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Taking inspiration from physical motion, we present a new self-supervised dy-
namics learning strategy for videos: Video Time-Differentiation for Instance
Discrimination (ViDiDi). ViDiDi is a simple and data-efficient strategy, readily
applicable to existing self-supervised video representation learning frameworks
based on instance discrimination. At its core, ViDiDi observes different aspects
of a video through various orders of temporal derivatives of its frame sequence.
These derivatives, along with the original frames, support the Taylor series expan-
sion of the underlying continuous dynamics at discrete times, where higher-order
derivatives emphasize higher-order motion features. ViDiDi learns a single neural
network that encodes a video and its temporal derivatives into consistent embed-
dings following a balanced alternating learning algorithm. By learning consistent
representations for original frames and derivatives, the encoder is steered to em-
phasize motion features over static backgrounds and uncover the hidden dynam-
ics in original frames. Hence, video representations are better separated by dy-
namic features. We integrate ViDiDi into existing instance discrimination frame-
works (VICReg, BYOL, and SimCLR) for pretraining on UCF101 or Kinetics and
test on standard benchmarks including video retrieval, action recognition, and ac-
tion detection. The performances are enhanced by a significant margin without the
need for large models or extensive datasets.

1. Introduction

Learning video representations is central to various aspects of video understanding, such as action
recognition [[1, 2], video retrieval [[3, 4], and action detection [[5, [6]]. While supervised learning re-
quires expensive video labeling [[7]], recent works highlight the strengths of self-supervised learning
(SSL) from unlabeled videos [8H10] with a large number of training videos.

One popular strategy for SSL on video representations uses instance discrimination objectives, such
as SImCLR [[11]], initially demonstrated for images [[1THI5]] and then generalized to videos [9,[16}17]].
In images, models learn to pair together latent representations for the same instance under different
augmented views. Such models effectively filter out lower-level details and generate abstract repre-
sentations useful for higher-level tasks. When adapting this approach to videos, previous methods
often use clips from different times as separate views of the same video, treating time as an ad-
ditional spatial dimension. However, learning consistent representations across clips may cause
models to prioritize static content (e.g., background scenes) over dynamic features (e.g., motion,
action, and interaction), which are often essential to video understanding [[1} 2} 7, 18H21]]. Despite
some pretext tasks handling time in distinction from space [13, 8} 9} [16} 17, 22} 23], they are not gen-
eralizable or principled. In contrast, we utilize the unique role of time in "unfolding" continuous
real-world dynamics. We provide a more detailed discussion on prior arts in Appendix[A]

In this paper, we introduce a generalizable and data-efficient method for improved dynamics learn-
ing, applicable to self-supervised video representation learning through instance discrimination.
Central to our approach, we view a video not just as a sequence of discrete frames but as a con-
tinuous and dynamic process. We use the Taylor series expansion to express this continuous pro-
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Figure 1: Method Overview. (a) The ViDiDi method evaluates temporal derivatives of video clips
through Taylor expansion, uses the same encoder to embed them into the latent space, and con-
verges their representations for the same video while diverging those from different videos. (b)
Pretraining via ViDiDi enhances existing instance discrimination methods significantly on action
recognition.
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cess as a weighted sum of its temporal derivatives at each frame. Using the physical motion as
a metaphor, the zeroth-order derivative represents each frame itself, analogous to position. The
first-order derivative captures the immediate motion between frames, analogous to velocity. The
second-order derivative reveals the rate of change in this motion, analogous to acceleration. We
train models to align representations for the original video and its first and second-order temporal
derivatives, such that the learned representations encode the underlying dynamics more consis-
tently among different orders of temporal differentiation (fig.[Ia)). This method mirrors our intuitive
perception of motion in the physical world, where a holistic understanding of position, velocity, and
acceleration altogether helps us relate an object’s trajectory to the underlying laws of physics.

Herein, we refer to this approach as Video Time-Differentiation for Instance Discrimination (Vi-
DiDi). We have implemented ViDiDi across three SSL methods using instance discrimination, in-
cluding VICReg [[14], BYOL [12], and SimCLR [[I1]]. ViDiDi is not merely an image processing ap-
proach. It introduces new perspectives on understanding dynamic data including but not limited to
videos, and uses a balanced alternating learning strategy to guide the learning process. We tested
ViDiDi with different encoder architectures as well as different learning objectives. Pretrained on
UCF101 or Kinetics, our method demonstrates excellent generalizability and data efficacy on stan-
dard benchmarks including action recognition (fig. and video retrieval.

Our contributions are summarized as follows:

e Introducing a new view for representing continuous dynamics with different orders of temporal
derivatives using Taylor series expansion inspired by physics;

e Proposing an general self-supervised dynamics learning framework that learns representations con-
sistent among different temporal derivatives with a balanced alternating learning strategy, applicable to
multiple existing self-supervised learning approaches;

e Demonstrating the data efficiency and substantial performance gains on common video represen-
tation learning tasks of the proposed method, and analyzing the learned dynamic features via
attention and subspace clustering visualization.

2. Approach

In this section, we first describe the mathematical framework and explain our intuition through a
thought experiment grounded in physics (section[2.1)). Then describe in detail how we incorporate
temporal differentiation with a balanced alternating learning strategy (section[2.2)) into two-stream
self-supervised learning methods. We use SImCLR [[11]] as a specific example for constructing and
training a ViDiDi-based model while referring readers to other implementations in appendix [C}
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Figure 2: A thought experiment on physical motion. The Taylor series expansion projects the
dynamic process of a free fall motion onto three views expressed in terms of the height, velocity, and
acceleration. The reverse inference of the common causes of the height, velocity, and acceleration

leads to the encoding of the gravity g - the only variable pertaining to all three views, instead of
unrelated static latents, yg and vg.
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2.1. Recover Hidden Views of Video Sequence

Taylor series expansion of videos. We view one video not just as a sequence of N discrete frames
[y(n)], n =1,2,..., N, but as a continuous dynamic process y(t). We assume that this process is
caused by latent factors, s and z, which account for the static and dynamic aspects of the video
through an unknown generative model:

Y(t) = g1(s) + g2(2,1) (M

where g; (s) generates a static environment and g2 (2, t) generates a dynamic process situated in the
environment.

