) as the evidence function for image-based datasets, following the anomaly
detection approach as in WinCLIP (Jeong et al., 2023). We use CLIP as the evidence function
T (x) in EPHAD. We start by defining two lists of textual prompt templates, TN = {n1, · · · , nk} and
TA = {a1, · · · , ak}, corresponding to normal and anomalous classes, respectively. These templates
are dataset-dependent, reflecting subjectivity (e.g., “missing wire" as anomalous for cables). For each
label, compute the mean of text embeddings tN and tA. Finally, given an input image x, the evidence
T (x) at test-time is computed as:

T (x) :=
exp (⟨ei(x), tA⟩/γ)

exp (⟨ei(x), tN ⟩/γ) + exp (⟨ei(x), tA⟩/γ)
.

Additional implementation details are provided in Appendix B.3.1.

While CLIP has been previously applied as a standalone zero-shot anomaly detector, our methodology
leverages it differently: we employ CLIP not as a complete detection system, but as an auxiliary
source of evidence integrated into a more general and flexible framework. Importantly, EPHAD is not
limited to foundation models such as CLIP; it can seamlessly incorporate domain-specific knowledge
as well (see Section C.2), thereby broadening its applicability across diverse domains.

Results. In our experiments, as we adopt CLIP in the same manner as WinCLIP (Jeong et al.,
2023), the baseline CLIP results reported here directly correspond to the standalone performance of
WinCLIP. In Table 1, we observe that while zero-shot AD using CLIP performs well on real-world
image datasets such as CIFAR10 and FMNIST, its effectiveness declines on domain-specific datasets
like MVTec, MPDD, and ViSA, where existing AD methods, such as ULSAD, achieve superior
performance. However, when these AD methods are used within the EPHAD framework with CLIP
as an evidence function in a post-hoc manner, their performance improves in most cases. Notably,
even when CLIP-based AD alone does not achieve the best results, as seen in SVHN, incorporating it
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Table 2: Performance on tabular AD benchmarking datasets with 10% contamination ratio. Style:
AUROC % (± SE). Best in bold. † represents transductive inference.

Dataset aloi cover glass ionosphere letter pendigits vowels wine
LOF† 72.64 (± 0.1) 52.12 (± 0.1) 77.52 (± 0.93) 82.43 (± 0.16) 83.15 (± 0.73) 47.21 (± 0.12) 89.1 (± 0.67) 97.57 (± 1.46)

COPOD 51.46 (± 0.05) 78.7 (± 0.03) 76.11 (± 0.77) 79.42 (± 1.03) 56.71 (± 0.12) 88.44 (± 0.2) 56.1 (± 0.32) 80.51 (± 1.36)

+ EPHAD 52.55 (± 0.06) 79.01 (± 0.02) 79.45 (± 0.95) 81.67 (± 0.95) 57.62 (± 0.09) 88.38 (± 0.2) 58.87 (± 0.34) 86.78 (± 1.96)

+ EPHAD-Ada 53.65 (± 0.17) 79.57 (± 0.01) 81.77 (± 1.28) 84.15 (± 0.38) 71.03 (± 0.99) 87.09 (± 0.22) 75.39 (± 0.88) 93.96 (± 1.66)

DeepSVDD 54.06 (± 0.54) 75.11 (± 11.37) 64.52 (± 6.87) 83.09 (± 0.57) 50.51 (± 2.54) 74.87 (± 9.91) 64.47 (± 2.55) 82.26 (± 2.29)

+ EPHAD 64.36 (± 0.21) 75.74 (± 11.06) 80.94 (± 3.31) 84.9 (± 0.17) 61.26 (± 2.42) 72.68 (± 8.72) 76.61 (± 1.24) 92.94 (± 1.74)

+ EPHAD-Ada 70.67 (± 0.22) 75.58 (± 10.82) 80.94 (± 2.52) 85.03 (± 0.25) 65.9 (± 2.88) 74.08 (± 9.18) 82.12 (± 0.9) 93.96 (± 1.77)

ECOD 53.14 (± 0.03) 85.34 (± 0.02) 67.65 (± 0.44) 73.04 (± 0.84) 56.41 (± 0.29) 90.63 (± 0.17) 54.29 (± 0.06) 67.12 (± 2.04)

+ EPHAD 54.33 (± 0.05) 85.45 (± 0.02) 72.59 (± 0.61) 74.34 (± 0.85) 57.17 (± 0.29) 90.65 (± 0.17) 56.82 (± 0.14) 74.97 (± 2.88)

+ EPHAD-Ada 55.47 (± 0.18) 85.45 (± 0.01) 78.43 (± 1.72) 78.14 (± 0.49) 70.15 (± 1.15) 89.66 (± 0.2) 75.39 (± 0.91) 89.27 (± 2.95)

IForest 54.05 (± 0.21) 72.59 (± 1.59) 78.5 (± 1.47) 89.58 (± 1.57) 59.84 (± 0.64) 81.86 (± 1.48) 66.01 (± 0.57) 80.4 (± 3.42)

+ EPHAD 71.75 (± 0.08) 63.64 (± 0.92) 79.12 (± 1.01) 83.5 (± 0.16) 81.53 (± 0.59) 55.56 (± 0.98) 88.59 (± 0.65) 97.51 (± 1.51)

+ EPHAD-Ada 57.49 (± 0.31) 73.15 (± 1.57) 83.15 (± 1.86) 90.05 (± 1.22) 71.38 (± 0.86) 79.5 (± 1.5) 80.76 (± 0.6) 93.56 (± 2.15)

LOF 73.57 (± 0.1) 22.44 (± 0.1) 71.79 (± 1.08) 94.64 (± 0.52) 85.74 (± 0.54) 14.87 (± 0.18) 93.04 (± 0.54) 99.94 (± 0.05)

+ EPHAD 73.62 (± 0.07) 44.2 (± 0.07) 76.4 (± 0.68) 89.74 (± 0.55) 84.84 (± 0.39) 37.64 (± 0.13) 91.3 (± 0.1) 99.94 (± 0.05)

+ EPHAD-Ada 73.85 (± 0.05) 36.78 (± 0.23) 75.67 (± 0.75) 91.85 (± 0.68) 85.31 (± 0.36) 30.16 (± 1.01) 91.85 (± 0.12) 99.94 (± 0.05)

within EPHAD still leads to significant improvements. For instance, CFLOW, PaDiM, and RD exhibit
enhanced performance after using EPHAD, surpassing both CLIP and the standalone AD methods.
This highlights the effectiveness of EPHAD in refining anomaly scores for better AD performance. In
some cases, such as ULSAD on SVHN, we observe a decline in performance when integrating EPHAD
compared to the standalone AD method. This typically occurs when the AD method substantially
outperforms the evidence function. In such scenarios, overly relying on the evidence can diminish
overall performance. To mitigate this effect, careful tuning of β enables the framework to adapt
effectively to different datasets, AD methods, and evidence functions. A detailed analysis of the
impact of varying β values is presented in Section 5.3.

Using the adaptive variant, EPHAD-Ada, we observe further improvements in certain settings, such as
with PatchCore and DREAM on the RealIAD dataset. Interestingly, in cases where the default value
of β = 0.5 led to decreased performance (e.g., ULSAD on SVHN or MPDD), EPHAD-Ada manages
to overcome the problem, highlighting its effectiveness. Nevertheless, while EPHAD-Ada offers an
unsupervised mechanism for determining β, its performance is often comparable to, or slightly below,
that of EPHAD with the default value for β.

5.2 Experiments on tabular AD datasets

Benchmark datasets. We evaluate our proposed framework on 26 classical benchmark datasets from
ADBench (Han et al., 2022). The classical datasets include datasets from different domains such as
healthcare (e.g., annthyroid, breastw), astronautics (e.g. satellite), and finance (fraud). Following Qiu
et al. (2022), we preprocess, split the dataset into the train and test sets and simulate contamination
using synthetic anomalies created by adding zero-mean Gaussian noise with a large variance to the
anomalous sample from the test set.

Baseline AD methods. We compare EPHAD against IFOREST (Liu et al., 2012), LOF (Breunig et al.,
2000), DeepSVDD (Ruff et al., 2018), ECOD (Li et al., 2023b) and COPOD (Li et al., 2020) using
ADBench (Han et al., 2022).

Evidence function. We use the output of Local Outlier Factor (LOF) (Breunig et al., 2000) and
Isolation Forest (IForest) (Liu et al., 2012). Additional details provided in the Appendix B.3.2.

