
Evaluating n-Gram Novelty of Language Models Using RUSTY-DAWG

Anonymous ACL submission

Abstract001

How novel are texts generated by language002
models (LMs) relative to their training cor-003
pora? In this work, we investigate the extent004
to which modern LMs generate n-grams from005
their training data, evaluating both (i) the proba-006
bility LMs assign to complete training n-grams007
and (ii) n-novelty, the proportion of n-grams008
generated by an LM that did not appear in the009
training data (for arbitrarily large n). To enable010
arbitrary-length n-gram search over a corpus011
in constant time, we develop RUSTY-DAWG,012
a novel search tool inspired by indexing of ge-013
nomic data. We compare the novelty of LM-014
generated text to human-written text and ex-015
plore factors that affect generation novelty, fo-016
cusing on the Pythia models. We find that, for017
n > 4, LM-generated text is less novel than018
human-written text, though it is more novel for019
smaller n. Larger LMs and more constrained020
decoding strategies both decrease novelty. Fi-021
nally, we show that LMs complete n-grams022
with lower loss if they are less frequent in the023
training data. Overall, our results reveal factors024
influencing the novelty of LM-generated text,025
and we release RUSTY-DAWG to facilitate fur-026
ther pretraining data research.027

1 Introduction028

Despite an explosion of new applications of lan-029

guage models (LMs), a core question about LMs as030

text generators has not been fully answered: how031

novel is the text they generate compared to their032

training corpus? This question has both scientific033

value and practical relevance for LM deployment.034

From a scientific perspective, language understand-035

ing is often theorized as hinging on compositional-036

ity, meaning that an infinite range of meanings can037

be expressed by combining a small set of words038

or morphemes. If LMs were largely copying sen-039

tences or spans they had seen before, this would040

suggest they cannot compositionally generate new041

sentences like humans can. From a societal per-042

spective, the novelty of LM-generated text may 043

also be relevant to legal questions of whether copy- 044

righted materials can be used in LM pretraining 045

data. For instance, a lawsuit between the New York 046

Times and OpenAI (ongoing at the time of writing) 047

hinges on the legal ambiguity of whether including 048

copyrighted material in training data is allowed un- 049

der fair use (Klosek, 2024). Scientific evaluation 050

of copying behavior in LMs may help guide the 051

resolution of such questions. 052

In past work, McCoy et al. (2021) evaluated the 053

novelty of more typical text generated by sampling 054

from small LMs, finding that small n-grams in LM- 055

generated text are less novel than in validation text, 056

though larger n-grams are more novel. However, 057

McCoy et al. (2021)’s LMs were trained on Web- 058

Text (40 GB; Radford et al., 2019), which is 3% 059

of the size of the Pile (1254 GB; Gao et al., 2020). 060

Thus, it is unclear how their conclusions would 061

transfer to larger-scale, modern LMs. 062

In this work, we evaluate the n-gram generation 063

novelty of LMs of varying sizes trained on large- 064

scale web data. Specifically, we measure the pro- 065

portion of generated n-grams that are novel against 066

the training set across across many n, which we 067

call n-novelty. Scaling the analysis of n-novelty 068

to large corpora is challenging because measur- 069

ing large-n-gram statistics over large corpora is 070

infeasible when implemented naively. To solve this 071

problem, we develop RUSTY-DAWG, a search tool 072

that uses the Compacted Directed Acyclic Word 073

Graph (CDAWG, Crochemore and Vérin, 1997; 074

Inenaga et al., 2005) data structure for arbitrary- 075

length n-gram matching over a corpus in constant 076

time w.r.t. the corpus size and linear w.r.t the query 077

size. While similar approaches were previously 078

applied to genome data, we are the first, to the best 079

of our knowledge, to scale them to LM pretraining 080

data. We use RUSTY-DAWG to address the fol- 081

lowing research questions, focusing on the Pythia 082

models (Biderman et al., 2023), trained on the Pile: 083

1

RQ1. How novel is typical text generated by LMs084

compared to new human-written text from the085

training distribution?086

RQ2. How do model size, decoding strategies, and087

prompting with training data influence the088

novelty of model-generated text?089

RQ3. Across n-gram sizes, how does the occurrence090

and frequency of n-grams in the training set091

impact their completion loss?092

We make the following contributions and findings:093

0. We introduce RUSTY-DAWG, an effi-094

cient data structure based on CDAWG au-095

tomata that enables unbounded-length n-gram096

searches in massive pretraining datasets.097

1. We find large n-grams (n > 4) are less novel098

in LM-generated text compared to human-099

written text, though small n-grams (n ≤ 4)100

are more novel (RQ1, Section 5.1).101

2. We show that novelty decreases with larger102

LMs and constrained decoding (RQ2, Sec-103

tion 5.2). To an extent, prompting with train-104

ing data also decreases novelty.105

3. We show LMs complete frequent training106

n-grams with lower loss (RQ3, Section 6).107

2 Operationalizing Novelty with n-Grams108

There are different ways to measure LM generation109

novelty: one could assess the verbatim overlap110

between the text and training data or attempt to111

capture semantic and syntactic novelty. We target112

verbatim novelty via two n-gram-based metrics:113

n-Novelty. Novelty can be evaluated at different114

scales. For example, while all individual tokens in115

a generated text will likely have occurred, it would116

be notable if a 100-gram from the pretraining data117

was generated verbatim. To capture novelty across118

different n-gram lengths, we follow McCoy et al.119

(2021) in plotting the n-novelty curve, i.e., the nov-120

elty of generated n-grams (where n varies) w.r.t.121

some fixed corpus C. Formally, for any text query122

Q (e.g., a model-generated document) we define123

the n-novelty rate of Q as the proportion of n-124

grams in Q that also occurred in C. We visualize125

the n-novelty curve as a function of n as in Fig-126

ure 1b. Intuitively, 1-novelty should be close to127

zero (due to the way tokenizers work), and the128

curve will monotonically increase with n (since129

substrings of a non-novel n-gram are non-novel).130

Non-Novel Suffix Length (NNSL). We propose a 131

new measure of aggregate novelty across different 132

n. We define NNSL at token position i in Q as the 133

length of the longest suffix of Q[: i] that appeared 134

in C. We then aggregate by taking mean or max. 135

Example. Let C = hello$world$ be a 136

character-tokenized corpus, where $ is a document 137

boundary. Query Q = lloyd has 1-gram novelty 138

1/5 (y is novel), 2-gram novelty 2/4 (oy and yd are 139

novel), 3-gram novelty 2/3 (only llo is non-novel), 140

and 4-gram novelty 2/2. The NNSL at each posi- 141

tion is ⟨1, 2, 3, 0, 1⟩, with mean 1.4 and max 3. We 142

intuitively demonstrate this example in Figure 1b. 143

3 Measuring Novelty with CDAWGs 144

Naively computing our novelty metrics is pro- 145

hibitively expensive over a large pretraining corpus 146

like the Pile (334B tokens). To make the searches 147

fast, we use a Compacted Directed Acyclic Word 148

Graph (CDAWG; Crochemore and Vérin, 1997; 149

Inenaga et al., 2005), a data structure which re- 150

turns the NNSL at each position in Q against C 151

in constant time (w.r.t. the size of C), and lin- 152

