Balcony: A Lightweight Approach to Dynamic Inference of Generative
Language Models

Anonymous ACL submission

Abstract

Deploying large language models (LLMs) in
real-world applications is often hindered by
strict computational and latency constraints.
While dynamic inference offers the flexibility
to adjust model behavior based on varying re-
source budgets, existing methods are frequently
limited by hardware inefficiencies or perfor-
mance degradation. In this paper, we intro-
duce Balcony, a simple yet highly effective
framework for depth-based dynamic infer-
ence. By freezing the pretrained LLM and in-
serting additional transformer layers at selected
exit points, Balcony maintains the full model’s
performance while enabling real-time adapta-
tion to different computational budgets. These
additional layers are trained using a straight-
forward self-distillation loss, aligning the sub-
model outputs with those of the full model.
This approach requires significantly fewer train-
ing tokens and tunable parameters, drastically
reducing computational costs compared to prior
methods. When applied to the LLaMA3-8B
model, using only 0.2% of the original pre-
training data, Balcony achieves minimal perfor-
mance degradation while enabling significant
speedups. Remarkably, we show that Balcony
outperforms state-of-the-art methods such as
Flextron and Layerskip as well as other lead-
ing compression techniques on multiple models
and at various scales, across a variety of bench-
marks.

1 Introduction

We are entering an era of rapid advancements in
generative foundation models, with tens or even
hundreds of billions of parameters emerging at an

accelerating pace Touvron et al. (2023); Bai et al.

(2023); DeepSeek-Al et al. (2024). The demand
for their deployment is greater than ever. However,
deploying these models in real-world applications,
particularly in industrial environments, whether on
edge devices or in cloud settings, is constrained by
strict computational and latency requirements.

Inference (]
([_RMSNORM] > b
LayersZ to 32

R — g/ IR
y Balcony 21

I Layers 19 to 20 l

1

£

e)
Layeikls Balcony 18
I Layers 16 to 17 l
1

£

= I}
Lavenls Balcony 15
I Layers 1 to 14 —
s 1

Embedding
Input

Figure 1: An overview of the Balcony inference. Bal-
cony preserves the base model’s performance while en-
abling efficient, on-the-fly adaptation to different com-
putational budgets.

av3H 1

These constraints are not static; they fluctuate
based on task complexity, sample difficulty, user
load, and inference budget. To address these chal-
lenges, dynamic inference has become increasingly
important. This approach allows models to adjust
their computational demands on the fly, eliminat-
ing the need for expensive and time-consuming
retraining. As a result, it enables more efficient and
scalable deployment.

Dynamic inference is typically achieved in two
ways: 1) width-based methods, which adjust the
number of active neurons and attention heads in
a model Kudugunta et al. (2023); Yu and Huang
(2019a), and 2) depth-based methods, which selec-
tively reduce the number of transformer layers used
during inference Kavehzadeh et al. (2024).

However, GPUs are inherently optimized for par-
allelized deep computations, making depth-based
compression significantly more favorable in terms
of speed and efficiency. Reducing depth results in
fewer sequential operations, which directly trans-
lates to lower latency and improved throughput.

This effect is illustrated in Figure 2, where for a
fixed parameter budget, reducing depth consistently
yields greater speed improvements compared to re-
ducing width.

As a result, prior research has explored methods
that introduce elasticity along the depth dimension
Xin et al. (2020); Kavehzadeh et al. (2024); El-
houshi et al. (2024). Despite its advantages, depth-
based dynamic inference introduces a critical chal-
lenge: it often degrades both full-model accuracy
and sub-model performance. This occurs because
existing methods require extensive perturbation to
the base model.

Specifically, at each exit point, the sub-model
must serve two competing roles: producing an inter-
mediate representation for the next layer (to support
larger sub-models) while simultaneously generat-
ing a refined output representation at the current
layer. These competing objectives at the training
time lead to conflicting gradients, introducing a
trade-off that ultimately compromises the accuracy
of both the sub-models and the full model. Rotem
et al. (2023); Kavehzadeh et al. (2024).

In this paper, we propose Balcony, a simple
yet highly efficient framework for depth-based dy-
namic inference. By freezing the pretrained LLM
and adding a decoder layer at each exit point, Bal-
cony preserves the base model’s performance while
enabling efficient, on-the-fly adaptation to differ-
ent computational budgets. While there is an in-
herent trade-off between sub-model accuracy and
computational cost, we show that adding a single
transformer layer and sharing the LM head, across
all sub-models achieves an optimal balance. We
train the Balcony layers using a straightforward
self-distillation loss, aligning Balcony layers out-
puts with those of the full model.

In contrast to prior works, which also train the
base model, freezing enables lossless performance
on the original base model and allows for efficient
tuning due to the low number of tunable parameters.
Additionally, freezing facilitates seamless adapta-
tion to different computational budgets during in-
ference by simply switching the Balcony layers.

Our experiments demonstrate that for LLaMA3-
8B, freezing the base model and tuning only the
Balcony layers (2.5% of full model parameters for
each balcony layer), using just 0.2% of the data
compared to the 15T tokens used for full model
pretraining, yields remarkably strong results.

Notably, Balcony surpasses state-of-the-art
(SoTA) dynamic inference methods, including

Speed Up vs. Active Parameter Ratio

® Width-Only Modified
Depth-Only Modified
---- Baseline Llama3 8B

w
<)

N
3

-
o

[uN
(=]

Speed up compared to full model
N
o

0.7 0.6 0.5 0.4 0.3
Ratio of Active Parameters

Figure 2: Speed-up as a function of the ratio of active
parameters in modified versions of Llama 3 8B. Com-
parisons are shown between width-only and depth-only
modifications, with the unmodified baseline included
for reference.

Flextron Cai et al. (2024) and LayerSkip Elhoushi
et al. (2024), while using a minimal training ap-
proach that requires a much simpler training flow,
significantly fewer training tokens and a much
smaller number of tunable parameters (see Related
Work for details on the training strategies used in
these methods). This paper makes the following
key contributions:

* Introducing Balcony, a depth-based dynamic
inference framework that employs single
transformer layers at exit points while freez-
ing the base model.

* Efficient tuning of Balcony through a self-
distillation loss on a small dataset, signifi-
cantly reducing training costs compared to
prior methods while outperforming Flextron,
LayerSkip and SoTA compression methods.

* An extensive evaluation of the proposed
framework through ablation studies on various
components of the method, including pretrain-
ing on a 1B-parameter LLM.

2 Related work

Dynamic inference has gained significant atten-
tion over the past decade, with various methods
proposed to make CNNs and small-scale encoder
based NLP models dynamic Yu et al. (2018); Yu
and Huang (2019b); Li et al. (2021); Cai et al.
(2020); Xin et al. (2020); Hou et al. (2020); Kusu-
pati et al. (2022). These approaches often require
sophisticated and heavy training, are architecture-
dependent and hence have not yet been effec-
tively translated to modern large-scale generative

LLMs. This paper focuses specifically on genera-
tive LLMs, emphasizing approaches applied within
the realm of generative Al

MatFormer Kudugunta et al. (2023) introduces a
nested architecture along the width that enables the
extraction of multiple sub-models by incorporating
a nested Feed Forward Network (FFN) block struc-
ture from a single trained network. The largest
reported MatFormer model is an 850M decoder-
only language model (MatLM), from which smaller
models ranging from 582M to 850M parameters
can be derived. MatFormer demonstrates superior
performance compared to independently trained
models and older methods like OFA Cai et al.
(2020) and DynaBERT Hou et al. (2020).

