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ABSTRACT

Building reliable machine learning systems requires that we correctly understand
their level of confidence. Calibration focuses on measuring the degree of accuracy
in a model’s confidence and most research in calibration focuses on techniques
to improve an empirical estimate of calibration error, ECEBIN. Using simulation,
we show that ECEBIN can systematically underestimate or overestimate the true
calibration error depending on the nature of model miscalibration, the size of the
evaluation data set, and the number of bins. Critically, ECEBIN is more strongly
biased for perfectly calibrated models. We propose a simple alternative calibration
error metric, ECESWEEP, in which the number of bins is chosen to be as large as
possible while preserving monotonicity in the calibration function. Evaluating
our measure on distributions fit to neural network confidence scores on CIFAR-
10, CIFAR-100, and ImageNet, we show that ECESWEEP produces a less biased
estimator of calibration error and therefore should be used by any researcher
wishing to evaluate the calibration of models trained on similar datasets.

1 INTRODUCTION
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Figure 1: Bias in ECEBIN for perfectly cali-
brated models. Simulated data from a perfectly
calibrated model with confidence scores mod-
eled to ResNet-110 CIFAR-10 output (He et al.,
2016; Kängsepp, 2019). We show a reliability
diagram for a sample of size n = 200 and the
distribution of ECEBIN scores computed across
106 independent simulations. Even though the
model is perfectly calibrated, ECEBIN systemati-
cally predicts large calibration errors.

Machine learning models are increasingly de-
ployed in high-stakes settings like self-driving cars
(Caesar et al., 2020; Geiger et al., 2013; Sun et al.,
2020) and medical diagnoses (Esteva et al., 2017;
2019; Gulshan et al., 2016) where a model’s ability
to recognize when it is likely to be incorrect is crit-
ical. Unfortunately, such models often fail in unex-
pected and poorly understood ways, hindering our
ability to interpret and trust such systems (Azulay
& Weiss, 2018; Biggio & Roli, 2018; Hendrycks &
Dietterich, 2019; Recht et al., 2019; Szegedy et al.,
2013). To address these issues, calibration is used
to ensure that a machine learning model produces
confidence scores that reflect the model’s ground
truth likelihood of being correct (Platt et al., 1999;
Zadrozny & Elkan, 2001; 2002).

To obtain an estimate of the calibration error, or
ECE1, the standard procedure (Guo et al., 2017; Naeini et al., 2015) partitions the model confidence
scores into bins and compares the model’s predicted accuracy to its empirical accuracy within each
bin. We refer to this specific metric as ECEBIN. Although recent work has pointed out that ECEBIN

is sensitive to implementation hyperparameters (Kumar et al., 2019; Nixon et al., 2019), measuring
the statistical bias in ECEBIN, or the difference between the expected ECEBIN and the true calibration
error (TCE), has remained largely unaddressed.

In this paper, we address this problem by developing techniques to measure bias in existing calibration
metrics. We use simulation to create a setting where the TCE can be computed analytically and
thus the bias can be estimated directly. As Figure 1 highlights, we find empirically that ECEBIN has
non-negligible statistical bias and systematically predicts large errors for perfectly calibrated models.

1Naeini et al. (2015) introduce ECE as an acronym for Expected Calibration Error. However, ECE is
not a proper expectation whereas the true calibration error is computed under an expectation. To resolve this
confusion, we prefer to read ECE as Estimated Calibration Error.
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Figure 2: Bias affects which recalibration algorithm is preferred. For ten models, we report
which recalibration method is determined to be superior based either on ECEBIN or ECESWEEP. The
wide bar indicates the superior method using entire validation set (mean of X instances); narrow bars
each use a random sample of 10% of the original validation set. Recalibration methods tested are
histogram binning, temperature scaling, and isotonic regression.

Motivated by monotonicity in true calibration curves arising from trained models, we develop a
simple alternate for measuring calibration error, the monotonic sweep calibration error (ECESWEEP),
which chooses the largest number possible while maintaining monotonicity in the approximation to
the calibration curve. Our results suggest that ECESWEEP is less biased than the standard ECEBIN and
can thus more reliably estimate calibration error.

Does the use of an improved ECE measure affect which recalibration method is preferred? In Figure
2, we examine this question using 10 pre-trained models, and compare the standard ECE measure,
ECEBIN with 15 equal-width-spaced bins, to our ECESWEEP. With large dataset sizes for recalibration
and evaluation 2, we find that ECEBIN produces a different selection of the preferred recalibration
method on 30% of the models. (We use histogram binning (Zadrozny & Elkan, 2001), temperature
scaling (Guo et al., 2017), and isotonic regression (Zadrozny & Elkan, 2002) as the recalibration
techniques.) When we reduce the size of the validation and evaluation by 10% and recalibrate with
these smaller sets, ECEBIN produces a different selection on 22% of the cases ( with 10 bins, we see
disagreement on 27% of the cases). Thus, the use of our improved ECE measure has significant
implications not only for estimation of calibration error but for improving calibration with methods
like temperature scaling.

2 BACKGROUND
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Figure 3: Curves controlling true calibra-
tion error. Our ability to measure calibration
is contingent on both the confidence score
distribution (e.g., f(X) ∼ Beta(2.8, 0.05))
and the true calibration curve (e.g., EY [Y |
f(X) = c] = c2.

Consider a binary classification setup with input X ∈
X , target output Y = {0, 1}, and we have a model
f : X → [0, 1] whose output represents a confidence
score that the true label Y is 1.

True calibration error (TCE). We define true cal-
ibration error as the difference between a model’s
predicted confidence and the true likelihood of being
correct under the `p norm:

TCE(f) = (EX [|f(X)− EY [Y |f(X)]|p])
1
p . (1)

The TCE is dictated by two independent features of
a model: (1) the distribution of confidence scores
f(x) ∼ F over which the outer expectation is computed, and (2) the true calibration curve EY [Y |
f(X)], which governs the relationship between the confidence score f(x) and the empirical accuracy
(see Figure 3 for illustration).

In our experiments, we measure calibration error using the `2 norm because it increases the sensitivity
of the error metric to extremely poorly calibrated predictions, which tend to be more harmful in
applications. In addition, the mean squared prediction error of the classifier, or Brier score (Brier,
1950), can be decomposed into terms corresponding to the squared `2 calibration error and the
variance of the model’s correctness likelihood (Kuleshov & Liang, 2015; Kumar et al., 2019).

