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ABSTRACT

We introduce LMCD, a novel framework for semantic clustering and multi-set
entity matching problems, in which we employ graph community detection algo-
rithms to prune spurious edges from match graphs constructed using embedding
and language models. We construct these match graphs by retrieving nearest em-
bedding neighbors for each entity, then querying a language model to remove false
positive pairs. Across a variety of cluster size distributions, and for tasks ranging
from sentiment and topic categorization to deduplication of product databases,
our approach outperforms existing methods without requiring any finetuning or
labeled data beyond few-shot examples, and without needing to select the de-
sired number of clusters in advance. Our embedding and inference stages are
fully parallelizable, with query and computational costs which scale near-linearly
in the number of entities. Our post-processing stage is bottlenecked only by the
runtime of community detection algorithms on discrete graphs, which are often
near-linear, with no explicit dependence on embedding dimension or numbers of
clusters. This is in stark contrast to existing methods relying on high-dimensional
clustering algorithms that are difficult to apply at scale; for entity matching our
approach also ensures consistency constraints across matches regardless of group
sizes, a desirable practical feature which is absent from all prior approaches other
than vector clustering. Our improvements over previous techniques are most stark
when clusters are numerous and heterogenously-sized, a regime which captures
many clustering and matching problems of widespread practical importance.

1 INTRODUCTION

Modern language models have proven useful for a broad variety of “data wrangling” tasks, from data
imputation and error detection (Narayan et al.| 2022) to reference resolution (Moniz et al.| [2024)
log parsing (Xiao et al.| [2024), named entity recognition (Wang et al., 2023)), and pairwise entity
matching (Peeters & Bizer, 2024). We study two such classes of problems — semantic clustering
and (multi-set) entity matching — from a unifying perspective which leads us to consider LLM-
based pipelines as end-to-end systems rather than granular decision engines. Indeed, as standard
question-answer benchmarks have become increasingly saturated by frontier models (Taghanaki
et al., [2024; [Mclntosh et al.l 2024), it is also widely observed that LLM “agents” often struggle to
complete complex multi-step tasks, particularly when the degree of sequential dependence is high
(Chen et al., 2024} Han et al., [2024} Xing et al.| [2024). Circuit complexity analysis has provided
a partial explanation for this, showing that Transformers (L1 et al., |2024b)) cannot natively solve
highly sequential tasks in zero-shot settings; further, periodic “hallucinations” of LLMs (Kalai &
Vempala, 2024) may be inevitable if we hope to apply them to tasks which are ambiguous or out-
of-distribution. As such, this motivates the careful design of algorithms for language model-based
processing pipelines which are robust to these failure modes, yet which still produce outputs that
“type-check” with the constraints of a given problem (i.e. a partition into disjoint sets).

We adopt this approach for semantic clustering and entity matching problems, employing language
and embedding models to construct a “match graph” which can then be partitioned via community
detection algorithms, avoiding several drawbacks of existing methods while also improving upon
their experimental results. While these two tasks have historically been studied independently, with
parallel sets of techniques, we note that they can both be viewed as instances of a general problem
(which we refer to as “multiset matching”): there is a universe of n entities, which must be parti-
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tioned into disjoint subsets along a particular semantic axis. Typical modern approaches to semantic
clustering involve applying high-dimensional clustering algorithms (e.g. KMeans(++) (MacQueen)
1967; |Arthur & Vassilvitskiil, [2007) or (HYDBSCAN (Ester et al., |1996; |Campello et al., 2013)) to
embedding vectors for each entity (Zhang et al.| 2023} [Viswanathan et al., 2023} [Petukhova et al.,
2024), generally targeting tasks where most clusters are large and the number of clusters is known
(and small relative to the number of entities). In contrast, the bulk of recent literature on entity
matching with language models (L1 et al.,|2020; Narayan et al.| 2022} |Peeters & Bizer, [2024; Wang
et al., [2024) considers only the pairwise variant of the problem involving a semantic join between
two databases, where a “blocking” stage (e.g. embedding or keyword similarity) first produces a set
of candidate pairs to be matched. In fact, many standard benchmarks consist of “pre-blocked” pairs
(Kopcke et al., [2010; [Wang et al., |2021), where matching methods are then evaluated primarily via
binary classification metrics. However, as noted by [Peeters et al.|(2023)), the pairwise variant of the
problem fails to capture many matching tasks of large practical importance, such as deduplication
and linkage of parsed, scraped, or manually entered entities. The benchmark suite they introduce,
WDC Products, contains several splits in which the ground-truth group sizes range from 2 to 10+.
We focus primarily on this variant, as pairwise matching is largely “solved” by frontier LLMs with
minimal prompting; yet, we are unaware of any prior methods for multiset matching which enforce
group consistency constraints on outputs without relying on high-dimensional clustering. As such,
we believe that our LMCD framework represents the most effective approach to date for address-
ing multi-set matching problems in practice; in addition to its simplicity of implementation, it also
yields interpretable outputs in the form of a match graph, which may be further post-processed via
human-in-the-loop approaches.