ear time (w.r.t. the size of Q), from which n- 153

novelty can be computed. We describe how to 154

compute NSSL using CDAWG in Appendix A. This 155

constant-time querying is crucial for our applica- 156

tion of searching the Pile. We first discuss querying 157

CDAWGs (Section 3.1), then their memory costs 158

(Section 3.2), their construction (Section 3.3), and 159

our open-source implementation (Section 3.4). 160

3.1 Querying CDAWGs 161

A CDAWG is a finite-state machine built for a cor- 162

pus C that acts as a rich index for C (see Figure 1a). 163

We use it to compute NNSL queries on C: 164

• INPUT: A string (e.g., Q = lloyd). 165

• OUTPUT: NNSL at each position in Q (e.g., 166

L(Q) = ⟨1, 2, 3, 0, 1⟩) as well as the training 167

frequencies of the largest suffixes matched at 168

each position (e.g., N(Q) = ⟨3, 1, 1, 0, 1⟩). 169

An NNSL query is answered by passing Q as input 170

through the CDAWG (shown in Figure 1a; see Ap- 171

pendix B.2 for details). Processing a single token 172

takes constant time because it involves just follow- 173

ing a single arc (potentially a failure arc; Allauzen, 174

2023). Thus, the query takes time O(|Q|) with no 175

dependence on |C|. This makes CDAWGs useful 176

for searching large corpora and faster than suffix 177

arrays (Carlini et al., 2023; Liu et al., 2024). 178

2

q0

q1

q2

q4

q3

hello$, ello$, $

l

o

lo$,o$

$

rld$

world$, rld$, $

(a) CDAWG for C = hello$world$, where $ is a
document separator. Dashed arrows are failure arcs.

1 2 3 4 5
n-gram size

0.0

0.2

0.4

0.6

0.8

1.0

%
 n

ov
el

C: hello$world$
zebra
lloyd
cello

(b) Novelty curves computed from the CDAWG in
Figure 1a, labeled by their corresponding queries.

Figure 1: Illustration of CDAWG and resulting novelty curves with character-level tokenization for simplicity.

For illustration (Figure 1), we use character-level179

tokenization, but this process can be applied with180

any tokenization. The n-novelty curve, as well181

as all other data presented in this paper, can be182

computed from non-novel suffix queries.183

3.2 Memory Overhead184

A practical concern for an indexing data structure185

is its memory overhead: how many bytes does it186

use on a corpus of size |C|? The CDAWG refines187

the earlier Directed Acyclic Word Graph (DAWG;188

Blumer et al., 1984) to reduce memory overhead.189

A DAWG contains at most 2|C| states and 3|C|190

arcs (Blumer et al., 1984), which, while linear, be-191

comes impractical for large datasets. In contrast,192

a CDAWG achieves 0.18|C| states and 0.97|C|193

arcs on the Pile. As a result, we find the CDAWG194

takes∼50% as much memory to store as the vanilla195

DAWG in practice.1 Still, the CDAWG takes 29|C|196

bytes vs. 7|C| for a suffix array, illustrating a time/s-197

pace tradeoff between the two approaches.198

Another factor that affects memory overhead199

is the choice of graph representation. We imple-200

mented the edge list for a node with an AVL tree to201

make transitions very fast, but at the cost of some202

memory overhead. Further details about the graph203

representation, memory overhead, and potential204

improvements can be found in Appendix B.3.205

3.3 Building CDAWGs206

The naive way to build a CDAWG would involve207

enumerating all span in a corpus in quadratic time,208

which is infeasible for large corpora. Luckily,209

more refined algorithms for building DAWGs and210

CDAWGs have been developed that process each211

token in the corpus left to right, taking linear212

1A CDAWG arc is larger than a DAWG arc. Hence, the
CDAWG memory overhead is reduced 50% despite a larger
reduction in the number of states and arcs.

time overall (Blumer et al., 1984; Crochemore and 213

Vérin, 1997; Inenaga et al., 2005). We implement 214

Inenaga et al. (2005)’s linear-time algorithm. 215

Once the CDAWG is built, we apply a post- 216

processing step to add frequency information to 217

each node in the CDAWG via a depth-first traversal 218

(Appendix B.1). Since edges dominate the mem- 219

ory overhead of the CDAWG, this only minimally 220

increases the space overhead. 221

3.4 RUSTY-DAWG Library 222

While there are some pre-existing open-source li- 223

braries for DAWGs,2 we did not find a scalable 224

open-source implementation of CDAWGs. To 225

facilitate our research and other applications of 226

CDAWGs to large text corpora, we implemented 227

RUSTY-DAWG, a modern Rust library for building 228

and using DAWGs and CDAWGs, which we will 229

open-source. See Appendix B.4 for more details. 230

4 Experimental Setup 231

4.1 Building a CDAWG on the Pile 232

We focus our study on the copying behavior of the 233

eight Pythia models (Biderman et al., 2023) trained 234

on the Pile (Gao et al., 2020). The Pile contains 235

many kinds of text, including web text, books, code, 236

and email communication. We build our RUSTY- 237

DAWG on the non-deduplicated version using the 238

GPT-NeoX (Black et al., 2022) tokenization used 239

by Pythia, under which it contains 334B tokens. 240

To parallelize building RUSTY-DAWG, we 241

shard the Pile into 30 shards and build a CDAWG 242

on each 11B-token shard on a different cloud ma- 243

chine. Each of the 30 created CDAWGs has 2B 244

states and 11B arcs, taking 327 GB total mem- 245

ory. We store this in RAM during building. At 246

inference time, we keep the CDAWG shards on 247

2https://github.com/elake/SuffixAutomaton

3

https://github.com/elake/SuffixAutomaton

1 10 100
n-gram size

0.0

0.2

0.4

0.6

0.8

1.0

%
 n

ov
el

LB
Dolma
Valid
Pythia-12B

Figure 2: n-novelty curve for Pythia-12B with naive
sampling. Compared to Dolma, LM-generated text is
more novel for n > 4 and slightly less novel for n ≤ 4.
The gap between the dark gray Dolma curve and the
green Pythia-12B curve quantifies the novelty difference.
LM-generated text is more novel than the Pile validation
set across n-gram sizes due to contamination.

disk and execute NNSL queries on each of the 30248

CDAWGs in parallel. We aggregate NNSL (by tak-249

ing the max) and counts returned (by summing at250

maximum suffix lengths) to exactly simulate the251

output of a single CDAWG.252

4.2 Generating Text from LMs253

We evaluate the generation novelty of the Pythia254

models (Biderman et al., 2023), which were trained255

on the Pile (Gao et al., 2020) at different sizes up256

to 12B parameters. We consider two setups, (1)257

generating unmprompted texts, and (2) generat-258

ing prompted texts, for which we sample 500 doc-259

uments from the Pile validation set (trimmed to260

1,000 tokens). In each setup we generate 500 docu-261

ments of 1,000 tokens from each LM. We vary the262

model size (from 70M to 12B, 8 models in total)263

and decoding strategy, sweeping different parame-264

ters for top-p (Holtzman et al., 2020), top-k (Fan265

et al., 2018), temperature, and greedy beam search.266

Unless indicated otherwise, we use Pythia-12B and267

naive sampling with unconditioned prompt as de-268

faults. We pass each generated text through the269

CDAWG to compute the NNSL at each position (cf.270

Section 3), from which the n-novelty curves as a271

function of n-gram size can be computed.272

4.3 Novelty Baselines273

For small n, some n-grams will likely be repeated274

between a document and a large corpus by ran-275

dom chance. For large n this probability will de-276

crease rapidly. Thus, to evaluate the novelty of LM277

generations, it is necessary to establish a baseline278

n-novelty curve. We consider two such baselines:279

1 10 100
n-gram size

0.0

0.2

0.4

0.6

0.8

1.0

%
 n

ov
el

Dolma
Valid
70M
160M
410M
1B
1.4B
2.8B
6.9B
12B

(a) n-novelty curves across model sizes.