Building on this, Flextron proposed a more so-
phisticated approach that integrates a nested elas-
tic structure with input-adaptive routing, allowing
automatic token processing through sub-networks.
However, their training strategy is highly sophisti-
cated: first, they train a large number of submodels
using their nested architecture. Then, they train
routers to select the appropriate submodels based
on a given budget (for static inference) or dynami-
cally for each token (for adaptive inference). How-
ever, training the router is challenging due to lim-
ited gradient flow. To address this, they introduce
an auxiliary model that provides the necessary sig-
nals to facilitate the router’s training. We demon-
strate that, with significantly fewer training tokens
and a far simpler training approach, our submodels
achieve superior performance.

Similar to Balcony, SortedLLaMA Kavehzadeh
et al. (2024) explores elasticity along the depth
dimension by extending the SortedNet Valipour
et al. (2023) training technique to generative LLMs.
They eliminate the need for pretraining by replac-
ing standard fine-tuning with sorted fine-tuning.
LayerSkip Elhoushi et al. (2024) is another recent
dynamic depth approach that is used along specula-
tive decoding for faster inference. During training,
the method employs layer dropout with increasing
rates for deeper layers and applies an early exit
loss on all transformer layers while sharing the LM
head.

Note that the approaches mentioned above per-
turb the base model to create a nested design of sub-
models, allowing multiple submodels to be hosted
within a shared architecture while reducing mem-
ory overhead. This, in turn, leads to performance
degradation in the full model. In contrast, our
method achieves the same objective without en-

Training —
RMSNORM }—

e

Y

B8 =
A Balcony 21 =
= |z
 —— ——— ? § g 4_
......... - | 1<}
g : e S| £xo

Layers . 61017
S—

= Layer 15 m:
A Balcony 15
Layers 1 to 14
 —

:) Frozen
Embedding mﬂ" Balcony
Input

Figure 3: Training in the Balcony framework: By freez-
ing the pretrained base LLM and adding a decoder layer
at each exit point, Balcony can outperform SoTA with
significantly fewer training tokens.

,
18p0oaQ
WHONSIWY
%)
3
*4
<

forcing a nested structure. Instead, we freeze the
base model and train only the Balcony Exit and
auxiliary tokens, ensuring that the base model’s
performance remains intact and uncompromised
by nested biases. Additionally, since all submodels
share the same base model, the memory overhead
of loading multiple submodels simultaneously or
switching between them remains manageable.

3 Balcony framework

In this section, we present the architecture, train-
ing, and inference methods for the proposed frame-
work. Consider a model M with N layers, where
each layer is represented by the function X; =
f(Xi-1,W;), with i € [1, N] indexing the layers,
X,;_1 being the input to layer ¢ (with dimensions
B x S x D for batch size, sequence length, and
embedding dimension), and W; denoting the pa-
rameters for that layer. In this context, the term
"layers" includes not only traditional transformer
blocks but also other depthwise modules, such as
Mamba Gu and Dao (2023) and Mixture of Experts
(MoE) Fedus et al. (2022) blocks.

Our objective is to make the model M dynamic
in depth, allowing it to adapt to user-defined goals,
such as latency, memory, and accuracy. To achieve
this, we introduce exit points based on the desired
inference time and resource budget. For instance,
in cloud computing, we can select exit layers de-
pending on the query-per-second rate. Similarly, on
edge devices, one can extract submodels depending
on the available computation budget.

An exit point in our framework refers to a desig-
nated layer within the model where inference can
be halted, allowing a prediction to be generated

using a lightweight Balcony module instead of pro-
cessing all layers of the model. We introduce a set
of exit points £ C {1,2,..., N}, each associated
with a Balcony module. At each exit point j € &,
the intermediate representation X; is processed by
a Balcony module, defined as:

X5 = fio(X5, W), (1)

where fj, represents a Balcony module composed of
a decoder layer(e.g a transformer block) followed
by a normalization layer, W'; is the set of parame-
ters for the Balcony module, and X' j’ is the output
of the Balcony module at exit point j.

At each exit point, the intermediate output X;
is forwarded to the corresponding Balcony mod-
ule f(X;,W';) then passes through an RMSNorm
layer, followed by a shared LM head and a softmax
function to produce the final probabilities. The LM
head is the same as that of the original model and is
shared across all submodels. The transformer layer
in Balcony uses the same architecture as the base
model.

During training, self-distillation is used to
align the probability distribution p(-; W1.5, W},)
of each submodel with the full model’s distribu-
tion p(-; Wi.n). This is achieved by minimizing
the Kullback-Leibler (KL) divergence across all
possible next tokens at position ¢. The objective
function is given by:

L=> KL (p(;Wrn) || (Wi, W), ()
Jje&
where W]’ represents the balcony layer inserted
after layer j, and KL(- || -) denotes the Kullback-
Leibler divergence.

Note that both the base model parameters Wy.
and the LM head remain frozen during training.
In our framework, Balcony layers are initialized
from the last transformer layer of the trained model
(see Section 4.3 for the impact of this initialization).
The rationale behind this choice is that the last layer
is already aligned with the shared LM head, which
helps in seamlessly integrating the Balcony layers
for effective submodel extraction.

Since the base model remains frozen, the train-
ing of Balcony layers is independent; each Balcony
layer receives gradients based only on its corre-
sponding submodel’s loss. Consequently, while all
Balcony layers can be trained in a single training
round to minimize computation, they can also be
added and trained individually without impacting
any other submodel.

4 Experiments

4.1 Setup

Model Configuration We compare the perfor-
mance of Balcony to SoTA methods using two
models, LLaMA3-8B and LLaMA2-7B. The ra-
tionale behind selecting these models is that prior
SoTA works have reported their results on them.
To explore the methods at a smaller scale, we use
an LLM with the same architecture as LLaMA3-
1B and train it on FineWebEDU and Cosmopedia
V2, which are part of the SmoLLM corpus Ben Al-
lal et al. (2024) from Hugging Face. We refer to
this model as LLM-1B. This model provides a a
baseline on which Balcony and sortedNet method
are applied to. It also provides a baseline for our
training from scratch experiment.

Training Details For fine-tuning, both LLaMA3-
8B and LLaMA2-7B were trained with a batch size
of 256 for 30K steps using a cosine learning rate
scheduler with a maximum learning rate of 5e~4.
The sequence length was set to 4,096 tokens, and
the training corpus consisted of 31.5B tokens from
Cosmopedia V2. LLM-1B followed the same fine-
tuning setup but with a sequence length of 2,048
tokens and 15.7B tokens from Cosmopedia V2.
For pretraining, LLM-1B was trained from scratch
using FineWebEDU and Cosmopedia V2, with a
batch size of 384 for S00K steps, a sequence length
of 2,048 tokens, and a learning rate of 54 fol-
lowing a trapezoidal scheduler. For pretraining the
LLM-1B model from scratch, we used 384B tokens
sourced from FineWebEDU and Cosmopedia V2.

