
LOGAH: Initialize Large Transformers via Small Graph HyperNetworks

Xinyu Zhou 1 Boris Knyazev 2 Alexia Jolicoeur-Martineau 2 Jie Fu 3

Abstract

A good initialization of deep learning models is es-
sential since it can help them converge better and
faster. One recent and underexplored approach
to a good initialization is to use Graph HyperNet-
works (GHNs) to predict good model parameters
given its computational graph. One key limita-
tion of GHNs is that for very wide networks a
GHN copies small predicted chunks of param-
eters multiple times and requires an extremely
large number of parameters to support full predic-
tion, which greatly hinders its adoption in practice.
To address this limitation, we propose LOGAH
(Low-rank GrAph Hypernetworks), a GHN with
a low-rank parameter decoder that expands to sig-
nificantly wider networks without requiring as
excessive increase of parameters as in previous
attempts. LOGAH allows us to predict the pa-
rameters of large neural networks in a memory-
efficient manner. We show that vision models
(i.e., ViT) initialized with LOGAH achieve better
performance than those initialized randomly or
using existing GHNs.

1. Introduction
A good initialization has always been essential to achieve
optimal model performance (Glorot and Bengio, 2010; He
et al., 2015; Mishkin and Matas, 2015; Huang et al., 2020).
However, to train recent large vision and language models
practitioners favor simple random-based initialization and
focus on other aspects to increase performance, such as scale
of data and models (Radford et al., 2018; Touvron et al.,
2023; AI@Meta, 2024; Dosovitskiy et al., 2021; Dehghani
et al., 2023). In general, the aspects like network architec-
tures and datasets remain similar, e.g. Transformer-based
architectures (Vaswani et al., 2023) and ImageNet (Rus-

*Equal contribution 1EPFL, Switzerland 2Samsung - SAIT AI
Lab, Canada 3Shanghai AI Lab, China. Correspondence to: Jie Fu
<fujieATpjlab.org.cn>.

ES-FoMo-III Workshop, International Conference on Machine
Learning (ICML), Vancouver, Canada. Copyright 2025 by the
author(s).

6412
8
25

6
38

4
51

2
10

24
20

48

Max Width

101

102

103

104

lo
g

of
 #

Pa
ra

m
s(

M
)

GHN-3-T

GHN-3-S

GHN-3-L
GHN-3-XL

LoGAH-T

LoGAH-S
LoGAH-B
LoGAH-L

#Parameters of GHN-3 vs. LoGAH

GHN-3
LoGAH
GHN-3 (fit line)

Figure 1: Comparison of parameter counts between GHN-3
and LOGAH. GHN-3 requires a larger hidden dimension to
support wider networks (x axis), which increases the size of
GHN-3 exponentially (y axis).

sakovsky et al., 2015) (for vision) or The Pile (Gao et al.,
2020) (for language) datasets.

Leveraging this prior knowledge of the architecture and
dataset may help to initialize models in a much stronger
way. One potential approach to do so is Graph HyperNet-
works (GHNs) (Zhang et al., 2018; Knyazev et al., 2021;
2023). This approach allows one to predict initial param-
eters of neural networks to converge faster and/or achieve
better performance. Using a set of neural network architec-
tures {fG} as training data, GHN HD, parameterized by θ,
is trained to predict the parameters of these neural networks
(wpred = HD(f

G, θ)) to minimize the loss function on the
dataset D. The predicted wpred can serve as a stronger initial-
ization compared to random-based initialization methods.
The key strength of GHNs is that a trained GHN HD can
predict parameters well even for unseen (e.g. wider and
deeper) networks.

However, to predict parameters for very wide networks (of-
ten with a large number of parameters), previous GHNs
(Knyazev et al., 2021; 2023) had to copy small chunks of
parameters multiple times instead of fully predicting them
due to the sheer amount of parameters required to predict
all parameters, thus significantly limiting the performance
of the resulting networks. Furthermore, to unlock the capa-
bility of predicting parameters of a larger size, GHNs need
larger hidden sizes d, leading to an exponential increase in
the number of parameters growing as O(d3) (Figure 1).

To overcome this limitation, we propose LOGAH, a GHN
with a low-rank parameter decoder. This novel approach not
only supports significantly wider networks but also does so

1

LOGAH: Predict Transformers via Graph NeuralNetworks

without requiring an excessive number of parameters grow-
ing as O(d2) instead of O(d3). For instance, our smallest
LOGAH-TINY has only 2.5M parameters, yet it can predict
parameters with up to 2048 channels, including ViT-Large
(in 307M Parameters), without copying parameters.

In this work, we make the following contributions:

• We propose LOGAH with an improved low-rank decoder
that is more scalable and can predict parameters of large
networks without copying while having fewer trainable
parameters and a lower training cost (Section 3).

• We create a new dataset of small ViT architectures, al-
lowing GHNs to be trained on Transformers for vision
tasks (Section 4). LOGAH shows excellent generalized
capability on larger models.

• We outperform GHN-3 (Knyazev et al., 2023) as an ini-
tialization approach in multiple vision tasks by predicting
more diverse and performant parameters (Section 5).