108 109 1010

Model size

4.0

4.5

5.0

5.5

6.0

M
ea

n
NN

SL

(b) Mean NNSL across model sizes.

Figure 3: Both n-novelty and mean NNSL suggest larger
LMs generate less novel text than smaller LMs.

Validation Text. Following McCoy et al. (2021), 280

we use the novelty of text in the Pile’s validation set 281

as a baseline. If n-grams of a certain size are less 282

novel in generated text compared to validation text, 283

the LM is generating pretraining n-grams more 284

commonly than expected for new documents from 285

the pretraining distribution. This suggests the LM 286

is copying from its pretraining corpus. 287

Text After Pile Date Cutoff. The novelty of 288

validation text may be artificially low if the training 289

distribution contains duplicated documents (Lee 290

et al., 2022a). To account for this, we filter text 291

from Dolma (Soldaini et al., 2024) that was written 292

after the Pile collection cutoff. Specifically, the 293

two domains we use are Reddit and scientific texts 294

(Pes2o; Soldaini and Lo, 2023), both of which are 295

in-distribution for the Pile. Thus, we expect this 296

baseline to represent natural overlap for human- 297

written text without contamination. We report the 298

n-novelty curve fit on both domains from Dolma 299

together, though qualitatively we observe that the 300

curve looks similar within each domain. 301

5 Novelty of LM-Generated Text 302

5.1 Novelty vs. Human-Written Text 303

To answer RQ1, we compare the novelty of LM- 304

generated text against novel human-written text. 305

As such, we report novelty metrics for two human- 306

written text baselines: validation text and Dolma 307

documents written after the Pile cutoff. 308

4

Setup Param Mean Max

Baseline
Validation 29.94 1,000
Reddit 4.74 66

Size

70M 4.18 187
160M 4.07 207
410M 4.61 191
1B 5.07 270
1.4B 5.22 225
2.8B 5.18 322
6.9B 5.32 198
12B 6.19 376

Prompt
1 5.83 624
10 6.21 393
100 7.56 976

Table 1: NNSL results for human-written text baselines
and different model sizes and prompt lengths.

Validation Baseline. Figure 2 shows that the val-309

idation n-novelty curve is very low across n. 2.4%310

of the 1,000-token validation documents are ex-311

actly matched somewhere in the Pile training set.312

13.6% share a 100-gram with the training data, and313

25.0% share a 50-gram. This suggests contamina-314

tion, since we expect natural large-n-gram overlap315

should be vanishingly unlikely.316

To formally test this, we derive a lower bound on317

n-novelty assuming most next tokens are nondeter-318

ministic (Appendix C).3 Under this assumption, the319

n-novelty curve for non-contaminated data should320

not enter the red region in Figure 2, i.e., almost all321

23+-grams should be novel. The validation curve322

(but not Dolma) enters this region, suggesting many323

contaminated n-grams in the validation text. Thus,324

we turn to Dolma as a better representation of un-325

contaminated human-written text.326

Dolma Baseline. Figure 2 shows that n-grams327

of size n > 4 are less novel in generated text328

compared to Dolma text, whereas n-grams of size329

n ≤ 4 (median length) are slightly more novel. For330

instance, 8% of Pythia bigrams are novel (vs. 5%331

for Dolma), while 93% of Pythia 10-grams and332

99% of 100-grams are novel (vs. 98% and 100%).333

This disagrees with McCoy et al. (2021)’s findings334

for small LMs trained on 40 GB of text, where LMs335

were more novel on small n-grams. One explana-336

tion for the difference may be the model and data337

scale, motivating us to more closely analyze the338

3We assume 90% of tokens have entropy ℓ ≥ 1.8 bits/to-
ken based on the best achieved Pile losses (Du et al., 2022).

Decoding Param Mean Max

Baseline
Validation 29.94 1,000
Reddit 4.74 66

Top-p
0.85 15.02 992
0.9 8.85 1000
0.95 9.69 902

Top-k
20 11.34 507
80 9.24 580
160 8.17 386

Temperature

0.5 14.22 983
0.85 10.18 969
0.9 11.05 1,000
0.95 6.55 418
1.05 5.08 313
1.1 4.34 375

Beam
8 192.03 408
4 9.17 18
1 8.40 19

Table 2: NNSL results for Pythia-12B with different
decoding strategies. Across strategies, more constrained
decoding leads to less novel text.

impact of model size on novelty in Section 5.2. 339

Examples of Copied n-Grams. We find that 340

many non-novel n-grams generated by Pythia-12B 341

are pieces of licenses and boilerplate code. For ex- 342

ample, Pythia-12B generates a 64-gram with 45K 343

occurrences in the Pile that starts: 344

// 345

// Licensed under the Apache License, 346

Version 2.0 (the "License"); 347

// you may not use this file except in com- 348

pliance with the License. . . 349

Another generated 64-gram (with 213K occur- 350

rences in the Pile) imports Linux libraries: 351

. . .#include <sound/core.h> 352

#include <sound/pcm.h> 353

#include <sound/soc.h>. . . 354

5.2 Impact of Model Size and Decoding 355

Having explored the novelty of LM-generated text 356

compared to human-written text, we assess the 357

factors that influence the generation novelty of 358

LMs (RQ2). We compare n-novelty curves vary- 359

ing model sizes, decoding strategies, and different 360

amounts of training data used as a prompt. 361

Larger LMs are Less Novel. Figure 3a shows 362

that, across n, n-grams are less novel for larger 363

5

1 10 100
n-gram size

0.0

0.2

0.4

0.6

0.8

1.0

%
 n

ov
el

n-novelty by top-k
Dolma
Valid
k=
k=160
k=80
k=20

1 10 100
n-gram size

0.0

0.2

0.4

0.6

0.8

1.0

%
 n

ov
el

n-novelty by top-p
Dolma
Valid
p=1.0
p=0.95
p=0.9
p=0.85

1 10 100
n-gram size

0.0

0.2

0.4

0.6

0.8

1.0

%
 n

ov
el

n-novelty by temperature

Dolma
Valid
=1.1
=1.05
=1.0
=0.95
=0.9
=0.85
=0.5
=0.0

1 10 100
n-gram size

0.0

0.2

0.4

0.6

0.8

1.0

%
 n

ov
el

n-novelty by beam size
Dolma
Valid
b=1
b=4
b=8

Figure 4: Impact of decoding choices (top-k, top-p, temperature τ , and beam size with τ = 0) on n-novelty. Less
stochastic (darker) decoding choices decrease novelty; temperature and beam size have the strongest effect.