Although y(¢) is not observed, we can approximate y(t) for any time ¢ around specific time n
through the Taylor series expansion:
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Here, the original frame y(n) can be viewed as the zeroth order derivatives. Its contributions to y(t)

y(t) =y(n) + (t —n)

do not incorporate a continuous time variable ¢. %(n) = aé"f (z,n) and %té’ (n) = a;t‘? (z,n) are the
first and second derivatives evaluated at time n, contributing to the underlying dynamics through

linear and quadratic functions of time, respectively.

The zeroth, first, or second derivatives provide different "views" of the continuous video dynamics.
It is apparent that they share a common latent factor z but not s, according to eq. (IJ). Guiding
the model to encode these views into consistent representations in the latent space provides a self-
supervised learning strategy for reverse inference of the dynamic latent z rather than the static
latent s. Therefore, this strategy has the potential to better steer the model to uncover the hidden
dynamics from discrete frames through temporal derivatives, which is often missed in traditional
frame-based video learning and analysis.

A thought experiment on physical motion. Our idea is analogous to and inspired by physical mo-
tion. As illustrated in fig. [2} consider a 1-D toy example through a thought experiment . Imagine
that we observe the free fall motion of a ball on different planets and aim to infer the planet based
on a sequence of snapshots of the ball. The zeroth, first, and second derivatives are the position
y(t), velocity v(t), and acceleration a(t), respectively. Evaluating these derivatives at discrete times
n gives rise to three sequences, providing different discrete views that collectively expand the con-
tinuous motion. Given the physical law, the free fall motion is governed by y(t) = yo + vot — % gt?,
including three latent factors: the initial position yo, the initial velocity v, and the gravity g. It
is straightforward to recognize that only the gravity g is involved in the position, velocity, and ac-
celeration. Thus, inferring the representation shared across these different views reveals gravity g,
which is the defining feature of the dynamics.
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Figure 3: Illustration of the ViDiDi framework. For a batch of videos I, we do two spatio-temporal
augmentations 7 and 7’ to obtain two batches of clips: V and V. These clips are evaluated for the
0th, 15, or 2? order temporal derivatives. Such derivatives are further selected (denoted as X and
X') via a balanced alternating learning strategy described in alg.|l} X and X' are the inputs to
the video encoder in a 2-stream SSL framework such as SImCLR, BYOL, and VICReg for learning
through instance discrimination. f is the video encoder, h is the MLP projection head, and Z and
Z' are the encoded embeddings.

2.2. The ViDiDi Framework

However, it is non-trivial to extend this intuition to practical learning of dynamics in natural videos.
Next, we describe ViDiDi as a learning framework generalizable to multiple existing 2-stream
self-supervised video representation methods. It involves 1) creating multiple views from videos
through spatio-temporal augmentation and differentiating, 2) a balanced alternating learning strat-
egy for pair-wise encoding of the different views into consistent representations, and 3) plugging
this strategy into existing instance discrimination methods, including SimCLR [[11]], BYOL [12]], and
VICReg [14]. See fig.[3|for an overview.

Creating multiple views from videos. This process contains two steps.

e Augmentation: Given a batch of videos I in the shape of REXCXLXHXW where B is the
batch size, L is the number of frames per video, C' is the number of channels, and (H, W)
is the frame size: we sample each video by randomly cropping two clips, each of length
T. This is a temporal augmentation approach similar to previous works. For each clip, we
apply a random set of spatial augmentations [9]], including random crops, horizontal flips,
Gaussian blur, color jittering, and normalization. In this way, we create two augmented
views for every video in the batch, denoted as V' and V’, each containing a batch of video
clips in the shape of REXC*Txhxw where (h,w) is the cropped frame size. See more details
in the appendix.

e Differentiation: As introduced in section 2.1} we further recover hidden views of clips via
temporal differentiation. For every augmented clip within either V' or V’, we evaluate its
0", 15!, or 2"¢ temporal derivatives. The clips in the same batch will be derived for the
same number of times to better support learning of consistent representations across dif-
ferent order of derivatives. In this study, we limit the derivatives up to the 2"¢ order which
already shows significant improvements. Denote V (n) € REXCXh>Xw a5 4 batch of frames
selected at time n from the clip V, we approximate temporal derivatives with finite forward
differences, then the temporal derivatives with respect to ¢ and evaluated at n are:

ov

M) =Vint1) - Vn) 3)
2

O ) =Vn+2) —2+Vin+1)+ V(n) (4)

Balanced alternating learning strategy. We design a paring schedule for leaning consistent repre-
sentations among derivatives and original frames for the same video using 2-stream SSL methods.
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S o ), each including the temporal derivatives of V' and V' evaluated for 0, 1, or 2 times.
Such paired derivatives, denoted as X and X', provide inputs to two video encoders in separate
streams. At each step (aka batch), we select one pair of derivatives following alg.[1l For each batch,
the number of times V and V' each are derived in time, depends on the epoch number as well as
additional randomness. Intuitively we choose this strategy to let learning of derivatives guide orig-
inal frames in a balanced way. So we generally start by pairing the derivatives at higher orders, then
the derivatives across different orders, and lastly the derivatives at the zeroth order, and continuing
this cycle. We empirically verify that this balanced alternating learning strategy plays an important
role in the learning process in the ablation study in appendix