2. Preliminaries
2.1. Graph HyperNetworks

Graph HyperNetworks (GHNs) (Zhang et al., 2020;
Knyazev et al., 2021) are widely used for neural networks’
parameter prediction. The input fed to GHN HD(θ) is a
computational graph fG of a neural network f ; GHN pre-
dicts its parameters wpred = HD(f

G; θ), where D is the
training dataset. In our paper, f can be a ViT model (Doso-
vitskiy et al., 2021), and D can be the image classification
task (i.e., CIFAR and ImageNet.).

Knyazev et al. (2021; 2023) trained GHN HD by Adam
over M training architectures {fG

a }Ma=1 and N training data
samples {xj , yj}Nj=1 on the following optimization problem:

argmin
θ

1

NM

N∑
j=1

M∑
a=1

L(fa(xj ;HD(f
G
a ; θ)), yj). (1)

A meta-batch of m training architectures is sampled in the
training stage where HD predicts parameters. Meanwhile,
a mini-batch of n training samples x is sampled and fed
into the parameter-predicted m architectures to get m ×
n predictions. The cross-entropy loss L is computed for
classification task. Afterwards, the loss is back-propagated
to update the parameters θ of HD by gradient descent. In
our work, we created VITS-1K datasets, consisting of 1K
small training architectures, for predicting parameters for
larger ViT models. We describe the details in Section 4.

The computational graph fG = (V,E) for input is a Di-
rected Acyclic Graph (DAG), where V denotes the op-
erations (e.g., pooling, self-attention, etc.), and E corre-
sponds to the forward pass flow of inputs through f . The
d-dimensional node features H(1) ∈ R|V |×d are obtained by
an embedding layer (i-th node: h(1)

i = Embed(h(0)
i), where

h(0)
i is a one-hot vector representing an operation) and fed as

the input for GHN. In GHN-3 (Knyazev et al., 2023), after
L Graphormer layers (Ying et al., 2021), the node features
H(L) ∈ R|V |×d are fed to the decoder described below.

2.2. GHN Decoder

Knyazev et al. (2021; 2023) have the decoder based on a
simple MLP predicting a tensor of shape d× d× 16× 16,
where d is relatively small (d = 384 even in the largest
GHN-3). The decoder takes the output node features of
the last Graphormer layer to predict parameters wpred. This
tensor is copied when the target weight has a larger d or
sliced when the target is smaller. The parameter count of the
decoder in GHN-3 (Knyazev et al., 2021; 2023)1 PGHN is:

8d3 + 4d2 × 16× 16 + 32d2 + d× num class. (2)

3. Scalable Graph HyperNetworks: LOGAH
Our LOGAH model improves on the following aspects: (1)
designing a novel low-rank decoder not only with fewer
amounts of parameters, but also avoiding inefficient param-
eter repetitions on prediction, (2) supporting larger models
(often wider) prediction without involving extremely larger
amounts of parameters as in previous works, e.g. LOGAH-
TINY with only 2.5M parameters can in principle support
ViT-Large or larger, while existing methods (Knyazev et al.,
2023) would require ∼ 104M parameters.

Low-Rank Decoder. In Knyazev et al. (2023), the final
output dimensionality of the decoder is d×d×h×w, where
d can be 64 or 128, and typically h = w = 16. The key
problem is that for large networks, the tensor needs to be
repeated to fill all channels because d is small.

Considering a convolutional weight W with size: (Cout ×
Cin × h×w), we can reshape it into a matrix W of (Cout ·
h)× (Cin · w) where h,w are much smaller than Cout and
Cin. Inspired by (Hu et al., 2021), we can now introduce the
low-rank decomposition: W = AB ∈ R(Cout·h)×(Cin·w),
where A ∈ R(Cout·h)×r, B ∈ Rr×(Cin·w), r denotes the
low-rank. In this way, we reduce the amounts of parameters
from Cout · Cin · h · w to r · ((Cout · h) + (Cin · w)).
Therefore, the whole process is as follows: after the MLPs
(multilayer perceptron) the input H(L) ∈ R|V |×d is trans-
formed into W̃ ∈ R|V |×2K×r:

W̃ = MLP(H(L)) ∈ R|V |×2K×r, (3)

where K := max(Cout · h,Cin · w), so that we can avoid
repetition operations in GHN-3. Then we split W̃ into two
matrices A,BT ∈ R|V |×K×r and only take the needed bits

1Please refer to Appendix C and https://github.com/
SamsungSAILMontreal/ghn3/blob/main/ghn3/nn.
py for more details

2

https://github.com/SamsungSAILMontreal/ghn3/blob/main/ghn3/nn.py
https://github.com/SamsungSAILMontreal/ghn3/blob/main/ghn3/nn.py
https://github.com/SamsungSAILMontreal/ghn3/blob/main/ghn3/nn.py

LOGAH: Predict Transformers via Graph NeuralNetworks

to construct W = AB. The architecture of the MLPs is
shown in Appendix E, which involves the low-rank transfor-
mation inside. In this way, the number of parameters in the
decoder of LOGAH is:

PLOGAH = 4d2 + 32d2 + 8d× 2r2 + r ×K. (4)

Theoretically, we can fix r as a much smaller constant hy-
perparameter than d, then Equation 4 would be in O(d2),
less than the complexity of original GHN’s decoder O(d3).
In practice, considering a small rank r would hinder the
model’s performance, so we set it to r ≈ d

2 as an increase
of d. Under this setting, we compare the amounts of two
decoder’s parameters in detail as follows.