Baselines For the baseline in this paper, Flextron is
used as the SOTA method in width-based dynamic
inference, and LayerSkip and Sorted are considered
for depth-based dynamic inference. In the compar-
ison, the number of non-embedding parameters
is reported. Regarding speedup, for depth-based
methods, similar speedup can be achieved across
different methods with the same number of param-
eters. However, for width-based methods, the same
number of parameters results in lower speedup, as
shown in Figure 2. Since Flextron is not open-
sourced, speedup comparisons cannot be reported.
Nonetheless, for the same number of parameters,
Balcony is expected to deliver better speedup. Fur-
thermore, we contrast our method with several
prominent open-source and compression model
families, specifically, OpenLLaMA Geng and Liu
(2023), Compresso Guo et al. (2023), NutePruner

Table 1: We evaluate the downstream task performance of Balcony, comparing it against Flextron, LayerSkip, open-
source models, and other compression methods. For LayerSkip, we evaluated their publicly available models. For
all other baselines, the results are taken from their papers. We report zero-shot accuracy on ARC-easy, LAMBADA,
PIQA, and WinoGrande, along with 5-shot performance on MMLU. For LayerSkip, we evaluated their publicly
available models. #Params denotes the number of non-embedding parameters.

Method | Model

| #Params | ARC-E LAMBADA PIQA Winogrande MMLU (5) Avg. (Drop)

Base | Llama2-7B-Full model | 65B | 763 71.1 78.1 69.1 45.9 68.1

- Balcony-XL 6.5B 76.3 71.1 78.1 69.1 45.9 68.1(0)

§ Balcony-L 4.4B 72 67 75.9 67.5 45 65.5 (-2.6)

E Balcony-M 3.8B 68.9 61.3 75.2 66 43 62.9 (-5.2)
Balcony-S 3.2B 64.9 54.9 73.5 63.8 39.8 59.4 (-8.7)

E' Layerskip-XL 6.5B 76.5 70.5 77.6 70.3 432 67.6 (-0.5)

2 Layerskip-L 4.4B 68.5 65.9 73.7 66.4 42.4 63.4 (-4.7)

“:‘. Layerskip-M 3.8B 614 55.1 71.1 65.8 424 59.2(-8.9)

- Layerskip-S 3.2B 50.3 435 68.6 63.9 37.8 52.8 (-15.3)

g Full 6.5B 75.1 71.5 71.5 69.1 45.1 67.7 (-0.4)

£ Dynamic 7x 4.1B 68.6 65.1 76.1 63.7 422 63.1(-5)

8 Dynamic 6x 3.9B 67.1 63.8 74.9 62.2 394 61.5 (-6.6)

= Dynamic 5x 3.4B 66.5 62.9 74.1 62 36.8 60.5 (-7.6)

Base LLaMA3-8B 6.9B 81.8 71.2 80.1 73.6 65.0 74.3

> Balcony-XL 6.9B 81.8 71.2 80.1 73.6 65.0 74.3 (0)

§ Balcony-L 4.7B 71.0 67.0 774 72.3 64.0 71.6 (-2.7)

E Balcony-M 4.4B 75.7 62.7 76.7 69.7 64.4 69.9 (-4.4)
Balcony-S 3.4B 70.0 54.5 75.0 68.1 48.3 63.2 (-11.1)

.E- LayerSkip-XL 6.9B 79.7 72.5 80.1 73.8 59.6 732 (-1.1)

2 LayerSkip-L 4.7B 73.2 61.8 77.2 71.0 59.1 68.5 (-5.8)

:‘% LayerSkip-M 4.4B 68.6 60.8 74.2 70.1 59.3 66.7 (-7.6)

- LayerSkip-S 3.4B 59.0 47.7 70.4 66.4 37.8 56.3 (-18)

= Full-Flextron-8B 6.4B 71.7 69.7 79.4 68.8 354 65

Z Dynamic-0.7 x 4.3B 67.0 64.8 75.9 64.1 30.0 60.4

8 Dynamic-0.6 x 3.9B 66.2 63.7 76.1 62.7 29.1 59.6

= Dynamic-0.5x 3.3B 65.0 62.5 75.8 61.8 27.1 58.4

§ OpenLLaMA-7Bv2 6.5B 69.5 63.8 79.9 66.0 40.4 63.92

H OpenLLaMA-3Bv2 3.2B 63.7 59.1 78.1 63.3 25.7 58.0

‘2 NutePrune 3.2B 51.7 - 71.0 57.5 - -

g Compresso-compressed LLaMA-7B 4.5B 66.0 - 72.9 63.4 25.9 -

o LaCo-compressed LLaMA2-7B 4.7B - - 69.8 - 26.5 -

Table 2: Training cost comparison for Flextron, LayerSkip and Balcony methods applied to LLaMA2-7B and
LLaMA3-8B models, with costs presented in terms of tokens. In the Balcony method, the base model is frozen, and
only the Balcony layers are updated. Each Balcony layer is a single transformer layer, comprising 202M parameters.
The training cost for Flextron is taken from the paper Yu and Huang (2019a). Additionally, the table includes the
percentage of pretraining cost relative to the total pretraining cost for each method.

‘ Method ‘ Number of tunable parameters Training cost in tokens Percentage of pretraining tokens
Pretraining 7B 2T 100%
LLaMAZ2-7B | Balcony 3 x 200M = 600M 31B 1.5%
Flextron 7B 89.9B (Main model excluding the router) 4.50%
LayerSkip 7B 52B 2.6%
Pretraining 8B 15T 100%
LLaMA3-8B | palcony 3 % 200M = 600M 318 02%
LayerSkip 8B 419B 2.8%

Li et al. (2024), SliceGPT Ashkboos et al. (2024),
and LaCo Yang et al. (2024). Evaluation is per-
formed on ARC (Clark et al., 2018), BoolQ (Clark
et al., 2019), OpenbookQA (Mihaylov et al., 2018),
PIQA (Bisk et al., 2020a), WinoGrande (Sakaguchi
et al., 2021), LAMBADA (Paperno et al., 2016b),
5-shot MMLU (Hendrycks et al., 2020), and 10-

shot HellaSwag (Zellers et al., 2019a). These eval-
uations were conducted using the LM-Evaluation-
Harness repository (Gao et al., 2024).

4.2 Results

Analysis of speedup in dynamic depth vs dy-
namic width To evaluate the effectiveness of depth-

based model pruning in our Balcony framework,
we conducted an empirical analysis comparing the
impact of width pruning and depth pruning on
model latency.The latency measurements in Fig-
ure 2 were obtained using vLLLM Kwon et al. (2023)
for efficient deployment and were performed on an
NVIDIA V100 32GB GPU, prompt size of 32, out-
put size of 2048. These measurements compare
both depth and width pruning on L1aMA38B. In
depth pruning, the number of hidden layers was
reduced from 32 layers to fewer layers, leading to
an almost linear reduction in the number of active
parameters proportional to the number of layers.
For width pruning, we initially reduced the inter-
mediate size of the MLP block until it reached the
hidden size, followed by reducing the number of
attention heads.