Results. The experimental results for a subset of the 26 benchmarking datasets are presented in
Table 2, with the extended version provided in Appendix C.1. We observe that most AD methods
benefit from our post-hoc adjustment framework EPHAD, often achieving performance improvements
that surpass both the evidence function and the AD method in isolation. For example, COPOD,
when updated with LOF as the evidence function on cover, glass and pendigits datasets, shows
this behaviour. Additionally, as seen in the image-based experiments, performance degradation in
certain cases arises when the framework places excessive emphasis on an evidence function that is
substantially weaker than the AD method. However, as previously discussed, this limitation can
be mitigated by appropriately tuning β. Similar to the results in the image-based experiments, we
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(a) Ablation on ϵ. (b) Ablation on β.

Figure 2: Ablation on parameters.

observe improvements when using the adaptive variant EPHAD-Ada. In some scenarios, we also
observe that EPHAD-Ada avoids the performance drop observed with EPHAD, such as with LOF on
the ionosphere dataset and with DeepSVDD on the pendigits dataset. Nonetheless, the performance
in most cases is similar to EPHAD with default value β, suggesting the need for further exploration.

5.3 Ablation study

In this section, we first analyse the sensitivity of EPHAD to various contamination ratios. Then, we
investigate the effect of the temperature β on AD performance.

Effect of varying contamination ratio. Here, we evaluate the sensitivity of our proposed framework
by varying the contamination ratio {0%, 5%, 10%, 15%}. The results are summarised in the Figure 2a.
Applying EPHAD results in improvements across all contamination ratios for most of the AD methods.
Furthermore, in the presence of a strong evidence function, such as CLIP, we can observe that the
performance becomes almost constant even as the contamination ratio increases from 5% to 15%.
An extended version is provided in Figure 3.

Effect of temperature parameter β. We also analyse the performance of the EPHAD by varying
the temperature parameter β. In Figure 2b, we can see how β allows for controlling the trade-off
between the prior AD method and the evidence. As discussed earlier, we observe that setting β ≈ 0
results in full reliance on T (x), while with increasing β, T (x) is disregarded and it defaults to the
prior. Additionally, EPHAD-Ada achieves performance comparable to the best configuration of EPHAD
across the explored range of β, highlighting its effectiveness. An extended version is provided in
Figure 4.

6 Conclusion

Limitations and future work. While existing AD methods can serve as domain-agnostic evidence
functions within EPHAD, the full potential of our framework is best realised by designing evidence
functions that incorporate domain-specific knowledge. Exploring the interplay between datasets,
AD methods, and evidence functions remains an open direction for future work. Another limitation
concerns the parameter β, which has a significant influence on overall performance, as demonstrated
in our experiments. Although we introduced an unsupervised strategy for estimating β in EPHAD-Ada,
this approach does not always lead to performance improvements. We hypothesize that this may stem
from uncalibrated inlier probability. Future work should thus investigate more reliable approaches for
inferring β based on the anomaly scores and the underlying distributions of normal and anomalous
samples in the test set. Finally, integrating explainability techniques into EPHAD represents an
interesting direction for future research, as it could provide deeper insights for real-world applications.

Concluding remarks. Unsupervised AD methods typically assume anomaly-free training data,
yet real-world datasets often contain undetected or mislabeled anomalies, leading to significant
performance degradation. Existing approaches to address contamination often require access to
model parameters, training data, or the training pipeline, limiting their practicality in real-world
deployments. In this work, we introduce EPHAD, a simple, post-hoc adjustment framework that refines
the outputs of any AD method trained on contaminated data by incorporating evidence collected
at test-time. Extensive experiments demonstrate the effectiveness of EPHAD across diverse sources
of evidence, multiple AD methods, and various datasets. Additionally, ablation studies analyse the
impact of hyperparameters and varying contamination levels, highlighting the robustness of EPHAD.
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Justification: We have used all publicly available datasets, and our code can be found here.
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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8. Experiments compute resources
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided information on the computer resources in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute
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9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We ensured that our work adheres to the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have used publicly available datasets, and for code, we have used open-
source GitHub repositories after citing them in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our anonymized code is accessible from here. We have also shared the details
for setting up the environment and running the code.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: LLM is solely used for grammar check and formatting purposes.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proofs

A.1 Proof of Proposition 4.1

Proof. From (2), we have
f±
X (x) = ϵf−

X (x) + (1− ϵ)f+
X(x).

Additionally, from (3), we have

f̌±
X (x) =

f±
X (x) exp(T (x)/β)

Zβ
X

Then,

DKL(f
+
X∥f̌±

X ) = Ex∼P+
X

[
log

f+
X(x)

f̌±
X (x)

]
= Ex∼P+

X

[
log f+

X(x)− log f̌±
X (x)

]
= Ex∼P+

X

[
log f+

X(x)− log
f±
X (x) exp(T (x)/β)

Zβ
X

]

= Ex∼P+
X

[
log f+

X(x)− log f±
X (x)− T (x)

β
+ logZβ

X

]
= DKL(f

+
X∥f±

X )− Ex∼P+
X

[
T (x)

β
− logZβ

X

]
= DKL(f

+
X∥f±

X )− Ex∼P+
X

[
log

exp(T (x)/β)

Zβ
X

]
.

We aim to increase the alignment between f+
X and f̌±

X . Since the KL divergence is non-negative, if
the expectation term is positive, we obtain

DKL(f
+
X∥f̌±

X ) ≤ DKL(f
+
X∥f±

X ).

Therefore, the following condition should hold:

Ex∼P+
X

[
log

exp(T (x)/β)

Zβ
X

]
≥ 0.

B Additional implementation details

B.1 Benchmark datasets

For sensory AD in industrial settings, we use three widely recognised benchmark datasets. MVTecAD
(Bergmann et al., 2019) comprises images from 15 categories (10 objects and 5 textures) with 3629
normal training images and 1258 anomalous and 467 normal test images, each containing pixel-level
annotations of defects. MPDD (Jezek et al., 2021) targets metal part defects under varying conditions,
offering 888 training images and test datasets consisting of 176 normal and 282 anomalous images
across 6 metal part categories. ViSA (Zou et al., 2022) provides 10821 high-resolution images
(9621 normal and 1200 anomalous) spanning 12 categories, capturing a range of anomalies such
as scratches, cracks, missing parts, and misplacements. Each defect type is represented by 15–20
images, and some images feature multiple defects. RealIAD (Wang et al., 2024) is a large-scale
industrial AD dataset comprising ∼ 150k images across 30 categories and having various types of
defects such as scratches, dirt and missing parts. For experiments with RealIAD, we use the training
split with 10% contamination and the test split provided by the authors. For the semantic datasets,
using the one-vs-rest protocol, we create k AD tasks for each dataset, where k is the number of
classes. In each task, one class is designated as normal, while the remaining classes are treated as
anomalous. Across both sensory and semantic AD, the training datasets consist of a mixture of
normal samples and a fraction ϵ of anomalous samples, reflecting realistic contamination scenarios.
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B.2 Details of the experiment using synthetic Data

The synthetic dataset is generated using a 2D Gaussian mixture model with three components.
Normal samples are drawn from f+

X(x) := N ([1, 1]T , 0.07I2), while anomalous samples are sampled
from f−

X (x) := N ([−0.25, 2.5]T , 0.03I2) + N ([−1, 0.5]T , 0.03I2). For the experiments, we use
DeepSVDD with a one-layer radial basis function (RBF) network. The hidden layer comprises
three neurons, with their centres fixed at the mean of each Gaussian component, while the scales are
optimized during training. The RBF network outputs a 1D scalar obtained as a linear combination of
the outputs from the hidden layer. The centre is initialized randomly and made trainable, with an
added bias term in the final layer. Although these modifications are not recommended by Ruff et al.
(2018) to avoid collapse to a trivial solution, Qiu et al. (2022) observed that these changes enhance
model flexibility and convergence. Following this, we train DeepSVDD using the Adam optimizer
with a learning rate of 0.01, 200 epochs, and a mini-batch size of 25.

B.3 Computing evidence functions

EPHAD relies on an evidence function T (x), computed during test-time, to refine anomaly scores by
assigning higher values to samples from P+

X than those from P−
X . In this section, we introduce domain-

agnostic evidence functions applicable to image (Section B.3.1) and tabular datasets (Section B.3.2).
While these functions are commonly used as standalone methods for anomaly detection, their role as
evidence functions is novel and complementary to our framework. By operating in a transductive
setting, they refine the outputs of an AD model initially trained in an inductive setting. Moreover,
as shown in Section 5, using these evidence functions solely as anomaly scores does not always
yield strong AD performance. However, when integrated into EPHAD, they significantly enhance the
performance of a pre-trained model. Finally, the choice of an T (x) is not restricted to AD methods
and can be adapted to incorporate domain-specific knowledge for improved effectiveness.