#Parameters Reduction. Without loss of generality, we
assume K = Cout · h, and in our following settings for
low-rank r (details in Table 3 in Appendix D)2: r ≈ d

2 .
Then PGHN − PLOGAH we obtain:

∆P = PGHN − PLOGAH (5)

= 4d2 × (162 − 1)−r × Cout · h (6)

+ 8d× (d2 − 2r2) + d× num class. (7)

Since r ≈ d/2, 162 − 1 ≈ 162, and in our experiments we
set K = max(Cout · h,Cin · w) = 2048 · 16, we can just
compare the first term and second term in Eqn . (7):

∆1 = 4d2 × (162 − 1)−r × Cout · h (8)

≈ 4d2 × 162 − d× 1024 · 16 (9)
= 16d · (64d− 1024). (10)

Therefore, ∆1 > 0 since in our settings d = 64, 128, 256,
etc, which means that LOGAH’s decoder requires fewer
parameters (∆P > 0), even if we let r increase with d.

Due to the low-rank mechanism, LOGAH can support pre-
dicting the parameter tensors with a larger shape but with
fewer parameters. The parameters comparison between dif-
ferent versions of GHN-3 and LOGAH is shown in Figure
1. Since GHN-3 can only support the predicted parameters
as the same width as the hidden dimension d, we fit the
curve of GHN-3 and obtain the potential number of parame-
ters needed to fully predict parameters with larger shapes.
Compared to GHN-3, our LOGAH can support wider ten-
sor shapes with much fewer parameters, which can support
larger and wider models in practice (referring to Table 4).

4. VITS-1K Datasets
For sampling training architectures in previous GHNs,
Knyazev et al. (2021) built DeepNets-1M, a dataset of 1
million diverse computational graphs. While DeepNets-
1M contains architectures with transformer layers, in most

2Although in LOGAH-LARGE setting: d = r = 256, Eqn.
(10) will obtain 16d · (64d− 2048) > 0 since d is very large.

cases their transformer layers are mixed with other layers
due to the random-based computational graph generation,
so DeepNets-1M is not optimal to train a GHN for pre-
dicting ViT parameters. Therefore we introduce VITS-1K,
containing 1K different ViT-style computational graphs, par-
ticularly for training GHNs to predict ViT parameters.

VITS-1K. We produce diverse ViT models by varying
the number of layers L, heads H and hidden dimension D.
Since ViT models have different scale versions (as illus-
trated in Table 4 of Appendix F), we also need to ensure that
our training architectures will be diverse enough and uni-
formly distributed in terms of parameter count. Therefore,
when generating these architectures, for deeper networks
(with more layers) we control them to be narrower (with a
smaller hidden dimension) and vice versa. Figure 5 shows
the distribution of the amounts of parameters in VITS-1K,
which is almost uniformly distributed and the maximum
parameters of these architectures are restricted to 10M (only
around of half of ViT-Small’s parameters). The details of
VITS-1K dataset’s generation can be found in Appendix H.

5. Experiments
We evaluate if neural networks initialized with the param-
eters wpred predicted by LOGAH can perform better than
those by GHN-3 and random initialization after training.

LOGAH Variants. We design four different scales of LO-
GAH from TINY to LARGE, by gradually increasing the
number of layers L, hidden dimension d, heads H , as well
as the low-rank r. We also vary the meta-batch size m for
training GHN-3 and LOGAH, indicated at the end of the
model name (e.g. /M1). We compare the number of pa-
rameters and estimate the training time difference between
LOGAH with GHN-3, shown in Table 3. We highlight that
GHN-3 and LOGAH are trained only once on each dataset,
so that the same model can predict parameters for many ar-
chitectures making the training cost of GHN-3 and LOGAH
amortized. Both GHN-3 and LOGAH are trained on the
VITS-1K architectures for fair comparison. The details of
GHN training setup is illustrated in Appendix I.

We test ViT-small and ViT-base on CIFAR-10, CIFAR-100
(Krizhevsky et al., 2009), and ILSVRC-2012 ImageNet
(Russakovsky et al., 2015) with different initialization meth-
ods: (1) random initialization (RANDINIT) implemented by
default in PyTorch, (2) orthogonal initialization (ORTHINIT)
(Saxe et al., 2014), (3) parameters predicted by GHN-3, and
(4) parameters predicted by LOGAH. We acknowledge that
there are many other strong initialization methods (Dauphin
and Schoenholz, 2019; Zhang et al., 2019; Trockman and
Kolter, 2023) that we do not compare to. In this short work,
we mainly aim to outperform GHN-3 which already out-
performed such strong methods as (Zhu et al., 2021; Yang
et al., 2022).