LMs than for smaller LMs. Similarly, Figure 3b364

shows that the mean NNSL increases linearly with365

log model size. Both metrics suggest that larger366

LMs are less novel than smaller LMs across all n-367

gram sizes. This may indicate that larger LMs have368

more capacity to memorize n-grams from training.369

Decoding Constraints Decrease Novelty. Prior370

work with small LMs and corpora suggests decod-371

ing choices could influence generation novelty (Mc-372

Coy et al., 2021). In particular, we expect more373

constrained decoding to decrease novelty (Liu et al.,374

2024). To evaluate this, we generate text with top-p,375

top-k, temperature (including greedy), and greedy376

beam search decoding setups, varying the param-377

eter that constraints generation in each case. We378

hypothesize that the parameter choices that more379

constrained will result in lower generation novelty.380

Indeed, Figure 4 shows that constrained decod-381

ing reduces n-novelty. The constrained decoding382

curves are consistently below the Dolma baseline,383

and, for small n, even below the validation baseline.384

The least n-novel approaches are low-temperature385

decoding and beam search. For 10-grams, tem-386

perature 0.5 reaches 71% novelty and tempera-387

ture 0 reaches 69% novelty, while for 100-grams,388

temperature 0.5 reaches 98% and temperature 0389

reaches 100%. Increasing beam size decreases nov-390

elty, with beam size 8 remaining near 0% novelty391

even up to 100-grams. With beam size 8, the LM 392

deterministically generates a single document con- 393

taining a 408-gram from training (see Appendix D 394

for beam size results with nondeterministic con- 395

ditioned generation). As we show in Section 5.1, 396

temperature ≤ 0.9 and top-p ≤ 0.95 dramatically 397

increase both the mean NNSL and the max. Both 398

novelty metrics suggest that constrained decoding 399

reduces generation novelty. 400

Long Training Prompts Slightly Decrease Nov- 401

elty. To evaluate the impact of prompting with 402

training data, we prompt the model with p tokens 403

from the beginning of a training document before 404

generating 1,000 additional tokens. We then eva- 405

lute the n-novelty curve for these 1,000 tokens. 406

Qualitative inspection reveal that the novelty curves 407

look almost identical independent of the prompt 408

length p. However, the NNSL statistics (Section 5.1) 409

tell a more subtle story: the median NNSL remains 410

unchanged, whereas the mean increases from 6.19 411

to 7.56 with 100 prompt tokens. This suggests that, 412

while most n-grams do not become more novel 413

when a prompt is given, the longest non-novel n- 414

grams are longer when a longer prompt is given. 415

6 Impact of n-Gram Training Frequency 416

Finally, regarding RQ3, we aim to test whether, 417

at inference time, LMs assign higher probability 418

6

1 10 100
n-gram size

1

2

3

4

5

6

7

M
ea

n
co

m
pl

et
io

n
lo

ss

In train
Not in train

(a) Completion loss of Pythia-12B on n-grams in
validation text based on whether the n-grams oc-
curred in training. Across n-gram sizes, Pythia-12B
assigns lower loss to n-grams seen during training.

100 101 102 103 104 105 106 107 108

n-gram frequency

0.0

0.5

1.0

1.5

2.0

2.5

M
ea

n
co

m
pl

et
io

n
lo

ss

4-grams
8-grams
16-grams
32-grams
64-grams
128-grams

(b) Completion loss as a function of n-gram training
frequency for different n-gram sizes. Across n-
gram sizes, more frequent n-grams have lower loss
(with larger n being easier to predict).

Figure 5: n-gram completion loss based on presence in train and frequency.

to n-grams from training, and how this interacts419

with training frequency. We define the mean com-420

pletion loss of x1 · · ·xn as the average probability421

assigned to xn when it occurs in validation text:422

ℓ̂(x) =
1

|Vx|
∑
i∈Vx

pLM(vi | v1:i−1),423

where Vx = {i : vi+1−n:vi = x}. This captures the424

LM’s sensitivity to training n-grams in a way that is425

independent of the specific sampling choices made426

when decoding from the LM. It also captures use427

cases of LMs where the LM is used to assign prob-428

abilities to strings rather than as a text generator,429

such as in multiple-choice question answering like430

MMLU (Hendrycks et al., 2021) or evaluation of431

noun-verb agreement (Marvin and Linzen, 2018).432

Method. We sample 5,000 documents of 1,000433

tokens each, from the Pile validation set. We com-434

pute the per-token loss using Pythia-12B and use435

the CDAWG to find the non-novel suffixes at each436

position. For each n, we find tokens in the valida-437

tion data that fall into two categories:438

• In Train: The n-gram ending at the token439

occurred in the training data.440

• Not in Train: The n-gram ending at the token441

did not occur in the training data, but the (n−442

1)-gram ending at the previous token did.443

We then compute the mean completion loss across444

all tokens in each condition with the same value445

of n, and plot this mean loss as a function of n.446

This quantity measures the surprisal of the LM447

when completing n-grams, with the two conditions448

differentiating whether the correct n-gram comple-449

tion appeared in the training data. For the n-grams450

in the training data, we also investigate how their451

frequency affects completion loss.452

a) b) c) d)
2.5× 107 2.3× 107 2.1× 107 1.1× 107

is are
1.4× 108 2.9× 107

Table 3: n-gram frequencies in the Pile computed by
CDAWG. a) is more frequent than other options, and
is is more frequent than are. Combined with Figure 5b,
this suggests evaluations that use continuation probabili-
ties may be susceptible to pretraining frequency effects.

Training n-Grams are Easier to Complete. Fig- 453

ure 5a shows that, across n-gram sizes, the comple- 454

tion loss for n-grams from the training set is smaller 455

than for n-grams not in the training set (concretely, 456

for n-grams above size 10, the completion loss is 457

roughly 50% when the n-gram was in the training 458

set vs. not). For n > 80, the loss curve for n- 459

grams not in training becomes noisy, reflecting the 460

rarity of such n-grams. These results suggest that 461

Pythia-12B is upweighting tokens that complete n- 462

grams from pretraining.4 This finding potentially 463

explains why more constrained decoding decreases 464

novelty: while LMs assign probability to complete 465

training n-grams, their next-token prediction with 466

standard sampling also places a lot of probability 467

mass on other tokens. Thus, training n-grams may 468

not always get generated. However, the finding 469

that training n-grams are upweighted in terms of 470

probability suggests that pruning probability mass 471

on other tokens (as approaches like top-p or top-k 472

do) would cause even more training n-grams to be 473

generated, as found in Section 5.2. 474

4While these results may be confounded (training n-grams
may be easier to complete for other reasons besides their oc-
currence in the training set), we believe this is not a significant
issue and leave the answer to this question for future work.