2We use standard validation sets of size 5, 000 examples for CIFAR-10/100 and 25, 000 examples for
ImageNet and evaluation sets of size 10, 000 for CIFAR-10/100 and 25, 000 for ImageNet.
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2.1 ESTIMATES OF CALIBRATION ERROR

To estimate the TCE of a model f , assume we are given a dataset containing n samples, {xi, yi}ni=1.
We can approximate TCE by replacing the outer expectation in Equation 1 by the sample average and
replacing the inner expectation with an average over a set of instances with similar f(x) values:

ECENEIGH(f) =
(

1
n

∑n
i=1

∣∣∣f(xi)− 1
|Ni|

∑
j∈Ni

yj

∣∣∣p) 1
p

, (2)

where Ni is instance i’s set of neighbors in model confidence output space.

Label-binned calibration error (ECELB). The label-binned calibration error uses binning to define
Ni and estimate the model’s empirical accuracy E[Y |f(X)]. Specifically, the instances are partitioned
into b bins, where Bk denotes the set of all instances in bin k, allowing us to express Equation 2 in
terms of the binned neighborhood:

ECELB(f) =
(

1
n

∑b
k=1

∑
i∈Bk

|f(xi)− ȳk|p
) 1

p

, where ȳk = 1
|Bk|

∑
j∈Bk

yj . (3)

Binning is commonly implemented using either equal width binning (Guo et al., 2017; Naeini et al.,
2015), which creates bins by dividing the model confidence domain [0, 1] into equal sized intervals, or
equal mass binning (Nixon et al., 2019), which creates bins by dividing the n samples into partitions
with an equal number of instances.

Binned calibration error (ECEBIN). In contrast to ECELB, which operates on the original instances
but uses binning to estimate empirical accuracy, ECEBIN collapses all instances in a bin into a single
instance and compares the per-bin empirical accuracy to the per-bin confidence score, weighted by
the per-bin number of instances. Given b bins, where Bk is the set of instances in bin k, and letting
f̄k and ȳk be the per-bin average confidence score and label, ECEBIN is defined under the `p norm as

ECEBIN(f) =
(∑b

k=1
|Bk|
n

∣∣f̄k − ȳk∣∣p) 1
p

(4)

Importantly, ECEBIN always underestimates ECELB, ECELB(f) ≥ ECEBIN(f), which follows by
applying Jensen’s inequality on each inner term k ∈ {1, 2, . . . , b} in Eqs. 3 and 4:

1
|Bk|

∑
i∈Bk

|f(Xi)− Ȳk|p ≥
∣∣∑

i∈Bk
f̄k − Ȳk

∣∣p . (5)

3 MEASURING BIAS THROUGH SIMULATION

We focus on bias rather than variance because the variance can be estimated from a finite set of samples
through resampling techniques whereas the bias is an unknown quantity that reflects systematic error.
We also found empirically that the variance seems relatively insensitive to the estimation technique
and number of bins (see Appendix B). The bias of a calibration error estimator, ECEA for some
estimation algorithm A, is the difference between the estimator’s expected value with respect to the
data distribution and the TCE:

BiasA = E[ECEA]− TCE. (6)

If we assume a particular confidence score distribution F and true calibration curve
T (X) = EY [Y | f(X) = c] (see Figure 3 for examples), we can compute the TCE by numerically
evaluating the integral implicit in the outer expected value of Equation 1.

We then compute a sample estimate of the bias as follows. First, we generate n samples {f(xi), yi}ni=1
such that f(xi) ∼ F and EY [Y | f(X) = c] := T (c), and compute the ECE on the sample. We
repeat this process for m simulated datasets and compute the sample estimate of bias as the difference
between the average ECE and the TCE:3

B̂iasA(n) = 1
m

∑m
i=1 ECEA − TCE. (7)

Bias in ECEBIN for varying hyperparameters. Using simulation, we next investigate the bias
in ECEBIN as a function of the number of samples n and the number of bins. We compute
ECEBIN with equal width binning and we assume parametric curves for f(x) and EY [Y |
f(X) = c] that are fit to the ResNet-110 CIFAR-10 model output (see Section 5.1 for de-
tails on how we compute fits). Kumar et al. (2019) Proposition 3.3 shows that any binned
version of calibration error systematically underestimates TCE in the limit of infinite data.

3In the remainder of the text, we will use the term "bias" to refer to this sample estimate of bias.
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Figure 4: ECEBIN with equal width binning can
overestimate TCE and the optimal number of
bins depends on number of samples.

However, for a finite number of samples n, Figure
4 shows that ECEBIN can either overestimate or un-
derestimate TCE and that increasing the number
of bins does not always lead to better estimates of
TCE. Intuitively, as the number of bins explodes,
each example lies in its own bin, and the prediction
error is computed with respect to a target of 0 or 1.
Moreover, regardless of binning scheme, there ex-
ists a bin number for each sample size that results
in the lowest estimation bias and this optimal bin
count grows with the sample size. In Appendix
B, we show the variance associated with this ex-
periment, and also include results for alternative
calibration metrics.

4 MONOTONIC CALIBRATION METRICS

Though Section 3 shows that there exists an optimal number of bins for which ECEBIN has the lowest
bias, unfortunately, this number depends on the binning technique, the number of samples, the
confidence score distribution, and the true calibration curve. This observation motivates us to seek a
method for adaptively choosing the number of bins.

Monotonicity in the true calibration curve implies that a model’s expected accuracy should always
increase as the model’s confidence increases. Although such a requirement seems reasonable for
most any statistical model, it is not obvious how to prove why or when a “reasonable” model would
attain such a property. We offer a rationale for why it should be expected of machine learning models
trained with a maximum likelihood objective, e.g., cross-entropy or logistic loss (Murphy, 2012).
Namely, from ROC (receiver operating characteristic) analysis of maximum likelihood models, an
under-appreciated observation of ROC curves is that a model trained to maximize the likelihood
ratio must have a convex ROC curve in the limit of infinite data (Green et al. (1966), Section 2.3).
The slope of the ROC curve is related to the calibration curve, and a convex ROC curve implies a
monotonically increasing calibration curve (the converse is also true) (Chen et al., 2018; Gneiting &
Vogel, 2018).

In practice, several potential confounds may lead to measuring a non-monontonic calibration curve.
First, finite data size effects may lead to fluctuations in the true positive or false positive rates, but do
not reflect the behavior of the underlying model. Second, deviations in the domain statistics between
cross-validated splits in the data may lead to unbounded behavior; however, we assume that such
domain shifts are negligible as cross-validated splits are presumed to be selected i.i.d..4 Given that
deviations from non-monotonic calibration curves are considered artificial, we posit that any method
that is trying to assess the TCE of an underlying model may freely assume monotonicity in the true
calibration curve. Note that this proposition already guides the entire field of re-calibration to require
that re-calibration methods only consider monotonic functions (Platt et al., 1999; Wu et al., 2012;
Zadrozny & Elkan, 2002).