Our interest in avoiding explicit vector clustering is two-fold. Our first consideration is runtime scal-
ing: when employing an embedding model with dimension d for a set n entities, running just a single
step of K-means takes O(n?d) time when the number of groups is O(n), whereas most instantia-

tions of our framework run in time O(dn+n?) Elregardless of the number of groups. Our framework
makes O(n) queries to embedding and language models across three stages, each of which can be
straightforwardly parallelized, after which we can “throw away” all embedding vectors, leaving
only a size-O(n) discrete graph for postprocessing via community detection. The second factor is
with regards to the curse of dimensionality. Accurate clustering is widely observed to be difficult
in high dimensions, as conventional principles related to distance and shape begin to break down
(Radovanovi¢ et al., |2010; [Peng et al., [2024). This creates a tension with leveraging benefits from
state-of-the-art pretrained embedding models, which often have embedding dimensions as large as
4,096 (Xiao et al.| 2023} [Lee et al.,2024). This is exacerbated when the number of clusters is large
and cluster sizes are non-uniform, as clustering algorithms such as KMeans (MacQueen, |1967) or
HDBSCAN (Campello et al. |2013) may interpret small clusters as “noise”, yielding poor perfor-
mance. Despite this, modern data structures for approximate nearest neighbor search such as HNSW
(Malkov & Yashunin, 2018) remain effective in many dimensions, and are widely used in perfor-
mant vector databases for ranking and retrieval tasks (Lewis et al.,2021; Muennighoff et al.,[2023)) in
conjunction with high-dimensional embeddings. Our approach demonstrates that nearest-neighbor
queries are indeed all we need from embeddings in order to reconstruct high-fidelity matchings,
even for heterogeneous cluster size distributions, when applying appropriate post-processing with
language models and graph community detection algorithms.

Across our experiments, we find that pretrained embedding models in conjunction with vector
databases are effective for efficient retrieval of candidate pairs with nontrivial precision, that and
pretrained language models exhibit both high precision and recall when matching candidate pairs.
Adopting these observations as primitives, our approach has a simple and intuitive interpretation.
The “ground truth” match graph for a set of entities consists of disconnected components which are
each cliques, and embedding-based retrieval yields a set of edges which is “dense” with respect to
the true edges (though which may have many false positives). Language model queries then filter
most of the false positives while retaining most of the true positives, yet some remaining false pos-
itive edges are inevitable. At this point, the “shape” of the ground truth match graph is sufficiently
defined such that community detection algorithms can find cuts in the match graph which elimi-
nate remaining false positive edges. Our results in Section [5| explore a number of tradeoffs related
to dataset and cluster sizes, as well as algorithmic choices for community detection. Our method
outperforms existing approaches for semantic clustering across a broad variety of datasets, and we

'O(-) hides logarithmic factors.
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also obtain competitive first-in-kind performance results for multi-set entity matching. Namely, we
obtain the first multi-set matching results for the WDC Products datasets (Peeters et al.,2023) which
enforce consistency constraints for transitivity of matches, where we also observe that application
of vector clustering methods fails to surpass a trivial baseline.

We survey relevant prior methods for semantic clustering and community detection in Section[2} and
discuss the datasets we consider in Section[3l We introduce the LMCD framework in Section 4]and
present experimental results in Section[5} Our primary contributions are summarized as follows:

* We introduce the LMCD framework for multi-set matching, providing a unifying approach for
semantic clustering and entity matching problems which obviates the need to perform explicit
high-dimensional clustering.