Figure 2 clearly illustrates that for all tested pa-
rameter ratios, representing pruned models rela-
tive to the non-pruned base model, depth pruning
consistently yields higher speed-ups compared to
width pruning. This reinforces the effectiveness of
depth-based pruning strategies in achieving signifi-
cant latency reductions.

Balcony performance In this section, we assess
Balcony’s performance on several downstream
tasks, as shown in Table 1. We use LLaMA2-7B
as the baseline and compare it to Flextron and Lay-
erSkip. The results for Flextron are taken from
their original paper, while for LayerSkip, the dy-
namic models are open-sourced, so we conducted
our own evaluation using the provided dynamic
LLaMA-7B. For Flextron, we report the dynamic
version, as it demonstrates superior performance
compared to the static version. Among the three
methods, Balcony is the only one that maintains
the performance of the full model by freezing it
during tuning. In contrast, both Flextron and Lay-
erSkip experience a performance drop for their full
models. For smaller submodels, with reductions
of approximately 7x, 6x, and 5x in the number of
non-embedding parameters, Balcony shows a sig-
nificantly smaller performance drop compared to
the baselines. The only exception is Balcony-S,
which, with 3.2B parameters, experiences a 1.1%
larger drop than the Dynamic Flextron model at
3.4B parameters.

The same evaluation is also performed on
LLaMA-3-8B. Here, we compare the base model
to those of Balcony and LayerSkip. Similarly, the
LayerSkip results are obtained using their open-

sourced model. For Flextron, their 8B model
(Flextron-8B) does not come from the same base
model and is therefore placed in a separate section
of the paper. It can be observed that for all sub-
model sizes, from Small to XL, Balcony provides
significantly less performance drop than LayerSkip
across all submodels.

Figure 4 plots the trade-off between accuracy
and the number of parameters for the Balcony-
LLaMA7B family models and compares them
against those of Flextron-Dynamic, Flextron-static,
and LayerSkip, as well as post-hoc compression
methods like Compresso, LLM-Pruner, SliceGPT,
and LaCo. The Balcony model family achieves
superior performance on both MMLU and ARC-E
compared to all the baselines.

MMLU (5) vs. # Non-embedding Params

Lama2 18
45 4 -
— - 8
$ == —
7 /
40 ’ {
/ g s
_ ¥ .7
n [4
3 35
=
=
30 . s
p®”
‘C‘i 1aCo o
4 O
25 ,LL"“W

T T T T T T T T
30 35 40 45 50 55 60 65 7.0 75
Non-embedding Params

ARC-E vs. # Non-embedding Params

L~ »0\.\3“"37‘73
] B
75 > -
’/
-
70 _-” 7
258
At
A —/‘ ‘(;o
w 65 e //
E ,
une’
60 ,f o
/
/
/
554
/
/
s0{ ¢

T T T T T T T T
30 35 40 45 50 55 60 65 7.0 75
Non-embedding Params

Balcony-Llama2-78
Flextron-Llama2-7B-Sta.

=®= Flextron-Llama2-7B-Dyn.
-9~ LayerSkip

@ Other

Figure 4: The Balcony-LLaMA2-7B model family
demonstrates superior performance on MMLU and
ARC-E compared to Flextron-Dynamic/Static, Lay-
erSkip and post-hoc compression methods like Com-
presso, LLM-Pruner, SliceGPT, and LaCo.

Balcony speedup Table 3 shows the latency of Bal-
cony family models.The latency measurements in
seconds are based on vLLM Kwon et al. (2023) for
efficient deployment and conducted on an NVIDIA
V100 32GB GPU. The latency is measured in sec-
onds for 30 dummy input samples with a prompting

length of 32, a generation length of 2048, a batch
size of 2 and float16 precision.

Table 3: Average latency (in seconds) for Balcony fam-
ily models at different scaling factors. Speed-up factors
(relative to the full model) are shown in parentheses.

Model Full 0.7x 0.6x 0.5x%

Balcony-Llama3-8B 58.16 41.82 14x) 35.26 a7x) 30.37 (.9%)
Balcony-Llama2-7B 52.54 37.23 q4x) 3246 16x) 27.99 1.9x)

4.3 Ablation studies

Pretraining from scratch In this experiment, we
train both the base model and the Balcony layers
from scratch to assess the representational capac-
ity of Balcony compared to a nested design. This
approach is particularly useful when the entire pre-
training budget is allocated to developing a dy-
namic model.

We begin by training the LLM-1B model from
scratch, which serves as the baseline for normal
training (see the Training Details in 4.1). Next, we
train the Balcony layers alongside the base model
using the same training budget. The Balcony layers
are initialized randomly, and since we are training
from scratch, we omit self-distillation. Instead,
we use the average loss over all submodels as the
training objective. The Balcony exit layers are
placed after layers 4, 8, 12, and 16 of the model.

We also compare Balcony’s representational ca-
pacity to SortedLLaMA, which applies sorting
training only at the fine-tuning stage. To ensure
a fair comparison, we perform the same pretrain-
ing with SortedLLaMA, but with a sorted objective
function. The results, shown in Table 4, indicate
that for all submodels, pretraining using the Bal-
cony design outperforms the nested approach used
in SortedLLaMA. However, it is important to note
that when training from scratch, since the base
model is not frozen, the accuracy of the resulting
model, despite outperforming SortedLLaMA, is
lower than the baseline model.

Furthermore, we compare pretraining with the
standard efficient training method proposed by Bal-
cony and evaluate it against tuning using the Sorted
approach. Note that in Balcony, the base model is
frozen, and only the Balcony module is updated,
whereas in the Sorted approach, the entire model
is updated. The results show that Balcony pro-
vides significantly higher accuracy across submod-
els compared to the Sorted approach.

Random Initialization, MLP-Only and
Attention-Only Balcony A key question that

arises is why we use a single transformer decoder
layer and why we initialize it from the final
layer of the full architecture. To investigate this,
we conduct an ablation study by repeating the
Balcony-LLM-1B experiment under different
configurations to assess the impact of each module.
First, we perform balcony training with randomly
initialized balcony modules (transformer decoders)
to evaluate the effect of initializing from the final
layer on submodel performance. Additionally,
we train balcony models with MLP-only and
Attention-only modules, using the same set of
intermediate layers in the LLM-1B model, to
isolate the contributions of each component.
Figure 5 presents the average results of these
submodels across ARC-E, ARC-C, BoolQ,
HellaSwag, Lambada, MMLU, OpenBookQA,
PIQA, and Winogrande benchmarks. As shown,
standard balcony training with a transformer
decoder initialized from the final layer outperforms
both random initialization and the MLP-only and
Attention-only variants.

Effect of Cross-Entropy Loss During post-
training of the balcony modules, we used only
KL-divergence loss between the frozen, pretrained
full model’s output and the outputs of the balcony
modules. To examine the potential effect of in-
corporating Cross-Entropy (CE) loss in training
balcony modules, we conducted an ablation study
by training them with both KL-divergence and CE
loss on the submodels of our LLM-1B model. In
this experiment, we set the KL loss weight to 0.001.
Figure 5 presents the results of standard balcony
training (KL-only) and the KL + CE variant across
different submodels and benchmarks. As shown,
incorporating CE loss does not yield significant
improvements in the performance of balcony sub-
models.

