
Balcony: A Lightweight Approach to Dynamic Inference of Generative
Language Models

Anonymous ACL submission

Abstract

Deploying large language models (LLMs) in001
real-world applications is often hindered by002
strict computational and latency constraints.003
While dynamic inference offers the flexibility004
to adjust model behavior based on varying re-005
source budgets, existing methods are frequently006
limited by hardware inefficiencies or perfor-007
mance degradation. In this paper, we intro-008
duce Balcony, a simple yet highly effective009
framework for depth-based dynamic infer-010
ence. By freezing the pretrained LLM and in-011
serting additional transformer layers at selected012
exit points, Balcony maintains the full model’s013
performance while enabling real-time adapta-014
tion to different computational budgets. These015
additional layers are trained using a straight-016
forward self-distillation loss, aligning the sub-017
model outputs with those of the full model.018
This approach requires significantly fewer train-019
ing tokens and tunable parameters, drastically020
reducing computational costs compared to prior021
methods. When applied to the LLaMA3-8B022
model, using only 0.2% of the original pre-023
training data, Balcony achieves minimal perfor-024
mance degradation while enabling significant025
speedups. Remarkably, we show that Balcony026
outperforms state-of-the-art methods such as027
Flextron and Layerskip as well as other lead-028
ing compression techniques on multiple models029
and at various scales, across a variety of bench-030
marks.031

1 Introduction032

We are entering an era of rapid advancements in033

generative foundation models, with tens or even034

hundreds of billions of parameters emerging at an035

accelerating pace Touvron et al. (2023); Bai et al.036

(2023); DeepSeek-AI et al. (2024). The demand037

for their deployment is greater than ever. However,038

deploying these models in real-world applications,039

particularly in industrial environments, whether on040

edge devices or in cloud settings, is constrained by041

strict computational and latency requirements.042

Figure 1: An overview of the Balcony inference. Bal-
cony preserves the base model’s performance while en-
abling efficient, on-the-fly adaptation to different com-
putational budgets.

These constraints are not static; they fluctuate 043

based on task complexity, sample difficulty, user 044

load, and inference budget. To address these chal- 045

lenges, dynamic inference has become increasingly 046

important. This approach allows models to adjust 047

their computational demands on the fly, eliminat- 048

ing the need for expensive and time-consuming 049

retraining. As a result, it enables more efficient and 050

scalable deployment. 051

Dynamic inference is typically achieved in two 052

ways: 1) width-based methods, which adjust the 053

number of active neurons and attention heads in 054

a model Kudugunta et al. (2023); Yu and Huang 055

(2019a), and 2) depth-based methods, which selec- 056

tively reduce the number of transformer layers used 057

during inference Kavehzadeh et al. (2024). 058

However, GPUs are inherently optimized for par- 059

allelized deep computations, making depth-based 060

compression significantly more favorable in terms 061

of speed and efficiency. Reducing depth results in 062

fewer sequential operations, which directly trans- 063

lates to lower latency and improved throughput. 064

1



This effect is illustrated in Figure 2, where for a065

fixed parameter budget, reducing depth consistently066

yields greater speed improvements compared to re-067

ducing width.068

As a result, prior research has explored methods069

that introduce elasticity along the depth dimension070

Xin et al. (2020); Kavehzadeh et al. (2024); El-071

houshi et al. (2024). Despite its advantages, depth-072

based dynamic inference introduces a critical chal-073

lenge: it often degrades both full-model accuracy074

and sub-model performance. This occurs because075

existing methods require extensive perturbation to076

the base model.077

Specifically, at each exit point, the sub-model078

must serve two competing roles: producing an inter-079

mediate representation for the next layer (to support080

larger sub-models) while simultaneously generat-081

ing a refined output representation at the current082

layer. These competing objectives at the training083

time lead to conflicting gradients, introducing a084

trade-off that ultimately compromises the accuracy085

of both the sub-models and the full model. Rotem086

et al. (2023); Kavehzadeh et al. (2024).087

In this paper, we propose Balcony, a simple088

yet highly efficient framework for depth-based dy-089

namic inference. By freezing the pretrained LLM090

and adding a decoder layer at each exit point, Bal-091

cony preserves the base model’s performance while092

enabling efficient, on-the-fly adaptation to differ-093

ent computational budgets. While there is an in-094

herent trade-off between sub-model accuracy and095

computational cost, we show that adding a single096

transformer layer and sharing the LM head, across097

all sub-models achieves an optimal balance. We098

train the Balcony layers using a straightforward099

self-distillation loss, aligning Balcony layers out-100

puts with those of the full model.101

In contrast to prior works, which also train the102

base model, freezing enables lossless performance103

on the original base model and allows for efficient104

tuning due to the low number of tunable parameters.105

Additionally, freezing facilitates seamless adapta-106

tion to different computational budgets during in-107

ference by simply switching the Balcony layers.108

Our experiments demonstrate that for LLaMA3-109

8B, freezing the base model and tuning only the110

Balcony layers (2.5% of full model parameters for111

each balcony layer), using just 0.2% of the data112

compared to the 15T tokens used for full model113

pretraining, yields remarkably strong results.114

Notably, Balcony surpasses state-of-the-art115

(SoTA) dynamic inference methods, including116

0.30.40.50.60.7
Ratio of Active Parameters

1.0

1.5

2.0

2.5

3.0

Sp
ee

d 
up

 c
om

pa
re

d 
to

 fu
ll 

m
od

el

Speed Up vs. Active Parameter Ratio

Width-Only Modified
Depth-Only Modified
Baseline Llama3 8B

Figure 2: Speed-up as a function of the ratio of active
parameters in modified versions of Llama 3 8B. Com-
parisons are shown between width-only and depth-only
modifications, with the unmodified baseline included
for reference.