Specifically, we define seven pairs: (V,V’), (V

Algorithm 1: Differentiation at Each Batch

Data: epoch > 0, (V, V')
Result: (X, X')

// Deterministic differentiation step

ov oV’
: YA / _ .
if epoch/4 = 0then (X, X') < 5 ,a?} )
else if epoch/4 = 1 then (X, X') « (W' v,
ov’

else if epoch/4 = 2then (X, X')«+ (V

else (X, X')«+ (V,V');
// Additional random differentiation step
€ < rand(0, 1);

ife < 0.5then (X, X') «+

o)

0X o0X’

5 o)

Plug into existing instance discrimination methods. Our approach is generalizable to different
types of instance discrimination methods, including SimCLR [[11]] based on contrastive learning,
BYOL [[12]] using teacher-student distillation, and VICReg [[14]] via variance-invariance-covariance
regularization. The above methods are selected as representative examples. By integrating ViDiDi
with these different learning objectives, we have trained and tested various models, namely, ViDiDi-
SimCLR, ViDiDi-BYOL, and ViDiDi-VIC. We describe ViDiDi-SimCLR below and refer to the ap-
pendix for details about other models. (X, X'’) are two batches of input to the two streams of video
encoders, denoted as f, which uses a 3D ResNet or other architectures in our experiments. Follow-
ing the video encoder, h is a multi-layer perceptron (MLP) based projection head, yielding paired
embeddings (Z,Z'), Z = [z1,...,25]" € RBXP. We evaluate the representational similarity be-
tween the i*” clip and the j'" clip as s; ; = 2, 2}/ (||| ||2}||). Given a batch size of B, the InfoNCE
loss [[11]] is:

B
Cnen = . Z exp(s;i/a) Z exp sii/a) 5)

i=1 ZJ 1eXP(Su/a > e 1eXp(S],/oz)
3. Experiments

3.1. Experiment Setup

Datasets. We train and evaluate ViDiDi using human action video datasets. UCF101 [[I]] includes
13k videos from 101 classes. HMDBS51 [2] contains 7k videos from 51 classes. In addition, we
also use larger and more diverse datasets, K400 (7], aka Kinetics400, including 240k videos from
400 classes, and K200-40k, including 40k videos from 200 classes, as a subset of Kinetics 400, helps
verify data-efficiency. In our experiments, we pretrain models with UCF101, K400, or K200-40k and
then test them with UCF101 or HMDB51, using split 1 for both datasets. AVA contains 280K videos
from 60 action classes, each video is annotated with spatiotemporal localization of human actions.



Basics of networks and training. We use R3D-18 [24] as the default architecture for the video
encoder. In addition, we also explore other architectures, namely R(2+1)D-18 [24]], MC3-18 [24],
and S3D [25]. We test ViDiDi on instance discrimination methods including VICReg, SimCLR, and
BYOL. During self-supervised pretraining, we remove the classification head and train the model
up to the final global average pooling layer, followed by a MLP-based projection head. We pretrain
the model for 400 epochs on UCF101 and K200-40k, and K400. The learning rate follows a cosine
decay schedule [26] for all frameworks. A 10-epoch warmup is only employed for BYOL. Weight
decay is 1e — 6. We apply cosine-annealing of the momentum for BYOL as proposed in [12]]. The
temperature for SImCLR is o = 0.1, and hyper-parameters for VICReg are A = 1.0, u = 1.0, v = 0.05.
We train all models with the LARS optimizer [27]] utilizing a batch size of 64 on UCF101 and 256 on
Kinetics, with learning rate = 1.2. After pretraining, the projection head is discarded.

Downstream tasks. We follow the evaluation protocol in previous works [3} 8 8, 9], including
three types of downstream tasks. i) Video retrieval. We encode videos with the pretrained encoder,
sample videos in the testing set to query the top-k (k = 1,5,10) closest videos in the training set.
The retrieval is successful if at least one out of the k retrieved training videos is from the same class
as the query video. ii) Action recognition. We add a linear classification head to the pretrained
model, and fine-tune this model end-to-end for 100 epoch for action classification. We report the
top-1 accuracy. iii) Action detection. We follow [9]] to finetune the pretrained model as a detector
within a Faster R-CNN pipeline on AVA for 20 epochs, and report mean Average Precision (mAP).
More details are in appendix D] for both pertaining and testing.

3.2. Comparisons with Previous Works

Results on both video retrieval (table[2]) and action recognition (table[T)) suggest that ViDiDi outper-
forms prior models. Compared to other models trained on Kinetics, ViDiDi-VIC achieves the highest
accuracy using K400, while also reaching compatible performance using UCF101 or K200-40k sub-
set for pretraining. Besides, ViDiDi-BYOL achieves the best performance in action recognition on
HMDB51, by a significant margin of 5.1% over the recent TCLR method [[10]. Importantly, ViDiDi
supports efficient use of data. Its performance gain is most significant in the scenario of training
with smaller datasets. We discuss this with more details in the following section.

Table 1: ViDiDi surpasses previous works on action recognition after finetuning.