B.3.1 Evidence for visual datasets

For the evidence function in image-based AD, we propose using Contrastive Language-Image Pre-
training (CLIP) (Radford et al., 2021), a robust large-scale framework that learns joint vision-language
representations from web-collected image-text pairs. While CLIP has been explored in prior work as
a zero-shot AD method (Jeong et al., 2023; Zhou et al., 2024), its performance varies across different
datasets. Although CLIP excels in detecting anomalies in real-world image datasets such as CIFAR10,
it faces significant challenges when applied to domain-specific datasets, particularly those used for
industrial inspection, like MVTec. This limitation stems from the lack of domain-specific knowledge
in CLIP’s pre-training. In this section, we describe how CLIP is integrated into EPHAD as an evidence
function T (x), leveraging its strengths while mitigating its limitations in specialized domains.

Given a dataset D := {(xj , tj)}nj=1, CLIP trains an image encoder ei and a text encoder et using
contrastive learning (Chen et al., 2020), maximizing the cosine similarity between ei(xj) and
et(tj) for all (xj , tj) ∈ D. For an input image x, CLIP performs zero-shot classification (Radford
et al., 2021) by computing a k-way categorical distribution over a set of candidate class texts
C = {c1, . . . , ck}

p(c = cj | x; c ∈ C) := exp (⟨ei(x), et(cj)⟩/γ)∑
s∈C exp (⟨ei(x), et(s)⟩/γ)

,

where ⟨·, ·⟩ denotes the cosine similarity, and γ is a temperature parameter that controls the sharpness
of the distribution. Pairing class labels c ∈ C with prompt templates (e.g., a photo of a [c])
improves classification accuracy, and aggregating embeddings from multiple prompt variations (e.g.,
a cropped photo of a [c]) further enhances performance.

Building on Jeong et al. (2023), we use CLIP as evidence function T (x) in EPHAD. We start by defining
two lists of textual prompt templates, TN = {n1, · · · , nk} and TA = {a1, · · · , ak}, corresponding
to normal and anomalous classes, respectively. The list of prompts is provided in Table 3. These
templates are dataset-dependent, reflecting subjectivity (e.g., “missing wire" as anomalous for cables).
For each label, we generate two lists of prompts for normal and anomalous cases using TN and TA
and compute the mean of text embeddings tN and tA. Finally, given an input image x, the evidence
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Table 3: Prompts for CLIP where "c" denotes the category.
Semantic AD Sensory AD

Normal Anomalous Normal Anomalous
"c" damaged "c" a photo of the number "c" a photo of something
flawless "c" "c" with flaw
perfect "c" "c" with defect
unblemished "c" "c" with damage
"c" without flaw
"c" without defect
"c" without damage

T (x) during test-time is computed as:

T (x) :=
exp (⟨ei(x), tA⟩/γ)

exp (⟨ei(x), tN ⟩/γ) + exp (⟨ei(x), tA⟩/γ)
.

One potential concern when using pre-trained models like CLIP is the overlap between their training
data and the test samples encountered in downstream tasks. Such overlap could challenge the
assumption that test-time statistics are based solely on test data. However, Radford et al. (2021)
provides an extensive analysis of this issue and shows that excluding all overlapping samples
from CLIP’s pre-training corpus leads to only a negligible performance drop. This result suggests
that CLIP’s effectiveness stems primarily from its generalisation ability rather than memorisation.
Accordingly, our experiments emphasise this generalisation property, ensuring that the use of CLIP
within our framework remains valid.

B.3.2 Evidence for tabular datasets

For tabular datasets, we use the output of two classical unsupervised AD methods as evidence
functions T (x), namely, Local Outlier Factor (LOF) (Breunig et al., 2000) and Isolation Forest
(IForest) (Liu et al., 2012).

Local Outlier Factor. To detect anomalies, the local density of a point is compared to that of its
k-nearest neighbours. Specifically, given a dataset D := {xj}nj=1, the k-distance of a point x, denoted
as k-distance(x), is defined as the distance from x to its k-th nearest neighbor.

Based on this, the k-distance neighborhood of x, denoted as Nk(x), consists of all points whose
distance from x is at most k-distance(x). Additionally, the reachability distance of x from a neighbor
xi is computed as reach-distk(x, xi) = max{k-distance(x), d(x, xi)}, where d(x, xi) represents the
distance between x and xi.

Then, local reachability density (LRD) of x is computed as

LRDk(x) =

[∑
xi∈Nk(x)

reach-distk(x, xi)

|Nk(x)|

]−1

.

Finally, the LOF-based evidence is computed as

T (x) =

∑
xi∈Nk(x)

LRDk(xi)
LRDk(x)

|Nk(x)|
.

Isolation Forest. Anomalies are identified by recursively partitioning the data using a tree-based
method, where features and split values are selected randomly. IForest operates under the assumption
that anomalies are more susceptible to isolation due to their sparsity and distinctiveness in the feature
space. Given D, IForest constructs multiple isolation trees (ITrees), where each data point x is
assigned a depth representing the number of splits required to isolate it, referred to as the path length.
Specifically, the evidence function T (x) is computed as:

T (x) = 2−
E(h(x))

c(n) ,

where h(x) is the path length of x, i.e., the number of edges traversed from the root node to the leaf
node where x is isolated in an ITree. E(h(x)) is the expected path length, i.e., the average path length
across multiple ITrees, and c(n) is the average path length of an unsuccessful search.
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B.4 Experimental setup

For training the base AD methods, we use open-source Anomalib and ADBench libraries for experi-
ments with image and tabular datasets, respectively. Our decision to rely on these public libraries was
intentional, ensuring transparency and facilitating unbiased comparisons. For the training of each
base AD model, we used a single NVIDIA A100 GPU. Then, we run inference using EPHAD on CPU.

C Extended results

C.1 Additional experiments on tabular Datasets

Table 4, 5, 6, and 7 summarise the results on a larger set of tabular datasets from ADBench. Each
experiment is repeated with three seeds. We can observe that in most cases AD methods benefit from
our post-hoc adjustment framework EPHAD, often achieving performance improvements that surpass
both the evidence function and the AD method in isolation.

Table 4: Performance of EPHAD on tabular datasets with 10% contamination ratio and LOF as evidence
function. Style: AUROC % (± SE). Best in bold. † represents transductive inference.

COPOD DeepSVDD ECOD IForest LOF
Dataset LOF†

Blind + EPHAD Blind + EPHAD Blind + EPHAD Blind + EPHAD Blind + EPHAD
aloi 72.64 (± 0.1) 51.46 (± 0.05) 52.55 (± 0.06) 54.06 (± 0.54) 64.36 (± 0.21) 53.14 (± 0.03) 54.33 (± 0.05) 54.05 (± 0.21) 71.75 (± 0.08) 73.57 (± 0.1) 73.62 (± 0.07)

annthyroid 68.53 (± 0.12) 73.45 (± 0.08) 73.82 (± 0.08) 62.69 (± 3.33) 67.00 (± 2.15) 76.05 (± 0.11) 76.31 (± 0.11) 71.39 (± 0.34) 70.41 (± 0.13) 72.12 (± 0.57) 71.06 (± 0.24)

backdoor 70.43 (± 0.08) 75.06 (± 0.07) 78.88 (± 0.08) 78.34 (± 1.21) 76.48 (± 0.57) 83.00 (± 0.09) 85.48 (± 0.08) 51.29 (± 1.29) 70.13 (± 0.12) 46.65 (± 0.26) 69.11 (± 0.1)

breastw 46.31 (± 0.92) 99.46 (± 0.06) 98.52 (± 0.14) 98.65 (± 0.05) 95.13 (± 0.97) 99.01 (± 0.04) 97.44 (± 0.03) 99.46 (± 0.04) 64.05 (± 1.17) 73.39 (± 1.35) 62.4 (± 1.25)

celeba 41.45 (± 0.32) 72.09 (± 0.01) 61.86 (± 0.1) 67.51 (± 3.07) 55.60 (± 2.13) 73.99 (± 0.01) 63.2 (± 0.09) 40.09 (± 0.83) 40.32 (± 0.23) 42.97 (± 0.23) 40.52 (± 0.38)