Monotonic sweep calibration error (ECESWEEP). Accordingly, we leverage the underlying mono-
tonicity in the true calibration and propose the monotonic sweep calibration error, a metric that choose
the largest number of bins possible such that it and all smaller bin sizes preserve monotonicity in the
bin heights ȳk.

ECESWEEP = maxb

((∑b′

k=1
|Bk|
n

∣∣f̄k − ȳk∣∣p) 1
p

s.t. ȳ1 ≤ ȳ2 . . . ≤ ȳb′ , ∀b′ ≤ b
)
.

We can compute the monotonic sweep calibration error by starting with b = 2 bins (since b = 1 is
guaranteed to be a monotonic binning) and gradually increasing the number of bins until we either

4Note that a third potential reason for a non-monotonic calibration curve is that a classifier could be trained
with a non–likelihood-based statistical criteria, e.g. moment matching. However, the lack of monotonic behavior
in the calibration curve of such a model may actually be a sign that the model is not reasonable or admissible
model for consideration on a given task (Chen et al., 2018; Pesce et al., 2010).
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Figure 5: Maximum likelihood fits to empirical datasets illustrate large skew in their density
distribution and calibration function. For each dataset, (a) confidence distributions were fit with
a two-parameter beta distribution and (b) calibration curves were fit via generalized linear models
across multiple model families, with the best model selected via the Akaike information criterion
(details in Appendix A). Across models, the dataset source systematically affects both curves. (c)
We plot the overall quality of the fits by computing the ECEBIN on the original data vs. the ECEBIN

averaged over 1000 simulated trials. Curves well-fit to the data should lie close to the identity line.

reach a non-monotonic binning, in which case we return the last b that corresponded to a monotonic
binning, or until every sample belongs to its own bin (b = n).

Algorithm 1: Monotonic Sweep Calibration Error
1 for b← 2 to n do
2 Compute ECEBIN bin heights (ȳk) with b bins ;
3 if Binning is not monotonic then
4 b = b -1 ;
5 break ;
6 return ECEBIN computed with b bins

5 RESULTS

5.1 PARAMETRIC FITS CAPTURE CALIBRATION CURVE AND SCORE DISTRIBUTION

TCE is analytically computable when we assume parametric forms for the confidence distribution and
the true calibration curve. To what extent can parametric forms capture the diversity and complexity
of real world data? In many applications, only sample-based approximations to these functions are
available. In order to estimate ECEBIN bias in real-world data, we develop parametric models of
empirical logit datasets that enable direct measurement of TCE.

We consider 10 logit datasets (including those studied in Guo et al. (2017)), arising from training
four different neural model families (ResNet, ResNet-SD, Wide-ResNet, and DenseNet) on three
different image datasets (CIFAR-10/100 and ImageNet) (Deng et al., 2009; He et al., 2016; Huang
et al., 2016; 2017; Krizhevsky, 2009; LeCun et al., 1998; Zagoruyko & Komodakis, 2016). For each
dataset (Figure 5), we compute confidence scores by applying softmax and top-1 selection to logits
from Kängsepp (2019).

Computing TCE directly for real-world data via Equation 1 is infeasible because of the expectation
across X . Instead, we model the distribution of the scores f(X) directly with a two-parameter
beta distribution, which we fit using maximum likelihood estimation (note that in many cases, the
confidence scores are heavily skewed). Calibration functions are computed by fitting multiple (binary)
generalized linear models (GLM) to the calibration data. From these candidate models, we select the
model of best fit using the Akaike Information Criteria (AIC). The models considered include logit,
log, and "logflip" (log(1− x)) link and transformation functions, up to first order in the transformed
domain, resulting in monotonic calibration functions. See Appendix A for additional details.

We find that the parametric forms for the calibration curve and distribution of scores are well captured
by these simple GLM and Beta models. Figure 5(a,b) shows the resulting fits, with parameters
summarized in Appendix A. We observe significant skew in the score distribution which, as discussed
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Figure 6: EMsweep is less biased than alternative calibration metrics. We plot bias versus
number of samples n for calibration metrics on simulated data drawn from the CIFAR-10, CIFAR-
100, and ImageNet fits (Section 5.1). The dataset the model was trained on has a greater influence on
bias than the model architecture. Metrics based on equal mass binning consistently outperform equal
width binning. Exploiting monotonicity in the EMsweep metric helps the most at small sample sizes.

in Section 5.2, poses a challenge to measuring calibration error with equal-width bins. We find that
the dataset has more influence on the fits than the neural model, with ImageNet models the least
skewed and CIFAR-10 the most (correlating with model accuracy). Figure 4 5(c) indicates that
ECEBIN scores computes on simulated data from the fits closely match ECEBIN scores computed on
the real data, as witnessed by the fact that the points lie near the line of equality.

5.2 SIMULATION RESULTS ON DISTRIBUTIONS FIT TO CIFAR-10/100, AND IMAGENET

Using the resulting parametric fits from Section 5.1, we evaluate ECEBIN and ECESWEEP using both
equal mass binning and equal width binning and compare these values to the analytically computed
TCE. In addition, we include a comparison to the recently proposed debiased estimator, ECEDEBIAS,
using equal mass binning (Kumar et al., 2019) and a smoothed Kernel Density Estimation (KDE)
method for estimating calibration error (Zhang et al., 2020). We abbreviate each method as follows:

• EW: ECEBIN using equal width binning and 15 bins (Guo et al., 2017; Naeini et al., 2015),
• EM: ECEBIN using equal mass binning and 15 bins (Nixon et al., 2019),
• EMdebias: Debiased calibration metric using equal mass binning (Kumar et al., 2019)
• KDE: KDE calibration metric (Zhang et al., 2020)
• EWsweep: ECESWEEP using equal width binning, and
• EMsweep: ECESWEEP using equal mass binning.

We choose 15 bins for ECEBIN and ECEDEBIAS, following the standard set by Guo et al. (2017). For a
comparison of different choices of fixed number of bins, Appendix B includes an analysis of the bias
and variance of ECEBIN, ECESWEEP, and ECEDEBIAS across different bin numbers and sample sizes
for the curves corresponding to CIFAR-10 ResNet-110, CIFAR-100 Wide ResNet-32 and ImageNet
ResNet-152 models. We see that the optimal number of bins varies with the number of samples, and
using a different fixed number of bins introduces bias at varying sample sizes.