Flextron Cai et al. (2024) and LayerSkip Elhoushi 117

et al. (2024), while using a minimal training ap- 118

proach that requires a much simpler training flow, 119

significantly fewer training tokens and a much 120

smaller number of tunable parameters (see Related 121

Work for details on the training strategies used in 122

these methods). This paper makes the following 123

key contributions: 124

• Introducing Balcony, a depth-based dynamic 125

inference framework that employs single 126

transformer layers at exit points while freez- 127

ing the base model. 128

• Efficient tuning of Balcony through a self- 129

distillation loss on a small dataset, signifi- 130

cantly reducing training costs compared to 131

prior methods while outperforming Flextron, 132

LayerSkip and SoTA compression methods. 133

• An extensive evaluation of the proposed 134

framework through ablation studies on various 135

components of the method, including pretrain- 136

ing on a 1B-parameter LLM. 137

2 Related work 138

Dynamic inference has gained significant atten- 139

tion over the past decade, with various methods 140

proposed to make CNNs and small-scale encoder 141

based NLP models dynamic Yu et al. (2018); Yu 142

and Huang (2019b); Li et al. (2021); Cai et al. 143

(2020); Xin et al. (2020); Hou et al. (2020); Kusu- 144

pati et al. (2022). These approaches often require 145

sophisticated and heavy training, are architecture- 146

dependent and hence have not yet been effec- 147

tively translated to modern large-scale generative 148

2



LLMs. This paper focuses specifically on genera-149

tive LLMs, emphasizing approaches applied within150

the realm of generative AI.151

MatFormer Kudugunta et al. (2023) introduces a152

nested architecture along the width that enables the153

extraction of multiple sub-models by incorporating154

a nested Feed Forward Network (FFN) block struc-155

ture from a single trained network. The largest156

reported MatFormer model is an 850M decoder-157

only language model (MatLM), from which smaller158

models ranging from 582M to 850M parameters159

can be derived. MatFormer demonstrates superior160

performance compared to independently trained161

models and older methods like OFA Cai et al.162

(2020) and DynaBERT Hou et al. (2020).163

Building on this, Flextron proposed a more so-164

phisticated approach that integrates a nested elas-165

tic structure with input-adaptive routing, allowing166

automatic token processing through sub-networks.167

However, their training strategy is highly sophisti-168

cated: first, they train a large number of submodels169

using their nested architecture. Then, they train170

routers to select the appropriate submodels based171

on a given budget (for static inference) or dynami-172

cally for each token (for adaptive inference). How-173

ever, training the router is challenging due to lim-174

ited gradient flow. To address this, they introduce175

an auxiliary model that provides the necessary sig-176

nals to facilitate the router’s training. We demon-177

strate that, with significantly fewer training tokens178

and a far simpler training approach, our submodels179

achieve superior performance.180

Similar to Balcony, SortedLLaMA Kavehzadeh181

et al. (2024) explores elasticity along the depth182

dimension by extending the SortedNet Valipour183

et al. (2023) training technique to generative LLMs.184

They eliminate the need for pretraining by replac-185

ing standard fine-tuning with sorted fine-tuning.186

LayerSkip Elhoushi et al. (2024) is another recent187

dynamic depth approach that is used along specula-188

tive decoding for faster inference. During training,189

the method employs layer dropout with increasing190

rates for deeper layers and applies an early exit191

loss on all transformer layers while sharing the LM192

head.193

Note that the approaches mentioned above per-194

turb the base model to create a nested design of sub-195

models, allowing multiple submodels to be hosted196

within a shared architecture while reducing mem-197

ory overhead. This, in turn, leads to performance198

degradation in the full model. In contrast, our199

method achieves the same objective without en-200

Figure 3: Training in the Balcony framework: By freez-
ing the pretrained base LLM and adding a decoder layer
at each exit point, Balcony can outperform SoTA with
significantly fewer training tokens.

forcing a nested structure. Instead, we freeze the 201

base model and train only the Balcony Exit and 202

auxiliary tokens, ensuring that the base model’s 203

performance remains intact and uncompromised 204

by nested biases. Additionally, since all submodels 205

share the same base model, the memory overhead 206

of loading multiple submodels simultaneously or 207

switching between them remains manageable. 208

3 Balcony framework 209

In this section, we present the architecture, train- 210

ing, and inference methods for the proposed frame- 211

work. Consider a model M with N layers, where 212

each layer is represented by the function Xi = 213

f(Xi−1,Wi), with i ∈ [1, N ] indexing the layers, 214

Xi−1 being the input to layer i (with dimensions 215

B × S × D for batch size, sequence length, and 216

embedding dimension), and Wi denoting the pa- 217

rameters for that layer. In this context, the term 218

"layers" includes not only traditional transformer 219

blocks but also other depthwise modules, such as 220

Mamba Gu and Dao (2023) and Mixture of Experts 221

(MoE) Fedus et al. (2022) blocks. 222

Our objective is to make the model M dynamic 223

in depth, allowing it to adapt to user-defined goals, 224

such as latency, memory, and accuracy. To achieve 225

this, we introduce exit points based on the desired 226

inference time and resource budget. For instance, 227

in cloud computing, we can select exit layers de- 228

pending on the query-per-second rate. Similarly, on 229

edge devices, one can extract submodels depending 230

on the available computation budget. 231

An exit point in our framework refers to a desig- 232

nated layer within the model where inference can 233

be halted, allowing a prediction to be generated 234

3



using a lightweight Balcony module instead of pro-235

cessing all layers of the model. We introduce a set236

of exit points E ⊆ {1, 2, . . . , N}, each associated237

with a Balcony module. At each exit point j ∈ E ,238

the intermediate representation Xj is processed by239

a Balcony module, defined as:240

X ′
j = fb(Xj ,W ′

j), (1)241

where fb represents a Balcony module composed of242

a decoder layer(e.g a transformer block) followed243

by a normalization layer, W ′
j is the set of parame-244

ters for the Balcony module, and X ′
j is the output245

of the Balcony module at exit point j.246

At each exit point, the intermediate output Xj247

is forwarded to the corresponding Balcony mod-248

ule f(Xj ,W ′
j) then passes through an RMSNorm249

layer, followed by a shared LM head and a softmax250

function to produce the final probabilities. The LM251

head is the same as that of the original model and is252

shared across all submodels. The transformer layer253

in Balcony uses the same architecture as the base254

model.255

During training, self-distillation is used to256

align the probability distribution p(·;W1:j ,W ′
j , )257

of each submodel with the full model’s distribu-258

tion p(·;W1:N ). This is achieved by minimizing259

the Kullback-Leibler (KL) divergence across all260

possible next tokens at position t. The objective261

function is given by:262

L =
∑
j∈E

KL
(
p(·;W1:N ) ∥ p(·;W1:j ,W ′

j)
)
, (2)263

where W ′
j represents the balcony layer inserted264

after layer j, and KL(· ∥ ·) denotes the Kullback-265

Leibler divergence.266

Note that both the base model parameters W1:N267

and the LM head remain frozen during training.268

In our framework, Balcony layers are initialized269

from the last transformer layer of the trained model270

(see Section 4.3 for the impact of this initialization).271

The rationale behind this choice is that the last layer272

is already aligned with the shared LM head, which273

helps in seamlessly integrating the Balcony layers274

for effective submodel extraction.275

Since the base model remains frozen, the train-276

ing of Balcony layers is independent; each Balcony277

layer receives gradients based only on its corre-278

sponding submodel’s loss. Consequently, while all279

Balcony layers can be trained in a single training280

round to minimize computation, they can also be281

added and trained individually without impacting282

any other submodel.283

4 Experiments 284

4.1 Setup 285

Model Configuration We compare the perfor- 286

mance of Balcony to SoTA methods using two 287

models, LLaMA3-8B and LLaMA2-7B. The ra- 288

tionale behind selecting these models is that prior 289

SoTA works have reported their results on them. 290

To explore the methods at a smaller scale, we use 291

an LLM with the same architecture as LLaMA3- 292

1B and train it on FineWebEDU and Cosmopedia 293

V2, which are part of the SmoLLM corpus Ben Al- 294

lal et al. (2024) from Hugging Face. We refer to 295

this model as LLM-1B. This model provides a a 296

baseline on which Balcony and sortedNet method 297

are applied to. It also provides a baseline for our 298

training from scratch experiment. 299

Training Details For fine-tuning, both LLaMA3- 300

8B and LLaMA2-7B were trained with a batch size 301

of 256 for 30K steps using a cosine learning rate 302

scheduler with a maximum learning rate of 5e−4. 303

The sequence length was set to 4,096 tokens, and 304

the training corpus consisted of 31.5B tokens from 305

Cosmopedia V2. LLM-1B followed the same fine- 306

tuning setup but with a sequence length of 2,048 307

tokens and 15.7B tokens from Cosmopedia V2. 308

For pretraining, LLM-1B was trained from scratch 309

using FineWebEDU and Cosmopedia V2, with a 310

batch size of 384 for 500K steps, a sequence length 311

of 2,048 tokens, and a learning rate of 5e−4 fol- 312

lowing a trapezoidal scheduler. For pretraining the 313

LLM-1B model from scratch, we used 384B tokens 314

sourced from FineWebEDU and Cosmopedia V2. 315

Baselines For the baseline in this paper, Flextron is 316

used as the SoTA method in width-based dynamic 317

inference, and LayerSkip and Sorted are considered 318

for depth-based dynamic inference. In the compar- 319

ison, the number of non-embedding parameters 320

is reported. Regarding speedup, for depth-based 321

methods, similar speedup can be achieved across 322

different methods with the same number of param- 323

eters. However, for width-based methods, the same 324

number of parameters results in lower speedup, as 325

shown in Figure 2. Since Flextron is not open- 326

sourced, speedup comparisons cannot be reported. 327

Nonetheless, for the same number of parameters, 328

Balcony is expected to deliver better speedup. Fur- 329

thermore, we contrast our method with several 330

prominent open-source and compression model 331

families, specifically, OpenLLaMA Geng and Liu 332

(2023), Compresso Guo et al. (2023), NutePruner 333

4



Table 1: We evaluate the downstream task performance of Balcony, comparing it against Flextron, LayerSkip, open-
source models, and other compression methods. For LayerSkip, we evaluated their publicly available models. For
all other baselines, the results are taken from their papers. We report zero-shot accuracy on ARC-easy, LAMBADA,
PIQA, and WinoGrande, along with 5-shot performance on MMLU. For LayerSkip, we evaluated their publicly
available models. #Params denotes the number of non-embedding parameters.