3

LOGAH: Predict Transformers via Graph NeuralNetworks

5.1. Experiments on CIFAR-100
In the CIFAR-100 task, we train LOGAH-TINY-M1 and
LOGAH-SMALL-M1. The results are shown Table 1.
Low-rank decoder is more effective. Although LOGAH-
SMALL has only 21.4M parameters, it achieves the best
performance in ViT-Small and ViT-Base, much better than
GHN-3-Large, which is almost 10× larger. In detail, we
gain +0.53 and +5.39 in accuracy on ViT-Small and ViT-
Base respectively vs the best baseline. Additionally, in ViT-
Small, LOGAH-TINY-M1 is worse than GHN-3-Small and
GHN-3-Large, which may imply that there is no significant
difference when initializing smaller models. However, when
the model size turns larger, the improvement becomes more
obvious, from 53.95 by RANDINIT to 56.42 by LOGAH-
TINY-M1, while GHN-3-Large only achieves 52.80.

Table 1: CIFAR-100 top-1 accuracy (%) on ViT-Small and
ViT-Base in different initialization settings. ViT models are
trained for 100 epochs in each initialization setting.

Initialization CIFAR-100
ViT-Small ViT-Base

RANDINIT 53.97 53.95
ORTHINIT 49.76 48.38

GHN-3-T/m1 54.20 51.83
GHN-3-S/m1 55.57 52.71

GHN-3-L/m1 55.65 52.80

LOGAH-T/M1 54.47 56.42
LOGAH-S/M1 56.18 59.34

LOGAH-T/M8 57.48 58.52
LOGAH-S/M8 59.67 60.11

Increasing meta-batch can boost performances further.
When setting meta-batch m = 1, we have already ob-
served a huge improvement in both ViT-Small and ViT-Base.
Now we investigate whether increasing the meta batch size
can further boost the performance. Specifically, we train
LOGAH-TINY and LOGAH-SMALL with m = 4, 8 on the
CIFAR-100 task, and then evaluate them.

The results are shown in Figure 6 and Figure 7 (in Ap-
pendix J). Increasing m can steadily stimulate the potential
of LOGAH. For example, LOGAH-TINY-M8 with 2.5M
parameters can achieve 57.48 in ViT-Small and 58.52 in ViT-
Base, compared with 55.65 and 52.80 via GHN-3-Large in
214.7M parameters.

5.2. Experiments on ImageNet
Based from experiment results on CIFAR-100, on ImageNet
we train LOGAH with meta-batch size m = 8 directly.
The evaluation results are shown in Table 2. With the in-
crease of the LOGAH’s scale, we can observe a steady
improvement on the top-1 accuracy. LOGAH-LARGE/M8
achieves +1.95 and +1.01 enhancement over ORTHINIT
on ViT-Small and ViT-Base, respectively.

The training loss, training top-1 accuracy and validation
top-1 accuracy of ViT-Small on ImageNet initialized by
RANDINIT and LOGAH-L/M8 are presented in Figure 2.

Table 2: ImageNet top-1 accuracy (%) on ViT-Small, ViT-
Base, and ViT-Large in different initialization settings.

Initialization ImageNet
ViT-Small ViT-Base

RANDINIT (1 Epoch) 8.93 5.95
ORTHINIT (1 Epoch) 6.04 9.84
LOGAH-S/M8 (1 Epoch) 32.65 11.00
LOGAH-B/M8 (1 Epoch) 37.68 9.37
LOGAH-L/M8 (1 Epoch) 31.74 11.08

RANDINIT (50 Epochs) 62.04 62.53
ORTHINIT (50 Epochs) 62.08 62.96
LOGAH-S/M8 (50 Epochs) 62.65 63.74
LOGAH-B/M8 (50 Epochs) 63.01 63.80
LOGAH-L/M8 (50 Epochs) 64.03 63.97

Figure 2: Loss and accuracy curves of ViT-Small compar-
isons between RANDINIT and LOGAH-L/M8 on ImageNet.

LOGAH-initialization can speed up the convergence and
accuracy improvement at the early steps.

5.3. Transfer Learning Experiments
In this section, we explore the setting when LOGAH is
trained on one dataset, but the predicted initialization is
transferred to another dataset. We conduct the transfer learn-
ing experiments from CIFAR-100 to CIFAR-10, and from
ImageNet to CIFAR-100.
CIFAR-100 to CIAFR-10. For transferring to CIFAR-10,
we re-initialize the classification layer of ViT-Small or ViT-
Base using a Kaiming normal distribution (He et al., 2015)
with 10 outputs. Then we train the entire network for 100
epochs. The results are presented in Figure 8 in Appendix K.
LOGAH trained on CIFAR-100 predicts initialization that
is useful for CIFAR-10 improving on RANDINIT and OR-
THINIT, which implies that LOGAH has transfer learning
ability across different tasks in similar data distributions.
ImageNet to CIFAR-100. We keep the same setting as
above. The results are shown in Figure 9 and Figure 10 in
Appendix L. In this case LOGAH initialization does not
transfer as well. This may be due to a larger distribution
shift compared to our CIFAR-100 → CIFAR-10 experiment,
which requires more investigation in future work.

6. Conclusion
In this work, we propose LOGAH, a low-rank Graph Hy-
perNetwork (GHN) that provides a strong initialization for
ViTs. We believe that data-driven initialization methods
have a lot of potential to reduce training costs, which is
especially important for large costly models. Our approach
could be potentially further improved by training LoGAH on
larger and more diverse ViT architectures. We also believe
our approach is promising for the language transformers.