Figure 6 plots the bias (estimated using m = 1,000 simulations) versus the sample size n for the
best-fit curves for each neural network model trained on the CIFAR-10, CIFAR-100, and ImageNet
datasets. An unbiased estimator would have Bias = 0, which we highlight visually in green. We
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find that the dataset the model was trained on has more influence on the calibration metric behavior
than the model architecture, which may be unsurprising given that Section 5.1 shows that the dataset
heavily influences both the distribution of confidence scores and the true calibration curve.

Equal width versus equal mass binning: Overall, metrics that employ equal mass binning show less
bias than those with equal width binning. Surprisingly, for EW and EWsweep on CIFAR-10, as well
as EW on CIFAR-100, we see increasing absolute bias as the number of samples increases across all
model architectures tested. We propose a possible explanation for this phenomenon. As Figure 5 (a)
shows, models trained on CIFAR-10 and CIFAR-100 have highly skewed confidence distributions
and, as a result, equal width binning places the majority of the instances in the top bin. As we increase
the number of samples, we increase the likelihood that we generate a sample that populates one of the
lower bins, which, due to their low sample density, may have a poorer average estimate of the TCE.

ECESWEEP versus alternative metrics: Our experiments show that ECESWEEPwith equal mass binning
has either similar or less bias than alternative calibration error metrics, and at low sample sizes, the
ECESWEEP method is consistently less biased than all other metrics. However, the ECESWEEP does not
show improvements over other metrics when combined with equal width binning, and we do not
recommend using the combination in practice.

KDE estimator. Compared to all calibration metrics we evaluate, the KDE estimator has much higher
bias across the CIFAR-10, CIFAR-100, and ImageNet simulations. Our results suggest that the
heuristic used to choose the kernel bandwidth and the specific ‘triweight’ kernel worked well for the
one synthetic example evaluated in (Zhang et al., 2020), but fails to generalize to the more realistic
synthetic examples we study. Specifically, Zhang et al. (2020) assumes a Gaussian distribution for
P (X|Y ) and a logistic confidence score distribution, which result in notably different qualitative
shapes than the logit distributions we obtain from models trained on CIFAR-10/100 or ImageNet (see
Figure 5(a, b) or the reliability diagrams and confidence score distributions from Kängsepp (2019)).

Debiased estimator. The debiased estimator (Kumar et al., 2019) uses a jackknife technique to
estimate the per-bin bias in the standard ECEBIN, and subtracts off this bias to achieve a better
binned estimate of the calibration error. However, unlike ECESWEEP, the debiased estimator still has a
hyperparameter b that controls the number of bins. On the CIFAR-10/100, and ImageNet simulations
in Figure 6, the debiased estimator with 15 bins is more competitive to equal mass ECESWEEP than any
other estimation method we test, but the equal mass ECESWEEP method still outperforms the debiased
estimator for low sample sizes. In Appendix B, we also show that the equal mass debiased estimator
has higher variance than the equal mass ECESWEEP (except when b ≤ 4, when all estimators have high
bias).

5.3 BIAS VERSUS TRUE CALIBRATION ERROR
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Figure 7: Bias in calibration estimation increases as TCE decreases. We plot average ECE
(%) for EW (left) and EMsweep (right) versus the TCE (%), with varying sample size and score
distributions. The estimator bias is systematically worse for better calibrated models, and the effect is
more egregious with fewer samples. At n = 200 samples, depending on the score distribution, an EW
estimate of 12% could either correspond to 5% or 8% TCE. The EMsweep metric is able to mitigate
the bias and ambiguity in calibration error estimation to a certain extent.
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We next evaluate the estimation bias of the baseline EW and our best estimator from the previous
section, EMsweep, as we systematically vary the TCE. We are interested in the low calibration
error regime because a goal of many recalibration algorithms is to reduce the calibration error of
the model to 0%. Figure 7 shows the average estimated calibration error for EW and EMsweep
versus the TCE. The average calibration error is computed across m = 1,000 simulated datasets,
and we include results for two sample sizes, n = 200 and n = 5,000, and two score distributions,
f(x) ∼ Uniform(0, 1) and f(x) ∼ Beta(1.1, 0.1), the beta distribution fit to the CIFAR-100 Wide
ResNet_32. To control the TCE, we assume EY [Y | f(X) = c] = cd and vary d ∈ [1, 10]. When
d = 1 the true calibration curve is EY [Y | f(X) = c] = c, which means the model’s predicted
confidence score is exactly equal to its empirical accuracy and thus the TCE is 0%. As we increase d,
we move the true calibration curve farther away from the perfect calibration curve, which increases
the TCE of the model.

The bias in the calibration error estimation can be seen visually as the difference between the ECE
and the TCE. Perfect estimation (0 bias) corresponds to the y = x line. Bias is highest when the
model is perfectly calibrated (TCE is 0%) and generally decreases as TCE increases. Using a larger
sample size of n = 5, 000 reduces the bias, but when the model is perfectly calibrated, the ECEBIN

can still be off by 2%. The EMsweep metric significantly reduces this bias.

In practice, we do not know the distribution of scoresF , the true calibration curve EY [Y | f(X) = c],
or the TCE. So, given a measurement of calibration error, how much bias can we expect? If we
measure an ECEBIN of 20%, we expect it to be fairly close to the TCE. However, if we see an ECEBIN

of 2%, it is possible that the model may actually be perfectly calibrated! We further explore this
dilemma in the next section.

5.4 HOW WELL CAN WE DETECT MISCALIBRATION?
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Figure 8: Probability of failing to de-
tect miscalibration (type II error, or
miss rate), plotted as a function of TCE
for various sample sizes (n), with type
I error rate fixed at 0.05. EMsweep
(dashed lines) obtains a significantly
lower failure rate than EW (solid lines).

Consider the situation where we have a model whose TCE
is unknown and we wish to test the hypothesis that the
model is miscalibrated, i.e., TCE > 0. Our ability to de-
tect miscalibration depends on the TCE, the sample size
(n), and the method for estimating calibration error. We
conduct a simulation with f(x) ∼ Beta(1, 1) and true cal-
ibration curve from the family EY [Y | f(X) = c] = cd,
where d is varied to obtain a range of TCE. Allowing for a
type I error rate of .05 (also known as the false-alarm rate,
or the rate of mistakenly claiming miscalibration when
a model is perfectly calibrated), we obtain type II error
rates (also known as the miss rate, or the rate of failing to
detect a miscalibration). Figure 8 shows the type II error
rate as a function of TCE and n for EMsweep and EW.
Our results indicate that EMsweep obtains a significantly
lower failure rate than EW, particularly for under 10,000
samples. More generally, we note limitations with both
methods: to detect a miscalibration of 2%, over 10,000
samples are needed; and if one has under 500 samples, the
miscalibration must be greater than 10% to be detected
reliably.