Effect of Freezing during Balcony Training Dur-
ing balcony training, we kept the pretrained back-
bone model weights frozen. To assess the impact
of updating the main model’s weights alongside the
balcony modules, we conducted an ablation study
where the backbone model’s weights were also
made trainable. Additionally, we included another
dynamic inference baseline that does not freeze
the backbone model’s weights: Sorted Fine-Tuning
(Kavehzadeh et al., 2024). Figure 5 presents the
results of three setups: standard balcony train-
ing (frozen backbone), balcony training with an
unfrozen backbone, and Sorted Fine-Tuning (un-

Table 4: Performance Comparison of pretraining from scratch and tuning a Pretrained model for Balcony and Sorted
Approaches. For pretraining, both the Balcony and Sorted methods use 384B tokens. In the standard approach, 15B
tokens are used to tune the baseline. In the Balcony method, the base model is frozen while in Sorted approach, the
entire model is updated. The reported numbers represent 5-shot performance on MMLU, 10-shot performance on
HellaSwag and zero-shot on other tasks. The notation #Params refers to the number of non-embedding parameters.

‘ Model #Params ARC-C ARC-E BoolQ Lambada-Op Lambada-ST OpenBookQA PIQA Winogrande HellaSwag(10) MMLU(5) Avg
‘ LLM-1B (Baseline) 973M 37.6 743 58.4 50.4 433 30 749 59.8 46.4 259 50.1
Balcony-XL 973M 38.1 727 60 479 40.2 27.8 744 56.2 455 25.1 48.8
" Sorted-XL 973M 36.6 71.8 59.8 43.6 35.6 28.8 72.8 53.67 435 25.6 472
E Balcony-L 790M 37.8 72 61.8 47.4 40 272 74.4 55.17 44.4 253 48.6
'5 Sorted-L 729M 353 71.8 60.9 43.1 35.6 28.6 71.8 54.38 425 24.8 46.9
g Balcony-M 547TM 33.4 69.1 62.9 46.2 37.8 264 71.5 56.75 41.7 26.1 47.2
Sorted-M 486M 32.1 68.1 60.3 422 32.7 26.8 70.4 54.06 40.4 24.8 452
Balcony-S 304M 27 63.6 60.5 36.3 242 232 70.5 50.7 35.7 259 41.8
Sorted-S 243M 26.5 61.6 60 31.8 20 21 67.4 50.59 34 27.1 40
Balcony-XL 973M 37.6 74.3 58.4 50.4 433 30 749 59.8 46.4 259 50.1
Sorted-XL 973M 344 68.1 49.9 46.3 348 27 722 56.7 432 25.7 458
g Balcony-L 790M 32.8 66.3 61.4 45.1 36.4 25.4 71.3 57.6 41.3 26.3 46.4
2 | Sorted-L 729M 30.5 57.5 534 39.2 26.7 224 674 537 36.8 255 413
=
» Balcony-M 547TM 249 58.7 61.4 29.5 20.5 21.8 67.8 534 343 272 40
Sorted-M 486M 229 442 43.4 202 13 17.8 63.7 52.6 30.4 255 33.4
Balcony-M 304M 22.3 51.7 62 19.3 8.2 17.4 64.1 522 30.3 24.6 352
Sorted-S 243M 21.2 40.8 55.6 11.3 4.4 13.6 60.3 49.1 279 25.6 31

Model Performance on average vs. Exit Layer

050 Model Category

= Balcony

=== Balcony Randominit

== Balcony MLP-Only Randominit
== Balcony ATT-Only Randominit

4 8

Exit Layer

Model Category
== Balcony (KL Loss)

me Balcony (KL+CE Loss)
0475

0.450

0425

0.400

0375

0350

0325
12

0500

045

&

Performance Score

Performance Score

Model Performance on average vs. Exit Layer

4 8 12

Exit Layer

Model Performance on average vs. Exit Layer

Model Category
== Balcony (Frozen)

= Balcony (Unfrozen)
== Sorted (Unfrozen)

045 II |II
4 8 12 16

Exit Layer

Performance Score
° °
& &

°

Figure 5: Ablation studies on the Balcony framework. From left to right: (1) Impact of random initialization and the
contributions of MLP-only and Attention-only modules. (2) Effect of incorporating Cross-Entropy (CE) loss in
self-distillation. (3) Effect of freezing the main architecture during post-training. The results are the average scores
across ARC-E, ARC-C, BoolQ, HellaSwag, Lambada, MMLU, OpenBookQA, PIQA, and Winogrande.

frozen backbone) on different submodels of the
LLM-1B model. As observed, training balcony
modules while keeping the backbone model frozen
not only preserves the performance of the full
pretrained architecture but also outperforms both
the unfrozen balcony and Sorted Fine-Tuning ap-
proaches across most submodels. More detailed
results can be found in the appendix.

5 Conclusion

In this paper, we presented Balcony, a novel frame-
work for depth-based dynamic inference that ad-
dresses key challenges in the deployment of large-
scale language models under strict computational
constraints. By introducing additional transformer
layers at selected exit points and training them with
a self-distillation loss, Balcony enables flexible,
real-time adaptation to various computational bud-
gets without compromising the performance of the
full model. Our experiments demonstrate that Bal-

cony achieves minimal performance degradation
while using a small training budget. This efficiency
represents a significant improvement over state-of-
the-art methods. Balcony’s simplicity, effective-
ness, and minimal resource requirements position
it as a promising approach to dynamic inference,
paving the way for more efficient deployment of
large-scale models across diverse hardware environ-
ments. Future work will explore extending Balcony
and combining it with more efficient architectures,
such as MoE and state space models like Mamba,
to further enhance performance and scalability. Ad-
ditionally, Balcony can be leveraged for self specu-
lative decoding (Leviathan et al., 2023; Chen et al.,
2023) to achieve speedup without degradation of
model performance.

6 Limitations

While Balcony minimizes performance degrada-
tion at reduced latencies, there remains an inherent
trade-off between latency and model accuracy. For
extremely low-latency requirements, further perfor-
mance degradation might be inevitable and com-
bining Balcony with width compression methods
may become necessary.

While Balcony can be easily combined with cer-
tain compression strategies, like quantization, we
have not explored how it interacts with techniques
(e.g., low-rank factorization or pruning). Under-
standing these interactions could further optimize
memory and speed.

Also, in our experiments, we only evaluate the
model at predefined budgets. However, implement-
ing token-level confidence-based exits could po-
tentially yield better trade-offs between accuracy
and latency, and help boost our performance even
further.

References

Saleh Ashkboos, Maximilian L Croci, Marcelo Gen-
nari do Nascimento, Torsten Hoefler, and James
Hensman. 2024. Slicegpt: Compress large language
models by deleting rows and columns. arXiv preprint
arXiv:2401.15024.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo,
Thomas Wolf, and Leandro von Werra. 2024.
Smollm-corpus.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2020a. Piga: Reasoning about
physical commonsense in natural language. In Thirty-
Fourth AAAI Conference on Artificial Intelligence.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2020b. Piga: Reasoning about
physical commonsense in natural language. In Thirty-
Fourth AAAI Conference on Artificial Intelligence.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang,
and Song Han. 2020. Once-for-all: Train one
network and specialize it for efficient deployment.
Preprint, arXiv:1908.09791.