4

LOGAH: Predict Transformers via Graph NeuralNetworks

7. Acknowldgements
Jie Fu is supported by Shanghai Artificial Intelligence Lab-
oratory.

References
Xavier Glorot and Yoshua Bengio. Understanding the dif-

ficulty of training deep feedforward neural networks. In
Proceedings of the thirteenth international conference
on artificial intelligence and statistics, pages 249–256.
JMLR Workshop and Conference Proceedings, 2010. 1

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level per-
formance on imagenet classification. In Proceedings of
the IEEE international conference on computer vision,
pages 1026–1034, 2015. 1, 4

Dmytro Mishkin and Jiri Matas. All you need is a good init.
arXiv preprint arXiv:1511.06422, 2015. 1

Xiao Shi Huang, Felipe Perez, Jimmy Ba, and Maksims
Volkovs. Improving transformer optimization through
better initialization. In International Conference on Ma-
chine Learning, pages 4475–4483. PMLR, 2020. 1

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. Improving language understanding by
generative pre-training. 2018. 1

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan
Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen,
Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj
Goswami, Naman Goyal, Anthony Hartshorn, Saghar
Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor
Kerkez, Madian Khabsa, Isabel Kloumann, Artem Ko-
renev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yun-
ing Mao, Xavier Martinet, Todor Mihaylov, Pushkar
Mishra, Igor Molybog, Yixin Nie, Andrew Poulton,
Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan
Schelten, Ruan Silva, Eric Michael Smith, Ranjan Sub-
ramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor,
Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan,
Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kam-
badur, Sharan Narang, Aurelien Rodriguez, Robert Sto-
jnic, Sergey Edunov, and Thomas Scialom. Llama 2:
Open foundation and fine-tuned chat models, 2023. 1, 7

AI@Meta. Llama 3 model card. 2024. URL
https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md. 1

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An
image is worth 16x16 words: Transformers for image
recognition at scale, 2021. 1, 2, 7

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr
Padlewski, Jonathan Heek, Justin Gilmer, Andreas Peter
Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alab-
dulmohsin, et al. Scaling vision transformers to 22 billion
parameters. In International Conference on Machine
Learning, pages 7480–7512. PMLR, 2023. 1

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and
Illia Polosukhin. Attention is all you need, 2023. 1, 7

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpa-
thy, Aditya Khosla, Michael Bernstein, et al. Imagenet
large scale visual recognition challenge. International
journal of computer vision, 115:211–252, 2015. 1, 3, 8

Leo Gao, Stella Biderman, Sid Black, Laurence Golding,
Travis Hoppe, Charles Foster, Jason Phang, Horace He,
Anish Thite, Noa Nabeshima, et al. The pile: An 800gb
dataset of diverse text for language modeling. arXiv
preprint arXiv:2101.00027, 2020. 1

Chris Zhang, Mengye Ren, and Raquel Urtasun. Graph hy-
pernetworks for neural architecture search. arXiv preprint
arXiv:1810.05749, 2018. 1, 7

Boris Knyazev, Michal Drozdzal, Graham W. Taylor, and
Adriana Romero-Soriano. Parameter prediction for un-
seen deep architectures, 2021. 1, 2, 3, 7

Boris Knyazev, Doha Hwang, and Simon Lacoste-Julien.
Can we scale transformers to predict parameters of di-
verse imagenet models?, 2023. 1, 2, 7, 8

Chris Zhang, Mengye Ren, and Raquel Urtasun. Graph
hypernetworks for neural architecture search, 2020. 2

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng,
Guolin Ke, Di He, Yanming Shen, and Tie-Yan Liu. Do
transformers really perform bad for graph representation?,
2021. 2

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. Lora: Low-rank adaptation of large language mod-
els. arXiv preprint arXiv:2106.09685, 2021. 2

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 3, 8

5

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md

LOGAH: Predict Transformers via Graph NeuralNetworks

Andrew M. Saxe, James L. McClelland, and Surya Ganguli.
Exact solutions to the nonlinear dynamics of learning in
deep linear neural networks, 2014. 3

Yann Dauphin and Samuel S Schoenholz. Metainit: Initial-
izing learning by learning to initialize. 2019. 3, 7

Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup
initialization: Residual learning without normalization.
arXiv preprint arXiv:1901.09321, 2019. 3

Asher Trockman and J Zico Kolter. Mimetic initialization
of self-attention layers. In International Conference on
Machine Learning, pages 34456–34468. PMLR, 2023. 3

Chen Zhu, Renkun Ni, Zheng Xu, Kezhi Kong, W Ronny
Huang, and Tom Goldstein. Gradinit: Learning to ini-
tialize neural networks for stable and efficient training.
arXiv preprint arXiv:2102.08098, 2021. 3

Yibo Yang, Hong Wang, Haobo Yuan, and Zhouchen Lin.
Towards theoretically inspired neural initialization opti-
mization. arXiv preprint arXiv:2210.05956, 2022. 3,
7

Da Yin, Li Dong, Hao Cheng, Xiaodong Liu, Kai-Wei
Chang, Furu Wei, and Jianfeng Gao. A survey of
knowledge-intensive nlp with pre-trained language mod-
els, 2022. 7

Shangwei Guo, Chunlong Xie, Jiwei Li, Lingjuan Lyu, and
Tianwei Zhang. Threats to pre-trained language models:
Survey and taxonomy, 2022. 7