6 DISCUSSION

Much research in model calibration has focused on recalibrating models, i.e., transforming f(x) to
f ′(x) (Platt et al., 1999; Zadrozny & Elkan, 2001; 2002). We focus on estimating calibration error,
because without a good estimate of TCE, there is little point in trying to recalibrate models. What
implications do our results have on choosing and evaluating recalibration algorithms?

One possibility is that bias affects all recalibration methods in the same way, which would imply
that we should still be able to select recalibration method A over method B with a biased estimator.
However, our results show that the distribution of confidence scores significantly impacts the bias
in calibration error estimation, even when the sample size is fixed. Since recalibration methods are
inherently designed to modify the confidence score distribution, we cannot assume that bias will
affect all methods in the same way.

8
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Another possibility is that the bias is small compared to the calibration error differences we would
measure. However, our results suggest that this is not true. Even when the number of evaluation
samples is high, n = 5,000, Figure 7 shows that it is entirely possible that we might measure an
ECEBIN of 2% when the model is in fact perfectly calibrated. Moreover, Figure 2 shows that the
preference of recalibration algorithm can change depending on whether ECESWEEP or ECEBIN is used
to measure calibration error, implying that bias might meaningfully affect the conclusions of previous
studies of calibration error such as those in Guo et al. (2017).

Several authors attempt a different approach to recalibration: improving model calibration during
training. For instance, Mukhoti et al. (2020) trains a model with a batch size of 128 across multiple
types of losses including maximum mean calibration error (Kumar et al., 2018) and Brier loss (Brier,
1950) which explicitly tries to minimize a calibration loss using 128 examples at a time. However,
our results suggest that training a model with naive estimates of calibration error as an objective
using a batch size < O(1000) is a potentially flawed endeavor, particularly because the distribution of
scores from the model is changing throughout training, and any potential measure of calibration may
be more affected by the distribution of scores (as opposed to the calibration curve).

7 RELATED WORK

Sensitivity of ECEBIN to hyperparameters. Several works have pointed out that ECEBIN is sensitive
to implementation details. Kumar et al. (2019) show that ECEBIN increases with number of bins while
Nixon et al. (2019) find that ECEBIN scores are sensitive to several hyperparameters, including `p
norm, number of bins, and binning technique. In addition, Nixon et al. (2019) find that ECEBIN with
equal mass binning produces more stable rankings of recalibration algorithms, which is consistent
with our conclusion that equal mass ECEBIN is a less biased estimator of TCE. However, in contrast
to prior work, we study the sensitivity of the bias in ECEBIN to implementation hyperparameters.

Metrics for calibration error estimation. Gupta et al. (2020) propose a calibration error metric
inspired by the Kolmogorov-Smirnov (KS) statistical test that estimates the maximum difference
between the cumulative probability distributions P (f(X)) and P (Y | f(X)). The KS is similar to
the maximum calibration error (MCE) (Naeini et al., 2015) in that it computes a worst-case deviation
between confidence and accuracy, but the KS is computed on the CDF, while the MCE uses binning
and is computed on the PDF. In contrast, our work focuses on measuring the average difference
between confidence and accuracy. As mentioned in Guo et al. (2017), both the worst case and average
difference are useful measures but may be applicable under different circumstances.

8 CONCLUSIONS AND FUTURE WORK

If we are to rely on the predictions from machine learning models in high stakes situations like
autonomous vehicles, content moderation, and medicine, we must be able to detect when these
predictions are likely to be incorrect. Given that the default confidence scores produced by machine
learning models do not necessarily correspond to the model’s empirical accuracy, recalibration
is necessary in order to produce reliable and consistent output. However, it is impossible for a
recalibration algorithm to achieve perfect calibration if we cannot measure calibration accurately.
Our results show that the statistical bias in current calibration error estimators grows as we approach
perfect calibration, but this bias can be mitigated by using monotonic estimation techniques. We
conclude with some directions for future work:

Simulation as an evaluation tool. We have shown that simulation is a powerful technique for evalu-
ating calibration error estimators. However, especially for small sample sizes, the ECESWEEP method
does not completely eliminate estimation bias, and we only evaluated a finite set of distributions
arising from image classification datasets and models. We hope future work can use simulation as an
effective tool for developing both new calibration metrics and new recalibration techniques, and that
evaluations can be extended to a more diverse set of datasets and models.

Distribution shifts. Since models deployed in real world application will necessarily make pre-
dictions on out-of distribution examples and since we would like these predictions to be calibrated
(Ovadia et al., 2019), it is important that we are able to accurately measure and improve calibration
error on non-iid data. However, in such situations, we do not necessarily expect the calibration curve
to be monotonic. Thus, exploring how distribution shifts can modify the shape of the true calibration
curve is an important future direction.
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A MAXIMUM-LIKELIHOOD FITS

Table 1 provides parameters fit to the top-scores obtained for each of 10 empirical datasets by
maximum likelihood estimation.

Table 1: Parameters of best fit for distribution functions investigated in Section 5.1.

α̂ β̂

resnet110_c10 2.7752 0.0478
resnet110_SD_c10 2.1714 0.0394
resnet_wide32_c10 2.3806 0.0379
densenet40_c10 1.9824 0.0397
resnet110_c100 1.1823 0.1081
resnet110_SD_c100 1.1233 0.1147
resnet_wide32_c100 1.0611 0.0650
densenet40_c100 1.0805 0.0808
resnet152_imgnet 1.1359 0.2069
densenet161_imgnet 1.1928 0.2206

Global optimia α̂ ∈ [0, 200], β̂ ∈ [0, 50] are approximately computed using a recursively-refining
brute-force search until both parameters are established to within an absolute tolerance of 1e−5.
Each step in the recursion contracts a linear sampling grid (N = 11) by a factor of γ = .5 centered
on the previously established optimal parameter, subject to the constraints α, β > 0. Experiments
confirmed that the computed optima were robust to the hyperparameters N, γ.

arg min
α,β

∑
i

− ln
xα−1
i (1− xi)β−1

Γ(α)Γ(β)
Γ(α+β)

(8)

Table 2 provides parameters fit to calibration functions. For each sample image xi in the image
dataset, define si = f(xi) to be the score (the output of the top-scoring logit after softmax) and
yi ∈ {0, 1} to be the classification (yi = 1 when the top-scoring logit correctly classified image
xi) for the sample image. The loss for the binary generalized linear model (GLM) across different
combinations of link functions g(y) and transform functions t(s) was optimized via the standard loss
(Gelman et al. (2004)):

arg min
b0,b1

∑
i

− ln pyii (1− pi)1−yi , pi = g−1(b0 + b1t(si)) (9)

For each dataset, the GLM of best fit was selected via the Akaike Information Criteria using the
likelihood at the optimized parameter values.
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Table 2: Parameters of best fit for calibrations functions investigated in Section 5.1.