* We demonstrate that LMCD improves quantitatively over prior methods for semantic cluster-
ing while exhibiting better runtime scaling and without needing to tune parameters for distance
thresholds or cluster counts in advance.

* We show that LMCD also exhibits strong performance for multi-set entity matching, most notably
in the sparse regime where clusters are abundant and small, where no existing methods have been
effective under group output constraints.

2 BACKGROUND

2.1 CLUSTERING AND MATCHING VIA EMBEDDING SIMILARITY

Following a line of work in which pretrained embedding models (e.g. BERT (Devlin et al., 2019))
were finetuned for clustering and matching tasks via contrastive loss objectives (Shi & Wang, 2021}
Li et al.l [2020), requiring large amounts of labeled data for training purposes, more recent works
(Zhang et all 2023} [Viswanathan et al., |2023; Petukhova et al., [2024) have begun incorporating
self-supervised data augmentation, such as concatenation of LLM-extracted keyphrase embeddings
or finetuning on LLM-generated labels, to supplant the dependence on labeled data. This issue is
also partially addressed by employing “promptable” embedding models such as Instructor (Su et al.}
2023), as is done by [Zhang et al.| (2023). We leverage this capability as well, via the bge-en-icl
model from BAAI (Xiao et al.|, [2023); however, as we only use embedding vectors for nearest-
neighbor retrieval rather than explicit clustering, we find that our methods are competitive without
any finetuning, and we instead rely on few-shot prompting in our LLM-querying stage to inject
precise distributional knowledge.

Though these prior methods most commonly employ Kmeans(++) (MacQueen, [1967; Arthur &
Vassilvitskiil, |2007) for vector clustering, (H)DBSCAN (Ester et al.| |1996; (Campello et al.|, [2013)
presents a relevant alternative particularly when the number of clusters is unknown or expensive to
tune. However, we find that retrieval and querying with modern models is sufficiently precise to ren-
der high-dimensional clustering unnecessary, as it can be substituted for much more computationally
lightweight community detection algorithms running on discrete match graphs.

2.2  GRAPH COMMUNITY DETECTION ALGORITHMS

While originally developed for network analysis applications, community detection algorithms have
found abundant applications across countless domains; see [Li et al.| (2024al) for a recent overview.
Notably, community detection has proven useful for uncovering latent structure in knowledge graphs
(Vahdati et al., 2018} |Rollo & Po, |2022)); our work falls within this line of inquiry.

While language models have been employed in conjunction with graph structures for retrieval and
reasoning techniques [Pan et al.| (2023); Besta et al.[ (2024), our LMCD framework is the first ap-
proach to our knowledge which directly applies graph algorithms to the outputs of LLMs in order to
filter and aggregate granular responses.

The appropriate choice of community detect algorithm choice for a given problem can depend on
graph topology as well as computational considerations; we summarize the theoretical runtimes sev-
eral community detection algorithms in Table[T} alongside popular algorithms for high-dimensional
clustering. The listed runtimes are based on worst-case guarantees, with the exception of the Leiden
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algorithm, whose oft-observed empirical runtime is essentially “folklore” (owing to its precessessor,
the Louvain algorithm) (Traag et al.l 2019). The number of iterations H used by the Walktrap (Lat-
apy & Pons, [2004) and Greedy Modularity [Newman| (2006)) algorithms is at most 7, and O(logn)
iterations are often found to be sufficient in practice (with each corresponding to a “cut” in the
graph). While the Girvan-Newman algorithm Girvan & Newman| (2002) is oft-observed to gener-
ate high-quality partitions, it scales poorly to large graphs, and we omit it from our experimental
analysis. In addition to the Leiden, Greedy Modularity, and Walktrap algorithms, we also analyze
the Infomap algorithm (Rosvall & Bergstroml, [2008), which is inspired by compression of random
walks. While Infomap lacks widely-known runtime guarantees, we find that its performance is
similar to Walktrap in our experiments, and is practical to run on reasonably large graphs.

Clustering Community Detection

K-Means++ DBSCAN HDBSCAN  GreedyMod  Leiden obs)  Walktrap  Girvan-Newman
Runtime O(ndKH)  O(n%d) O(n%d) O(mHlogn) O(nlogn) O(mnH) O(m?n)

Table 1: Runtimes for clustering and community detection algorithms with n entities.