7

Frequent n-Grams are Easier to Complete.475

Figure 5b shows that, across sizes, n-grams that476

are more frequent in the training data are easier for477

Pythia-12B to complete, implying LM predictions478

are sensitive to training data frequency effects. This479

is particularly relevant when specific token con-480

tinuations are compared to assess multiple choice481

answers: e.g., a), b), c), and d) for MMLU evalua-482

tion (Hendrycks et al., 2021), or comparing is/are483

to assess noun-verb agreement competence (Mar-484

vin and Linzen, 2018). Table 3 shows that the Pile485

frequency of these continuations are not uniform.486

Combined with Figure 5b, this suggests evaluating487

LMs by comparing these tokens may be susceptible488

to pretraining frequency effects.489

7 Related Work490

7.1 Methods for Accessing Text Corpora491

Data is becoming an important factor for under-492

standing LM behavior (Elazar et al., 2024). As the493

scale of pretraining datasets continues to increase,494

naive search through these large datasets does not495

scale. As such, we need clever algorithms and data496

structures to interact with and study huge datasets.497

McCoy et al. (2021), the first work to study the498

generation novelty of LMs, trained on Wikitext-499

103 (<1 GB) and WebText (40 GB). At this small500

data scale, they could run naive string matches501

over the data, a process that would not be feasible502

today with the Pile (1254 GB) or larger datasets. In503

contrast, Elazar et al. (2024) use an elastic search504

index based on an inverted index that allows a to505

search a corpus which depends on the number of506

documents in the corpus, making it much slower507

then our approach. Carlini et al. (2023); Liu et al.508

(2024) use a suffix array (Manber and Myers, 1990),509

allowing queries in logarithmic time w.r.t. corpus510

size. Another data structure previously used in the511

setting of text generation with retrieval is the FM-512

index (Ferragina and Manzini, 2000; Bevilacqua513

et al., 2022), a compressed suffix array.514

In this work, we use a CDAWG (Crochemore515

and Vérin, 1997; Inenaga et al., 2005), which is a re-516

finement of the earlier DAWG (Blumer et al., 1984),517

and part of a larger family of “∗DAWG” indices518

(Takagi et al., 2017; Inenaga, 2024). ∗DAWGS519

use more memory than suffix automata but sup-520

port faster membership and suffix overlap queries521

(cf. Section 3). ∗DAWGs also support fast infinite522

n-gram queries (Liu et al., 2024), which could be523

useful for retrieval language modeling applications.524

7.2 Memorization, Contamination, and 525

Generalization 526

The increased use of LMs has raised concerns about 527

memorization artifacts that might limit their gen- 528

eralization potential. For instance, Bender et al. 529

(2021) draw a parallel of LMs to “stochastic par- 530

rots” that memorize and mimic their training data. 531

Memorization has been carefully studied and 532

quantified (Zhang et al., 2021; Kandpal et al., 2022; 533

Lee et al., 2022b; Magar and Schwartz, 2022; Car- 534

lini et al., 2023; Ippolito et al., 2023) and is often 535

framed as a concerning property of model behavior. 536

On the other hand, other works claim that mem- 537

orization is integral for generalization (Feldman, 538

2020; Feldman and Zhang, 2020; Chatterjee, 2018). 539

In this work, we do not take a stance on the im- 540

portance or dangers of memorization, but rather 541

quantify the novelty of LM-generated text vs. hu- 542

man text and investigate how different parameters 543

affect novelty. In contrast to much previous work 544

on memorization, we also focus on the novelty of 545

typical text rather than text elicited in adversarial 546

settings (Carlini et al., 2023; Ippolito et al., 2023). 547

Like McCoy et al. (2021), we focus on genera- 548

tion novelty rather than quality, and we are inter- 549

ested in the effect of different variables such as 550

model size, and decoding strategies on the genera- 551

tion novelty. Due to the CDAWG, we are able to 552

scale our analysis to larger datasets than McCoy 553

et al. (2021). In addition to text diversity, Shaib 554

et al. (2024) investigated the diversity of generated 555

part-of-speech sequences rather than texts, as an 556

abstract measurement over the raw texts. 557

8 Conclusion 558

We introduce RUSTY-DAWG, an efficient index 559

for finding unbounded length n-gram overlap 560

against a pretraining corpus in constant time. Using 561

RUSTY-DAWG, we show that, at large n, Pythia 562

generates less novel n-grams than novel human- 563

written text. We also find that increasing model 564

size, constrained decoding (e.g., with temperature 565

0), or prompting with training data can decrease 566

novelty. Finally, more frequent training n-grams 567

are completed by LMs with lower loss. We hope 568

RUSTY-DAWG enables further analysis of pre- 569

training data as well as decontamination (Magnus- 570

son et al., 2023) and retrieval language modeling 571

(Khandelwal et al., 2020; Liu et al., 2024) research. 572

8

Limitations573

When evaluating novelty, we focus on verbatim574

n-gram novelty rather than evaluating semantic575

novelty, which would be harder to operationalize.576

Our analysis focuses on the non-deduplicated Pile,577

a primarily English dataset. There are many vari-578

ables about data curation or LM training that could579

affect generation novelty beyond the ones we have580

considered, which could be explored using similar581

methodology in future work. Finally, as discussed582

in Appendix B.3, one challenge with deploying583

the CDAWG is the memory overhead, though we584

believe this can be optimized in future work.585

References586

Cyril Allauzen. 2023. Weighted finite automata with587
failure transitions: Algorithms and applications. In588
Proceedings of 16th edition of the International Con-589
ference on Grammatical Inference, volume 217 of590
Proceedings of Machine Learning Research, pages591
6–6. PMLR.592

Emily M. Bender, Timnit Gebru, Angelina McMillan-593
Major, and Shmargaret Shmitchell. 2021. On the594
dangers of stochastic parrots: Can language mod-595
els be too big? In Proceedings of the 2021 ACM596
Conference on Fairness, Accountability, and Trans-597
parency, FAccT ’21, page 610–623, New York, NY,598
USA. Association for Computing Machinery.599

Michele Bevilacqua, Giuseppe Ottaviano, Patrick Lewis,600
Scott Yih, Sebastian Riedel, and Fabio Petroni. 2022.601
Autoregressive search engines: Generating substrings602
as document identifiers. Advances in Neural Infor-603
mation Processing Systems, 35:31668–31683.604

Stella Biderman, Hailey Schoelkopf, Quentin Gregory605
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-606
lahan, Mohammad Aflah Khan, Shivanshu Purohit,607
USVSN Sai Prashanth, Edward Raff, et al. 2023.608
Pythia: A suite for analyzing large language mod-609
els across training and scaling. In International610
Conference on Machine Learning, pages 2397–2430.611
PMLR.612

Sidney Black, Stella Biderman, Eric Hallahan, Quentin613
Anthony, Leo Gao, Laurence Golding, Horace614
He, Connor Leahy, Kyle McDonell, Jason Phang,615
Michael Pieler, Usvsn Sai Prashanth, Shivanshu Puro-616
hit, Laria Reynolds, Jonathan Tow, Ben Wang, and617
Samuel Weinbach. 2022. GPT-NeoX-20B: An open-618
source autoregressive language model. In Proceed-619
ings of BigScience Episode #5 – Workshop on Chal-620
lenges & Perspectives in Creating Large Language621
Models, pages 95–136, virtual+Dublin. Association622
for Computational Linguistics.623