cover 52.12 (± 0.1) 78.70 (± 0.03) 79.01 (± 0.02) 75.11 (± 11.37) 75.74 (± 11.06) 85.34 (± 0.02) 85.45 (± 0.02) 72.59 (± 1.59) 63.64 (± 0.92) 22.44 (± 0.1) 44.20 (± 0.07)

fault 55.00 (± 0.53) 45.69 (± 0.58) 45.66 (± 0.57) 47.34 (± 0.99) 48.59 (± 0.99) 47.00 (± 0.4) 46.87 (± 0.4) 58.08 (± 0.94) 55.92 (± 0.68) 64.41 (± 1.35) 59.93 (± 0.37)

fraud 45.75 (± 0.13) 94.39 (± 0.0) 94.24 (± 0.0) 89.98 (± 0.97) 85.1 (± 0.66) 93.86 (± 0.0) 93.62 (± 0.01) 92.95 (± 0.29) 61.88 (± 0.49) 33.92 (± 0.34) 45.26 (± 0.16)

glass 77.52 (± 0.93) 76.11 (± 0.77) 79.45 (± 0.95) 64.52 (± 6.87) 80.94 (± 3.31) 67.65 (± 0.44) 72.59 (± 0.61) 78.50 (± 1.47) 79.12 (± 1.01) 71.79 (± 1.08) 76.40 (± 0.68)

http 37.65 (± 0.09) 94.91 (± 0.01) 90.26 (± 0.04) 99.17 (± 0.08) 94.97 (± 0.2) 92.35 (± 0.02) 87.88 (± 0.04) 96.82 (± 0.37) 69.51 (± 0.62) 17.85 (± 2.03) 24.61 (± 0.89)

ionosphere 82.43 (± 0.16) 79.42 (± 1.03) 81.67 (± 0.95) 83.09 (± 0.57) 84.90 (± 0.17) 73.04 (± 0.84) 74.34 (± 0.85) 89.58 (± 1.57) 83.50 (± 0.16) 94.64 (± 0.52) 89.74 (± 0.55)

letter 83.15 (± 0.73) 56.71 (± 0.12) 57.62 (± 0.09) 50.51 (± 2.54) 61.26 (± 2.42) 56.41 (± 0.29) 57.17 (± 0.29) 59.84 (± 0.64) 81.53 (± 0.59) 85.74 (± 0.54) 84.84 (± 0.39)

lymphography 99.44 (± 0.26) 99.52 (± 0.22) 99.76 (± 0.19) 98.57 (± 0.74) 99.53 (± 0.19) 99.60 (± 0.23) 99.76 (± 0.19) 99.76 (± 0.19) 99.52 (± 0.19) 98.57 (± 0.59) 99.36 (± 0.32)

mammography 67.29 (± 0.19) 89.29 (± 0.05) 89.28 (± 0.05) 87.23 (± 0.95) 87.29 (± 1.22) 89.38 (± 0.06) 89.26 (± 0.05) 80.44 (± 0.29) 73.93 (± 0.04) 69.70 (± 0.36) 72.29 (± 0.18)

mnist 59.63 (± 0.19) 75.87 (± 0.03) 75.89 (± 0.03) 74.26 (± 4.38) 73.93 (± 4.24) 72.62 (± 0.05) 72.64 (± 0.05) 71.27 (± 0.7) 62.75 (± 0.16) 94.55 (± 0.36) 83.26 (± 0.45)

musk 39.44 (± 0.57) 91.95 (± 0.32) 91.91 (± 0.33) 88.57 (± 5.4) 87.17 (± 5.87) 71.84 (± 0.34) 71.78 (± 0.34) 89.39 (± 1.88) 57.06 (± 2.03) 20.17 (± 0.48) 32.93 (± 0.04)

optdigits 59.58 (± 0.26) 62.26 (± 0.24) 62.49 (± 0.23) 40.01 (± 10.2) 46.77 (± 8.53) 54.04 (± 0.21) 54.36 (± 0.21) 40.87 (± 4.5) 56.80 (± 0.68) 18.45 (± 0.59) 50.59 (± 0.07)

pendigits 47.21 (± 0.12) 88.44 (± 0.2) 88.38 (± 0.2) 74.87 (± 9.91) 72.68 (± 8.72) 90.63 (± 0.17) 90.65 (± 0.17) 81.86 (± 1.48) 55.56 (± 0.98) 14.87 (± 0.18) 37.64 (± 0.13)

satellite 52.90 (± 0.31) 64.33 (± 0.25) 64.40 (± 0.25) 60.59 (± 1.77) 62.63 (± 1.38) 57.57 (± 0.16) 57.61 (± 0.16) 76.31 (± 0.7) 63.85 (± 0.4) 61.01 (± 0.29) 66.72 (± 0.28)

satimage-2 52.80 (± 0.15) 97.03 (± 0.06) 97.20(± 0.06) 92.65 (± 0.46) 96.16 (± 0.31) 94.21 (± 0.03) 94.39 (± 0.02) 98.91 (± 0.09) 70.75 (± 0.44) 24.52 (± 0.87) 47.14 (± 0.17)

shuttle 55.54 (± 0.11) 99.26 (± 0.0) 99.19 (± 0.0) 97.83 (± 0.91) 97.78 (± 0.79) 98.82 (± 0.01) 98.64 (± 0.01) 99.57 (± 0.02) 81.72 (± 0.27) 99.21 (± 0.01) 99.69 (± 0.02)

smtp 89.77 (± 0.55) 79.64 (± 0.01) 80.56 (± 0.12) 84.05 (± 0.57) 86.10 (± 0.5) 87.98 (± 0.02) 88.28 (± 0.09) 89.27 (± 0.88) 89.80 (± 0.5) 43.01 (± 1.57) 89.82 (± 0.27)

thyroid 75.91 (± 0.79) 88.45 (± 0.35) 88.71 (± 0.31) 86.73 (± 3.72) 88.33 (± 3.15) 94.91 (± 0.14) 94.85 (± 0.14) 93.67 (± 0.27) 83.42 (± 0.29) 73.59 (± 1.69) 77.10 (± 0.53)

vowels 89.10 (± 0.67) 56.10 (± 0.32) 58.87 (± 0.34) 64.47 (± 2.55) 76.61 (± 1.24) 54.29 (± 0.06) 56.82 (± 0.14) 66.01 (± 0.57) 88.59 (± 0.65) 93.04 (± 0.54) 91.30 (± 0.1)

wilt 64.63 (± 0.72) 33.45 (± 0.11) 35.55 (± 0.1) 35.79 (± 1.97) 46.44 (± 1.4) 38.06 (± 0.13) 39.80 (± 0.15) 42.92 (± 1.11) 61.30 (± 0.81) 81.09 (± 0.41) 73.37 (± 0.3)

wine 97.57 (± 1.46) 80.51 (± 1.36) 86.78 (± 1.96) 82.26 (± 2.29) 92.94 (± 1.74) 67.12 (± 2.04) 74.97 (± 2.88) 80.40 (± 3.42) 97.51 (± 1.51) 99.94 (± 0.05) 99.94 (± 0.05)

Table 5: Performance of EPHAD on tabular datasets with 10% contamination ratio and IForest as
evidence function. Style: AUROC % (± SE). Best in bold. † represents transductive inference.