3 TASKS

3.1 SEMANTIC CLUSTERING

We evaluate LMCD on 8 standardized datasets for semantic clustering, largely inheriting the
methodology from the ClusterLLM experiments by [Zhang et al.| (2023)). In Table [2| we survey
the shape of each of dataset in terms of number of clusters as well as their range of sizes. We also
present statistics on the outputs of the retrieval and matching stages of our framework (presented in
Sections and[4.2)) after removing the 24 entities used as few-shot examples for each dataset. We
retrieve k£ = 10 candidate matches for each entity via embedding nearest-neighbor queries, yielding
sets of candidate pairs which are nearly half true positives (at least) for each dataset. We use a lan-
guage model to query each candidate pair for validity, obtaining pairwise F1 scores above 90 for all
but the GoEmo datasef]

Dataset Properties Retrieval (k = 10) Matching (pyes > 0.5)

# Entities  # Clusters  (min, max)  # Few-Shot  # Pairs # Pos # Neg Precision  Recall F1
Bank77 10,003 77 (35, 187) 24 99,790 91,761 8,029 92.58 97.59  95.02
GoEmo 23,485 27 (39, 2710) 24 234,610 99,410 140,200 43.56 8425 5743
CLINC(I) 15,000 150 (100, 100) 24 149,760 136,947 12,813 95.71 96.33  96.02
CLINC(D) 15,000 10 (1000, 1000) 24 149,760 143,633 6,127 97.08 99.14  98.10
MTOP() 15,638 102 (1, 1616) 24 156,140 137,861 18,279 91.99 9249 92.24
MTOP(D) 15,677 11 (929, 2187) 24 156,530 150,555 5,975 97.13 98.80  97.96
Massive(I) 11,510 59 (14, 810) 24 114,860 90,699 24,161 85.86 94.83  90.12
Massive(D) 11,514 18 (211, 1688) 24 114,900 97,278 17,622 87.36 99.10  92.86

Table 2: Statistics for clustering datasets, retrieved pairs, and pairwise matching results.

3.2 MULTI-SET ENTITY MATCHING

To demonstrate the effectiveness of LMCD for multi-set entity matching with consistency con-
straints, we focus on the WDC Products collection of datasets consisting of web-scraped product
listings, recently introduced by |Peeters et al.| (2023). The authors note that many standard entity
matching benchmarks (Kopcke et al.l 2010; Wang et al.| 2021)) only address pairwise matching,
and thus fail to capture the additional challenge posed by aggregation of entities from more than
two sources. The dataset is broken into several splits, ranging in the percentage of examples which
have been identified as hard “corner cases” (20, 50, or 80). Still, the baseline approaches considerd
by |Peeters et al.| (2023) involve formulating multi-set entity matching as multiclass classification
without enforcing consistency constraints, and withhold a majority of the examples for finetuning.

>Throughout the paper we report precision, recall, F1, and NMI scores as normalized between 0 and 100.
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To generate larger datasets with heterogenously sized clusters, we merge the train, validation, and
test sets for each corner case split, and then again merge these into a single set, yielding four semi-
overlapping splits with a broader range of cluster sizes. We withhold 24 entities from each split to
be used for few-shot examples; as above, we report cluster statistics and results for retrieval and
matching stages in Table

Dataset Properties Retrieval (k = 10) Matching (pyes > 0.5)

# Entities  # Clusters  (min, max) # Few-Shot # Pairs # Pos #Neg Precision Recall F1
WDC-cc20 6,020 1,000 2,17) 24 59,960 26,529 33,431 90.77 94.05 92.38
WDC-cc50 6,044 1,000 2,17) 24 60,200 27,525 32,675 90.81 93.41 92.09
WDC-cc80 6,056 1,000 2,17) 24 60,320 26,173 34,147 84.74 96.17  90.09
WDC-all 10,422 1,600 2,27) 24 103,980 43,256 60,724 90.62 90.94 90.78

Table 3: Statistics for WDC Products multi-set matching splits (Peeters et al., 2023)), retrieved pairs,
and pairwise matching results. Train, validation, and test sets are merged for each split.

4 COMMUNITY DETECTION WITH LANGUAGE MODELS

We present our Language Model Community Detection (LMCD) framework in Algorithm [T] with
each stage described in greater detail below.