Ruisi Cai, Saurav Muralidharan, Greg Heinrich,
Hongxu Yin, Zhangyang Wang, Jan Kautz, and Pavlo
Molchanov. 2024. Flextron: Many-in-one flexible
large language model. Preprint, arXiv:2406.10260.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In NAACL.

DeepSeek-Al, :, Xiao Bi, Deli Chen, Guanting
Chen, Shanhuang Chen, Damai Dai, Chengqi Deng,
Honghui Ding, Kai Dong, Qiushi Du, Zhe Fu,
Huazuo Gao, Kaige Gao, Wenjun Gao, Ruiqi Ge,
Kang Guan, Daya Guo, Jianzhong Guo, Guangbo
Hao, Zhewen Hao, Ying He, Wenjie Hu, Panpan
Huang, Erhang Li, Guowei Li, Jiashi Li, Yao Li,
Y. K. Li, Wenfeng Liang, Fangyun Lin, A. X. Liu,
Bo Liu, Wen Liu, Xiaodong Liu, Xin Liu, Yiyuan
Liu, Haoyu Lu, Shanghao Lu, Fuli Luo, Shirong Ma,
Xiaotao Nie, Tian Pei, Yishi Piao, Junjie Qiu, Hui Qu,
Tongzheng Ren, Zehui Ren, Chong Ruan, Zhangli
Sha, Zhihong Shao, Junxiao Song, Xuecheng Su,
Jingxiang Sun, Yaofeng Sun, Minghui Tang, Bingx-
uan Wang, Peiyi Wang, Shiyu Wang, Yaohui Wang,
Yongji Wang, Tong Wu, Y. Wu, Xin Xie, Zhenda Xie,
Ziwei Xie, Yiliang Xiong, Hanwei Xu, R. X. Xu,
Yanhong Xu, Dejian Yang, Yuxiang You, Shuiping
Yu, Xingkai Yu, B. Zhang, Haowei Zhang, Lecong
Zhang, Liyue Zhang, Mingchuan Zhang, Minghua
Zhang, Wentao Zhang, Yichao Zhang, Chenggang
Zhao, Yao Zhao, Shangyan Zhou, Shunfeng Zhou,
Qihao Zhu, and Yuheng Zou. 2024. Deepseek llm:
Scaling open-source language models with longter-
mism. Preprint, arXiv:2401.02954.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich,
Basil Hosmer, Bram Wasti, Liangzhen Lai, Anas
Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed
Roman, et al. 2024. Layer skip: Enabling early
exit inference and self-speculative decoding. arXiv
preprint arXiv:2404.16710.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parame-
ter models with simple and efficient sparsity. The
Journal of Machine Learning Research, 23(1):5232—
5270.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2024. A framework for few-shot language model
evaluation.

https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus
https://arxiv.org/abs/1908.09791
https://arxiv.org/abs/1908.09791
https://arxiv.org/abs/1908.09791
https://arxiv.org/abs/2406.10260
https://arxiv.org/abs/2406.10260
https://arxiv.org/abs/2406.10260
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2401.02954
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602

Xinyang Geng and Hao Liu. 2023. Openllama: An open
reproduction of llama.

Albert Gu and Tri Dao. 2023. Mamba: Linear-time
sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752.

Song Guo, Jiahang Xu, Li Lyna Zhang, and Mao Yang.
2023. Compresso: Structured pruning with collabora-
tive prompting learns compact large language models.
arXiv preprint arXiv:2310.05015.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao
Chen, and Qun Liu. 2020. Dynabert: Dynamic bert
with adaptive width and depth. Advances in Neural
Information Processing Systems, 33:9782-9793.

Parsa Kavehzadeh, Mojtaba Valipour, Marzieh Tahaei,
Ali Ghodsi, Boxing Chen, and Mehdi Reza-
gholizadeh. 2024. Sorted llama: Unlocking the po-
tential of intermediate layers of large language mod-
els for dynamic inference. In Findings of the Asso-
ciation for Computational Linguistics: EACL 2024,
pages 2129-2145.

Sneha Kudugunta, Aditya Kusupati, Tim Dettmers,
Kaifeng Chen, Inderjit Dhillon, Yulia Tsvetkov, Han-
naneh Hajishirzi, Sham Kakade, Ali Farhadi, Prateek
Jain, et al. 2023. Matformer: Nested transformer for
elastic inference. arXiv preprint arXiv:2310.07707.

Aditya Kusupati, Gantavya Bhatt, Aniket Rege,
Matthew Wallingford, Aditya Sinha, Vivek Ramanu-
jan, William Howard-Snyder, Kaifeng Chen, Sham
Kakade, Prateek Jain, et al. 2022. Matryoshka repre-
sentation learning. Advances in Neural Information
Processing Systems, 35:30233-30249.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding.

Changlin Li, Guangrun Wang, Bing Wang, Xiaodan
Liang, Zhihui Li, and Xiaojun Chang. 2021. Dy-
namic slimmable network. In Proceedings of the
IEEE/CVF Conference on computer vision and pat-
tern recognition, pages 8607-8617.

10

Shengrui Li, Junzhe Chen, Xueting Han, and Jing Bai.
2024. Nuteprune: Efficient progressive pruning with
numerous teachers for large language models. arXiv
preprint arXiv:2402.09773.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. Preprint, arXiv:1809.02789.

Denis Paperno, German Kruszewski, Angeliki Lazari-
dou, Nghia The Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernandez. 2016a. The lambada dataset: Word pre-
diction requiring a broad discourse context. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1525-1534.

Denis Paperno, German Kruszewski, Angeliki Lazari-
dou, Quan Ngoc Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernandez. 2016b. The lambada dataset: Word pre-
diction requiring a broad discourse context. Preprint,
arXiv:1606.06031.

Daniel Rotem, Michael Hassid, Jonathan Mamou, and
Roy Schwartz. 2023. Finding the sweet spot: Anal-
ysis and improvement of adaptive inference in low
resource settings. arXiv preprint arXiv:2306.02307.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga-
vatula, and Yejin Choi. 2020. Winogrande: An ad-
versarial winograd schema challenge at scale. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 8732-8740.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99-106.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Mojtaba Valipour, Mehdi Rezagholizadeh, Hossein Ra-
jabzadeh, Marzieh Tahaei, Boxing Chen, and Ali
Ghodsi. 2023. Sortednet, a place for every network
and every network in its place: Towards a generalized
solution for training many-in-one neural networks.
arXiv preprint arXiv:2309.00255.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020. Deebert: Dynamic early exit-
ing for accelerating bert inference. arXiv preprint
arXiv:2004.12993.

Yifei Yang, Zouying Cao, and Hai Zhao. 2024. Laco:
Large language model pruning via layer collapse.
arXiv preprint arXiv:2402.11187.

https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama
https://arxiv.org/abs/2211.17192
https://arxiv.org/abs/2211.17192
https://arxiv.org/abs/2211.17192
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1606.06031
https://arxiv.org/abs/1606.06031
https://arxiv.org/abs/1606.06031

Jiahui Yu and Thomas Huang. 2019a. Universally
slimmable networks and improved training tech-
niques. Preprint, arXiv:1903.05134.