Method Net Input Pretrained UCF HMDB
VCOP [28] R3D-18 16 x 112 UCF101 64.9 29.5
VCP [29]] R3D-18 16 x 112 UCF101 66.0 31.5
3D-RotNet [[30]] R3D-18 16 x 112 K600 66.0 37.1
DPC [31]] R3D-18 25 x 128 K400 68.2 34.5
VideoMoCo [[16] R3D-18 32 x 112 K400 74.1 43.6
RTT [32] R3D-18 16 x 112 K600 79.3 49.8
VIE [33]] R3D-18 16 x 112 K400 72.3 448
RSPNet [34] R3D-18 16 x 112 K400 74.3 41.8
VTHCL [22]] R3D-18 8 x 224 K400 80.6 48.6
CPNet [135]] R3D-18 16 x 112 K400 80.8 52.8
CPNet [135]] R3D-18 16 x 112 UCF101 77.2 46.3

CACL [B] T+C3D 16 x 112 K400 77.5 -

CACL [3]] T+R3D 16 x 112 UCF101 77.5 43.8
TCLR [10] R3D-18 16 x 112 UCF101 82.4 529
ViDiDi-BYOL R3D-18 16 x 112 UCF101 83.4 58.0
ViDiDi-VIC R3D-18 16 x 112 UCF101 82.3 53.4
ViDiDi-VIC R3D-18 16 x 112 K200-40k 82.7 54.2
ViDiDi-VIC R3D-18 16 x 112 K400 83.2 55.8
VCOP [228]] R(2+1)D-18 16 x 112 UCF101 72.4 30.9
VCP [29] R(2+1)D-18 16 x 112 UCF101 66.3 322
PacePred [36]  R(2+1)D-18 16 x 112 K400 771 366
VideoMoCo [16] ~ R(2+1)D-18 32 x 112 K400 787 492
V3Ss [137] R(2+1)D-18 16 x 112 K400 79.2 404
RSPNet [34] R(2+1)D-18 16 x 112 K400 81.1 44.6
RTT [32] R(2+1)D-18 16 x 112 UCF101 81.6 46.4
CPNet [135]] R(2+1)D-18 16 x 112 UCF101 81.8 51.2
CACL [3]] T+R(2+1)D 16 x 112 UCF101 82.5 48.8

ViDiDi-VIC R(2+1)D-18 16 x 112 UCF101 83.0 54.9




Table 2: ViDiDi surpasses previous SSL models on video retrieval. T + C3D means training with
an additional transformer.

Method Net Pretrained UCF101 HMDB51

1 5 10 1 5 10

SpeedNet [38] S3D-G K400 130 281 375 - - -

RTT [32] R3D-18 K600 26.1 48.5 59.1 - - -

RSPNet [134] R3D-18 K400 41.1 59.4 68.4 - - -
CoCLR [8] S3D K400 463 628 695 206 43.0 540

CACL [3]] T+C3D K400 442 63.1 71.9 - - -
ViDiDi-VIC R3D-18 K200-40k 49.5 63.4 71.0 24.7 45.4 56.0
ViDiDi-VIC R3D-18 K400 51.2 64.6 72.6 25.0 47.2 60.9
VCOP [28] R3D-18 UCF101 14.1 30.3 40.0 7.6 229 34.4
VCP [29] R3D-18 UCF101 18.6 33.6 42.5 7.6 244 33.6
PacePred [36] R3D-18 UCF101 23.8 38.1 46.4 9.6 269 41.1
PRP [39]] R3D-18 UCF101 22.8 38.5 46.7 8.2 25.8 38.5
V3s [137]] R3D-18 UCF101 283 437 513 108 306 423
CACL [3]] T+R3D UCF101 41.1 59.2 67.3 17.6 36.7 48.4

ViDiDi-VIC R3D-18 UCF101 476 609  68.6 19.7 40,5 551

Table 3: Video Retrieval. ViDiDi exhibits efficient learning and generalizes across different
methods.

Method Pretrained UCF101 i
1 5 10 1 5 10

SimCLR UCF101 296 414 493 175 347 451
ViDiDi-SimCLR UCF101 38.3 54.6 64.5 17.5 38.9 52.4
BYOL UCF101 32.2 43.0 50.5 13.8 31.1 444
ViDiDi-BYOL UCF101 43.7 60.4 70.1 19.3 44.1 56.6
VICReg UCF101 31.1 43.6 50.9 15.7 33.7 44.5
ViDiDi-VIC UCF101 47.6 60.9 68.6 19.7 40.5 55.1
VICReg K400 419 56.5 64.8 21.7 441 56.1
ViDiDi-VIC K400 51.2 64.6 72.6 25.0 47.2 60.9
ViDiDi-VIC K200-40k 49.5 63.4 71.0 24.7 454 56.0

3.3. Data-efficiency and Generalizability

Efficient learning with limited data. ViDiDi learns effective video representations with limited
data. As presented in table2]and table[T} pretrained on small dataset UCF101 or K200-40k, ViDiDi
surpasses prior video representation learning works pretrained on large-scale K400 or K600 dataset.
Further, ViDiDi-VIC pretrained on UCF101 or K200-40k outperforms its baseline method VICReg
pretrained on K400, and also reaches compatible performance as ViDiDi-VIC pretrained on K400,
as shown in table[3| This aligns with our intuition that holistic learning of derivatives and original
frames can steer the encoder to uncover dynamics features as our intuition discussed in section[2.1}
Such a strategy efficiently uncovers dynamic features with limited data and does not rely on a more
diverse dataset. To gain insights into how ViDiDi works, we further visualize the spatio-temporal
attention section (3.4, and find that ViDiDi attends to dynamic parts in original frames but VICReg
attends to background shortcuts.