Algorithm 1 LMCD

Require: Entities X = {x; : ¢ € [n]}, parameter k, embedding model EMB(-), language model
LLM(+) with prompt p, community detection algorithm CD(-)
Initialize vector database B = {v; = emb(x;) : ¢; € N}
Initialize graph G(X, E) with E = {}
for each ; € X do
Retrieve top k similar vectors {v; } from B using EMB(x;)
for each retrieved v; do
qij <+ LLM(z;, T4; p)
if g;; = “Yes” then
Add edge (xz;, ;) to E
end if
end for
: end for
. Z+ CD(G)
: return Z

PRI R

— e
WY T2

4.1 BLOCKING VIA EMBEDDING SIMILARITY

We begin by computing embedding vectors for string representations of each entity, using a pre-
trained embedding model (namely, BAAI/bge-en-icl (Xiao et al.,|2023)) in conjunction with a con-
textual prompt which illustrates the semantic focus for retrieval (see Appendix [A] for prompt and
representation details). These vectors are then inserted into a vector database indexed by the Hi-
erarchical Navigable Small Worlds (HNSW) data structure, which supports approximate k-nearest-
neighbor retrieval in O(log n) time (Malkov & Yashunin, 2018).

For each entity, we then use HNSW to retrieve its k nearest neighbors in terms of cosine similarity of
embedding vectors, yielding a set of nk “candidate matches” to be processed in subsequent stages.
While the parameter k can be tuned as desired, we find that selecting £ = 10 is sufficient across
all of our experiments to obtain strong results. The primary goal of this stage is to ensure that
every entity is connected via candidate pairs to several others in its ground-truth group, yet the
total degree of interconnection within each group may be sparse while still enabling a high-fidelity
clustering (as long as it is sufficiently more dense than between-group candidate connections after
the querying stage from Section [4.2]is applied). As such, selecting too large of a value for k£ may
present challenges in subsequent stages, as there may become a higher proportion of false positive
connections which must be filtered downstream.
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4.2 GRAPH CONSTRUCTION VIA PAIRWISE QUERIES

Given a set of candidate pairs, we construct a “match graph” by querying a language model (Llama-
3.1-70B-Instruct in our experiments (Dubey et al.l |2024))) as to whether each pair constitutes a true
match, guided by a domain-specific prompt and a set of few-shot examples. The prompts we use are
presented in Appendix [A] and we discuss our procedure for choosing few-shot examples in Section
The intention of this stage, as illustrated by our numerical results in Tables[2]and 3] is to prune
the bulk of the false positive candidate matches introduced by the previous stage, while retaining the
bulk of the true positive pairs. When these two stages succeed, we are left with a graph which may
not yet constitute a compelling partition of the entities into disjoint clusters, but where there are still
clearly defined “communities” in terms of degree of interconnection.

4.3  GRAPH PARTITIONING VIA COMMUNITY DETECTION

The final step of our approach is to simply apply a community detection algorithm (such as those dis-
cussed in Section to our match graph, and return the generated partition as our clustering. Sev-
eral community detection algorithms (notably, Walktrap) return vertex dendrograms (corresponding
to sequences of cuts or merges) rather than only a single cut; while these algoriths return a default
split according to numerical metrics, the easily interpretable nature of a sequence of splits (paired
with text descriptions of entities) enables a straightforward interactive process for selecting a final
partitioning of the entities. Further, given the broad variety of community detection algorithms with
performant implementations, this provides a powerful toolkit for practitioners to experiment with
various post-processing choices via inspection, removed from the computational burden of manipu-
lating high-dimensional embedding vectors.

5 EXPERIMENTAL RESULTS

5.1 SETUP

For each entity, we retrieve the top & = 10 approximate nearest neighbors in embedding cosine
similarity (excluding the entity itself) as candidate pairs, using HNSW (Malkov & Yashunin, 2018))
via ChromaDB. Duplicate retrieved pairs are retained for the query stage, though each (undirected)
edge is included at most once in our graph construction stage. For all experiments we use the
bge-en-icl embedding model from BAAI (Xiao et al., 2023), an encoder-only model derived from
Mistral-7B (Jiang et al.,[2023)) which led the MTEB Leaderboard (Muennighoff et al., 2023) at the
time of our experiments, as well as Llama-3.1-70B-Instruct (Dubey et al.| 2024) from Meta Al,
hosted locally via vLLM (Kwon et al.,2023). We remark that the highly parallelizable nature of our
approach is particularly amenable to leveraging prefix caching for prompts and few-shot examples
(as is supported by vLLM). Additionally, we employ structured generation via Outlines (Willard
& Louf, |2023) to ensure that queries only return either “Yes” or “No” as a response. While we
include edges in our graph greedily according to maximum likelihood (e.g. if Pr[Yes] > 0.5), we
can also capture logprobs for each response to use for optional post-processing. Our prompts and
representation formats are fairly generic, and similar to those from prior works (see Appendix [A).
We use the community detection implementations from the igraph library (Csardi & Nepusz, 2006)).