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. In Jill Burstein,
Christy Doran, and Thamar Solorio, editors, Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long
and Short Papers), pages 4171–4186, Minneapolis, Min-
nesota, June 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/N19-1423. URL https:
//aclanthology.org/N19-1423. 7

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger,
Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam
McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. Language models are few-shot learners, 2020. 7

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nico-
las Usunier, Alexander Kirillov, and Sergey Zagoruyko.
End-to-end object detection with transformers, 2020. 7

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are
scalable vision learners, 2021. 7

Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Hee-
woo Jun, David Luan, and Ilya Sutskever. Generative pre-
training from pixels. In Hal Daumé III and Aarti Singh,
editors, Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pages 1691–1703. PMLR,
13–18 Jul 2020. URL https://proceedings.mlr.
press/v119/chen20s.html. 7

David Ha, Andrew Dai, and Quoc V. Le. Hypernetworks,
2016. 7

Yuval Nirkin, Lior Wolf, and Tal Hassner. Hyperseg: Patch-
wise hypernetwork for real-time semantic segmentation.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
4061–4070, June 2021. 7

James Requeima, Jonathan Gordon, John Bronskill, Sebas-
tian Nowozin, and Richard E. Turner. Fast and flexible
multi-task classification using conditional neural adaptive
processes, 2020. 7

Xixun Lin, Jia Wu, Chuan Zhou, Shirui Pan, Yanan
Cao, and Bin Wang. Task-adaptive neural process for
user cold-start recommendation. In Proceedings of the
Web Conference 2021, WWW ’21, page 1306–1316,
New York, NY, USA, 2021. Association for Comput-
ing Machinery. ISBN 9781450383127. doi: 10.1145/
3442381.3449908. URL https://doi.org/10.
1145/3442381.3449908. 7

Andrey Zhmoginov, Mark Sandler, and Max Vladymyrov.
Hypertransformer: Model generation for supervised and
semi-supervised few-shot learning, 2022. 7

Louis Kirsch, James Harrison, Jascha Sohl-Dickstein, and
Luke Metz. General-purpose in-context learning by meta-
learning transformers, 2024. 7

Isaac Liao, Ziming Liu, and Max Tegmark. Generating in-
terpretable networks using hypernetworks. arXiv preprint
arXiv:2312.03051, 2023. 7

Utku Evci, Bart van Merrienboer, Thomas Unterthiner, Max
Vladymyrov, and Fabian Pedregosa. Gradmax: Grow-
ing neural networks using gradient information. arXiv
preprint arXiv:2201.05125, 2022. 7

6

https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://proceedings.mlr.press/v119/chen20s.html
https://proceedings.mlr.press/v119/chen20s.html
https://doi.org/10.1145/3442381.3449908
https://doi.org/10.1145/3442381.3449908

LOGAH: Predict Transformers via Graph NeuralNetworks

Peihao Wang, Rameswar Panda, Lucas Torroba Henni-
gen, Philip Greengard, Leonid Karlinsky, Rogerio Feris,
David Daniel Cox, Zhangyang Wang, and Yoon Kim.
Learning to grow pretrained models for efficient trans-
former training. arXiv preprint arXiv:2303.00980, 2023.
7

Albert Gu and Tri Dao. Mamba: Linear-time sequence
modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023. 7

Kunihiko Fukushima. Cognitron: A self-organizing multi-
layered neural network. Biological cybernetics, 20(3-4):
121–136, 1975. 7

A. Related Work
Large Models Pretraining. The large-scale pretrained
models first appeared in the NLP field (Yin et al., 2022;
Guo et al., 2022). The improvement and success are
mainly attributed to self-supervised learning and Trans-
former (Vaswani et al., 2023). More and more large lan-
guage models are developed based on it, extending to larger
sizes for better performance under pretraining with mas-
sive data (Devlin et al., 2019; Brown et al., 2020; Touvron
et al., 2023). Inspired by the advancement of Transformer,
many Transformer-based vision models are also proposed,
and some pretraining methods have been explored (Dosovit-
skiy et al., 2021; Carion et al., 2020; He et al., 2021; Chen
et al., 2020). Our work focuses on predicting parameters for
two Transformer-based models (ViT and GPT-2) to reduce
pretraining costs.

Parameter Prediction. Hypernetworks (Ha et al., 2016)
are often leveraged for predicting model’s parameter. Many
research works have extended the hypernetwork’s capability
to generalize on unseen architectures (Zhang et al., 2018;
Nirkin et al., 2021; Knyazev et al., 2021), datasets (Re-
queima et al., 2020; Lin et al., 2021; Zhmoginov et al., 2022;
Kirsch et al., 2024), or to generate interpretable networks
(Liao et al., 2023). Our paper is also based on Graph Hyper-
Networks (GHNs), but overcomes the extreme increase of
parameters needed in previous GHNs. LOGAH can support
larger models with just 1% parameters, showing a better
ability to predict parameters for larger networks.