Method Model # Params ARC-E LAMBADA PIQA Winogrande MMLU (5) Avg. (Drop)

Base Llama2-7B-Full model 6.5B 76.3 71.1 78.1 69.1 45.9 68.1

B
al

co
ny

Balcony-XL 6.5B 76.3 71.1 78.1 69.1 45.9 68.1(0)
Balcony-L 4.4B 72 67 75.9 67.5 45 65.5 (-2.6)
Balcony-M 3.8B 68.9 61.3 75.2 66 43 62.9 (-5.2)
Balcony-S 3.2B 64.9 54.9 73.5 63.8 39.8 59.4 (-8.7)

L
ay

er
Sk

ip Layerskip-XL 6.5B 76.5 70.5 77.6 70.3 43.2 67.6 (-0.5)
Layerskip-L 4.4B 68.5 65.9 73.7 66.4 42.4 63.4 (-4.7)
Layerskip-M 3.8B 61.4 55.1 71.1 65.8 42.4 59.2 (-8.9)
Layerskip-S 3.2B 50.3 43.5 68.6 63.9 37.8 52.8 (-15.3)

Fl
ex

tr
on

Full 6.5B 75.1 71.5 77.5 69.1 45.1 67.7 (-0.4)
Dynamic 7x 4.1B 68.6 65.1 76.1 63.7 42.2 63.1 (-5)
Dynamic 6x 3.9B 67.1 63.8 74.9 62.2 39.4 61.5 (-6.6)
Dynamic 5x 3.4B 66.5 62.9 74.1 62 36.8 60.5 (-7.6)

Base LLaMA3-8B 6.9B 81.8 71.2 80.1 73.6 65.0 74.3

B
al

co
ny

Balcony-XL 6.9B 81.8 71.2 80.1 73.6 65.0 74.3 (0)
Balcony-L 4.7B 77.0 67.0 77.4 72.3 64.0 71.6 (-2.7)
Balcony-M 4.4B 75.7 62.7 76.7 69.7 64.4 69.9 (-4.4)
Balcony-S 3.4B 70.0 54.5 75.0 68.1 48.3 63.2 (-11.1)

L
ay

er
Sk

ip LayerSkip-XL 6.9B 79.7 72.5 80.1 73.8 59.6 73.2 (-1.1)
LayerSkip-L 4.7B 73.2 61.8 77.2 71.0 59.1 68.5 (-5.8)
LayerSkip-M 4.4B 68.6 60.8 74.2 70.1 59.3 66.7 (-7.6)
LayerSkip-S 3.4B 59.0 47.7 70.4 66.4 37.8 56.3 (-18)

Fl
ex

tr
on

Full-Flextron-8B 6.4B 71.7 69.7 79.4 68.8 35.4 65
Dynamic-0.7× 4.3B 67.0 64.8 75.9 64.1 30.0 60.4
Dynamic-0.6× 3.9B 66.2 63.7 76.1 62.7 29.1 59.6
Dynamic-0.5× 3.3B 65.0 62.5 75.8 61.8 27.1 58.4

O
pe

n-
So

ur
ce OpenLLaMA-7Bv2 6.5B 69.5 63.8 79.9 66.0 40.4 63.92

OpenLLaMA-3Bv2 3.2B 63.7 59.1 78.1 63.3 25.7 58.0
NutePrune 3.2B 51.7 - 71.0 57.5 - -
Compresso-compressed LLaMA-7B 4.5B 66.0 - 72.9 63.4 25.9 -
LaCo-compressed LLaMA2-7B 4.7B - - 69.8 - 26.5 -

Table 2: Training cost comparison for Flextron, LayerSkip and Balcony methods applied to LLaMA2-7B and
LLaMA3-8B models, with costs presented in terms of tokens. In the Balcony method, the base model is frozen, and
only the Balcony layers are updated. Each Balcony layer is a single transformer layer, comprising 202M parameters.
The training cost for Flextron is taken from the paper Yu and Huang (2019a). Additionally, the table includes the
percentage of pretraining cost relative to the total pretraining cost for each method.

Method Number of tunable parameters Training cost in tokens Percentage of pretraining tokens

LLaMA2-7B
Pretraining 7B 2T 100%
Balcony 3× 200M = 600M 31B 1.5%
Flextron 7B 89.9B (Main model excluding the router) 4.50%
LayerSkip 7B 52B 2.6%

LLaMA3-8B Pretraining 8B 15T 100%
Balcony 3× 200M = 600M 31B 0.2%
LayerSkip 8B 419B 2.8%