To create few-shot examples, we select 6 clusters at random among those with at least 5 entities.
From each of these clusters, we select two entities at random to form a positive example, and then
a third as a negative example, paired with a random choice among the top 200 entities belonging to
other clusters in embedding similarity. Each of these 24 example entities is then removed from the
dataset. We did not substantially attempt to tune the number of examples or their selection strategy.
We expect that further improvements could be obtained via more delicate example selection; how-
ever, our primary aim with LMCD is to demonstrate a method which can be applied to multi-set
matching problems in a largely black-box fashion, without requiring model finetuning or manual
optimization of prompts and hyperparameters. We note that this selection strategy can be efficiently
approximated without access to any ground-truth labelings, via human inspection of top-k retrieved
nearest neighbors for a small number of randomly chosen entities.
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5.2 CLUSTERING

In Table[] across 8 clustering datasets, we find that LMCD surpasses or is competitive with all prior
approaches, without requiring any finetuning or advance knowledge of cluster counts.

We compare against the leading methods from ClusterLLM (Zhang et al., 2023) and |Viswanathan
et al.| (2023) (Keyphrase Clustering), as well as the other baseline methods (KMeans, SCCL, self-
sup) presented by Zhang et al.|(2023)). We evaluate clusterings using normalized mutual information
(NMI); while [Zhang et al.| (2023) also report multi-class accuracy numbers under optimal label
permutations (which are largely correlated with NMI), this is less applicable when the number of
clusters is not known in advance, or when the predicted and true cluster counts are allowed to differ
(as is the case for LMCD).

We also experimented with applying KMeans (using the ground-truth K'), DBSCAN, and HDB-
SCAN directly to the embedding vectors used by LMCD (from bge-en-icl). These results were
uniformly worse than those found by the KMeans baselines from |Zhang et al.|(2023)), and are omit-
ted; we include the results for KMeans and HDBSCAN for our entity matching experiments in
Section where fewer relevant baselines are available, though DBSCAN failed to obtain scores
nontrivially above zero across our tests. We expect the weaker performance of vector clustering on
our bge-en-icl embeddings is in part due to their higher dimensionality (4,096 vs 1,024) as well as
due to lack of finetuning.

We observe that the clustering datasets in which our approach shows the most substantial gains over
prior results — Bank77, GoEmo, MTOP(I), and Massive(I) — typically have many clusters with a
wide range of sizes (as seen in Table . In contrast, the datasets where we match or undershoot past
results have fewer than 20 clusters of more uniform sizes, with the exception of CLINC(I) where
clusters are identically sized.

We compare LMCD against applying community detection directly to candidate pairs, bypassing
the LLM querying stage (EmbCD), and find compelling evidence for the value of this additional
filtering stage. We also compare across several choices of graph algorithms, and find Walktrap
(with 10-step walks) to be most effective. The final row of results in Table 4] showcase the optimal
NMI values achievable when choosing Walktrap stopping times in terms of the ground truth labels.
While this is not explicitly a fair comparison as it leverages true labels (and thus is omitted from our
direct comparison in Table [d), it is perhaps indicative of the results which are easily attainable with
additional manual postprocessing (though in most cases this gap is already small).