AIC b0 b1
dataset_name glm_name

resnet110_c10 logflip_logflip_b0_b1 2779.22 -0.24 0.30
logit_logflip_b0_b1 2790.40 -0.55 -0.38
logit_logflip_b1 2827.51 -0.31
logit_logit_b0_b1 2840.70 -0.38 0.36
logit_logit_b1 2900.02 0.30
logflip_logflip_b1 2932.09 0.34
log_log_b0_b1 3221.72 -0.06 2.53
logit_logit_b0 3799.63 1.99
logflip_logflip_b0 3811.98 -2.13
log_log_b0 3829.05 -0.13
logit_logflip_b0 3868.40 1.95
log_log_b1 4281.78 4.75

resnet110_SD_c10 logit_logflip_b0_b1 2498.98 -0.27 -0.35
logit_logit_b1 2502.52 0.30
logit_logflip_b1 2508.70 -0.30
logit_logit_b0_b1 2538.41 -0.26 0.33
logflip_logflip_b0_b1 2550.29 -0.36 0.27
logflip_logflip_b1 2572.85 0.35
log_log_b0_b1 2594.91 -0.08 1.98
log_log_b0 3137.19 -0.19
logflip_logflip_b0 3150.42 -1.80
logit_logit_b0 3175.58 1.58
logit_logflip_b0 3179.67 1.56
log_log_b1 3697.37 3.77

resnet_wide32_c10 logit_logit_b1 2483.34 0.26
logflip_logflip_b0_b1 2487.69 -0.47 0.22
logit_logit_b0_b1 2511.39 -0.13 0.28
logit_logflip_b0_b1 2558.45 -0.26 -0.28
logit_logflip_b1 2586.47 -0.25
log_log_b0_b1 2647.03 -0.12 1.87
logflip_logflip_b1 2713.17 0.30
log_log_b0 2981.24 -0.21
logflip_logflip_b0 2983.05 -1.70
logit_logit_b0 2989.90 1.49
logit_logflip_b0 3055.55 1.45
log_log_b1 4582.09 4.61

densenet40_c10 logit_logflip_b1 2910.62 -0.26
logit_logit_b0_b1 2961.31 -0.40 0.31
logit_logflip_b0_b1 3000.23 -0.38 -0.31
logflip_logflip_b0_b1 3001.78 -0.31 0.24
logit_logit_b1 3021.54 0.25
logflip_logflip_b1 3027.78 0.31
log_log_b0_b1 3153.38 -0.12 2.04
log_log_b0 3531.22 -0.22
logflip_logflip_b0 3589.11 -1.60
logit_logit_b0 3601.85 1.37
logit_logflip_b0 3679.95 1.30
log_log_b1 4735.18 4.27

resnet110_c100 logflip_logflip_b0_b1 8181.97 -0.11 0.28
logit_logit_b0_b1 8206.19 -0.88 0.39
logflip_logflip_b1 8301.28 0.31
logit_logflip_b0_b1 8371.53 -1.01 -0.40
logit_logit_b1 8732.11 0.25
log_log_b0_b1 8918.21 -0.16 2.35
logit_logflip_b1 8926.99 -0.23
logit_logflip_b0 10903.83 0.74
logit_logit_b0 10943.95 0.72
logflip_logflip_b0 10964.91 -1.12
log_log_b0 11002.20 -0.40
log_log_b1 11850.89 4.26

AIC b0 b1
dataset_name glm_name

resnet110_SD_c100 logit_logit_b0_b1 7873.61 -0.88 0.49
logflip_logflip_b0_b1 7878.19 -0.09 0.35
logflip_logflip_b1 7932.28 0.38
logit_logflip_b0_b1 7944.61 -1.04 -0.52
logit_logit_b1 8315.51 0.32
log_log_b0_b1 8437.82 -0.11 2.18
logit_logflip_b1 8510.36 -0.30
log_log_b1 9988.07 3.30
logit_logit_b0 10803.27 0.80
log_log_b0 10810.90 -0.37
logflip_logflip_b0 10823.15 -1.16
logit_logflip_b0 10834.48 0.78

resnet_wide32_c100 logflip_logflip_b0_b1 7183.93 -0.13 0.21
logit_logit_b0_b1 7219.14 -0.98 0.33
logflip_logflip_b1 7233.51 0.25
logit_logflip_b0_b1 7297.00 -1.06 -0.34
logit_logit_b1 7626.21 0.19
log_log_b0_b1 7650.97 -0.24 2.51
logit_logflip_b1 7795.28 -0.17
logflip_logflip_b0 8977.39 -0.98
logit_logflip_b0 8987.38 0.49
log_log_b0 9000.24 -0.49
logit_logit_b0 9009.51 0.49
log_log_b1 11911.51 5.48

densenet40_c100 logit_logit_b0_b1 8158.28 -0.97 0.34
logflip_logflip_b0_b1 8229.43 -0.12 0.22
logit_logflip_b0_b1 8267.77 -1.08 -0.35
logflip_logflip_b1 8368.86 0.25
logit_logit_b1 8783.50 0.19
log_log_b0_b1 8832.20 -0.25 2.26
logit_logflip_b1 8918.57 -0.18
logit_logit_b0 10138.24 0.47
logit_logflip_b0 10182.61 0.45
logflip_logflip_b0 10242.15 -0.94
log_log_b0 10261.01 -0.50
log_log_b1 13322.10 5.25

resnet152_imgnet logflip_logflip_b0_b1 18729.85 -0.12 0.58
logit_logit_b0_b1 18783.22 -0.29 0.65
log_log_b0_b1 18785.44 -0.03 1.32
logflip_logflip_b1 18872.14 0.65
logit_logit_b1 19074.37 0.57
logit_logflip_b0_b1 19095.40 -0.82 -0.79
log_log_b1 19840.25 1.53
logit_logflip_b1 20062.10 -0.50
logflip_logflip_b0 26935.09 -1.41
log_log_b0 26968.50 -0.28
logit_logflip_b0 27012.77 1.12
logit_logit_b0 27084.11 1.11

densenet161_imgnet log_log_b0_b1 18202.41 -0.03 1.27
logit_logit_b0_b1 18460.70 -0.25 0.68
logflip_logflip_b1 18521.48 0.67
logflip_logflip_b0_b1 18534.07 -0.10 0.61
logit_logit_b1 18822.25 0.60
logit_logflip_b0_b1 18913.25 -0.77 -0.80
log_log_b1 19493.85 1.44
logit_logflip_b1 19562.58 -0.54
logit_logflip_b0 26426.38 1.19
logflip_logflip_b0 26445.91 -1.46
logit_logit_b0 26519.76 1.18
log_log_b0 26662.65 -0.27
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Table 3: ECE reported in Figure 5(c).