Li et al. (2024), SliceGPT Ashkboos et al. (2024),334

and LaCo Yang et al. (2024). Evaluation is per-335

formed on ARC (Clark et al., 2018), BoolQ (Clark336

et al., 2019), OpenbookQA (Mihaylov et al., 2018),337

PIQA (Bisk et al., 2020a), WinoGrande (Sakaguchi338

et al., 2021), LAMBADA (Paperno et al., 2016b),339

5-shot MMLU (Hendrycks et al., 2020), and 10-340

shot HellaSwag (Zellers et al., 2019a). These eval- 341

uations were conducted using the LM-Evaluation- 342

Harness repository (Gao et al., 2024). 343

4.2 Results 344

Analysis of speedup in dynamic depth vs dy- 345

namic width To evaluate the effectiveness of depth- 346

5



based model pruning in our Balcony framework,347

we conducted an empirical analysis comparing the348

impact of width pruning and depth pruning on349

model latency.The latency measurements in Fig-350

ure 2 were obtained using vLLM Kwon et al. (2023)351

for efficient deployment and were performed on an352

NVIDIA V100 32GB GPU, prompt size of 32, out-353

put size of 2048. These measurements compare354

both depth and width pruning on LlaMA38B. In355

depth pruning, the number of hidden layers was356

reduced from 32 layers to fewer layers, leading to357

an almost linear reduction in the number of active358

parameters proportional to the number of layers.359

For width pruning, we initially reduced the inter-360

mediate size of the MLP block until it reached the361

hidden size, followed by reducing the number of362

attention heads.363

Figure 2 clearly illustrates that for all tested pa-364

rameter ratios, representing pruned models rela-365

tive to the non-pruned base model, depth pruning366

consistently yields higher speed-ups compared to367

width pruning. This reinforces the effectiveness of368

depth-based pruning strategies in achieving signifi-369

cant latency reductions.370

Balcony performance In this section, we assess371

Balcony’s performance on several downstream372

tasks, as shown in Table 1. We use LLaMA2-7B373

as the baseline and compare it to Flextron and Lay-374

erSkip. The results for Flextron are taken from375

their original paper, while for LayerSkip, the dy-376

namic models are open-sourced, so we conducted377

our own evaluation using the provided dynamic378

LLaMA-7B. For Flextron, we report the dynamic379

version, as it demonstrates superior performance380

compared to the static version. Among the three381

methods, Balcony is the only one that maintains382

the performance of the full model by freezing it383

during tuning. In contrast, both Flextron and Lay-384

erSkip experience a performance drop for their full385

models. For smaller submodels, with reductions386

of approximately 7x, 6x, and 5x in the number of387

non-embedding parameters, Balcony shows a sig-388

nificantly smaller performance drop compared to389

the baselines. The only exception is Balcony-S,390

which, with 3.2B parameters, experiences a 1.1%391

larger drop than the Dynamic Flextron model at392

3.4B parameters.393

The same evaluation is also performed on394

LLaMA-3-8B. Here, we compare the base model395

to those of Balcony and LayerSkip. Similarly, the396

LayerSkip results are obtained using their open-397

sourced model. For Flextron, their 8B model 398

(Flextron-8B) does not come from the same base 399

model and is therefore placed in a separate section 400

of the paper. It can be observed that for all sub- 401

model sizes, from Small to XL, Balcony provides 402

significantly less performance drop than LayerSkip 403

across all submodels. 404

Figure 4 plots the trade-off between accuracy 405

and the number of parameters for the Balcony- 406

LLaMA7B family models and compares them 407

against those of Flextron-Dynamic, Flextron-static, 408

and LayerSkip, as well as post-hoc compression 409

methods like Compresso, LLM-Pruner, SliceGPT, 410

and LaCo. The Balcony model family achieves 411

superior performance on both MMLU and ARC-E 412

compared to all the baselines. 413

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
# Non-embedding Params

25

30

35

40

45

M
M

LU
 (5

)

LLM-Pruner
Compresso 

LaCo 

SliceGPT

Llama2-7B
MMLU (5) vs. # Non-embedding Params

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
# Non-embedding Params

50

55

60

65

70

75

AR
C-

E

LLM-Pruner

Compresso 

Llama2-7B
ARC-E vs. # Non-embedding Params

Balcony-Llama2-7B
Flextron-Llama2-7B-Sta.

Flextron-Llama2-7B-Dyn.
LayerSkip

Other

Figure 4: The Balcony-LLaMA2-7B model family
demonstrates superior performance on MMLU and
ARC-E compared to Flextron-Dynamic/Static, Lay-
erSkip and post-hoc compression methods like Com-
presso, LLM-Pruner, SliceGPT, and LaCo.

Balcony speedup Table 3 shows the latency of Bal- 414

cony family models.The latency measurements in 415

seconds are based on vLLM Kwon et al. (2023) for 416

efficient deployment and conducted on an NVIDIA 417

V100 32GB GPU. The latency is measured in sec- 418

onds for 30 dummy input samples with a prompting 419

6



length of 32, a generation length of 2048, a batch420

size of 2 and float16 precision.421

Table 3: Average latency (in seconds) for Balcony fam-
ily models at different scaling factors. Speed-up factors
(relative to the full model) are shown in parentheses.

Model Full 0.7× 0.6× 0.5×

Balcony-Llama3-8B 58.16 41.82 (1.4×) 35.26 (1.7×) 30.37 (1.9×)

Balcony-Llama2-7B 52.54 37.23 (1.4×) 32.46 (1.6×) 27.99 (1.9×)

4.3 Ablation studies422

Pretraining from scratch In this experiment, we423

train both the base model and the Balcony layers424

from scratch to assess the representational capac-425

ity of Balcony compared to a nested design. This426

approach is particularly useful when the entire pre-427

training budget is allocated to developing a dy-428

namic model.429

We begin by training the LLM-1B model from430

scratch, which serves as the baseline for normal431

training (see the Training Details in 4.1). Next, we432

train the Balcony layers alongside the base model433

using the same training budget. The Balcony layers434

are initialized randomly, and since we are training435

from scratch, we omit self-distillation. Instead,436

we use the average loss over all submodels as the437

training objective. The Balcony exit layers are438

placed after layers 4, 8, 12, and 16 of the model.439

We also compare Balcony’s representational ca-440

pacity to SortedLLaMA, which applies sorting441

training only at the fine-tuning stage. To ensure442

a fair comparison, we perform the same pretrain-443

ing with SortedLLaMA, but with a sorted objective444

function. The results, shown in Table 4, indicate445

that for all submodels, pretraining using the Bal-446

cony design outperforms the nested approach used447

in SortedLLaMA. However, it is important to note448

that when training from scratch, since the base449

model is not frozen, the accuracy of the resulting450

model, despite outperforming SortedLLaMA, is451

lower than the baseline model.452

Furthermore, we compare pretraining with the453

standard efficient training method proposed by Bal-454

cony and evaluate it against tuning using the Sorted455

approach. Note that in Balcony, the base model is456

frozen, and only the Balcony module is updated,457

whereas in the Sorted approach, the entire model458

is updated. The results show that Balcony pro-459

vides significantly higher accuracy across submod-460

els compared to the Sorted approach.461

Random Initialization, MLP-Only and462

Attention-Only Balcony A key question that463

arises is why we use a single transformer decoder 464

layer and why we initialize it from the final 465

layer of the full architecture. To investigate this, 466

we conduct an ablation study by repeating the 467

Balcony-LLM-1B experiment under different 468

configurations to assess the impact of each module. 469

First, we perform balcony training with randomly 470

initialized balcony modules (transformer decoders) 471

to evaluate the effect of initializing from the final 472

layer on submodel performance. Additionally, 473

we train balcony models with MLP-only and 474

Attention-only modules, using the same set of 475

intermediate layers in the LLM-1B model, to 476

isolate the contributions of each component. 477

Figure 5 presents the average results of these 478

submodels across ARC-E, ARC-C, BoolQ, 479

HellaSwag, Lambada, MMLU, OpenBookQA, 480

PIQA, and Winogrande benchmarks. As shown, 481

standard balcony training with a transformer 482

decoder initialized from the final layer outperforms 483

both random initialization and the MLP-only and 484

Attention-only variants. 485

Effect of Cross-Entropy Loss During post- 486

training of the balcony modules, we used only 487

KL-divergence loss between the frozen, pretrained 488

full model’s output and the outputs of the balcony 489

modules. To examine the potential effect of in- 490

corporating Cross-Entropy (CE) loss in training 491

balcony modules, we conducted an ablation study 492

by training them with both KL-divergence and CE 493

loss on the submodels of our LLM-1B model. In 494

this experiment, we set the KL loss weight to 0.001. 495

Figure 5 presents the results of standard balcony 496

training (KL-only) and the KL + CE variant across 497

different submodels and benchmarks. As shown, 498

incorporating CE loss does not yield significant 499

improvements in the performance of balcony sub- 500

models. 501

Effect of Freezing during Balcony Training Dur- 502

ing balcony training, we kept the pretrained back- 503

bone model weights frozen. To assess the impact 504

of updating the main model’s weights alongside the 505

balcony modules, we conducted an ablation study 506

where the backbone model’s weights were also 507

made trainable. Additionally, we included another 508

dynamic inference baseline that does not freeze 509

the backbone model’s weights: Sorted Fine-Tuning 510

(Kavehzadeh et al., 2024). Figure 5 presents the 511

results of three setups: standard balcony train- 512

ing (frozen backbone), balcony training with an 513

unfrozen backbone, and Sorted Fine-Tuning (un- 514

7



Table 4: Performance Comparison of pretraining from scratch and tuning a Pretrained model for Balcony and Sorted
Approaches. For pretraining, both the Balcony and Sorted methods use 384B tokens. In the standard approach, 15B
tokens are used to tune the baseline. In the Balcony method, the base model is frozen while in Sorted approach, the
entire model is updated. The reported numbers represent 5-shot performance on MMLU, 10-shot performance on
HellaSwag and zero-shot on other tasks. The notation #Params refers to the number of non-embedding parameters.