Intent Discovery Emotion Domain Discovery

Method Average
Bank77 CLINC(I) MTOP(I) Massive(l GoEmo CLINC(D) MTOP(D) Massive(D)

KMeans* 81.43 92.60 70.79 73.42 21.54 57.23 87.30 67.31 68.95
SCCL* 81.77 92.94 73.52 73.90 30.54 56.21 86.01 68.69 70.45
self-sup* 83.31 93.88 72.50 72.88 22.05 60.84 88.49 71.53 70.69
FSC-Keyphrase 82.40 92.60 — — — — — — —
ClusterLLM-E-iter ~ 84.16 92.92 74.46 74.36 22.23 58.55 87.25 65.59 69.94
ClusterLLM-I-iter 85.15 94.00 73.83 77.64 23.89 54.81 89.23 68.67 70.90
EmbCD-Infomap 84.77 90.72 73.95 72.59 29.98 56.24 60.76 60.02 66.13
EmbCD-W10 88.14 89.83 86.34 76.59 30.42 59.43 79.20 67.68 72.20
LMCD-Greedy 75.12 81.90 73.13 64.05 21.54 51.31 74.19 55.45 62.09
LMCD-Leiden 63.74 68.51 53.07 57.22 46.05 38.64 39.30 45.09 51.45
LMCD-Infomap 84.14 92.11 74.90 74.97 31.32 56.68 61.09 60.95 67.02
LMCD-W5 88.26 92.63 87.53 78.90 29.08 60.56 79.35 66.58 72.86
LMCD-W10 89.03 93.44 87.43 80.19 29.90 61.47 81.60 67.58 73.83
LMCD-W15 89.01 92.81 87.59 78.84 30.52 61.22 81.18 68.17 73.67
LMCD-W (opt) 89.16 94.28 88.50 80.36 30.90 61.51 88.83 68.77 75.29

Table 4: Comparison of NMI evaluations across clustering datasets and methods. Averages over
all datasets are shown in the final column. Best results are bolded and second-best are underlined.
Methods with (*) denote per-dataset maximums over sub-methods (e.g. implementation choices,
models used), and the final row shows results with optimal Walktrap parameters (#steps, iteration
choice) using ground truth labels.



Under review as a conference paper at ICLR 2025

5.3 ENTITY MATCHING

Our results the WDC Products datasets are presented in Tables [6] (Micro, Macro, and Pairwise F1)
and [5] (NMI). Table [5] considers the designation of each entity as a singleton cluster as a baseline;
all LMCD methods surpass this baseline significantly across each dataset split, while all other con-
sidered methods fall short. Again in Table [] we observe a particularly drastic gap between the
performance of LMCD and other baselines, highlighting the difficulty of multi-set entity matching
in this regime as well as the power of our approach. Here, in contrast to Section [5.2] the Infomap
algorithm outperforms Walktrap by a small margin; changing the number of steps for Walktrap did
not meaningfully change the final clusterings for each split. Here the Greedy Modularity is reason-
ably competitive, much moreso than for clustering; as this algorithm exhibits near-linear runtime
scaling, this suggests that LM CD may be effective even for significantly larger datasets.

Our optimal Micro F1 results (for the best Walktrap stopping time) are also close to the best multi-
class classification Micro F1 results reported by [Peeters et al.| (2023)) — 93.03, 91.73, and 89.33 for
the 20cc, 50cc, and 80cc splits, respectively — though this is far from an apples-to-apples compar-
ison, as their method does not impose consistency constraints and requires substantial training data
(which includes many distinct products that are also present in the test set).

WDC-cc20  WDC-cc50 WDC-cc80 WDC-all

Method Average
NMI NMI NMI NMI
Baseline 86.91 86.86 86.81 87.46 87.01
Emb-KMeans 70.52 70.44 70.40 71.78 70.78
Emb-HDBSCAN 50.24 49.65 49.76 51.21 50.22
EmbCD-Infomap 84.02 85.11 84.46 84.29 84.47
EmbCD-W5 73.02 75.14 75.70 72.42 74.07
LMCD-Greedy 95.33 95.95 94.42 95.64 95.33
LMCD-Infomap 97.33 97.48 96.57 97.24 97.16
LMCD-W5 95.18 95.90 94.27 95.62 95.24
LMCD-W (opt) 97.37 97.63 96.91 97.41 97.33

Table 5: Comparison of NMI scores across WDC Products splits and methods.