ECE2 (%) <ECE2> (%, simulated)

resnet110_c10 6.67 8.42
resnet110_SD_c10 6.54 8.79
resnet_wide32_c10 6.09 8.44
densenet40_c10 6.70 8.09
resnet110_c100 20.26 18.87
resnet110_SD_c100 17.44 15.78
resnet_wide32_c100 20.40 17.53
densenet40_c100 23.12 19.69
resnet152_imgnet 6.85 9.26
densenet161_imgnet 6.15 6.87

B BIAS AND VARIANCE IN CALIBRATION METRICS

B.1 BIAS

We evaluate bias for various calibration metrics using both equal-width and equal-mass binning as
we vary both the sample size n and the number of bins b. These plots should be seen as an alternative
visualization to 6 where we additionally compare to different choices for the fixed number of bins b.
Since the ECESWEEP metrics adaptively choose a different number of bins for each sample size, we
display the bin number for this metric as −1.

We find that ECEBIN can overestimate the true calibration error and there exists an optimal number of
bins that produces the least biased estimator that changes with the number of samples n. Additionally,
equal mass binning generally results in a less biased metric than equal width binning.

CIFAR-10 ResNet-110. Figure 9 assume parametric curves for p(f(x)) and EY [Y | f(X) = c] that
we obtain from maximum-likelihood fits to CIFAR-10 ResNet-110 model output.

CIFAR-100 Wide ResNet-32. Figure 10 assume parametric curves for p(f(x)) and EY [Y | f(X) =
c] that we obtain from maximum-likelihood fits to CIFAR-100 Wide ResNet-32 model output.

ImageNet ResNet-152. Figure 11 assume parametric curves for p(f(x)) and EY [Y | f(X) = c]
that we obtain from maximum-likelihood fits to ImageNet ResNet-152 model output.
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Figure 9: Bias for various calibration metrics assuming curves fit to CIFAR-10 ResNet-110
output. We plot bias for various calibration metrics using both equal-width binning (left column)
and equal-mass binning (right column) as we vary both the sample size n and the number of bins b.

B.2 VARIANCE

We also compute the variance for various calibration metrics using both equal-width and equal-mass
binning as we vary both the sample size n and the number of bins b. As expected, the variance
decreases with number of samples, but, unlike the bias, there is no clear dependence on the number
of bins.

CIFAR-10 ResNet-110. Figure 12 assume parametric curves for p(f(x)) and EY [Y | f(X) = c]
that we obtain from maximum-likelihood fits to CIFAR-10 ResNet-110 model output.

CIFAR-100 Wide ResNet-32. Figure 13 assume parametric curves for p(f(x)) and EY [Y | f(X) =
c] that we obtain from maximum-likelihood fits to CIFAR-100 Wide ResNet-32 model output.

ImageNet ResNet-152. Figure 14 assume parametric curves for p(f(x)) and EY [Y | f(X) = c]
that we obtain from maximum-likelihood fits to ImageNet ResNet-152 model output.
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Figure 10: Bias for various calibration metrics assuming curves fit to CIFAR-100 Wide ResNet-
32 output. We plot bias for various calibration metrics using both equal-width binning (left column)
and equal-mass binning (right column) as we vary both the sample size n and the number of bins b.
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Figure 11: Bias for various calibration metrics assuming curves fit to ImageNet ResNet-152
output. We plot bias for various calibration metrics using both equal-width binning (left column)
and equal-mass binning (right column) as we vary both the sample size n and the number of bins b.
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Figure 12:
√

Variance for various calibration metrics assuming curves fit to CIFAR-10 ResNet-
110 output. We plot

√
Variance for various calibration metrics using both equal-width binning (left

column) and equal-mass binning (right column) as we vary both the sample size n and the number of
bins b.
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Figure 13:
√

Variance for various calibration metrics assuming curves fit to CIFAR-100 Wide
ResNet-32 output. We plot

√
Variance for various calibration metrics using both equal-width binning

(left column) and equal-mass binning (right column) as we vary both the sample size n and the
number of bins b.

20



Under review as a conference paper at ICLR 2021

200 400 800 1600 3200 6400
# Samples

2

4

8

16

32

64

# 
Bi

ns

2.29 1.59 1.12 0.78 0.56 0.41

2.50 1.81 1.27 0.91 0.67 0.49

2.64 1.93 1.40 1.01 0.75 0.54

2.56 1.90 1.39 1.01 0.75 0.54

2.41 1.83 1.33 0.98 0.75 0.54

2.29 1.68 1.27 0.97 0.72 0.53

Variance in Equal Width ECEBIN

200 400 800 1600 3200 6400
# Samples

2

4

8

16

32

64
# 

Bi
ns

2.89 2.10 1.49 1.05 0.76 0.55

2.78 2.02 1.43 1.01 0.73 0.53

2.84 2.07 1.47 1.03 0.75 0.55

2.73 2.03 1.46 1.03 0.75 0.55

2.68 1.96 1.42 1.01 0.75 0.55

2.59 1.92 1.37 1.00 0.73 0.54

Variance in Equal Mass ECEBIN

200 400 800 1600 3200 6400
# Samples

2

4

8

16

32

64

# 
Bi

ns

2.86 1.77 1.17 0.80 0.57 0.42

3.56 2.22 1.38 0.95 0.68 0.50

4.26 2.74 1.63 1.09 0.78 0.55

4.85 3.26 1.79 1.15 0.81 0.56

4.91 3.75 2.12 1.24 0.85 0.58

4.20 3.57 2.41 1.48 0.91 0.59

Variance in Equal Width ECEDEBIAS

200 400 800 1600 3200 6400
# Samples

2

4

8

16

32

64

# 
Bi

ns

3.41 2.29 1.54 1.07 0.77 0.55

3.48 2.26 1.50 1.03 0.74 0.53

3.80 2.45 1.58 1.07 0.76 0.55

4.16 2.71 1.66 1.10 0.77 0.56

4.87 3.13 1.78 1.14 0.80 0.57

5.67 3.84 2.05 1.24 0.82 0.57

Variance in Equal Mass ECEDEBIAS

200 400 800 1600 3200 6400
# Samples

-1

# 
Bi

ns 2.21 1.64 1.29 0.96 0.73 0.55

Variance in Equal Width ECESWEEP

200 400 800 1600 3200 6400
# Samples

-1

# 
Bi

ns 2.82 2.14 1.53 1.08 0.76 0.55

Variance in Equal Mass ECESWEEP

Figure 14:
√

Variance for various calibration metrics assuming curves fit to ImageNet ResNet-
152 output. We plot

√
Variance for various calibration metrics using both equal-width binning (left

column) and equal-mass binning (right column) as we vary both the sample size n and the number of
bins b.