COPOD DeepSVDD ECOD IForest LOF
Dataset IForest†

Blind + EPHAD Blind + EPHAD Blind + EPHAD Blind + EPHAD Blind + EPHAD
aloi 54.18 (± 0.31) 51.46 (± 0.05) 51.48 (± 0.04) 54.06 (± 0.54) 54.43 (± 0.51) 53.14 (± 0.03) 53.16 (± 0.03) 54.05 (± 0.21) 54.26 (± 0.22) 73.57 (± 0.1) 69.30 (± 0.18)

annthyroid 78.62 (± 1.01) 73.45 (± 0.08) 73.85 (± 0.05) 62.69 (± 3.33) 66.63 (± 2.19) 76.05 (± 0.11) 76.20 (± 0.09) 71.39 (± 0.34) 76.91 (± 0.88) 72.12 (± 0.57) 76.67 (± 0.39)

backdoor 67.83 (± 1.69) 75.06 (± 0.07) 75.06 (± 0.06) 78.34 (± 1.21) 81.43 (± 0.72) 83.00 (± 0.09) 82.95 (± 0.09) 51.29 (± 1.29) 66.48 (± 1.43) 46.65 (± 0.26) 66.23 (± 1.04)

breastw 97.97 (± 0.14) 99.46 (± 0.06) 99.46 (± 0.05) 98.65 (± 0.05) 98.96 (± 0.04) 99.01 (± 0.04) 99.07 (± 0.04) 99.46 (± 0.04) 98.98 (± 0.09) 73.39 (± 1.35) 81.16 (± 1.08)

celeba 66.62 (± 1.04) 72.09 (± 0.01) 72.00 (± 0.01) 67.51 (± 3.07) 68.20 (± 2.59) 73.99 (± 0.01) 73.87 (± 0.01) 40.09 (± 0.83) 60.55 (± 1.07) 42.97 (± 0.23) 49.73 (± 0.63)

cover 86.11 (± 1.6) 78.70 (± 0.03) 79.01 (± 0.09) 75.11 (± 11.37) 77.54 (± 9.82) 85.34 (± 0.02) 85.44 (± 0.06) 72.59 (± 1.59) 82.94 (± 1.71) 22.44 (± 0.1) 76.71 (± 2.42)

fault 52.02 (± 0.18) 45.69 (± 0.58) 45.73 (± 0.58) 47.34 (± 0.99) 47.89 (± 0.94) 47.00 (± 0.4) 47.04 (± 0.39) 58.08 (± 0.94) 53.76 (± 0.41) 64.41 (± 1.35) 58.97 (± 0.96)

fraud 94.87 (± 0.11) 94.39 (± 0.0) 94.40 (± 0.0) 89.98 (± 0.97) 92.26 (± 0.5) 93.86 (± 0.0) 93.87 (± 0.01) 92.95 (± 0.29) 94.60 (± 0.08) 33.92 (± 0.34) 85.94 (± 0.34)

glass 77.60 (± 1.77) 76.11 (± 0.77) 76.29 (± 0.8) 64.52 (± 6.87) 69.28 (± 5.85) 67.65 (± 0.44) 68.26 (± 0.52) 78.50 (± 1.47) 77.85 (± 1.64) 71.79 (± 1.08) 81.23 (± 0.95)

http 99.99 (± 0.0) 94.91 (± 0.01) 96.84 (± 0.05) 99.17 (± 0.08) 99.24 (± 0.05) 92.35 (± 0.02) 94.49 (± 0.07) 96.82 (± 0.37) 99.63 (± 0.02) 17.85 (± 2.03) 94.04 (± 0.05)

ionosphere 81.80 (± 0.28) 79.42 (± 1.03) 79.49 (± 1.0) 83.09 (± 0.57) 83.57 (± 0.62) 73.04 (± 0.84) 73.21 (± 0.85) 89.58 (± 1.57) 85.24 (± 0.63) 94.64 (± 0.52) 94.23 (± 0.68)

letter 61.76 (± 0.26) 56.71 (± 0.12) 56.76 (± 0.12) 50.51 (± 2.54) 52.37 (± 2.32) 56.41 (± 0.29) 56.47 (± 0.29) 59.84 (± 0.64) 61.35 (± 0.32) 85.74 (± 0.54) 80.36 (± 0.32)

lymphography 99.92 (± 0.07) 99.52 (± 0.22) 99.52 (± 0.22) 98.57 (± 0.74) 99.28 (± 0.41) 99.60 (± 0.23) 99.68 (± 0.17) 99.76 (± 0.19) 99.84 (± 0.13) 98.57 (± 0.59) 99.68 (± 0.26)

mammography 83.98 (± 0.32) 89.29 (± 0.05) 89.22 (± 0.04) 87.23 (± 0.95) 87.76 (± 0.85) 89.38 (± 0.06) 89.24 (± 0.04) 80.44 (± 0.29) 83.14 (± 0.17) 69.70 (± 0.36) 83.30 (± 0.15)

mnist 75.50 (± 0.08) 75.87 (± 0.03) 75.88 (± 0.03) 74.26 (± 4.38) 76.20 (± 3.66) 72.62 (± 0.05) 72.65 (± 0.05) 71.27 (± 0.7) 74.86 (± 0.18) 94.55 (± 0.36) 91.46 (± 0.39)

musk 99.29 (± 0.33) 91.95 (± 0.32) 92.00 (± 0.32) 88.57 (± 5.4) 91.39 (± 4.15) 71.84 (± 0.34) 71.92 (± 0.35) 89.39 (± 1.88) 98.74 (± 0.21) 20.17 (± 0.48) 89.22 (± 2.5)

optdigits 58.65 (± 3.55) 62.26 (± 0.24) 62.25 (± 0.26) 40.01 (± 10.2) 42.56 (± 9.28) 54.04 (± 0.21) 54.09 (± 0.24) 40.87 (± 4.5) 53.81 (± 1.83) 18.45 (± 0.59) 38.72 (± 2.67)

pendigits 92.04 (± 0.23) 88.44 (± 0.2) 88.58 (± 0.21) 74.87 (± 9.91) 79.77 (± 8.09) 90.63 (± 0.17) 90.73 (± 0.18) 81.86 (± 1.48) 90.40 (± 0.11) 14.87 (± 0.18) 68.81 (± 1.12)

satellite 64.44 (± 0.57) 64.33 (± 0.25) 64.33 (± 0.25) 60.59 (± 1.77) 60.84 (± 1.49) 57.57 (± 0.16) 57.60 (± 0.16) 76.31 (± 0.7) 68.34 (± 0.51) 61.01 (± 0.29) 72.19 (± 0.45)

satimage-2 99.43 (± 0.07) 97.03 (± 0.06) 97.06 (± 0.06) 92.65 (± 0.46) 95.23 (± 0.06) 94.21 (± 0.03) 94.27 (± 0.03) 98.91 (± 0.09) 99.41 (± 0.06) 24.52 (± 0.87) 92.79 (± 0.16)

shuttle 98.97 (± 0.08) 99.26 (± 0.0) 99.28 (± 0.01) 97.83 (± 0.91) 98.30 (± 0.78) 98.82 (± 0.01) 98.85 (± 0.0) 99.57 (± 0.02) 99.46 (± 0.04) 99.21 (± 0.01) 99.89 (± 0.01)

smtp 90.95 (± 0.28) 79.64 (± 0.01) 81.14 (± 0.06) 84.05 (± 0.57) 87.46 (± 0.73) 87.98 (± 0.02) 88.41 (± 0.04) 89.27 (± 0.88) 90.78 (± 0.3) 43.01 (± 1.57) 88.96 (± 0.35)

thyroid 96.65 (± 0.26) 88.45 (± 0.35) 89.21 (± 0.32) 86.73 (± 3.72) 89.21 (± 2.86) 94.91 (± 0.14) 95.06 (± 0.15) 93.67 (± 0.27) 96.02 (± 0.18) 73.59 (± 1.69) 93.41 (± 0.25)

vowels 72.73 (± 0.8) 56.10 (± 0.32) 56.50 (± 0.31) 64.47 (± 2.55) 66.27 (± 2.37) 54.29 (± 0.06) 54.65 (± 0.06) 66.01 (± 0.57) 71.08 (± 0.84) 93.04 (± 0.54) 91.68 (± 0.34)

wilt 42.57 (± 1.63) 33.45 (± 0.11) 33.70 (± 0.17) 35.79 (± 1.97) 36.43 (± 1.88) 38.06 (± 0.13) 38.14 (± 0.17) 42.92 (± 1.11) 42.66 (± 1.4) 81.09 (± 0.41) 71.40 (± 0.64)

wine 58.98 (± 0.68) 80.51 (± 1.36) 80.34 (± 1.39) 82.26 (± 2.29) 81.07 (± 2.51) 67.12 (± 2.04) 67.06 (± 2.08) 80.40 (± 3.42) 68.47 (± 2.3) 99.94 (± 0.05) 99.72 (± 0.12)
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Table 6: Performance od EPHAD-Ada on tabular datasets with 10% contamination ratio and LOF as
evidence function. Style: AUROC % (± SE). Best in bold. † represents transductive inference.