Initialization and Learning to Grow Models. Several
methods have improved on random initialization by learning
from data (Dauphin and Schoenholz, 2019; Yang et al.,
2022). However, GHN-3 (Knyazev et al., 2023) showed
better performance making it a favourable approach to build
on. Other methods learn to initialize a bigger model from
a smaller pretrained model (Evci et al., 2022; Wang et al.,
2023). These methods reduce training time, however, a
smaller pretrained model of exactly the same architecture

as the target model is not always available, which limits the
approach.

B. Limitations
Although our model LOGAH shows outstanding perfor-
mances compared to GHN-3 and other random initialization
methods across the extensive experiments, there are still
limitations. We also conduct the experiments on language
tasks, however, we find it is difficult to observe the similar
improvement on the language modelling, which indicate that
the architecture of LOGAH may be required to be adapted
to language models. Furthermore, to predict parameters for
drastically novel architectures (e.g. (Gu and Dao, 2023)),
the GHN might be needed to be trained to avoid a big distri-
bution shift. In future work, it would be intriguing to show
LOGAH’s ability on modern LLMs (Touvron et al., 2023).

C. Details of the amounts of parameters of
decoders in GHN-3

The theory amount of parameters of decoders in GHN-3 is
shown below:

4× in feature × d× h× w + MLP d1 × MLP d2 (11)

+ MLP d2 × d2 + d× num class (12)

where in feature is the input feature’s dimension of the de-
coder (set as d in GHN-3), and MLP d1,MLP d2 denote the
dimension of 1st and 2nd layers of MLP (set as 4d and 8d in
experiments respectively), h,w are the last two dimensions
of the predicted tensor’s shape (set as 16) and num class
is the number of classes of the dataset. Thereby, we can
simplify Equation (11) to (2).

D. Details of LOGAH variants and GHN-3
variants.

We include the details of LOGAH and GHN-3 in different
scales, in Table 3.

E. Details of MLPs in the decoder of LOGAH
The MLPs has 4 layers and the activation function σ(·) is
ReLU (Fukushima, 1975):

x = M3

(
σ

(
M2

(
σ
(
M1(H)

))))
(13)

x = reshape(x) ∈ R|V |×2r×r (14)

x = reshape
(
M4(σ(x))

)
∈ R|V |×2K×r (15)

7

LOGAH: Predict Transformers via Graph NeuralNetworks

Table 3: Details of LOGAH variants and GHN-3 variants. All LOGAH variants are set with K = 2048 · 16. We estimate
the train time of each model based on meta-batch m = 1 and the CIFAR-100 dataset for 300 epochs.

Model r L d H Max Width P Train Time

LoGAH-Tiny 32 3 64 8 2048 2.5M 7.05h
LoGAH-Small 90 5 128 16 2048 21.4M 7.25h
LoGAH-Base 128 5 256 16 2048 78.2M 10.30h
LoGAH-Large 256 12 256 16 2048 289.4M 21.0h

GHN-3-Tiny - 3 64 8 64 6.9M 7.20h
GHN-3-Small - 5 128 16 128 35.8M 7.75h
GHN-3-Large - 12 256 16 256 214.7M 12.40h
GHN-3-XLarge - 24 384 16 384 654.4M 24.0h

where Mi, i ∈ {1, 2, 3, 4} are learnable matrices:

M1 ∈ Rd×4d,M2 ∈ R4d×8d

M3 ∈ R8d×2r2 ,M4 ∈ Rr×K

We also provide the code implementation of it as shown in
Figure 3.

F. Details of variants of ViT models
We provide the details of ViT in different sizes. L,D,H, P
denotes the numbers of layers, heads, hidden dimension and
parameters, respectively.

Model L D MLP size H P

ViT-S 12 384 1536 6 22M
ViT-B 12 768 3072 12 86M
ViT-L 24 1024 4096 16 307M

Table 4: Details of ViT variants

G. Distribution of VITS-1K datasets
The distributions of VITS-1K is shown in Figure 5.

H. Details of generating VITS-1K dataset
As mentioned above, we change the values in layers L,
heads H , and hidden dimension D of ViT, as well as restrict-
ing these models size. The details are shown in Figure 4.

I. Details of GHN Training Setup.
The GHN models, including GHN-3 and our LOGAH, are
trained for 300 epochs on VITS-1K. In detail, we con-
duct experiments on the following datasets: CIFAR-100
(Krizhevsky et al., 2009) (with batch size b = 64) and
ILSVRC-2012 ImageNet (Russakovsky et al., 2015) (with
batch size b = 128). When setting meta-batch m = 1, we
train the models using automatic mixed precision in PyTorch

with a cosine annealing learning rate schedule starting at
lr = 1e−3, weight decay λ = 1e−2, and predicted param-
eter regularization γ = 3e−5 (Knyazev et al., 2023). All
GHN models, including GHN-3 and LOGAH, are trained
separately on each task dataset.

J. Performances of LOGAH-TINY/SMALL
trained by different meta-batch m in and
ViT-Small and ViT-Base on CIFAR-100.

The performances of LOGAH-TINY/SMALL with different
meta-batch in ViT-Small and ViT-Base on CIFAR-100 are
presented in Figure 7.

K. Transfer experiments from CIFAR-100 to
CIFAR-10

The transfer learning experiments from CIFAR-100 to
CIFAR-10 on ViT-Small is presented in Figure 8.