Model # Params ARC-C ARC-E BoolQ Lambada-Op Lambada-ST OpenBookQA PIQA Winogrande HellaSwag(10) MMLU(5) Avg

LLM-1B (Baseline) 973M 37.6 74.3 58.4 50.4 43.3 30 74.9 59.8 46.4 25.9 50.1

Pr
et

ra
in

in
g

Balcony-XL 973M 38.1 72.7 60 47.9 40.2 27.8 74.4 56.2 45.5 25.1 48.8
Sorted-XL 973M 36.6 71.8 59.8 43.6 35.6 28.8 72.8 53.67 43.5 25.6 47.2

Balcony-L 790M 37.8 72 61.8 47.4 40 27.2 74.4 55.17 44.4 25.3 48.6
Sorted-L 729M 35.3 71.8 60.9 43.1 35.6 28.6 71.8 54.38 42.5 24.8 46.9

Balcony-M 547M 33.4 69.1 62.9 46.2 37.8 26.4 71.5 56.75 41.7 26.1 47.2
Sorted-M 486M 32.1 68.1 60.3 42.2 32.7 26.8 70.4 54.06 40.4 24.8 45.2

Balcony-S 304M 27 63.6 60.5 36.3 24.2 23.2 70.5 50.7 35.7 25.9 41.8
Sorted-S 243M 26.5 61.6 60 31.8 20 21 67.4 50.59 34 27.1 40

St
an

da
rd

Balcony-XL 973M 37.6 74.3 58.4 50.4 43.3 30 74.9 59.8 46.4 25.9 50.1
Sorted-XL 973M 34.4 68.1 49.9 46.3 34.8 27 72.2 56.7 43.2 25.7 45.8

Balcony-L 790M 32.8 66.3 61.4 45.1 36.4 25.4 71.3 57.6 41.3 26.3 46.4
Sorted-L 729M 30.5 57.5 53.4 39.2 26.7 22.4 67.4 53.7 36.8 25.5 41.3

Balcony-M 547M 24.9 58.7 61.4 29.5 20.5 21.8 67.8 53.4 34.3 27.2 40
Sorted-M 486M 22.9 44.2 43.4 20.2 13 17.8 63.7 52.6 30.4 25.5 33.4

Balcony-M 304M 22.3 51.7 62 19.3 8.2 17.4 64.1 52.2 30.3 24.6 35.2
Sorted-S 243M 21.2 40.8 55.6 11.3 4.4 13.6 60.3 49.1 27.9 25.6 31

4 8 12
Exit Layer

0.25

0.30

0.35

0.40

0.45

0.50

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on average vs. Exit Layer
Model Category

Balcony
Balcony RandomInit
Balcony MLP-Only RandomInit
Balcony ATT-Only RandomInit

4 8 12
Exit Layer

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on average vs. Exit Layer
Model Category
Balcony (KL Loss)
Balcony (KL+CE Loss)

4 8 12 16
Exit Layer

0.30

0.35

0.40

0.45

0.50

0.55

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on average vs. Exit Layer
Model Category
Balcony (Frozen)
Balcony (Unfrozen)
Sorted (Unfrozen)

Figure 5: Ablation studies on the Balcony framework. From left to right: (1) Impact of random initialization and the
contributions of MLP-only and Attention-only modules. (2) Effect of incorporating Cross-Entropy (CE) loss in
self-distillation. (3) Effect of freezing the main architecture during post-training. The results are the average scores
across ARC-E, ARC-C, BoolQ, HellaSwag, Lambada, MMLU, OpenBookQA, PIQA, and Winogrande.

frozen backbone) on different submodels of the515

LLM-1B model. As observed, training balcony516

modules while keeping the backbone model frozen517

not only preserves the performance of the full518

pretrained architecture but also outperforms both519

the unfrozen balcony and Sorted Fine-Tuning ap-520

proaches across most submodels. More detailed521

results can be found in the appendix.522

5 Conclusion523

In this paper, we presented Balcony, a novel frame-524

work for depth-based dynamic inference that ad-525

dresses key challenges in the deployment of large-526

scale language models under strict computational527

constraints. By introducing additional transformer528

layers at selected exit points and training them with529

a self-distillation loss, Balcony enables flexible,530

real-time adaptation to various computational bud-531

gets without compromising the performance of the532

full model. Our experiments demonstrate that Bal-533

cony achieves minimal performance degradation 534

while using a small training budget. This efficiency 535

represents a significant improvement over state-of- 536

the-art methods. Balcony’s simplicity, effective- 537

ness, and minimal resource requirements position 538

it as a promising approach to dynamic inference, 539

paving the way for more efficient deployment of 540

large-scale models across diverse hardware environ- 541

ments. Future work will explore extending Balcony 542

and combining it with more efficient architectures, 543

such as MoE and state space models like Mamba, 544

to further enhance performance and scalability. Ad- 545

ditionally, Balcony can be leveraged for self specu- 546

lative decoding (Leviathan et al., 2023; Chen et al., 547

2023) to achieve speedup without degradation of 548

model performance. 549

8



6 Limitations550

While Balcony minimizes performance degrada-551

tion at reduced latencies, there remains an inherent552

trade-off between latency and model accuracy. For553

extremely low-latency requirements, further perfor-554

mance degradation might be inevitable and com-555

bining Balcony with width compression methods556

may become necessary.557

While Balcony can be easily combined with cer-558

tain compression strategies, like quantization, we559

have not explored how it interacts with techniques560

(e.g., low-rank factorization or pruning). Under-561

standing these interactions could further optimize562

memory and speed.563

Also, in our experiments, we only evaluate the564

model at predefined budgets. However, implement-565

ing token-level confidence-based exits could po-566

tentially yield better trade-offs between accuracy567

and latency, and help boost our performance even568

further.569

References570

Saleh Ashkboos, Maximilian L Croci, Marcelo Gen-571
nari do Nascimento, Torsten Hoefler, and James572
Hensman. 2024. Slicegpt: Compress large language573
models by deleting rows and columns. arXiv preprint574
arXiv:2401.15024.575

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,576
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei577
Huang, et al. 2023. Qwen technical report. arXiv578
preprint arXiv:2309.16609.579

Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo,580
Thomas Wolf, and Leandro von Werra. 2024.581
Smollm-corpus.582

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng583
Gao, and Yejin Choi. 2020a. Piqa: Reasoning about584
physical commonsense in natural language. In Thirty-585
Fourth AAAI Conference on Artificial Intelligence.586

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng587
Gao, and Yejin Choi. 2020b. Piqa: Reasoning about588
physical commonsense in natural language. In Thirty-589
Fourth AAAI Conference on Artificial Intelligence.590

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang,591
and Song Han. 2020. Once-for-all: Train one592
network and specialize it for efficient deployment.593
Preprint, arXiv:1908.09791.594

Ruisi Cai, Saurav Muralidharan, Greg Heinrich,595
Hongxu Yin, Zhangyang Wang, Jan Kautz, and Pavlo596
Molchanov. 2024. Flextron: Many-in-one flexible597
large language model. Preprint, arXiv:2406.10260.598

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, 599
Jean-Baptiste Lespiau, Laurent Sifre, and John 600
Jumper. 2023. Accelerating large language model 601
decoding with speculative sampling. arXiv preprint 602
arXiv:2302.01318. 603

Christopher Clark, Kenton Lee, Ming-Wei Chang, 604
Tom Kwiatkowski, Michael Collins, and Kristina 605
Toutanova. 2018. Think you have solved question an- 606
swering? try arc, the ai2 reasoning challenge. arXiv 607
preprint arXiv:1803.05457. 608