A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, and624
R. McConnell. 1984. Building the minimal dfa for625

the set of all subwords of a word on-line in linear 626
time. In Automata, Languages and Programming, 627
pages 109–118, Berlin, Heidelberg. Springer Berlin 628
Heidelberg. 629

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, 630
Katherine Lee, Florian Tramer, and Chiyuan Zhang. 631
2023. Quantifying memorization across neural lan- 632
guage models. In The Eleventh International Confer- 633
ence on Learning Representations. 634

Satrajit Chatterjee. 2018. Learning and memorization. 635
In International conference on machine learning, 636
pages 755–763. PMLR. 637

Maxime Crochemore and Renaud Vérin. 1997. On 638
compact directed acyclic word graphs, pages 192– 639
211. Springer Berlin Heidelberg, Berlin, Heidelberg. 640

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, 641
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. Glm: 642
General language model pretraining with autoregres- 643
sive blank infilling. In Proceedings of the 60th An- 644
nual Meeting of the Association for Computational 645
Linguistics (Volume 1: Long Papers), pages 320–335. 646

Yanai Elazar, Akshita Bhagia, Ian Helgi Magnusson, 647
Abhilasha Ravichander, Dustin Schwenk, Alane Suhr, 648
Evan Pete Walsh, Dirk Groeneveld, Luca Soldaini, 649
Sameer Singh, Hanna Hajishirzi, Noah A. Smith, and 650
Jesse Dodge. 2024. What’s in my big data? In 651
The Twelfth International Conference on Learning 652
Representations. 653

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. 654
Hierarchical neural story generation. In Proceedings 655
of the 56th Annual Meeting of the Association for 656
Computational Linguistics (Volume 1: Long Papers), 657
pages 889–898, Melbourne, Australia. Association 658
for Computational Linguistics. 659

Vitaly Feldman. 2020. Does learning require memoriza- 660
tion? a short tale about a long tail. In Proceedings 661
of the 52nd Annual ACM SIGACT Symposium on 662
Theory of Computing, pages 954–959. 663

Vitaly Feldman and Chiyuan Zhang. 2020. What neural 664
networks memorize and why: Discovering the long 665
tail via influence estimation. Advances in Neural 666
Information Processing Systems, 33:2881–2891. 667

P. Ferragina and G. Manzini. 2000. Opportunistic data 668
structures with applications. In Proceedings 41st 669
Annual Symposium on Foundations of Computer Sci- 670
ence, pages 390–398. 671

Leo Gao, Stella Biderman, Sid Black, Laurence Gold- 672
ing, Travis Hoppe, Charles Foster, Jason Phang, 673
Horace He, Anish Thite, Noa Nabeshima, Shawn 674
Presser, and Connor Leahy. 2020. The Pile: An 675
800gb dataset of diverse text for language modeling. 676
arXiv preprint arXiv:2101.00027. 677

Dan Hendrycks, Collin Burns, Steven Basart, Andy 678
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein- 679
hardt. 2021. Measuring massive multitask language 680

9

https://proceedings.mlr.press/v217/allauzen23a.html
https://proceedings.mlr.press/v217/allauzen23a.html
https://proceedings.mlr.press/v217/allauzen23a.html
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.18653/v1/2022.bigscience-1.9
https://doi.org/10.18653/v1/2022.bigscience-1.9
https://doi.org/10.18653/v1/2022.bigscience-1.9
https://openreview.net/forum?id=TatRHT_1cK
https://openreview.net/forum?id=TatRHT_1cK
https://openreview.net/forum?id=TatRHT_1cK
https://doi.org/10.1007/3-540-63246-8_12
https://doi.org/10.1007/3-540-63246-8_12
https://doi.org/10.1007/3-540-63246-8_12
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1109/SFCS.2000.892127

understanding. Proceedings of the International Con-681
ference on Learning Representations (ICLR).682

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and683
Yejin Choi. 2020. The curious case of neural text de-684
generation. In International Conference on Learning685
Representations.686

Shunsuke Inenaga. 2024. Linear-size suffix tries687
and linear-size cdawgs simplified and improved.688
Preprint, arXiv:2401.04509.689

Shunsuke Inenaga, Hiromasa Hoshino, Ayumi Shino-690
hara, Masayuki Takeda, Setsuo Arikawa, Giancarlo691
Mauri, and Giulio Pavesi. 2005. On-line construction692
of compact directed acyclic word graphs. Discrete693
Applied Mathematics, 146(2):156–179. 12th Annual694
Symposium on Combinatorial Pattern Matching.695

Daphne Ippolito, Florian Tramer, Milad Nasr, Chiyuan696
Zhang, Matthew Jagielski, Katherine Lee, Christo-697
pher Choquette Choo, and Nicholas Carlini. 2023.698
Preventing generation of verbatim memorization in699
language models gives a false sense of privacy. In700
Proceedings of the 16th International Natural Lan-701
guage Generation Conference, pages 28–53, Prague,702
Czechia. Association for Computational Linguistics.703

Nikhil Kandpal, Eric Wallace, and Colin Raffel. 2022.704
Deduplicating training data mitigates privacy risks705
in language models. In International Conference on706
Machine Learning, pages 10697–10707. PMLR.707

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke708
Zettlemoyer, and Mike Lewis. 2020. Generalization709
through memorization: Nearest neighbor language710
models. In International Conference on Learning711
Representations.712

Katherine Klosek. 2024. Training generative ai models713
on copyrighted works is fair use.714

Katherine Lee, Daphne Ippolito, Andrew Nystrom,715
Chiyuan Zhang, Douglas Eck, Chris Callison-Burch,716
and Nicholas Carlini. 2022a. Deduplicating training717
data makes language models better. In Proceedings718
of the 60th Annual Meeting of the Association for719
Computational Linguistics (Volume 1: Long Papers),720
pages 8424–8445, Dublin, Ireland. Association for721
Computational Linguistics.722

Katherine Lee, Daphne Ippolito, Andrew Nystrom,723
Chiyuan Zhang, Douglas Eck, Chris Callison-Burch,724
and Nicholas Carlini. 2022b. Deduplicating training725
data makes language models better. In Proceedings726
of the 60th Annual Meeting of the Association for727
Computational Linguistics (Volume 1: Long Papers),728
pages 8424–8445.729

Jiacheng Liu, Sewon Min, Luke Zettlemoyer, Yejin730
Choi, and Hannaneh Hajishirzi. 2024. Infini-gram:731
Scaling unbounded n-gram language models to a tril-732
lion tokens. arXiv preprint arXiv:2401.17377.733

Inbal Magar and Roy Schwartz. 2022. Data contamina- 734
tion: From memorization to exploitation. In Proceed- 735
ings of the 60th Annual Meeting of the Association for 736
Computational Linguistics (Volume 2: Short Papers), 737
pages 157–165. 738

Ian Magnusson, Akshita Bhagia, Valentin Hofmann, 739
Luca Soldaini, Ananya Harsh Jha, Oyvind Tafjord, 740
Dustin Schwenk, Evan Pete Walsh, Yanai Elazar, 741
Kyle Lo, Dirk Groenveld, Iz Beltagy, Hanneneh Ha- 742
jishirz, Noah A. Smith, Kyle Richardson, and Jesse 743
Dodge. 2023. Paloma: A benchmark for evaluating 744
language model fit. technical report. 745