Table 4: Action Detection. ViDiDi exhibits better spatiotemporal action localization.
Method ~ VICReg ~ ViDiDi-VIC ~SimCLR  ViDiDi-SimCLR BYOL  ViDiDi-BYOL
mAP 0.089 0.106 0.079 0.094 0.087  0.118

Generalization across methods, backbones, and downstream tasks. ViDiDi is compatible with
multiple existing frameworks based on instance discrimination. We combine ViDiDi with SImCLR,
BYOL, and VICReg and find that ViDiDi improves the performance of video retrieval for each of
these frameworks. As shown in table |3} the performance gain is remarkable (up to 16.5%) and
consistent across the three frameworks on video retrieval. With fine-tuning, ViDiDi significantly
improves the performance (up to 18.0%) over their counterparts without ViDiDi on action recogni-



tion, as shown in ﬁg. Further, when finetuned on action detection, ViDiDi also exhibits consistent
performance gain as illustrated in table[d ViDiDi is also applicable to different encoder architec-
tures, including R3D-18, R(2+1)D-18, MC3-18, and S3D. As shown in table@ the performance gain
in video retrieval is significant for every encoder architecture tested herein, ranging from 13.7% to
17.0% in terms of top-1 accuracy.

Table 5: Video Retrieval. ViDiDi generalizes to other backbones.
UCF101 HMDB51
1 5 10 1 5 10
VICReg 302 441 514 158 336 455

Net Method

READDI8  yiniDi-VIC 472 626 698 206 441 577
MO8 VICReg 319 444 514 156 356 461
ViDiDi-VIC 441 598 680 203 403 53.4

. VICReg 292 419 492 128 298 409

ViDiDi-VIC 429 59.0 675 184 384 514

3.4. Visualization

(a) VICReg (b) ViDiDi-VIC

Silhouette Plot o 2D Representations Silhouette Plot o 2D Representations
w4 % w4 | g
g ; Q Cluster 4 g Qo Cluster 4
Q3 i b . V3 e
2 Mean 2o s, » 2 S Cluster2 - wzhe
-2 M 2 Clustér.0 , 5%* Nicluster 1 -2 P 2 -,.‘-;?- o
2 . Dlae Soesr Q| 3 “> <%,  Cluster1
5o e TN L B ey PO
= v, . 3 K o)
3 E Cluster2” Cluster3. 5 E Cluster 3 " |uster 0

o o

0
0100 02 04 06 08 1.0 0100 02 04 06 08 10
Silhouette Coefficients 1st feature space Silhouette Coefficients 1st feature space

Figure 4: Silhouette scores and t-SNE of top 5 classes from VICReg (left) and ViDiDi-VIC (right).

Clustering in the latent space. We also examine how video representations from different action
classes are distributed in the latent space. We use t-SNE [[40]] to visualize the representations from
five classes. As shown in fig. 4] video representations learned with ViDiDi are better clustered by
action classes), showing further separation across distinct classes. Beyond visual inspection, the
Silhouette score [41]] in table[7]in appendix and fig. [ quantifies the degree of separation and shows
better segregation by video classes with ViDiDi.

Spatio-temporal attention. To better understand the model’s behavior, we visualize the spatiotem-
poral attention using Saliency Tubes [42]]. ViDiDi leads the model to attend to dynamic aspects of
the video, such as motions and interactions, rather than static backgrounds as shown in fig.[5| The
model’s attention to dynamics is generalizable to videos that the model has not seen. These results
align with our intuition that ViDiDi attends to dynamic parts and avoids learning static content as
a learning shortcut, resulting in efficient utilization of data as discussed in section 3.3}

4. Conclusion

In this paper, we introduce ViDiDi, a novel, data-efficient, and generalizable framework for self-
supervised video representation. We utilize the Taylor series to unfold a video to multiple views
through different orders of temporal derivatives and learn consistent representations among orig-
inal clips and their derivatives following a balanced alternating learning strategy. ViDiDi learns
to extract dynamic features instead of static shortcuts better, enhancing performance on common
video representation learning tasks significantly.

Originating from our intuition of understanding the physical world, there are also parallels between
this approach and human vision. The human eyes differentiate visual input into complementary
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Figure 5: Spatiotemporal attention on UCF and HMDB51. Left: Original frames. Middle: Atten-
tion from VIC. Right: Attention from ViDiDi-VIC.

retinal views with different spatial and temporal selectivity. The brain integrates these retinal views
into holistic internal representations, allowing us to understand the world while being entirely un-
aware of the differential retinal views. This analogy provides an intriguing perspective on how
machines and humans might align their mechanisms in visual processing and learning, which is
not explored in the current scope of the paper.

We identify multiple future directions as well. One is to represent different orders of dynamics
through different sub-modules in the encoder. In this way, those encoders may teach one another
and co-evolve during the learning process, learn different aspects of video dynamics, and be used
for different purposes after training. Besides, we can apply Taylor expansion to other modalities or
apply ViDiDi to other vision tasks that require more fine-grained understanding of video dynamics
[43] such as action segmentation [44]. Also, generative models may create more comprehensive
videos or achieve better video editing [45] by learning temporal derivatives as well. Moreover, due
to computation limitations, we are unable to scale the model up to state-of-the-art video transform-
ers using high-resolution inputs, which would be worth exploration for large-scale applications.
Furthermore, a potentially fruitful direction is to use this approach to learn intuitive physics, sup-
porting agents to understand, predict, and interact with the physical world, since the method’s
intuition also connects with understanding the physical world.
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A. Relationship to Prior Arts

Current methods for SSL of video representations mainly utilize instance discrimination, pretext
tasks, multimodal learning, and other ones. In the following, we discuss these results, and highlight
the advantages of our method over existing ones.

Instance discrimination. It is first applied to images [1IHI3][15]] and then to videos [3,8} 9] [16] 17,
22,[23]]. Given either images or videos as instances, models learn to discriminate different instances
versus different "views" of the same instance, where the views are generated by spatio-temporal
augmentations [9}[16]]. The learning process is driven by contrastive learning [9]], clustering [[16], or
teacher-student distillation [[I7]. Recognizing the rich dynamics in videos, some prior works have
further modified the loss function to consider each video’s temporal attributes, such as play speed
[22]], time differences [9, 10, [17, 46]], frame order [47], and motion diversity [[10, 48]]. Such modifi-
cations do not fully capture the essence of videos as reflections of continuous real-world dynamics,
and are usually designed for a specific instance discrimination method. Apart from being appli-
cable to different frameworks of instance discrimination, our approach, is new for its extraction
of continuous dynamics by unfolding a video’s hidden views via Taylor expansion and temporal
differentiation.