Christopher Clark, Kenton Lee, Ming-Wei Chang, 609
Tom Kwiatkowski, Michael Collins, and Kristina 610
Toutanova. 2019. Boolq: Exploring the surprising 611
difficulty of natural yes/no questions. In NAACL. 612

DeepSeek-AI, :, Xiao Bi, Deli Chen, Guanting 613
Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, 614
Honghui Ding, Kai Dong, Qiushi Du, Zhe Fu, 615
Huazuo Gao, Kaige Gao, Wenjun Gao, Ruiqi Ge, 616
Kang Guan, Daya Guo, Jianzhong Guo, Guangbo 617
Hao, Zhewen Hao, Ying He, Wenjie Hu, Panpan 618
Huang, Erhang Li, Guowei Li, Jiashi Li, Yao Li, 619
Y. K. Li, Wenfeng Liang, Fangyun Lin, A. X. Liu, 620
Bo Liu, Wen Liu, Xiaodong Liu, Xin Liu, Yiyuan 621
Liu, Haoyu Lu, Shanghao Lu, Fuli Luo, Shirong Ma, 622
Xiaotao Nie, Tian Pei, Yishi Piao, Junjie Qiu, Hui Qu, 623
Tongzheng Ren, Zehui Ren, Chong Ruan, Zhangli 624
Sha, Zhihong Shao, Junxiao Song, Xuecheng Su, 625
Jingxiang Sun, Yaofeng Sun, Minghui Tang, Bingx- 626
uan Wang, Peiyi Wang, Shiyu Wang, Yaohui Wang, 627
Yongji Wang, Tong Wu, Y. Wu, Xin Xie, Zhenda Xie, 628
Ziwei Xie, Yiliang Xiong, Hanwei Xu, R. X. Xu, 629
Yanhong Xu, Dejian Yang, Yuxiang You, Shuiping 630
Yu, Xingkai Yu, B. Zhang, Haowei Zhang, Lecong 631
Zhang, Liyue Zhang, Mingchuan Zhang, Minghua 632
Zhang, Wentao Zhang, Yichao Zhang, Chenggang 633
Zhao, Yao Zhao, Shangyan Zhou, Shunfeng Zhou, 634
Qihao Zhu, and Yuheng Zou. 2024. Deepseek llm: 635
Scaling open-source language models with longter- 636
mism. Preprint, arXiv:2401.02954. 637

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, 638
Basil Hosmer, Bram Wasti, Liangzhen Lai, Anas 639
Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed 640
Roman, et al. 2024. Layer skip: Enabling early 641
exit inference and self-speculative decoding. arXiv 642
preprint arXiv:2404.16710. 643

William Fedus, Barret Zoph, and Noam Shazeer. 2022. 644
Switch transformers: Scaling to trillion parame- 645
ter models with simple and efficient sparsity. The 646
Journal of Machine Learning Research, 23(1):5232– 647
5270. 648

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, 649
Sid Black, Anthony DiPofi, Charles Foster, Laurence 650
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, 651
Kyle McDonell, Niklas Muennighoff, Chris Ociepa, 652
Jason Phang, Laria Reynolds, Hailey Schoelkopf, 653
Aviya Skowron, Lintang Sutawika, Eric Tang, An- 654
ish Thite, Ben Wang, Kevin Wang, and Andy Zou. 655
2024. A framework for few-shot language model 656
evaluation. 657

9

https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus
https://arxiv.org/abs/1908.09791
https://arxiv.org/abs/1908.09791
https://arxiv.org/abs/1908.09791
https://arxiv.org/abs/2406.10260
https://arxiv.org/abs/2406.10260
https://arxiv.org/abs/2406.10260
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2401.02954
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602


Xinyang Geng and Hao Liu. 2023. Openllama: An open658
reproduction of llama.659

Albert Gu and Tri Dao. 2023. Mamba: Linear-time660
sequence modeling with selective state spaces. arXiv661
preprint arXiv:2312.00752.662

Song Guo, Jiahang Xu, Li Lyna Zhang, and Mao Yang.663
2023. Compresso: Structured pruning with collabora-664
tive prompting learns compact large language models.665
arXiv preprint arXiv:2310.05015.666

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,667
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.668
2020. Measuring massive multitask language under-669
standing. arXiv preprint arXiv:2009.03300.670

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,671
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.672
2021. Measuring massive multitask language under-673
standing. arXiv preprint arXiv:2009.03300.674

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao675
Chen, and Qun Liu. 2020. Dynabert: Dynamic bert676
with adaptive width and depth. Advances in Neural677
Information Processing Systems, 33:9782–9793.678

Parsa Kavehzadeh, Mojtaba Valipour, Marzieh Tahaei,679
Ali Ghodsi, Boxing Chen, and Mehdi Reza-680
gholizadeh. 2024. Sorted llama: Unlocking the po-681
tential of intermediate layers of large language mod-682
els for dynamic inference. In Findings of the Asso-683
ciation for Computational Linguistics: EACL 2024,684
pages 2129–2145.685

Sneha Kudugunta, Aditya Kusupati, Tim Dettmers,686
Kaifeng Chen, Inderjit Dhillon, Yulia Tsvetkov, Han-687
naneh Hajishirzi, Sham Kakade, Ali Farhadi, Prateek688
Jain, et al. 2023. Matformer: Nested transformer for689
elastic inference. arXiv preprint arXiv:2310.07707.690

Aditya Kusupati, Gantavya Bhatt, Aniket Rege,691
Matthew Wallingford, Aditya Sinha, Vivek Ramanu-692
jan, William Howard-Snyder, Kaifeng Chen, Sham693
Kakade, Prateek Jain, et al. 2022. Matryoshka repre-694
sentation learning. Advances in Neural Information695
Processing Systems, 35:30233–30249.696

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying697
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.698
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-699
cient memory management for large language model700
serving with pagedattention. In Proceedings of the701
ACM SIGOPS 29th Symposium on Operating Systems702
Principles.703

Yaniv Leviathan, Matan Kalman, and Yossi Matias.704
2023. Fast inference from transformers via spec-705
ulative decoding.706

Changlin Li, Guangrun Wang, Bing Wang, Xiaodan707
Liang, Zhihui Li, and Xiaojun Chang. 2021. Dy-708
namic slimmable network. In Proceedings of the709
IEEE/CVF Conference on computer vision and pat-710
tern recognition, pages 8607–8617.711

Shengrui Li, Junzhe Chen, Xueting Han, and Jing Bai. 712
2024. Nuteprune: Efficient progressive pruning with 713
numerous teachers for large language models. arXiv 714
preprint arXiv:2402.09773. 715

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish 716
Sabharwal. 2018. Can a suit of armor conduct elec- 717
tricity? a new dataset for open book question answer- 718
ing. Preprint, arXiv:1809.02789. 719

Denis Paperno, Germán Kruszewski, Angeliki Lazari- 720
dou, Nghia The Pham, Raffaella Bernardi, Sandro 721
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel 722
Fernandez. 2016a. The lambada dataset: Word pre- 723
diction requiring a broad discourse context. In Pro- 724
ceedings of the 54th Annual Meeting of the Associa- 725
tion for Computational Linguistics (Volume 1: Long 726
Papers), pages 1525–1534. 727

Denis Paperno, Germán Kruszewski, Angeliki Lazari- 728
dou, Quan Ngoc Pham, Raffaella Bernardi, Sandro 729
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel 730
Fernández. 2016b. The lambada dataset: Word pre- 731
diction requiring a broad discourse context. Preprint, 732
arXiv:1606.06031. 733