Udi Manber and Gene Myers. 1990. Suffix arrays: a 746
new method for on-line string searches. In Proceed- 747
ings of the First Annual ACM-SIAM Symposium on 748
Discrete Algorithms, SODA ’90, page 319–327, USA. 749
Society for Industrial and Applied Mathematics. 750

Rebecca Marvin and Tal Linzen. 2018. Targeted syn- 751
tactic evaluation of language models. In Proceed- 752
ings of the 2018 Conference on Empirical Methods 753
in Natural Language Processing, pages 1192–1202, 754
Brussels, Belgium. Association for Computational 755
Linguistics. 756

R. Thomas McCoy, Paul Smolensky, Tal Linzen, Jian- 757
feng Gao, and Asli Celikyilmaz. 2021. How much 758
do language models copy from their training data? 759
evaluating linguistic novelty in text generation using 760
raven. Preprint, arXiv:2111.09509. 761

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 762
Dario Amodei, Ilya Sutskever, et al. 2019. Language 763
models are unsupervised multitask learners. OpenAI 764
blog, 1(8):9. 765

Chantal Shaib, Joe Barrow, Jiuding Sun, Alexa F Siu, 766
Byron C Wallace, and Ani Nenkova. 2024. Stan- 767
dardizing the measurement of text diversity: A tool 768
and a comparative analysis of scores. arXiv preprint 769
arXiv:2403.00553. 770

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin 771
Schwenk, David Atkinson, Russell Authur, Ben Bo- 772
gin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, 773
Valentin Hofmann, Ananya Harsh Jha, Sachin Kumar, 774
Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, 775
Jacob Morrison, Niklas Muennighoff, Aakanksha 776
Naik, Crystal Nam, Matthew E. Peters, Abhilasha 777
Ravichander, Kyle Richardson, Zejiang Shen, Emma 778
Strubell, Nishant Subramani, Oyvind Tafjord, Pete 779
Walsh, Luke Zettlemoyer, Noah A. Smith, Hannaneh 780
Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge, 781
and Kyle Lo. 2024. Dolma: An Open Corpus of 782
Three Trillion Tokens for Language Model Pretrain- 783
ing Research. arXiv preprint. 784

Luca Soldaini and Kyle Lo. 2023. peS2o (Pretraining 785
Efficiently on S2ORC) Dataset. Technical report, 786
Allen Institute for AI. ODC-By, https://github. 787
com/allenai/pes2o. 788

Takuya Takagi, Keisuke Goto, Yuta Fujishige, Shun- 789
suke Inenaga, and Hiroki Arimura. 2017. Linear-size 790

10

https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://arxiv.org/abs/2401.04509
https://arxiv.org/abs/2401.04509
https://arxiv.org/abs/2401.04509
https://doi.org/10.1016/j.dam.2004.04.012
https://doi.org/10.1016/j.dam.2004.04.012
https://doi.org/10.1016/j.dam.2004.04.012
https://doi.org/10.18653/v1/2023.inlg-main.3
https://doi.org/10.18653/v1/2023.inlg-main.3
https://doi.org/10.18653/v1/2023.inlg-main.3
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://www.arl.org/blog/training-generative-ai-models-on-copyrighted-works-is-fair-use/
https://www.arl.org/blog/training-generative-ai-models-on-copyrighted-works-is-fair-use/
https://www.arl.org/blog/training-generative-ai-models-on-copyrighted-works-is-fair-use/
https://doi.org/10.18653/v1/2022.acl-long.577
https://doi.org/10.18653/v1/2022.acl-long.577
https://doi.org/10.18653/v1/2022.acl-long.577
https://paloma.allen.ai/
https://paloma.allen.ai/
https://paloma.allen.ai/
https://doi.org/10.18653/v1/D18-1151
https://doi.org/10.18653/v1/D18-1151
https://doi.org/10.18653/v1/D18-1151
https://arxiv.org/abs/2111.09509
https://arxiv.org/abs/2111.09509
https://arxiv.org/abs/2111.09509
https://arxiv.org/abs/2111.09509
https://arxiv.org/abs/2111.09509
https://arxiv.org/abs/2111.09509
https://arxiv.org/abs/2111.09509
https://arxiv.org/abs/2402.00159
https://arxiv.org/abs/2402.00159
https://arxiv.org/abs/2402.00159
https://arxiv.org/abs/2402.00159
https://arxiv.org/abs/2402.00159
https://github.com/allenai/pes2o
https://github.com/allenai/pes2o
https://github.com/allenai/pes2o
https://doi.org/10.1007/978-3-319-67428-5_26
https://doi.org/10.1007/978-3-319-67428-5_26

cdawg: New repetition-aware indexing and grammar791
compression. In String Processing and Information792
Retrieval, pages 304–316.793

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin794
Recht, and Oriol Vinyals. 2021. Understanding795
deep learning (still) requires rethinking generaliza-796
tion. Communications of the ACM, 64(3):107–115.797

A Computing n-Novelty from NNSL798

Output799

The direct output of the CDAWG is LQ, the NNSL800

vector across each position in Q. We now de-801

scribe how to compute the n-novelty curve from802

LQ. First, we define c(n) as the the number of803

times n occurred in LQ:804

c(n) =
∑

ℓ′∈LQ[i]

1[n = n′].805

Next, the number of novel n-grams in Q is806 (∑
n′<n

c(n)

)
− (n− 1).807

The total number of n-grams in Q is |Q| − (n− 1).808

Thus, the n-novelty is809

n−novelty(Q) =

(∑
n′<n c(n)

)
− (n− 1)

|Q| − (n− 1)
.810

This can be extended to multiple documents by811

summing the numerator and denominator across812

documents before dividing.813

B CDAWG Details814

B.1 Populating Counts815

We build the CDAWG according to Figure 17 of In-816

enaga et al. (2005). The final post-processing step817

we add is to populate the counts in the CDAWG via818

a depth-first traversal (cf. Algorithm 1). The idea819

is that the CDAWG represents the frequency of a820

string x in C by the number of paths from the node821

reached by x to a sink node. Further, the frequency822

of each node is the sum of the frequencies of its823

children. Thus, we can populate all the counts in824

the CDAWG via a depth-first traversal of its nodes,825

which takes time O(|C|).826

B.2 Querying the CDAWG827

Algorithm 2 implements an NNSL query by greed-828

ily passing Q through the CDAWG one token at a829

time. We track the current state, any intermediate830

Algorithm 1: Add counts to CDAWG
Data: CDAWG G with source q0
create stack S;
push ⟨OPEN, q0⟩ onto S;
while ⟨o, q⟩ ← pop from S do

if o = OPEN then
if count(q) > 0 then

continue;
count(q)← 1;
push ⟨CLOSE, q⟩ onto S;
for child q′ of q do

push ⟨OPEN, q′⟩ onto S;
else

count(q)← 0;
for child q′ of q do

add count(q′) to count(q);