COPOD DeepSVDD ECOD IForest LOF
Dataset LOF†

Blind + EPHAD-Ada Blind + EPHAD-Ada Blind + EPHAD-Ada Blind + EPHAD-Ada Blind + EPHAD-Ada
aloi 72.64 (± 0.1) 51.46 (± 0.05) 53.65 (± 0.17) 54.06 (± 0.54) 70.67 (± 0.22) 53.14 (± 0.03) 55.47 (± 0.18) 54.05 (± 0.21) 57.49 (± 0.31) 73.57 (± 0.1) 73.85 (± 0.05)

annthyroid 68.53 (± 0.12) 73.45 (± 0.08) 73.91 (± 0.06) 62.69 (± 3.33) 69.27 (± 0.94) 76.05 (± 0.11) 76.23 (± 0.06) 71.39 (± 0.34) 72.24 (± 0.36) 72.12 (± 0.57) 71.79 (± 0.39)

backdoor 70.43 (± 0.08) 75.06 (± 0.07) 75.04 (± 0.07) 78.34 (± 1.21) 78.31 (± 1.21) 83.0 (± 0.09) 82.99 (± 0.09) 51.29(± 1.29) 51.29 (± 1.29) 46.65 (± 0.26) 61.97 (± 1.74)

breastw 46.31 (± 0.92) 99.46 (± 0.06) 97.73 (± 0.06) 98.65 (± 0.05) 92.94 (± 1.83) 99.01 (± 0.04) 96.87 (± 0.26) 99.46 (± 0.04) 97.71 (± 0.21) 73.39 (± 1.35) 66.12 (± 1.49)

celeba 41.45 (± 0.32) 72.09 (± 0.01) 70.85 (± 0.07) 67.51 (± 3.07) 64.46 (± 3.06) 73.99 (± 0.01) 72.89 (± 0.06) 40.09 (± 0.83) 37.54 (± 0.87) 42.97 (± 0.23) 40.96 (± 0.34)

cover 52.12 (± 0.1) 78.7 (± 0.03) 79.57 (± 0.01) 75.11 (± 11.37) 75.58 (± 10.82) 85.34 (± 0.02) 85.45 (± 0.01) 72.59 (± 1.59) 73.15 (± 1.57) 22.44 (± 0.1) 36.78 (± 0.23)

fault 55.0 (± 0.53) 45.69 (± 0.58) 45.79 (± 0.58) 47.34 (± 0.99) 50.25 (± 0.65) 47.0 (± 0.4) 46.81 (± 0.39) 58.08 (± 0.94) 57.61 (± 0.9) 64.41 (± 1.35) 61.29 (± 0.9)

fraud 45.75 (± 0.13) 94.39 (± 0.0) 94.38 (± 0.01) 89.98 (± 0.97) 89.93 (± 0.97) 93.86 (± 0.0) 93.84 (± 0.01) 92.95 (± 0.29) 92.94 (± 0.29) 33.92 (± 0.34) 43.01 (± 0.84)

glass 77.52 (± 0.93) 76.11 (± 0.77) 81.77 (± 1.28) 64.52 (± 6.87) 80.94 (± 2.52) 67.65 (± 0.44) 78.43 (± 1.72) 78.5 (± 1.47) 83.15 (± 1.86) 71.79 (± 1.08) 75.67 (± 0.75)

http 37.65 (± 0.09) 94.91 (± 0.01) 94.91 (± 0.01) 99.17 (± 0.08) 99.17 (± 0.08) 92.35 (± 0.02) 92.35 (± 0.02) 96.82 (± 0.37) 96.82 (± 0.37) 17.85 (± 2.03) 18.31 (± 1.96)

ionosphere 82.43 (± 0.16) 79.42 (± 1.03) 84.15 (± 0.38) 83.09 (± 0.57) 85.03 (± 0.25) 73.04 (± 0.84) 78.14 (± 0.49) 89.58 (± 1.57) 90.05 (± 1.22) 94.64 (± 0.52) 91.85 (± 0.68)

letter 83.15 (± 0.73) 56.71 (± 0.12) 71.03 (± 0.99) 50.51 (± 2.54) 65.9 (± 2.88) 56.41 (± 0.29) 70.15 (± 1.15) 59.84 (± 0.64) 71.38 (± 0.86) 85.74 (± 0.54) 85.31 (± 0.36)

lymphography 99.44 (± 0.26) 99.52 (± 0.22) 99.84 (± 0.13) 98.57 (± 0.74) 99.45 (± 0.23) 99.6 (± 0.23) 99.84 (± 0.13) 99.76 (± 0.19) 99.92 (± 0.07) 98.57 (± 0.59) 99.28 (± 0.39)

mammography 67.29 (± 0.19) 89.29 (± 0.05) 89.23 (± 0.05) 87.23 (± 0.95) 87.11 (± 0.95) 89.38 (± 0.06) 89.32 (± 0.06) 80.44 (± 0.29) 80.37 (± 0.29) 69.7 (± 0.36) 73.82 (± 0.06)

mnist 59.63 (± 0.19) 75.87 (± 0.03) 74.27 (± 0.12) 74.26 (± 4.38) 61.3 (± 0.69) 72.62 (± 0.05) 70.83 (± 0.19) 71.27 (± 0.7) 70.59 (± 0.56) 94.55 (± 0.36) 88.51 (± 0.49)

musk 39.44 (± 0.57) 91.95 (± 0.32) 85.69 (± 0.87) 88.57 (± 5.4) 81.67 (± 7.04) 71.84 (± 0.34) 65.84 (± 0.57) 89.39 (± 1.88) 82.04 (± 3.01) 20.17 (± 0.48) 28.5 (± 0.74)

optdigits 59.58 (± 0.26) 62.26 (± 0.24) 65.13 (± 0.22) 40.01 (± 10.2) 58.64 (± 0.91) 54.04 (± 0.21) 58.99 (± 0.28) 40.87 (± 4.5) 48.26 (± 3.08) 18.45 (± 0.59) 42.52 (± 0.89)

pendigits 47.21 (± 0.12) 88.44 (± 0.2) 87.09 (± 0.22) 74.87 (± 9.91) 74.08 (± 9.18) 90.63 (± 0.17) 89.66 (± 0.2) 81.86(± 1.48) 79.5 (± 1.5) 14.87 (± 0.18) 30.16 (± 1.01)

satellite 52.9 (± 0.31) 64.33 (± 0.25) 66.71 (± 0.3) 60.59 (± 1.77) 63.44 (± 1.53) 57.57 (± 0.16) 59.69 (± 0.2) 76.31 (± 0.7) 76.08 (± 0.46) 61.01 (± 0.29) 66.71 (± 0.29)

satimage-2 52.8 (± 0.15) 97.03 (± 0.06) 98.53 (± 0.07) 92.65 (± 0.46) 96.14 (± 0.32) 94.21 (± 0.03) 96.41 (± 0.07) 98.91 (± 0.09) 98.16 (± 0.3) 24.52 (± 0.87) 41.8 (± 0.72)

shuttle 55.54 (± 0.11) 99.26 (± 0.0) 99.26 (± 0.01) 97.83 (± 0.91) 89.97 (± 1.95) 98.82 (± 0.01) 98.8 (± 0.01) 99.57 (± 0.02) 99.57 (± 0.02) 99.21 (± 0.01) 99.82 (± 0.02)

smtp 89.77 (± 0.55) 79.64 (± 0.01) 79.69 (± 0.01) 84.05 (± 0.57) 83.73 (± 0.4) 87.98 (± 0.02) 88.0 (± 0.03) 89.27 (± 0.88) 89.27 (± 0.88) 43.01 (± 1.57) 63.18 (± 2.15)

thyroid 75.91 (± 0.79) 88.45 (± 0.35) 88.54 (± 0.25) 86.73 (± 3.72) 85.53 (± 3.6) 94.91 (± 0.14) 94.06 (± 0.1) 93.67 (± 0.27) 93.11 (± 0.19) 73.59 (± 1.69) 76.74 (± 0.69)

vowels 89.1 (± 0.67) 56.1 (± 0.32) 75.39 (± 0.88) 64.47 (± 2.55) 82.12 (± 0.9) 54.29 (± 0.06) 75.39 (± 0.91) 66.01 (± 0.57) 80.76 (± 0.6) 93.04 (± 0.54) 91.85 (± 0.12)

wilt 64.63 (± 0.72) 33.45 (± 0.11) 38.4 (± 0.73) 35.79 (± 1.97) 59.53 (± 1.51) 38.06 (± 0.13) 42.06 (± 0.48) 42.92 (± 1.11) 47.27 (± 0.39) 81.09 (± 0.41) 76.62 (± 0.9)

wine 97.57 (± 1.46) 80.51 (± 1.36) 93.96 (± 1.66) 82.26 (± 2.29) 93.96 (± 1.77) 67.12 (± 2.04) 89.27 (± 2.95) 80.4 (± 3.42) 93.56 (± 2.15) 99.94 (± 0.05) 99.94 (± 0.05)

Table 7: Performance od EPHAD-Ada on tabular datasets with 10% contamination ratio and IForest
as evidence function. Style: AUROC % (± SE). Best in bold. † represents transductive inference.