WDC-cc20 WDC-cc50 WDC-cc80 WDC-all
Method Avg.
Macro Micro  Pair  Macro Micro Pair Macro Micro Pair  Macro Micro  Pair
Emb-KMeans 2092 17.07 2.61 2148 17.18 2.67 20.08 17.14 2.88 19.62 16.07 246 13.35

Emb-HDBSCAN  12.57  9.10 0.27 12.02 847 027 11.60 856 0.31 13.60  9.57 0.17 721
EmbCD-Infomap 26.11 31.60 18.51 2624 31.73 1621 2326 27.74 1945 2332 2740 17.13 24.06
EmbCD-W5 1148 14.08 10.14 11.69 1424 799 1191 1470 10.85 10.68 1246 7.85 11.51

LMCD-Greedy 81.49 74.08 6020 83.37 76.54 65.59 75.65 67.03 5427 8247 7557 6253 71.57
LMCD-Infomap  87.99 86.76 82.08 8897 87.29 8247 8235 80.37 7525 88.50 8697 8248 84.29
LMCD-W5 81.32 7342 5830 8330 7630 64.88 7547 6653 5248 8243 7542 62.14 71.00

LMCD-W (opt) 92.08 9124 88.03 9244 91.76 8895 8588 8471 80.58 91.69 90.80 87.01 88.76

Table 6: Comparison of F1 scores across WDC Products splits and methods. Walktrap parameters
for entries in the final row are selected by optimizing over NMI scores (see Table[3)).

6 CONCLUSION

We have introduced LMCD, a novel framework for semantic clustering and multi-set entity match-
ing, which offers improved performance over existing methods while simultaneously being easier to
scale. LMCD is agnostic to the distribution of cluster sizes, exhibiting strong performance across
regimes, and does not require finetuning or extensive advance parameter selection or finetuning. Our
framework produces match graph artifacts which are easily interpretable and amenable to computa-
tionally lightweight postprocessing, via testing a suite of graph algorithms or interactively selecting
cuts. For practical matching challenges involving large volumes of entities, with unknown demands
for deduplication and linkage, our results present a powerful approach for efficiently extracting latent
semantic structure, while sidestepping the curse of dimensionality in its entirety.
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A APPENDIX

The prompts we use for embedding and language model queries are given in Tables [7] and [8] re-

spectively. All clustering datasets we consider (2) feature only a single text column, which we use

directly as the string representation for each entity. We represent each entry from WDC Products as:
{{title}} ({{brand}}) —--—— ${{price}} ({{priceCurrency}})

Language model prompts are given as system prompts using the standard chat template formatting
for Llama-3.1-70B-Instruct; few-shot examples and queries are represented as:

A: {{str_A}}\nB: {{str_B}}

where st r_A and str_B are the string representations for each entity in a query pair.

Dataset Embedding Prompt
Bank77 Given a bank assistance request message, return other messages corresponding to the same type of request.
GoEmo Given a message, return other messages corresponding to the same primary emotion.

CLINC(I) Given a message, return other messages corresponding to the same kind of intent.
CLINC(D) | Given a message, return other messages corresponding to the same scenario domain.
MTOP(I) Given a message, return other messages corresponding to the same kind of intent.
MTOP(D) | Given a message, return other messages corresponding to the same scenario domain.
Massive(I) | Given a message, return other messages corresponding to the same kind of intent.
Massive(D) | Given a message, return other messages corresponding to the same scenario domain.

WDC Given a product listing, return other product listings corresponding to the same product.

Table 7: Prompts for embedding retrieval using BAAI/bge-en-icl (Xiao et al.| [2023).

Dataset LLM Prompt

Bank77 Given two bank assistance request messages, determine if these messages correspond to the same category of request.
Respond Yes or No.

GoEmo Given a message, return other messages corresponding to the same primary emotion.

Respond Yes or No.

CLINC(I) Given two messages, determine if the messages correspond to the same kind of intent.
Respond Yes or No.

CLINC(D) | Given a message, return other messages corresponding to the same scenario domain.
Respond Yes or No.

MTOP(I) Given two messages, determine if the messages correspond to the same kind of intent.
Respond Yes or No.

MTOP(D) | Given two messages, determine if the messages correspond to the same scenario domain.
Respond Yes or No.

Massive(I) | Given two messages, determine if the messages correspond to the same kind of intent.
Respond Yes or No.

Massive(D) | Given two messages, determine if the messages correspond to the same scenario domain.
Respond Yes or No.

WDC Given two product listings, determine if the listings correspond to the same product.
Respond Yes or No.

Table 8: Prompts for embedding retrieval using Llama-3.1-70B-Instruct (Dubey et al., [2024).
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