Jiahui Yu and Thomas S Huang. 2019b. Universally
slimmable networks and improved training tech-
niques. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pages 1803—
1811.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and
Thomas Huang. 2018. Slimmable neural networks.
arXiv preprint arXiv:1812.08928.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019a. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019b. Hellaswag: Can
a machine really finish your sentence? Preprint,
arXiv:1905.07830.

11

A Benchmark Descriptions

This section provides a brief overview of the bench-
marks used for evaluation.

A.1 ARC-E (AI2 Reasoning Challenge - Easy)

ARC-E consists of multiple-choice science ques-
tions designed to evaluate a model’s reasoning abil-
ity (Clark et al., 2018). The dataset contains 7,787
questions, with 2,251 categorized as ’easy.” These
questions require commonsense reasoning beyond
simple retrieval.

A.2 LAMBADA

LAMBADA evaluates a model’s ability to predict
the last word of a passage, requiring deep con-
textual understanding (Paperno et al., 2016a). It
consists of 10,022 book passages, where the final
word is only guessable with full comprehension.

A.3 PIQA (Physical Commonsense
Reasoning)

PIQA assesses a model’s ability to reason about
physical interactions (Bisk et al., 2020b). The
dataset contains 16,000 training and 2,000 vali-
dation questions, evaluating how well models un-
derstand everyday physical tasks.

A.4 Winogrande

Winogrande is a large-scale dataset designed for
commonsense reasoning using Winograd-style
problems (Sakaguchi et al., 2020). It contains over
44,000 sentence-pair problems that require resolv-
ing ambiguous pronouns using contextual knowl-
edge.

A.5 MMLU 5 (Massive Multitask Language
Understanding)

MMLU tests knowledge and reasoning across 57
domains (Hendrycks et al., 2021). The MMLU-
5 subset focuses on five key categories to assess
broad cognitive abilities through multiple-choice
questions ranging from elementary to expert level.

A.6 HellaSwag

HellaSwag Zellers et al. (2019b) is a large-scale rea-
soning benchmark that tests the ability of models to
predict the most likely continuation of a sentence in
everyday situations. The dataset contains multiple-
choice questions designed to challenge models on
contextual reasoning and world knowledge.

https://arxiv.org/abs/1903.05134
https://arxiv.org/abs/1903.05134
https://arxiv.org/abs/1903.05134
https://arxiv.org/abs/1903.05134
https://arxiv.org/abs/1903.05134
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/1905.07830

B Ablations

In order to select the best architecture for the Bal-
cony model, ablation studies were conducted on
different loss functions, activation functions, and
parameter initialization methods.

B.1 Effect of CE and KL Losses

In the Balcony architecture, two possible loss func-
tions can help align the Balcony layer’s output with
that of the full model. One end-to-end approach
is to match the generated output using the Cross-
Entropy (CE) loss. Another approach is to ap-
ply a distillation objective by aligning the logits
of the full model and the Balcony layer using the
Kullback-Leibler (KL) divergence loss.

From Figure 6, we observe that combining both
KL divergence and CE loss leads to a slight but
consistent decrease in performance across different
exit layers and benchmarks.

B.2 Effect of Freezing

Depending on the training budget, different lay-
ers of the architecture can be either frozen or un-
frozen. To analyze the trade-off between perfor-
mance and training cost, we report benchmark eval-
uation scores for both the frozen and unfrozen ver-
sions of the main model alongside the Balcony
layer. Additionally, we compare these results with
Sorted (Kavehzadeh et al., 2024), which shares the
same base structure as Balcony but without exit
layers.

Interestingly, in Figure 7 we observe that the
frozen Balcony model outperforms its unfrozen
counterparts. This result suggests that freezing
layers may help mitigate issues such as catastrophic
forgetting and overfitting, which often occur when
fine-tuning a larger network.

B.3 Effect of Random Inititialization

The initialization of a generative model plays a
crucial role in its performance, especially under a
limited training budget. The Balcony architecture
consists of multiple submodules, including MLP
layers, attention layers, and the Balcony exit layer.

From our evaluations on eleven different bench-
marks, we observe that our chosen initialization
strategy, where the Balcony layer is initialized us-
ing the last layer of the full model, outperforms
all other initialization variations. The results are
shown in Figure 8

12

Figure 6: Ablation study on the impact of including CE loss in self-distillation. The results are the score across
ARC-E, ARC-C, BoolQ, HellaSwag, Lambada, MMLU, OpenBookQA, PIQA, and Winogrande benchmarks.

Model Performance on arc_challenge vs. Exit Layer Model Performance on arc_easy vs. Exit Layer Model Performance on average vs. Exit Layer
0375 Model Category 0.70 Model Category 0500 Model Category
= Balcony (KL Loss) = Balcony (KL Loss) : == Balcony (KL Loss)
0.350 e Balcony (KL+CE Loss) = Balcony (KL+CE Loss) oays = Bolcony (KLCE Loss)
0325 0.65 o450
& 0300 H 3 oazs
4 s 0.0 g
§ 0275 5 5
g g £ 0400
£ £ 2
§ 0250 Foss &oars
0225 0350
. .. b .. 0325 ..
0175
4 i 12 4 8 12 4 8 12
Exit Layer Exit Layer Exit Layer
Model Performance on boolq vs. Exit Layer Model Performance on hellaswag (10) vs. Exit Layer Model Performance on lambada openai vs. Exit Layer
050
Model Category 0450 Model Category Model Category
0.66 mmm Balcony (KL Loss) = Balcony (KL Loss) == Balcony (KL Loss)
= Balcony (KL+CE Loss) oz || Balcony (KL+CE Loss) 045 mmm Balcony (KL+CE Loss)
0.64
0.400 040
¢ 2 2
g $ S
3 #0375 @035
3062 g g
g £ 0350 €030
£ 2 £
& 060 £ o325 &
025
0300
0.58 020
" --
015
4 i 12 4 8 12 4 8 12
Exit Layer Exit Layer Exit Layer
Model Performance on lambada standard vs. Exit Layer Model Performance on mmlu (5) vs. Exit Layer Model Performance on openbookga vs. Exit Layer
032
0.40 Model Category Model Category 0.300 Model Category
= galcony (KL Loss) = Balcony (KL Loss) == Balcony (KL Loss)
035 ™= Balcony (KL+CE Loss) 030 ™ Balcony (KL+CE Loss) 0275 ™ Balcony (KL+CE Loss)
030 0250
© 9028 o
g g]
%025 @ @ 0225
g 2026 g
£ 020 £ £ 0.200
£ £ 2
& do24 &
015 0175
022
010 0150
00 -- 020 0125
4 8 12 4 8 12 4 8 12
Exit Layer Exit Layer Exit Layer
Model Performance on piga vs. Exit Layer Model Performance on winogrande vs. Exit Layer
076
Maodel Category 0.62 Model Category
= Balcony (KL Loss) == Balcony (KL Loss)
074 s Balcony (KL+CE Loss) 0.60 === Balcony (KL+CE Loss)
072
058
$o70 H
@ @ 0.56
£ 068 ¢
g gosa
S 066 8
& £os2
0.64
0.50
062
048
0.60
4 8 12 4 8 12
Exit Layer Exit Layer

13

Figure 7: Ablation study on the impact of freezing the main architecture during post training. The results are
the score across ARC-E, ARC-C, BoolQ, HellaSwag, Lambada, MMLU, OpenBookQA, PIQA, and Winogrande
benchmarks.