COPOD DeepSVDD ECOD IForest LOF
Dataset IForest†

Blind + EPHAD-Ada Blind + EPHAD-Ada Blind + EPHAD-Ada Blind + EPHAD-Ada Blind + EPHAD-Ada

aloi 54.18 (± 0.31) 51.46 (± 0.05) 52.42 (± 0.1) 54.06 (± 0.54) 54.21 (± 0.32) 53.14 (± 0.03) 53.72 (± 0.11) 54.05 (± 0.21) 54.27 (± 0.12) 73.57 (± 0.1) 62.1 (± 0.6)

annthyroid 78.62 (± 1.01) 73.45 (± 0.08) 77.13 (± 0.43) 62.69 (± 3.33) 77.91 (± 0.79) 76.05 (± 0.11) 77.84 (± 0.5) 71.39 (± 0.34) 75.66 (± 0.69) 72.12 (± 0.57) 77.98 (± 0.7)

backdoor 67.83 (± 1.69) 75.06 (± 0.07) 73.35 (± 0.54) 78.34 (± 1.21) 72.05 (± 1.0) 83.0 (± 0.09) 78.27 (± 0.46) 51.29 (± 1.29) 61.25 (± 0.57) 46.65 (± 0.26) 67.81 (± 1.68)

breastw 97.97 (± 0.14) 99.46 (± 0.06) 99.29 (± 0.03) 98.65 (± 0.05) 98.85 (± 0.06) 99.01 (± 0.04) 99.1 (± 0.06) 99.46 (± 0.04) 99.17 (± 0.08) 73.39 (± 1.35) 92.91 (± 0.52)

celeba 66.62 (± 1.04) 72.09 (± 0.01) 69.51 (± 0.51) 67.51 (± 3.07) 68.83 (± 1.07) 73.99 (± 0.01) 70.52 (± 0.49) 40.09 (± 0.83) 54.01 (± 0.64) 42.97 (± 0.23) 60.04 (± 0.95)

cover 86.11 (± 1.6) 78.7 (± 0.03) 84.05 (± 1.15) 75.11 (± 11.37) 84.6 (± 3.81) 85.34 (± 0.02) 86.56 (± 0.94) 72.59 (± 1.59) 80.23 (± 1.78) 22.44 (± 0.1) 80.33 (± 2.26)

fault 52.02 (± 0.18) 45.69 (± 0.58) 48.69 (± 0.37) 47.34 (± 0.99) 51.44 (± 0.25) 47.0 (± 0.4) 49.3 (± 0.31) 58.08 (± 0.94) 55.16 (± 0.61) 64.41 (± 1.35) 52.81 (± 0.11)

fraud 94.87 (± 0.11) 94.39 (± 0.0) 94.81 (± 0.07) 89.98 (± 0.97) 94.84 (± 0.11) 93.86 (± 0.0) 94.63 (± 0.09) 92.95 (± 0.29) 94.32 (± 0.09) 33.92 (± 0.34) 94.86 (± 0.1)

glass 77.6 (± 1.77) 76.11 (± 0.77) 77.78 (± 1.44) 64.52 (± 6.87) 76.33 (± 2.04) 67.65 (± 0.44) 74.08 (± 1.16) 78.5 (± 1.47) 77.96 (± 1.6) 71.79 (± 1.08) 83.73 (± 1.51)

http 99.99 (± 0.0) 94.91 (± 0.01) 99.45 (± 0.03) 99.17 (± 0.08) 99.52 (± 0.01) 92.35 (± 0.02) 99.25 (± 0.04) 96.82 (± 0.37) 99.37 (± 0.01) 17.85 (± 2.03) 99.98 (± 0.0)

ionosphere 81.8 (± 0.28) 79.42 (± 1.03) 81.84 (± 0.61) 83.09 (± 0.57) 83.72 (± 0.5) 73.04 (± 0.84) 78.3 (± 0.51) 89.58 (± 1.57) 86.62 (± 0.87) 94.64 (± 0.52) 89.88 (± 0.6)

letter 61.76 (± 0.26) 56.71 (± 0.12) 59.61 (± 0.28) 50.51 (± 2.54) 56.79 (± 1.64) 56.41 (± 0.29) 59.37 (± 0.28) 59.84 (± 0.64) 60.93 (± 0.4) 85.74 (± 0.54) 79.09 (± 0.62)

lymphography 99.92 (± 0.07) 99.52 (± 0.22) 99.76 (± 0.19) 98.57 (± 0.74) 99.92 (± 0.07) 99.6 (± 0.23) 99.76 (± 0.19) 99.76(± 0.19) 99.76 (± 0.19) 98.57 (± 0.59) 99.84 (± 0.13)

mammography 83.98 (± 0.32) 89.29 (± 0.05) 87.06 (± 0.13) 87.23 (± 0.95) 84.27 (± 0.27) 89.38 (± 0.06) 87.51 (± 0.12) 80.44 (± 0.29) 82.57 (± 0.09) 69.7 (± 0.36) 83.91 (± 0.31)

mnist 75.5 (± 0.08) 75.87 (± 0.03) 76.47 (± 0.02) 74.26 (± 4.38) 76.04 (± 0.24) 72.62 (± 0.05) 74.8 (± 0.04) 71.27 (± 0.7) 73.83 (± 0.38) 94.55 (± 0.36) 90.56 (± 0.41)

musk 99.29 (± 0.33) 91.95 (± 0.32) 97.37 (± 0.45) 88.57 (± 5.4) 97.34 (± 1.28) 71.84 (± 0.34) 90.7 (± 1.37) 89.39 (± 1.88) 96.77 (± 0.15) 20.17 (± 0.48) 77.73 (± 2.96)

optdigits 58.65 (± 3.55) 62.26 (± 0.24) 60.85 (± 1.93) 40.01 (± 10.2) 58.15 (± 3.71) 54.04 (± 0.21) 57.14 (± 2.15) 40.87 (± 4.5) 50.42 (± 1.43) 18.45 (± 0.59) 38.14 (± 3.6)

pendigits 92.04 (± 0.23) 88.44 (± 0.2) 90.69 (± 0.26) 74.87 (± 9.91) 90.09 (± 2.25) 90.63 (± 0.17) 92.11 (± 0.18) 81.86 (± 1.48) 88.36 (± 0.42) 14.87 (± 0.18) 79.82 (± 0.64)

satellite 64.44 (± 0.57) 64.33 (± 0.25) 64.72 (± 0.3) 60.59 (± 1.77) 62.43 (± 0.92) 57.57 (± 0.16) 61.03 (± 0.21) 76.31 (± 0.7) 69.99 (± 0.41) 61.01 (± 0.29) 72.04 (± 0.39)

satimage-2 99.43 (± 0.07) 97.03 (± 0.06) 98.75 (± 0.06) 92.65 (± 0.46) 98.19 (± 0.24) 94.21 (± 0.03) 97.87 (± 0.08) 98.91 (± 0.09) 99.31 (± 0.07) 24.52 (± 0.87) 95.39 (± 0.14)

shuttle 98.97 (± 0.08) 99.26 (± 0.0) 99.42 (± 0.05) 97.83 (± 0.91) 98.98 (± 0.09) 98.82 (± 0.01) 99.08 (± 0.06) 99.57 (± 0.02) 99.56 (± 0.02) 99.21 (± 0.01) 99.79 (± 0.03)

smtp 90.95 (± 0.28) 79.64 (± 0.01) 88.06 (± 0.17) 84.05 (± 0.57) 91.05 (± 0.32) 87.98 (± 0.02) 90.21 (± 0.17) 89.27 (± 0.88) 90.49 (± 0.4) 43.01 (± 1.57) 90.9 (± 0.22)

thyroid 96.65 (± 0.26) 88.45 (± 0.35) 94.35 (± 0.26) 86.73 (± 3.72) 95.8 (± 0.48) 94.91 (± 0.14) 96.2 (± 0.21) 93.67 (± 0.27) 95.5 (± 0.14) 73.59 (± 1.69) 95.67 (± 0.1)

vowels 72.73 (± 0.8) 56.1 (± 0.32) 65.07 (± 0.52) 64.47 (± 2.55) 70.74 (± 1.46) 54.29 (± 0.06) 64.37 (± 0.67) 66.01 (± 0.57) 69.74 (± 0.81) 93.04 (± 0.54) 90.01 (± 0.24)

wilt 42.57 (± 1.63) 33.45 (± 0.11) 37.63 (± 0.95) 35.79 (± 1.97) 41.82 (± 1.71) 38.06 (± 0.13) 39.62 (± 0.84) 42.92 (± 1.11) 42.76 (± 1.28) 81.09 (± 0.41) 61.95 (± 2.3)

wine 58.98 (± 0.68) 80.51 (± 1.36) 74.58 (± 1.48) 82.26 (± 2.29) 73.34 (± 2.89) 67.12 (± 2.04) 63.73 (± 0.96) 80.4 (± 3.42) 73.62 (± 3.11) 99.94 (± 0.05) 97.29 (± 0.64)