Pretext tasks. Another category of methods involves creating learning tasks from videos. These
tasks have many possible variations, such as identifying transformations applied to videos [30,32],
predicting the speed of videos [34] 36,38, 39] 49, identifying incorrect ordering of frames or clips
[50H53]], resorting them in order [28, 54]], and solving space-time puzzles [55,56]]. The above meth-
ods usually require a complex combination of different tasks to learn general representations, while
some recent works utilize large transformer backbones and learn by reconstructing masked areas
[57]] and further incorporating motion guidance into masking or reconstruction [58,59]]. These tasks
provide non-trivial challenges for models to learn but are unlikely to reflect the natural processes
through which humans and machines alike may learn and interpret dynamic visual information.
In contrast, ViDiDi uses simple learning objectives and models how the physical world can be intu-
itively processed and understood without the need for complex tasks.

Others. In addition, prior methods also learn to align videos with other modalities, such as au-
dio tracks [[60H62]], video captions [[60] 63H65]], and optical flows [§8] 61} [66H68]]. Optical flow also
models changes between frames and is related to our method. However, our method is easy to cal-
culate and intuitively generalize to higher orders of motion and guides the learning of the original
frames within the same encoder in contrast to an additional encoder for optical flow [8]. Besides,
our temporal differentiation strategy may be flexibly adapted to other dynamic data such as audio
while optical flow explicitly models the movements of pixels. Incidentally, our proposed balanced
alternating learning strategy as a simple yet novel way of learning different types of data, may inspire
multimodal learning. Some other existing works manipulate frequency content to create augmented
views of images [[69-71]] or videos [66} 72} [73] to make models more robust to out-of-domain data.
Related to but unlike these works, we seek a fundamental and computationally efficient strategy
to construct views from videos that reflect the continuous nature of real-world dynamics. Besides,
apart from a new way of processing data, we propose an alternating learning strategy that is pivotal
to boosting learning and has not been explored in previous works.

B. Ablation Study

ViDiDi involves multiple methodological choices, including 1) the order of derivatives, 2) how to
pair different orders of derivatives as the input to two-stream video encoders, and 3) how to pre-
scribe the learning schedule over different pairings. We perform ablation studies to test each design
choice.

For the order of derivatives, we consider up to the 2"¢ derivative. For pairing, we consider pairing
derivatives in the same order (1% vs. 1%¢, 274 vs. 274 etc.) or between different orders (1%¢ vs. 0",
15t vs. 2", etc.), respectively. For scheduling, we consider either random vs. scheduled selection

16



of input pairs. With random selection, temporal differentiation is essentially treated as additional
data augmentation. In contrast, the scheduled selection (alg. [I) aims to provide a balanced and
structured way for the model to learn from various orders of temporal derivatives, where higher
order derivatives are intuitively used as guidance of learning the original frames.

As shown in table[f} results demonstrate a progressive improvement in the model’s performance in
video retrieval, given a higher order of derivatives (from the 1% to 2" order), given mixed pairing,
and given scheduled selection of input pairs. Therefore, temporal differentiation is not merely an-
other data augmentation trick. Invariance to different orders of temporal derivatives is a valuable
principle for SSL of video representations that lead to better performance in downstream tasks. To
leverage this principle, it is beneficial to design mixed pairing and prescribe a learning schedule that
provides a balanced and holistic view of different orders of temporal dynamics inherent to videos.
Details about how we design the groups of models in table[f|are summarized below:

e Base: The direct extension of VICReg.
e +Random 1%": Add 1% order derivatives as random augmentation.

e +Random 1% & 2"¢: Add 1% and 2" order derivatives as random augmentation.

e Reverse ViDiDi-VIC: Reverse the order of pair alternation by epoch in ViDiDj, i.e., line 1-9

in alg. [T}
e +Schedule 1%: Alternate pairs across epochs in the order (%—‘t/, %) - (V, V) —
(81 LV’) N
ot ot

e +Schedule 1% & Mix: switch pairs by epoch in the order (%—‘t/, agi’) — (%—‘{,V’) —
(V. V') =5 (Y 2V

e +Schedule 1% & 27! and +Schedule 1° & 2"? & Mix: Build upon +Schedule 1% and
+Schedule 1% & Mix accordingly with random differentiation at each batch to utilize 2"¢

order derivatives.

Table 6: Ablation Study. Video retrieval performance on UCF101 with different design choices.

Method UCF101
1 5 10
Base (VICReg) 311 436 509
+Random 1°* 352 477  56.1
+Random 1°¢ & 2™¢ 362 486 558
Reverse ViDiDi-VIC 391 547 629
+Schedule 15* 371 503 582
+Schedule 1°% & Mix 393 532 609
+Schedule 1°¢ & 27¢ 40.7 565 640
+Schedule 1% & 2% & Mix 430 592  66.6
ViDiDi-VIC 47.6 60.9 68.6

C. Details of SimCLR, BYOL and VICReg

In this section, we provide more details on how we plug ViDiDi into different instance discrimina-
tion frameworks: SImCLR [[11]], BYOL [12]], VICReg [14]].

C.1. Notation

The summary of the SimCLR, BYOL, and VICReg are shown in fig.[f} We begin by introducing
the notations. (X, X') represents two batches of input to the discrimination framework, both in the
shape RBXCXTxhxw containing B clips (or derivatives) of length T, and size h x w. (Z, Z') denotes
two batches of latents encoded from (X, X’), in the shape of R?*?, containing latents of dimension
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Figure 6: The SimCLR, BYOL, VICReg details.