progress along an arc represented by indices ⟨α, γ⟩ 831

for a span in C, and the currently matched length. 832

If no progress can be made along an arc by the next 833

token, a failure arc (Allauzen, 2023) is followed 834

to back off until a state with a defined transition is 835

found (or to ∅ if no such state exists). If some par- 836

tial progress is matched along an arc, that progress 837

must be matched at the arc out of the state backed 838

off to as well. We refer to this as an implicit failure 839

transition, denoted by ϕ(q, ⟨α, ω⟩). 840

B.3 Graph Representation 841

An important detail for the memory usage of the 842

CDAWG is it is represented as a graph. We repre- 843

sent the graph as a list of nodes and a list of edges. 844

The edges at each node are represented by a binary 845

AVL tree, which means the arc labelled by token 846

σ ∈ Σ can be found in O(log|Σ|) time. However, 847

this representation means each edge takes 26 bytes 848

(with 5 byte pointers), which leads to an overall 849

size of 29|C| for the CDAWG. This is roughly 4× 850

larger than the corresponding suffix array, meaning 851

there is a time/space tradeoff between the two ap- 852

proaches. We believe the memory overhead factor 853

of the CDAWG could be significantly optimized by 854

refining this graph representation in future work. 855

The memory overhead of RUSTY-DAWG could 856

be further reduced by implementing recent im- 857

provements of the CDAWG such as the linear-size 858

CDAWG (LCDAWG; Takagi et al., 2017) and sim- 859

plified LCDAWG (simLCDAWG; Inenaga, 2024). 860

11

https://doi.org/10.1007/978-3-319-67428-5_26
https://doi.org/10.1007/978-3-319-67428-5_26
https://doi.org/10.1007/978-3-319-67428-5_26

Algorithm 2: NNSL query with CDAWG
Data: CDAWG G with source q0
Input: query Q
Output: NNSL vector LQ and counts NQ,

emitted pairwise
s.q ← q0;
s.⟨α, ω⟩ ← ⟨0, 0⟩;
s.ℓ← 0;
for token σ of Q do

s← trans(s, σ);
emit ⟨s.ℓ, count(s.q)⟩;

fn trans(s, σ):
if s.q = ∅ then

s.q ← q0;
s.⟨α, ω⟩ ← ⟨0, 0⟩;
s.ℓ← 0;

else if α = ω then
q′ ← target of completed arc;
if e← σ-edge out of q′ then

s.q ← q′;
s.⟨α, ω⟩ ← weight of e;
s.ℓ← s.ℓ+ 1;

else
s.q ← ϕ(q′, ⟨α, ω⟩);
s← trans(s, σ);

else
σ′ ← token s.α of C;
if σ = σ′ then

s.α← s.α+ 1;
s.ℓ← s.ℓ+ 1;

else
s.q ← ϕ(q, ⟨α, ω⟩, ℓ);
s← trans(s, σ);

return s;

B.4 RUSTY-DAWG Library861

DAWGs and CDAWGs can be stored in either862

RAM or disk to accomodate different resource863

constraints (building and inference are faster in864

RAM, but for very large datasets, using disk may865

be preferable due to resource constraints, especially866

for inference). Rust was chosen as a language so867

runtime and memory overhead could be optimized,868

though we also created Python bindings for easy869

integration with machine learning workflows. All870

experiments in the paper were carried out using the871

Python bindings to access a CDAWG built with the872

RUSTY-DAWG library.873

C Lower Bound on Novelty Without 874

Duplication 875

Our theoretical lower bound baseline is based on 876

the idea that the next token is fundamentally non- 877

deterministic, and, therefore, long n-gram spans 878

should be unlikely. 879

C.1 Warmup: Always Nondeterministic Case 880

Say that we sample a corpus C of strings from 881

some distribution p and then denote by Dn the set 882

of all n-grams in C. We then let X be a random 883

string of length n sampled from p. We say that 884

X is n-novel if X ̸∈ Dn and we are interested in 885

analyzing this probability. The probability of this 886

event is: 887

p(X n−novel) = 1− p

 ∨
d∈Dn

n∧
i=1

δ[Xi = di]

 . 888

By the union bound, 889

p(X n−novel) ≥ 1−
∑
d∈Dn

p

(
n∧

i=1

δ[Xi = di]

)
890

= 1−
∑
d∈Dn

n∏
i=1

p(Xi = di | X<i). 891

Assume p is always nondeterministic at every 892

position, so there is some q < 1 such that, for all i, 893

p(Xi = di | X<i) ≤ q. 894

Then it follows that: 895

p(X n−novel) ≥ 1− |Dn| · qn 896

≥ 1− |C| · qn 897

= 1− |C| · exp(−nℓ), 898

where ℓ is the inherent entropy of any token (de- 899

fined implicitly by q). A first observation here is 900

that p(X n−novel) should exponentially decay 1 901

quickly with n. 902

C.2 Probably Nondeterministic Case 903

Say more generally that with probability p (over 904

tokens in C), we have entropy ℓ about the next 905

token. Then the above becomes: 906

p(X n−novel) ≥ 1− |C| · pn · an 907

= 1− |C| · exp (n(log p− ℓ)) . 908

This is the form of the lower bound invoked in 909

the main plots (cf. Section 4.3). 910

12

1 10 100
n-gram size

0.0

0.2

0.4

0.6

0.8

1.0

%
 n

ov
el

n-novelty by beam size
Dolma
Valid
b=1
b=4
b=8

1 10 100
n-gram size

0.0

0.2

0.4

0.6

0.8

1.0

%
 n

ov
el

n-novelty by beam size
Dolma
Valid
b=1
b=4
b=8

1 10 100
n-gram size

0.0

0.2

0.4

0.6

0.8

1.0

%
 n

ov
el

n-novelty by beam size
Dolma
Valid
b=1
b=4
b=8

Figure 6: Beam decoding results with different amounts of training tokens used as a prompt: 1 token (left), 10
tokens (center), and 100 tokens (right).

D Beam Search Results Elaboration911

The beam search decoding used in Figure 4 is de-912

terministic because the temperature is 0 and the913

prompt is null. To complement these results, we914

also include additional results in Figure 6 where a915

prompt of length p (taken from the training data)916

is used. In this regime, we find that, similar to917

the promptless results, beam search decreases n-918

novelty. However, the novelty curve is not so ex-919

treme for beam size 8. This indicates that, with920

beam size 8, the LM does not always copy very921

large chunks of training documents like in Figure 4.922

13

	Introduction
	Operationalizing Novelty with n-Grams
	Measuring Novelty with CDAWGs
	Querying CDAWGs
	Memory Overhead
	Building CDAWGs
	Rusty-DAWG Library

	Experimental Setup
	Building a CDAWG on the Pile
	Generating Text from LMs
	Novelty Baselines

	Novelty of LM-Generated Text
	Novelty vs. Human-Written Text
	Impact of Model Size and Decoding

	Impact of n-Gram Training Frequency
	Related Work
	Methods for Accessing Text Corpora
	Memorization, Contamination, and Generalization

	Conclusion
	Computing n-Novelty from nnsl Output
	CDAWG Details
	Populating Counts
	Querying the CDAWG
	Graph Representation
	Rusty-DAWG Library

	Lower Bound on Novelty Without Duplication
	Warmup: Always Nondeterministic Case
	Probably Nondeterministic Case

	Beam Search Results Elaboration