C.2 Experiments on industrial use case

CSP plant dataset. For the industrial setting, we utilise the simulated dataset introduced by Patra
et al. (2024), which is generated by training a variational autoencoder on real-world data collected
from an operational CSP plant. The dataset consists of thermal images of solar panels captured
using infrared (IR) cameras, distinguishing it from the semantic and sensory anomaly datasets, as the
images lack semantic structure and do not depict specific objects.

Baseline AD method. We evaluate the performance of the forecasting-based anomaly detection
method ForecastAD, as proposed by the original authors, both with and without the integration of
EPHAD. All experiments are conducted using the original implementation provided by the authors.

Rule-based evidence. Foundation models, such as CLIP, which were previously used in our experi-
ments on image datasets, are not applicable in specialised applications, such as detecting anomalous
behaviour in solar power plants, due to the lack of semantic content in thermal images. This makes
zero-shot methods like WinCLIP and AnoCLIP inapplicable. In contrast, while EPHAD can in-

27



corporate evidence from foundation models like CLIP, it also allows the seamless integration of
domain-specific knowledge. To compute evidence, we utilise two of the four rules proposed by Patra
et al. (2024) that indicate normal operational behaviour of the CSP plant. The first rule (R1) is based
on the difference between consecutive images. Under normal conditions, the plant’s temperature is
expected to remain relatively stable; therefore, substantial deviations from one image to the next
suggest potential anomalies. To quantify this, pixel-wise squared differences are computed between
every pair of consecutive images, and the 95th percentile of these differences is extracted as the
representative evidence for each pair. The second rule (R2) involves the difference from the average
daily temperature. Here, samples with average temperatures significantly diverging from the typical
daily average could indicate anomalous behaviour. For this, the mean temperature of each day is
first determined, and then the absolute difference between each image’s average temperature and that
day’s mean is computed to serve as the evidence.

Table 8: Performance on CSP plant dataset.

Setting Method AUROC (± SE)

Clean ForecastAD 94.91 (±0.09)

Evidence Rule-based (R1, R2) 69.46 (± 0.0)

Contaminated ForecastAD 90.45 (± 0.8)
(ϵ = 0.1) + EPHAD 93.51 (± 0.45)

+ EPHAD-Ada 93.57 (± 0.43)

Results. The results presented in Table 8 under-
score the effectiveness and adaptability of our ap-
proach. Under a 10% contamination setting, the base-
line method ForecastAD experiences a performance
drop of approximately 5%. However, by incorporat-
ing domain-specific rules R1 and R2 as sources of
evidence using EPHAD and further using EPHAD-Ada,
the performance nearly matches that on the clean
dataset. It emphasises the value of leveraging struc-
tured, context-aware evidence to enhance the detec-
tion of anomalies. Importantly, foundation models like CLIP are unsuitable in this context due to
the lack of semantic content in thermal imagery, rendering zero-shot approaches such as WinCLIP
(Jeong et al., 2023) and AnoCLIP (Zhou et al., 2024) ineffective. EPHAD addresses this limitation by
providing a flexible framework that integrates both powerful foundation models, where applicable,
and domain-specific knowledge when necessary. This versatility enables EPHAD to deliver robust
performance across diverse real-world anomaly detection tasks while maintaining efficiency and ease
of deployment.

C.3 Comparison against LOE and SoftPatch

To ensure a comprehensive evaluation, we compare the performance of our proposed post-hoc
framework against SoftPatch (Jiang et al., 2022) and both variants of LOE (Qiu et al., 2022). However,
it is important to note that, unlike our approach, both SoftPatch and LOE modify the training process
to account for contamination, making it inapplicable to pre-trained networks without access to the
training dataset and pipeline, which is our main focus.

Table 9: Comparison with LOE (AUROC %)

Semantic AD Sensory ADMethod
MNIST FMNIST CIFAR10 SVHN MVTec MPDD ViSA

CLIP 71.15 95.63 98.63 58.46 86.34 60.02 74.47
Blind 90.15 89.01 90.79 61.82 78.13 80.41 61.95
Refine 91.35 91.37 92.79 61.78 82.54 87.32 65.63
LOE-Hard 86.89 90.53 93.10 53.86 79.28 83.34 78.82
LOE-Soft 91.56 92.89 94.71 61.69 85.46 92.31 74.5

N
T

L

EPHAD 78.96 95.99 98.65 57.64 86.20 59.88 74.22

First, for comparison with LOE,
we conduct experiments us-
ing the Neural Transforma-
tion Learning-based (NTL) AD
method (Qiu et al., 2021) and
evaluate it under four configura-
tions: “Blind”, “Refine”, LOE-
Hard and LOE-Soft. Addi-
tionally, we follow the same
setup as LOE by extracting im-
age features using pre-trained
ResNet152 and WideResNet50 for semantic and sensory datasets, respectively, which are then
used to train NTL. The results, summarised in Table 9, show that given a good evidence function,
i.e. the performance of the evidence is better than the “Blind” configuration, our simple test-time
framework outperforms LOE. Results on MVTec, CIFAR10, FMIST, and SVHN are examples of
this behaviour. Also, on the ViSA dataset, the performance improves over the “Blind” and “Refine”
configurations. In the converse situations where the performance of the evidence is lower than the
“Blind” configuration, we observe a reduction in performance which can be accounted for by putting
more emphasis on the AD model by adjusting β.
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Now, we compare it against SoftPatch, an approach built upon PatchCore (Roth et al., 2022). SoftPatch
enhances PatchCore by incorporating traditional anomaly detection (AD) techniques to refine the
memory bank, specifically by identifying and re-weighting patches based on their outlier scores
during training. While this strategy improves performance, it introduces a strong dependency on the
choice of AD method and increases the computational burden of the training pipeline.

Table 10: Comparison with SoftPatch

Sensory ADMethod
MVTec MPDD ViSA

CLIP 86.34 60.02 74.47
Blind 70.02 51.41 19.91
SoftPatch 90.40 67.00 86.54

Pa
tc

hC
or

e

EPHAD 86.45 60.58 62.94

For a fair comparison, we adopt the Local Outlier Fac-
tor (LOF) as the AD method, as it has been empirically
found to be the most effective for SoftPatch. As shown
in Table 10, our method, EPHAD, achieves competitive re-
sults despite being a fully post-hoc approach that requires
no modification to the training process. Crucially, while
SoftPatch is tailored for memory-bank-based methods,
EPHAD is inherently model-agnostic and can be seamlessly
applied to any combination of a pre-trained model and
an evidence function. This versatility highlights EPHAD’s
broad applicability and practical utility across a diverse range of settings.

C.4 Ablation on ϵ and β

Extended ablation on ϵ and β can be found in Figure 3, 4. We can make similar conclusions as
discussed above in Section 5.3.

Figure 3: Ablation on ϵ.

Figure 4: Ablation on β.

C.5 Effect of test set size n

The performance of our proposed framework, EPHAD, is influenced by both the pre-trained AD
method and the evidence function. While the pre-trained AD method is affected only by the training
data, for the evidence function, we evaluated two scenarios: (1) When using foundation models
such as CLIP, the evidence function remains independent of the test sample distribution. (2) When
employing traditional AD methods like Isolation Forest or Local Outlier Factor, the evidence function
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relies on the local density of test samples, meaning that an insufficient number of test samples could
lead to less informative evidence which can be accounted for in EPHAD by adjusting the temperature
parameter β. In Figure 5, we analyse the impact of varying the proportion of anomalies in the test set,
which exhibits consistent improvements across all tested settings.

Figure 5: Ablation on varying proportion of anomalies in the test set.
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