D for Belips. Z = [z1,...,2]" and Z' = [2,...,2}]", expressed as collects of column vectors. f
represents the encoder, which is a 3D convolutional neural network in our experiments. h serves as
the projector, either shrinking or expanding output dimensionality. g denotes the predictor. h and
g are both realized as multi-layer perceptrons (MLPs). We also introduce the similarity function:

sig == 2/ (Iz:][|Z]])-

C.2. SimCLR

SimCLR [[11] is a contrastive learning framework, whose key idea is to contrast dissimilar instances
in the latent space. As shown in fig. @ SimCLR uses a shared encoder f to process (X, X’), and then
project the output with an MLP projection head h into (Z, Z'). Z = h(f(X)), Z' = h(f(X’)). The
InfoNCE loss is defined as:

B

B

1 exp(s;i/) exp Sii/ )

LncE = 7= E log E (6)
2B i=1 Zf 1 exp(si J/Oé i=1 J 1 eXp(SJ i)

C.3. BYOL

BYOL [12] is a teacher-student approach. It has an online encoder fy, an online projector hg, and
a predictor gy, learned via gradient descent. BYOL uses stop gradient for a target encoder f: and
a target projector h¢, which are updated only by exponential moving average of the online ones
& + 17+ (1—7)0 after each training step, where 7 € [0, 1] is the target decay rate. Z = gg(ho(fo(X))),
Z" = sg(he(fe(X"))), here sg means stop gradient. The loss is defined as:
1 B
Lpyor = 3B Z (2 —2s;5) (7)

i=1
C.4. VICReg

VICReg [[14]] learns to discriminate different instances using direct variance, invariance, and covari-
ance regularization in the latent space. It also has a shared encoder f and a shared projector h.
Z =h(f(X)), Z' = h(f(X')). The invariance term is defined as:

1 )
= = >l £ ®)
=1
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The variance term constraints variance along each dimension to be at least y, v is a constant:
1 2
v(Z):BZImaX(O,y—S(zJ,e)) 9)
j=

where S is the regularized standard deviation S(z,€) = \/Var(z) + ¢, € is a small constant, 27 is the

j'" row vector of ZT, containing the value at j*" dimension for all latents in Z.

The covariance term constraints covariance of different dimensions to be 0:

o2) = 5 Y21, (10)

i#£j

CZ)=59S2 -2 (u-2"2=23F 2
The total loss is a weighted sum of invariance, variance, and covariance terms:
Lvic =X (2,2') + plo(Z) + 0 (2) an
+v[c(Z) +c(Z)

D. Implementation Details

D.1. Augmentation Details

We apply clipwise spatial augmentations as introduced in [9]. All the augmentations are applied
before differentiation. For example, for a clip sampled from one video, we do a random crop on
the first frame and crop all the other frames in the clip to the same area as the first frame. If a
second clip is sampled, we do random crop on its first frame and crop the other frames to the same
area. The original frames are extracted and resized to have a shorter edge of 150 pixels. The list of
augmentations is as follows:

e Random Horizontal Flip, with probability 0.5;

e Random Sized Crop, with area scale uniformly sampled in the range (0.08, 1), aspect ratio
in (2, 1), BILINEAR Interpolation, and output size 112 x 112;

o Gaussian Blur, with probability 0.5, kernal size (3, 3), sigma range (0.1, 2.0);

o Color Jitter, with probability 0.8, brightness 0.2, contrast 0.2, saturation 0.2, hue 0.05;

e Random Gray, with probability 0.5;

e Normalize, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225].

D.2. Network Architecture

The output feature dimension for R3D-18, R(2+1)D-18, and MC3-18 is 512, while 1024 for S3D.
In terms of the projector architecture, we use a 2-layer MLP in BYOL, and a 3-layer MLP in Sim-
CLR and VICReg, as proposed by [[11} 12} [14]]. The output dimension of the projector is dgyor =
256, dsimcrr = 128,dvicreg = 2048, and the hidden dimension is dpyor = 4096, dsimcrr =
2048, dy 1creg = 2048. The predictor for BYOL is a 2-layer MLP, with output dimension d = 256,
and hidden dimension d = 4096. Batch normalization [[74]] and Rectified Linear Unit (ReLU) are
applied for all hidden layers of projectors and predictors.

D.3. Pretraining

UCF101, K400, or K200-40k is used as the pertaining dataset. We train the model for 400 epochs
on UCF101 or K200-40k, and K400. We set T' = 8, and select 1 frame every 3 frames. The learning
rate follows a cosine decay schedule [26] for all frameworks. The learning rate at k;, iteration is
n-0.5 [cos (£7) + 1], where K is the maximum number of iterations and 7 is the base learning rate.
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A 10-epoch warmup is only employed for BYOL. Weight decay is set as 1le — 6. We apply cosine-
annealing of the momentum for BYOL as proposed in [12]: 7 = 1 — (1 — Thase ) - (cos(4m) + 1)/2,
and set Tygse = 0.99. The temperature for SImCLR is a = 0.1, and hyper-parameters for VICReg
are A = 1.0, u = 1.0,v = 0.05. We train all models with the LARS optimizer [27]] utilizing a batch
size of 64 for UCF101 or K200-40k, batch size of 256 for K400, and a base learning rate p = 1.2. The
pretraining can be conducted on 8 GPUs, each having at least 12 GB of memory.