21



Under review as a conference paper at ICLR 2021

C WHAT NUMBER OF BINS DOES EQUAL MASS ECESWEEP CHOOSE?

(a) Uncalibrated model. (b) Perfectly calibrated model.

Figure 15: Bins chosen by equal mass ECESWEEP method. We plot equal mass ECEBIN % versus
number of bins for various sample sizes n. We highlight the TCE with a horizontal dashed line and
show the average number of bins chosen by the ECESWEEP method for different sample sizes with
vertical dashed lines. When the model is uncalibrated (left) ECESWEEP chooses a bin number that
is close to optimal. However, for perfectly calibrated models (right), the optimal number of bins is
small (<=4), and ECESWEEP does not do a good job of selecting a good bin number. The incorrect
bin selection may partially explain why ECESWEEP still has some bias for perfectly calibrated models.
However, we note that any binning-based technique that always outputs a positive number will never
be completely unbiased for perfectly calibrated models.

For Figure 15, the uncalibrated plot assumes EY [Y | f(X) = c] = logistic(10 ∗ c − 5) while the
calibrated plot assumes EY [Y | f(X) = c] = c. Both experiments assume f(x) ∼ Uniform(0, 1).
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D DIFFERENCES IN EW_ECE_BIN VS. EM_ECE_SWEEP

In Table 4 we compare the values for ECEBIN reported in Guo et al. (2017) Table 1 against our
computation of the same quantities using 15 equal-width bins, but using the logits reported in
Kängsepp (2019). We report both absolute and relative differences between these two quantities. The
table has rows sorted according to the ECEBIN obtained in Guo et al. (2017).

Table 4: Comparison of ECE values (and associated rank orderings) computed using ew_ece_bin vs
em_ece_sweep from uncalibrated logits.

Uncalibrated ECE(%) x=ew_bin y=em_sweep x-y 100(x-y)/x

resnet110_SD_c10 4.11(0) 4.10(0) 0.01 0.24
resnet_wide32_c10 4.51(1) 4.48(1) 0.03 0.66
resnet110_c10 4.75(2) 4.75(2) -0.00 -0.00
densenet40_c10 5.50(3) 5.49(3) 0.01 0.13
densenet161_imgnet 5.72(4) 5.72(4) -0.00 -0.00
resnet152_imgnet 6.54(5) 6.54(5) 0.00 0.00
resnet110_SD_c100 15.86(6) 15.83(6) 0.03 0.18
resnet110_c100 18.48(7) 18.48(7) 0.00 0.00
resnet_wide32_c100 18.78(8) 18.78(8) -0.00 -0.00
densenet40_c100 21.16(9) 21.16(9) 0.00 0.00

Table 5: Comparison of ECE values (and associated rank orderings) computed using ew_ece_bin
vs em_ece_sweep from logits calibrated using temperature scaling Guo et al. (2017). Red indicates
differences in the sorted order of each entry in the column.

Temp. scaling(%) x=ew_bin y=em_sweep x-y 100(x-y)/x

resnet110_SD_c10 0.56(0) 0.36(1) 0.19 34.99
resnet_wide32_c10 0.78(1) 0.21(0) 0.57 72.65
densenet40_c100 0.90(2) 0.72(2) 0.18 20.45
densenet40_c10 0.95(3) 0.90(3) 0.05 4.98
resnet110_c10 1.13(4) 0.91(4) 0.23 19.90
resnet110_SD_c100 1.21(5) 0.98(5) 0.23 18.96
resnet_wide32_c100 1.47(6) 1.31(6) 0.16 10.82
densenet161_imgnet 1.94(7) 1.88(8) 0.06 3.01
resnet152_imgnet 2.08(8) 2.13(9) -0.05 -2.59
resnet110_c100 2.38(9) 1.87(7) 0.51 21.38
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Table 6: Comparison of ECE values (and associated rank orderings) computed using ew_ece_bin vs
em_ece_sweep from logits calibrated using isotonic regression Zadrozny & Elkan (2002).

Isotonic regression(%) x=ew_bin y=em_sweep x-y 100(x-y)/x

resnet110_SD_c10 1.03(0) 0.70(0) 0.33 32.15
resnet_wide32_c10 1.19(1) 0.77(1) 0.42 35.41
resnet110_c10 1.47(2) 0.93(2) 0.55 37.14
densenet40_c10 1.68(3) 1.61(3) 0.08 4.66
densenet161_imgnet 4.64(4) 4.64(4) -0.00 -0.00
resnet110_SD_c100 4.89(5) 4.86(5) 0.04 0.81
densenet40_c100 5.01(6) 4.95(6) 0.06 1.14
resnet152_imgnet 5.15(7) 5.11(7) 0.04 0.74
resnet_wide32_c100 5.76(8) 5.64(8) 0.12 2.15
resnet110_c100 6.19(9) 6.05(9) 0.15 2.40

Table 7: Comparison of ECE values (and associated rank orderings) computed using ew_ece_bin
vs em_ece_sweep from logits calibrated using histogram binning Zadrozny & Elkan (2001). Red
indicates differences in the sorted order of each entry in the column.

Histogram binning(%) x=ew_bin y=em_sweep x-y 100(x-y)/x

resnet_wide32_c10 0.56(0) 0.56(0) 0.00 0.00
resnet110_SD_c10 0.62(1) 0.57(1) 0.05 7.61
resnet152_imgnet 0.78(2) 0.76(4) 0.02 2.14
densenet161_imgnet 0.80(3) 0.64(2) 0.16 19.86
densenet40_c100 0.81(4) 0.80(5) 0.01 1.02
resnet110_c10 0.84(5) 0.67(3) 0.17 20.67
resnet110_c100 0.91(6) 0.91(6) 0.00 0.00
densenet40_c10 1.27(7) 1.27(7) -0.00 -0.00
resnet_wide32_c100 1.45(8) 1.45(8) 0.00 0.00
resnet110_SD_c100 1.58(9) 1.55(9) 0.03 1.82
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