L. Transfer experiments from ImageNet to
CIFAR-100

The transfer learning experiments from ImageNet to CIFAR-
100 on ViT-Small and ViT-Base are shown in Figure 9 and
Figure 10.

8

LOGAH: Predict Transformers via Graph NeuralNetworks

class ConvDecoder3LoRA(nn.Module):
def __init__(self,

in_features,
ck=32,
r=32,
hid=(64,),
num_classes=None):

super(ConvDecoder3LoRA, self).__init__()

assert len(hid) > 0, hid
self.r = r
self.ck = ck
self.num_classes = num_classes
self.mlp = MLP(in_features=in_features,

hid=(*hid, r*2*r),
activation=’relu’,
last_activation=None)

self.l2 = nn.Linear(int(r), ck)
self.relu = nn.ReLU(inplace=True)

self.seq = nn.Sequential(
self.relu,
self.l2

)

def forward(self, x, max_shape=(1,1,1,1), class_pred=False, n_dim = 4):
if class_pred:

n_dim = 2
x = self.mlp(x).view(-1, 2*self.r, self.r) # [b, 2*r, r]
x = self.seq(x).view(-1, 2*self.ck, self.r) # [b, 2*ck, r]
A, B_t = torch.split(x, self.ck, dim=1) # A=[b, ck, r] and B=[b, ck, r]
B = B_t.transpose(1,2) # A=[b, ck, r] and B=[b, r, ck]
fix shape of A and B before matmul through indexing
c_out, c_in, k_out, k_in = max_shape
A = A[:, :(c_out*k_out), :] # [b, c_out*k_out, r]
B = B[:, :, :(c_in*k_in)] # [b, r, c_in*k_in]
W = torch.bmm(A, B) # [b, c_out*k_out, c_in*k_in]
if n_dim == 1: # We want [c_out]

assert c_in == 1 and k_out == 1 and k_in == 1
W = W.reshape(-1, c_out)

elif n_dim == 2: # we already have a 2D matrix
pass

elif n_dim == 4:
W = W.reshape(-1, c_out, k_out, c_in, k_in).transpose(2, 3) # [b, c_out, c_in,

k_out, k_in]
else:

raise NotImplementedError("n_dim must be 1 or 2 or 3")
#print(W.shape)
return W

Figure 3: Code for Low-rank decoder in LOGAH.

9

LOGAH: Predict Transformers via Graph NeuralNetworks

layers = np.random.randint(3, 10)
if layers > 5:

dim_min = 128
dim_max = 256

elif layers > 3:
dim_min = 256
dim_max = 384

else:
dim_min = 384
dim_max = 512

hidden_dim = np.random.choice(np.arange(dim_min, dim_max+1, 32))
mlp_dim = hidden_dim * 4

if hidden_dim % 12 == 0:
heads = np.random.choice([3, 6, 12])

elif hidden_dim % 6 == 0:
heads = np.random.choice([3, 6])

elif hidden_dim % 3 == 0:
heads = 3

else:
heads = np.random.choice([4, 8])

net = _vision_transformer(
patch_size = 2,
num_layers = layers,
num_heads = heads,
hidden_dim = hidden_dim,
mlp_dim = mlp_dim,
num_classes = 100,
image_size = 32,
weights = None,
progress = False,

)

Figure 4: Code for generating ViT-style models used for VITS-1K dataset.

10

LOGAH: Predict Transformers via Graph NeuralNetworks

2 4 6 8 10
params (M)

0

20

40

60

80

co
un

t
ViTs-1K params distribution

Figure 5: The parameters distribution in VITS-1K.

1 4 8
Meta Batch Size

54

55

56

57

58

59

Ac
cu

ra
cy

ViT Small Performance
LoGAH-Tiny
LoGAH-Small
RandInit

Figure 6: Performances of LOGAH-TINY/SMALL trained
by different meta-batch m in ViT-Small on CIFAR-100.

1 4 8
Meta Batch Size

54
55
56
57
58
59
60

Ac
cu

ra
cy

ViT Base Performance

LoGAH-Tiny
LoGAH-Small
Baseline

Figure 7: Performances of LOGAH-TINY/SMALL trained
by different meta-batch m in ViT-Base on CIFAR-100.

1 4 8
Meta Batch Size

74

76

78

80

82

84

Ac
cu

ra
cy

ViT Small Performance

LoGAH-Tiny-CF100
LoGAH-Small-CF100
RandInit
OrthInit

Figure 8: Performances of LOGAH-TINY/SMALL trained
on CIFAR-100 by different meta-batch m in ViT-Small on
CIFAR-10.

Small Base Large
LoGAH Size

46
48
50
52
54
56
58

Ac
cu

ra
cy

ViT Small Performance
LoGAH
RandInit
OrthInit

Figure 9: Performances of LOGAH-SMALL/BASE/LARGE-
M8 trained on ImageNet with meta-batch m = 8 in ViT-
Small on CIFAR-100.

Small Base Large
LoGAH Size

46

48

50

52

54

56

Ac
cu

ra
cy

ViT Base Performance
LoGAH
RandInit
OrthInit

Figure 10: Performances of LOGAH-
SMALL/BASE/LARGE-M8 trained on ImageNet with
meta-batch m = 8 in ViT-Base on CIFAR-100.

11