D.4. Video Retrieval

For the pretrained model without any fine-tuning, we test its performance on video retrieval using
nearest-neighborhood in the feature space [3} 8]]. Specifically, given a video, we uniformly sample
10 clips of length 16, apply random crop and normalization for data augmentation, encode each clip
using the pretrained video encoder, and average the resulting representations into a single feature
vector for encoding the given video. Through a nearest-neighborhood model that fits the training
set, we use each video in the testing set as a query and retrieve the top-k (k = 1,5,10) closest
videos in the training set. The retrieval is successful if at least one out of the k retrieved training
videos is from the same class as the query video. We report the top-k retrieval recall on UCF101
and HMDB51. The retrieval can be conducted on 1 GPU, having at least 24 GB of memory.

D.5. Action Recognition

We also fine-tune the pretrained model to classify human actions. For this purpose, we add a linear
classification head to the pretrained model, and fine-tune it end-to-end on UCF101 or HMDB51 for
100 epochs (see more details in the supplementary material). At training, we sample clips of length
16. We use the SGD optimizer [[75] with a momentum value of 0.9. The model is tuned for 100
epochs. The batch size is set at 128, with an initial learning rate of 0.2 which is scaled by 15 at the
60th and 80th epochs. We use a weight decay of 1e —4. Furthermore, a dropout rate of 0.5 is applied.
After fine-tuning, we sample 10 clips of length 16 from each testing video, apply random crop and
normalization, feed the results as the input to the fine-tuned model, and average their resulting
predictions for the final classification of the video. We report the top-1 action recognition accuracy
on UCF101 and HMDB51. The finetuning can be conducted on 8 GPUs, each having at least 12 GB
of memory. The testing can be conducted on 1 GPU.

D.6. Action Detection

We mainly follow the CVRL [9]] testing pipeline, taking our pre-trained R3D-18 as the backbone and
casting a Faster-RCNN [[Z6] on top of it. To fit the time-sequential nature of the input, we extract
region-of-interest (Rol) features using a 3D RolAlign on the output from the final convolutional
block. These features are then processed through temporal average pooling and spatial max pooling.
The resulting feature is fed into a sigmoid-based classifier for multi-label prediction. We pretrain our
R3D-18 with three different methods(VIC/BYOL/SimCLR) and two different inputs (with/without
derivative). We use an AdamW/{[77] optimizer with a 0.01 learning rate, then shrink the learning rate
to half after epoch 5. The dropout rate for Faster-RCNN is 0.5. We perform 20 epochs for our six pre-
trained weights and run an evaluation after each epoch. We report the epoch with the highest mAP.
Our clip length is eight frames with an interval of four frames. The finetuning can be conducted on
2 GPUs, each having at least 48 GB of memory. The testing can be conducted on 1 GPU.

E. Auxilary Results

E.1. Silhouette Score

Apart from visualization of clustering in the latent space, we also quantify the clustering using
Silhouette Score as illustrated in[7]
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Table 7: Silhouette Score for Base and ViDiDi with 3, 5, .. ., 101 classes. ViDiDi improves the Score,
showing better clustering in the latent space.

Silhouette Score

Method
3 5 10 15 20 101

SimCLR 0.136  0.081 0.048  0.034  0.022 -0.026
ViDiDi-SimCLR 0.210 0.132 0.096 0.078 0.058 0.003
BYOL 0.038 -0.086 -0.094 0.091 -0.080 -0.186
ViDiDi-BYOL 0.185 0.230 0.128 0.107 0.070 0.004
VICReg 0.110 0.069 0.044 0.036 0.017 -0.038
ViDiDi-VIC 0.235 0.232 0.150 0.138 0.098 0.014

(a) VIDReg (left) and ViDiDi-VIC (right).
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Figure 7: Silhouette scores and t-SNE plots of top 5 classes in UCF101 train.

E.2. Clustering of Latent Space

We provide more visualization of the clustering phenomenon for VICReg, BYOL, and SimCLR, with
or without the ViDiDi framework; on UCF101 train dataset or test dataset; utilizing 5 or 10 classes
of videos. Here, for each model, we choose the top 5 or 10 classes of videos that are best retrieved
during the video retrieval experiments. The results are shown in fig. [/} fig. 8] fig.[9} and fig. [I0}
ViDiDi provides consistently better clustering in the latent space for both train data and test data.
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Figure 8: Silhouette scores and t-SNE plots of top 10 classes in UCF101 train.
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Figure 10: Silhouette scores and t-SNE plots of top 10 classes in UCF101 test.
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E.3. Spatio-temporal Attention

We provide more visualization of the attention for VICReg, BYOL, and SimCLR, with or without
the ViDiDi framework; on UCF101 dataset or HMDB51 dataset. The results are presented in fig.[TT]

fig.[12} fig. [13} fig.[T4} and fig. [T5]

Frames Attn of VIC Attn of ViDiDi-VIC

UL
11l

Figure 11: More spatiotemporal attention for VICReg and ViDiDi-VIC. Left: Original frames.
Middle: Attention from VIC. Right: Attention from ViDiDi-VIC.
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Figure 12: Spatiotemporal attention on UCF101. Left: Original frames. Middle: Attention from
BYOL. Right: Attention from ViDiDi-BYOL.
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Frames Attn of BYOL Attn of ViDiDi-BYOL

Figure 13: Spatiotemporal attention on HMDB51. Left: Original frames. Middle: Attention from
BYOL. Right: Attention from ViDiDi-BYOL.

26



Frames Attn of SimCLR ViDiDi-SimCLR

Figure 14: Spatiotemporal attention on UCF101. Left: Original frames. Middle: Attention from
SimCLR. Right: Attention from ViDiDi-SimCLR.
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Frames Attn of SimCLR ViDiDi-SimCLR

Figure 15: Spatiotemporal attention on HMDB51. Left: Original frames. Middle: Attention from
SimCLR. Right: Attention from ViDiDi-SimCLR.
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