Model Performance on arc_challenge vs. Exit Layer Model Performance on arc_easy vs. Exit Layer Model Performance on average vs. Exit Layer
055
Model Category Model Category Model Category
0.40 - mmm Balcony (Frozen) 0.75 - mmm Balcony (Frozen) = Balcony (Frozen)
== Balcony (Unfrozen) s Balcony (Unfrozen) .50 ™= Balcony (Unfrozen)
m= Sorted (Unfrozen) 070 == Sorted (Unfrozen) ->° " mmm Sorted (Unfrozen)
035
g g 065 045
S S 0.60 b
%030 g ¢
5 5 5040
; fos ;
: § 5
025 0.50 035
045
020 030
|
4 8 12 16 4 8 12 16 4 8 12 16
Exit Layer Exit Layer Exit Layer
Model Performance on boolq vs. Exit Layer Model Performance on hellaswag (10) vs. Exit Layer Model Performance on lambada openai vs. Exit Layer
065 Model Category 0.50 Model Category Model Category
= Balcony (Frozen) m= Balcony (Frozen) 0.5 = Balcony (Frozen)
= Balcony (Unfrozen) = Balcony (Unfrozen) = Balcony (Unfrozen)
= Sorted (Unfrozen) 0.45 = Sorted (Unfrozen) == Sorted (Unfrozen)
0.60
04
g [g
g g 0.40 g
3 055 a 2
g g g
H H 503
E £035 E
£ 050 £ 2
& & @
030 02
045
025
0.40 0.1 .
4 8 12 16 4 8 12 16 4 8 12 16
Exit Layer Exit Layer Exit Layer
Model Performance on lambada standard vs. Exit Layer Model Performance on mmlu (5) vs. Exit Layer 035 Model Performance on openbookga vs. Exit Layer
032 :
Model Category Model Category Model Category
= Balcony (Frozen) = Balcony (Frozen) == Balcony (Frozen)
0.4 ™= Balcony (Unfrozen) 0.30 ™= Balcony (Unfrozen) = Balcony (Unfrozen)
m= Sorted (Unfrozen) 27| - sorted (Unfrozen) 030w Sorted (Unfrozen)
o w028 v
503 5 5025
3 3 3
H £o2s g
oz £ Eo2
2 £ £
& 2024 &
015
1
0 I I . I I
S - 1l
00 020
a 8 12 16 4 8 12 16 4 8 12 16
Exit Layer Exit Layer Exit Layer
Model Performance on piga vs. Exit Layer Model Performance on winogrande vs. Exit Layer
Model Category Model Category
= Balcony (Frozen) 0625 ™= Balcony (Frozen)
m= Balcony (Unfrozen) = Balcony (Unfrozen)
075
== Sorted (Unfrozen) 0600 | ™= Sorted (Unirozen)
© o
¢ gos7s
Fo70 3
H £ 0550
2065 £ o525
& &
0500
0.60 0ars
0.450
4 8 12 16 4 8 12 16
Exit Layer Exit Layer

14

Figure 8: Ablation study on the impact of random initialization of balcony modules compared to regular balcony
training starting from the full model final transformer layer weights. Also study on the effect of each MLP and
Self-Attention modules in the balcony submodels’ performance. The results are the score across ARC-E, ARC-C,
BoolQ, HellaSwag, Lambada, MMLU, OpenBookQA, PIQA, and Winogrande benchmarks.

Model Performance on arc_challenge vs. Exit Layer Model Performance on arc_easy vs. Exit Layer Model Performance on average vs. Exit Layer
Model Category 070 Model Category 0.50 Model Category
035 Balcony = Balcony Balcony
Balcony Randominit 0.65 ™= Balcony Randominit Balcony Randominit
Balcony MLP-Only Randominit - Balcony MLP-Only Randominit
Balcony ATT-Only Randominit -

Performance Score

Performance Score
Performance Score

Balcony MLP-Only Randominit
Balcony ATT-Only Randominit 045 Balcony ATT-Only Randominit
0.60
0.30
0.55 40
0.25 0.50
.35
0.45
: III I) I I
) . 0.25 I
4 8 12 a 8 12 a 8 12

0.40
035
Exit Layer Exit Layer Exit Layer
Model Performance on boolq vs. Exit Layer Model Performance on hellaswag (10) vs. Exit Layer s Model Performance on lambada openai vs. Exit Layer
0675 Model Category 0.45 Model Category Model Category
= Balcony = Balcony = Balcony
0.650 mmm Balcony Randominit = Balcony Randominit = Balcony Randominit
m= Balcony MLP-Only Randominit = Balcony MLP-Only Randominit 04w Balcony MLP-Only Randominit
0.625 = Balcony ATT-Only Randominit 0.40 ™ Balcony ATT-Only Randominit == Balcony ATT-Only Randominit
2 [g
8 000 g goa
g g g
£ 0575 go3s £
£ £ £
§ 0550 $ M
030
0525 01
0.500 .
I o II °
0475
4 8 12 4 8 12 4 8 12
Exit Layer Exit Layer Exit Layer
Model Performance on lambada standard vs. Exit Layer Model Performance on mmlu (5) vs. Exit Layer Model Performance on openbookga vs. Exit Layer
032
04 Model Category Model Category 0.200 Model Category
= Balcony = Balcony = alcony
= Balcony Randominit 030 == Balcony Randominit 0275 | mmm Balcony Randominit
m== Balcony MLP-Only Randominit = Balcony MLP-Only Randominit = Balcony MLP-Only Randominit
03 mmm Balcony ATT-Only Randominit m= alcony ATT-Only Randominit 0250 e Balcony ATT-Only Randominit
o 9028 o
g S go22s
3 3 3
goz2 g g
g 2026 § 0200
: £ :
2 £ £
0175
024
& 01 & &
0150
022
00 [0125
020
0100
4 8 12 4 8 12 4 8 12
Exit Layer Exit Layer Exit Layer
Model Performance on piga vs. Exit Layer Model Performance on winogrande vs. Exit Layer
0625
0.750 Model Category Model Category
= Balcony Balcony
Balcony Randominit 0600 Balcony Randominit

0725

Balcony MLP-Only Randominit

= Balcony ATT-Only Randominit 0575 === Balcony ATT-Only Randominit
0.700
0550
0675
0525 I III
4 8 12 4 8 12

Exit Layer Exit Layer

Balcony MLP-Only Randominit

Performance Score
o o o o
2 2 2 2
Performance Score
s o
R

°

15

	Introduction
	Related work
	Balcony framework
	Experiments
	Setup
	Results
	Ablation studies

	Conclusion
	Limitations
	Benchmark Descriptions
	ARC-E (AI2 Reasoning Challenge - Easy)
	LAMBADA
	PIQA (Physical Commonsense Reasoning)
	Winogrande
	MMLU 5 (Massive Multitask Language Understanding)
	HellaSwag

	Ablations
	Effect of CE and KL Losses
	Effect of Freezing
	Effect of Random Inititialization