Daniel Rotem, Michael Hassid, Jonathan Mamou, and 734
Roy Schwartz. 2023. Finding the sweet spot: Anal- 735
ysis and improvement of adaptive inference in low 736
resource settings. arXiv preprint arXiv:2306.02307. 737

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga- 738
vatula, and Yejin Choi. 2020. Winogrande: An ad- 739
versarial winograd schema challenge at scale. In 740
Proceedings of the AAAI Conference on Artificial 741
Intelligence, volume 34, pages 8732–8740. 742

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat- 743
ula, and Yejin Choi. 2021. Winogrande: An adver- 744
sarial winograd schema challenge at scale. Commu- 745
nications of the ACM, 64(9):99–106. 746

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 747
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 748
Baptiste Rozière, Naman Goyal, Eric Hambro, 749
Faisal Azhar, et al. 2023. Llama: Open and effi- 750
cient foundation language models. arXiv preprint 751
arXiv:2302.13971. 752

Mojtaba Valipour, Mehdi Rezagholizadeh, Hossein Ra- 753
jabzadeh, Marzieh Tahaei, Boxing Chen, and Ali 754
Ghodsi. 2023. Sortednet, a place for every network 755
and every network in its place: Towards a generalized 756
solution for training many-in-one neural networks. 757
arXiv preprint arXiv:2309.00255. 758

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and 759
Jimmy Lin. 2020. Deebert: Dynamic early exit- 760
ing for accelerating bert inference. arXiv preprint 761
arXiv:2004.12993. 762

Yifei Yang, Zouying Cao, and Hai Zhao. 2024. Laco: 763
Large language model pruning via layer collapse. 764
arXiv preprint arXiv:2402.11187. 765

10

https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama
https://arxiv.org/abs/2211.17192
https://arxiv.org/abs/2211.17192
https://arxiv.org/abs/2211.17192
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1606.06031
https://arxiv.org/abs/1606.06031
https://arxiv.org/abs/1606.06031


Jiahui Yu and Thomas Huang. 2019a. Universally766
slimmable networks and improved training tech-767
niques. Preprint, arXiv:1903.05134.768

Jiahui Yu and Thomas S Huang. 2019b. Universally769
slimmable networks and improved training tech-770
niques. In Proceedings of the IEEE/CVF interna-771
tional conference on computer vision, pages 1803–772
1811.773

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and774
Thomas Huang. 2018. Slimmable neural networks.775
arXiv preprint arXiv:1812.08928.776

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali777
Farhadi, and Yejin Choi. 2019a. Hellaswag: Can a778
machine really finish your sentence? arXiv preprint779
arXiv:1905.07830.780

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali781
Farhadi, and Yejin Choi. 2019b. Hellaswag: Can782
a machine really finish your sentence? Preprint,783
arXiv:1905.07830.784

A Benchmark Descriptions 785

This section provides a brief overview of the bench- 786

marks used for evaluation. 787

A.1 ARC-E (AI2 Reasoning Challenge - Easy) 788

ARC-E consists of multiple-choice science ques- 789

tions designed to evaluate a model’s reasoning abil- 790

ity (Clark et al., 2018). The dataset contains 7,787 791

questions, with 2,251 categorized as ’easy.’ These 792

questions require commonsense reasoning beyond 793

simple retrieval. 794

A.2 LAMBADA 795

LAMBADA evaluates a model’s ability to predict 796

the last word of a passage, requiring deep con- 797

textual understanding (Paperno et al., 2016a). It 798

consists of 10,022 book passages, where the final 799

word is only guessable with full comprehension. 800

A.3 PIQA (Physical Commonsense 801

Reasoning) 802

PIQA assesses a model’s ability to reason about 803

physical interactions (Bisk et al., 2020b). The 804

dataset contains 16,000 training and 2,000 vali- 805

dation questions, evaluating how well models un- 806

derstand everyday physical tasks. 807

A.4 Winogrande 808

Winogrande is a large-scale dataset designed for 809

commonsense reasoning using Winograd-style 810

problems (Sakaguchi et al., 2020). It contains over 811

44,000 sentence-pair problems that require resolv- 812

ing ambiguous pronouns using contextual knowl- 813

edge. 814

A.5 MMLU 5 (Massive Multitask Language 815

Understanding) 816

MMLU tests knowledge and reasoning across 57 817

domains (Hendrycks et al., 2021). The MMLU- 818

5 subset focuses on five key categories to assess 819

broad cognitive abilities through multiple-choice 820

questions ranging from elementary to expert level. 821

A.6 HellaSwag 822

HellaSwag Zellers et al. (2019b) is a large-scale rea- 823

soning benchmark that tests the ability of models to 824

predict the most likely continuation of a sentence in 825

everyday situations. The dataset contains multiple- 826

choice questions designed to challenge models on 827

contextual reasoning and world knowledge. 828

11

https://arxiv.org/abs/1903.05134
https://arxiv.org/abs/1903.05134
https://arxiv.org/abs/1903.05134
https://arxiv.org/abs/1903.05134
https://arxiv.org/abs/1903.05134
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/1905.07830


B Ablations829

In order to select the best architecture for the Bal-830

cony model, ablation studies were conducted on831

different loss functions, activation functions, and832

parameter initialization methods.833

B.1 Effect of CE and KL Losses834

In the Balcony architecture, two possible loss func-835

tions can help align the Balcony layer’s output with836

that of the full model. One end-to-end approach837

is to match the generated output using the Cross-838

Entropy (CE) loss. Another approach is to ap-839

ply a distillation objective by aligning the logits840

of the full model and the Balcony layer using the841

Kullback-Leibler (KL) divergence loss.842

From Figure 6, we observe that combining both843

KL divergence and CE loss leads to a slight but844

consistent decrease in performance across different845

exit layers and benchmarks.846

B.2 Effect of Freezing847

Depending on the training budget, different lay-848

ers of the architecture can be either frozen or un-849

frozen. To analyze the trade-off between perfor-850

mance and training cost, we report benchmark eval-851

uation scores for both the frozen and unfrozen ver-852

sions of the main model alongside the Balcony853

layer. Additionally, we compare these results with854

Sorted (Kavehzadeh et al., 2024), which shares the855

same base structure as Balcony but without exit856

layers.857

Interestingly, in Figure 7 we observe that the858

frozen Balcony model outperforms its unfrozen859

counterparts. This result suggests that freezing860

layers may help mitigate issues such as catastrophic861

forgetting and overfitting, which often occur when862

fine-tuning a larger network.863

B.3 Effect of Random Inititialization864

The initialization of a generative model plays a865

crucial role in its performance, especially under a866

limited training budget. The Balcony architecture867

consists of multiple submodules, including MLP868

layers, attention layers, and the Balcony exit layer.869

From our evaluations on eleven different bench-870

marks, we observe that our chosen initialization871

strategy, where the Balcony layer is initialized us-872

ing the last layer of the full model, outperforms873

all other initialization variations. The results are874

shown in Figure 8875

12



Figure 6: Ablation study on the impact of including CE loss in self-distillation. The results are the score across
ARC-E, ARC-C, BoolQ, HellaSwag, Lambada, MMLU, OpenBookQA, PIQA, and Winogrande benchmarks.

4 8 12
Exit Layer

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on arc_challenge vs. Exit Layer
Model Category
Balcony (KL Loss)
Balcony (KL+CE Loss)

4 8 12
Exit Layer

0.50

0.55

0.60

0.65

0.70

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on arc_easy vs. Exit Layer
Model Category
Balcony (KL Loss)
Balcony (KL+CE Loss)

4 8 12
Exit Layer

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on average vs. Exit Layer
Model Category
Balcony (KL Loss)
Balcony (KL+CE Loss)

4 8 12
Exit Layer

0.58

0.60

0.62

0.64

0.66

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on boolq vs. Exit Layer
Model Category
Balcony (KL Loss)
Balcony (KL+CE Loss)

4 8 12
Exit Layer

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on hellaswag (10) vs. Exit Layer
Model Category
Balcony (KL Loss)
Balcony (KL+CE Loss)

4 8 12
Exit Layer

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on lambada openai vs. Exit Layer
Model Category
Balcony (KL Loss)
Balcony (KL+CE Loss)

4 8 12
Exit Layer

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on lambada standard vs. Exit Layer
Model Category
Balcony (KL Loss)
Balcony (KL+CE Loss)

4 8 12
Exit Layer

0.20

0.22

0.24

0.26

0.28

0.30

0.32

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on mmlu (5) vs. Exit Layer
Model Category
Balcony (KL Loss)
Balcony (KL+CE Loss)

4 8 12
Exit Layer

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on openbookqa vs. Exit Layer
Model Category
Balcony (KL Loss)
Balcony (KL+CE Loss)

4 8 12
Exit Layer

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on piqa vs. Exit Layer
Model Category
Balcony (KL Loss)
Balcony (KL+CE Loss)

4 8 12
Exit Layer

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on winogrande vs. Exit Layer
Model Category
Balcony (KL Loss)
Balcony (KL+CE Loss)

13



Figure 7: Ablation study on the impact of freezing the main architecture during post training. The results are
the score across ARC-E, ARC-C, BoolQ, HellaSwag, Lambada, MMLU, OpenBookQA, PIQA, and Winogrande
benchmarks.

4 8 12 16
Exit Layer

0.20

0.25

0.30

0.35

0.40

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on arc_challenge vs. Exit Layer
Model Category
Balcony (Frozen)
Balcony (Unfrozen)
Sorted (Unfrozen)

4 8 12 16
Exit Layer

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on arc_easy vs. Exit Layer
Model Category
Balcony (Frozen)
Balcony (Unfrozen)
Sorted (Unfrozen)

4 8 12 16
Exit Layer

0.30

0.35

0.40

0.45

0.50

0.55

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on average vs. Exit Layer
Model Category
Balcony (Frozen)
Balcony (Unfrozen)
Sorted (Unfrozen)

4 8 12 16
Exit Layer

0.40

0.45

0.50

0.55

0.60

0.65

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on boolq vs. Exit Layer
Model Category
Balcony (Frozen)
Balcony (Unfrozen)
Sorted (Unfrozen)

4 8 12 16
Exit Layer

0.25

0.30

0.35

0.40

0.45

0.50

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on hellaswag (10) vs. Exit Layer
Model Category
Balcony (Frozen)
Balcony (Unfrozen)
Sorted (Unfrozen)

4 8 12 16
Exit Layer

0.1

0.2

0.3

0.4

0.5

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on lambada openai vs. Exit Layer
Model Category
Balcony (Frozen)
Balcony (Unfrozen)
Sorted (Unfrozen)

4 8 12 16
Exit Layer

0.0

0.1

0.2

0.3

0.4

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on lambada standard vs. Exit Layer
Model Category
Balcony (Frozen)
Balcony (Unfrozen)
Sorted (Unfrozen)

4 8 12 16
Exit Layer

0.20

0.22

0.24

0.26

0.28

0.30

0.32

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on mmlu (5) vs. Exit Layer
Model Category
Balcony (Frozen)
Balcony (Unfrozen)
Sorted (Unfrozen)

4 8 12 16
Exit Layer

0.10

0.15

0.20

0.25

0.30

0.35

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on openbookqa vs. Exit Layer
Model Category
Balcony (Frozen)
Balcony (Unfrozen)
Sorted (Unfrozen)

4 8 12 16
Exit Layer

0.60

0.65

0.70

0.75

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on piqa vs. Exit Layer
Model Category
Balcony (Frozen)
Balcony (Unfrozen)
Sorted (Unfrozen)

4 8 12 16
Exit Layer

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on winogrande vs. Exit Layer
Model Category
Balcony (Frozen)
Balcony (Unfrozen)
Sorted (Unfrozen)

14



Figure 8: Ablation study on the impact of random initialization of balcony modules compared to regular balcony
training starting from the full model final transformer layer weights. Also study on the effect of each MLP and
Self-Attention modules in the balcony submodels’ performance. The results are the score across ARC-E, ARC-C,
BoolQ, HellaSwag, Lambada, MMLU, OpenBookQA, PIQA, and Winogrande benchmarks.

4 8 12
Exit Layer

0.20

0.25

0.30

0.35

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on arc_challenge vs. Exit Layer
Model Category

Balcony
Balcony RandomInit
Balcony MLP-Only RandomInit
Balcony ATT-Only RandomInit

4 8 12
Exit Layer

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on arc_easy vs. Exit Layer
Model Category

Balcony
Balcony RandomInit
Balcony MLP-Only RandomInit
Balcony ATT-Only RandomInit

4 8 12
Exit Layer

0.25

0.30

0.35

0.40

0.45

0.50

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on average vs. Exit Layer
Model Category

Balcony
Balcony RandomInit
Balcony MLP-Only RandomInit
Balcony ATT-Only RandomInit

4 8 12
Exit Layer

0.475

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on boolq vs. Exit Layer
Model Category

Balcony
Balcony RandomInit
Balcony MLP-Only RandomInit
Balcony ATT-Only RandomInit

4 8 12
Exit Layer

0.25

0.30

0.35

0.40

0.45

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on hellaswag (10) vs. Exit Layer
Model Category

Balcony
Balcony RandomInit
Balcony MLP-Only RandomInit
Balcony ATT-Only RandomInit

4 8 12
Exit Layer

0.0

0.1

0.2

0.3

0.4

0.5

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on lambada openai vs. Exit Layer
Model Category

Balcony
Balcony RandomInit
Balcony MLP-Only RandomInit
Balcony ATT-Only RandomInit

4 8 12
Exit Layer

0.0

0.1

0.2

0.3

0.4

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on lambada standard vs. Exit Layer
Model Category

Balcony
Balcony RandomInit
Balcony MLP-Only RandomInit
Balcony ATT-Only RandomInit

4 8 12
Exit Layer

0.20

0.22

0.24

0.26

0.28

0.30

0.32

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on mmlu (5) vs. Exit Layer
Model Category

Balcony
Balcony RandomInit
Balcony MLP-Only RandomInit
Balcony ATT-Only RandomInit

4 8 12
Exit Layer

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on openbookqa vs. Exit Layer
Model Category

Balcony
Balcony RandomInit
Balcony MLP-Only RandomInit
Balcony ATT-Only RandomInit

4 8 12
Exit Layer

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on piqa vs. Exit Layer
Model Category

Balcony
Balcony RandomInit
Balcony MLP-Only RandomInit
Balcony ATT-Only RandomInit

4 8 12
Exit Layer

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625

Pe
rfo

rm
an

ce
 S

co
re

Model Performance on winogrande vs. Exit Layer
Model Category

Balcony
Balcony RandomInit
Balcony MLP-Only RandomInit
Balcony ATT-Only RandomInit

15


	Introduction
	Related work
	Balcony framework
	Experiments
	Setup
	Results
	Ablation studies

	Conclusion
	Limitations
	Benchmark Descriptions
	ARC-E (AI2 Reasoning Challenge - Easy)
	LAMBADA
	PIQA (Physical Commonsense Reasoning)
	Winogrande
	MMLU 5 (Massive Multitask Language Understanding)
	HellaSwag

	Ablations
	Effect of CE and KL Losses
	Effect of Freezing
	Effect of Random Inititialization


