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ABSTRACT

Intelligent tutoring systems optimize the selection and timing of learning materials
to enhance understanding and long-term retention. This requires estimates of both
the learner’s progress (“knowledge tracing”; KT), and the prerequisite structure
of the learning domain (“knowledge mapping”). While recent deep learning
models achieve high KT accuracy, they do so at the expense of the interpretability
of psychologically-inspired models. In this work, we present a solution to this
trade-off. PSI-KT is a hierarchical generative approach that explicitly models
how both individual cognitive traits and the prerequisite structure of knowledge
influence learning dynamics, thus achieving interpretability by design. Moreover,
by using scalable Bayesian inference, PSI-KT targets the real-world need for
efficient personalization even with a growing body of learners and learning histories.
Evaluated on three datasets from online learning platforms, PSI-KT achieves
superior multi-step predictive accuracy and scalable inference in continual-learning
settings, all while providing interpretable representations of learner-specific traits
and the prerequisite structure of knowledge that causally supports learning. In
sum, predictive, scalable and interpretable knowledge tracing with solid knowledge
mapping lays a key foundation for effective personalized learning to make education
accessible to a broad, global audience.

1 INTRODUCTION

The rise of online education platforms has created new opportunities for personalization in learning,
motivating a renewed interest in how humans learn structured knowledge domains. Foundational
theories in psychology (Ebbinghaus, 1885) have informed spaced repetition schedules (Settles &
Meeder, 2016), which exploit the finding that an optimal spacing of learning sessions enhances
memory retention. Yet beyond the timing of rehearsals, the sequential order of learning materials
is also crucial, as evidenced by curriculum effects in learning (Dewey, 1910; Dekker et al., 2022),
where exposure to simpler, prerequisite concepts can facilitate the apprehension of higher-level
ideas. Cognitive science and pedagogical theories have long emphasized the relational structure
of knowledge in human learning (Rumelhart, 2017; Piaget, 1970), with recent research showing
that mastering prerequisites enhances concept learning (Lynn & Bassett, 2020; Karuza et al., 2016;
Brändle et al., 2022). Yet, we still lack a predictive, scalable, and interpretable model of the structural-
temporal dynamics of learning that could be used to develop future intelligent tutoring systems.

Here, we present PSI-KT, a novel approach for inferring interpretable learner-specific cognitive traits
and a shared knowledge graph of prerequisite concepts. We demonstrate our approach on three
real-world educational datasets covering structured domains, where our model outperforms existing
baselines in terms of predictive accuracy (both within- and between-learner generalization), scalability
in a continual learning setting, and interpretability of learner traits and prerequisite graphs. The paper
is organized as follows: We first introduce the knowledge tracing problem and summarize related
work (Sec. 2). We then provide a formal description of PSI-KT and describe the inference method
(Sec. 3). Experimental evaluations are organized into demonstrations of prediction performance,
scalability, and interpretability (Sec. 4). Altogether, PSI-KT bridges machine learning and cognitive
science, leveraging our understanding of human learning to build the foundations for automated
tutoring systems with broad educational applications.

∗Equal contribution. Code at github.com/mlcolab/psi-kt

1

https://github.com/mlcolab/psi-kt


Published as a conference paper at ICLR 2024

2 BACKGROUND

In this section, we begin by defining the knowledge tracing problem and then review related work.

2.1 KNOWLEDGE TRACING FOR INTELLIGENT TUTORING SYSTEMS

For almost 100 years (Pressey, 1926), researchers have developed intelligent tutoring systems (ITS) to
support human learning through adaptive teaching materials and feedback. More recently, knowledge
tracing (KT; Corbett & Anderson, 1994) emerged as a method for tracking learning progress by
predicting a learner’s performance on different knowledge components (KCs), e.g., the ‘Pythagorean
theorem’, based on past learning interactions. Here, we focus on the KT problem, with the goal of
supporting the selection of teaching materials in future ITS applications.

In this setting, a learner ℓ receives exercises or flashcards for KCs xℓ
n ∈ {0, 1, . . . ,K} at irregularly

spaced times tℓn, whereupon the performance is recorded, often as correct/incorrect, yℓn ∈ {0, 1}.
We can formalize KT as a supervised learning problem on time-series data, where the goal of
the KT model is to predict future performance (e.g., ŷN+1) given all or part of the interaction
history Hℓ

1:N :={xℓ
n, t

ℓ
n, y

ℓ
n}Nn=1 available up to time tℓN . As part of the process, a KT model may

infer specific representations of learners or of the learning domain to help prediction. If these
representations are interpretable, they can be valuable for downstream learning personalization.

2.2 RELATED WORK

We broadly categorize related KT approaches into psychological and deep learning methods.

Psychological methods. Focusing on interpretability, psychological methods use domain knowledge
to describe the temporal decay of memory (e.g., forgetting curves; Ebbinghaus, 1885), sometimes also
modeling learner-specific characteristics. Factor-based regression models use hand-crafted features
based on learner interactions and KC properties (e.g., repetition counts and KC easiness; Pavlik Jr
et al., 2009). While they model KC-dependent memory dynamics (Pavlik et al., 2021; Gervet et al.,
2020; Lindsey et al., 2014; Lord, 2012; Ackerman, 2014), they ignore the relational structure between
KCs. Half-life Regression (HLR; Settles & Meeder, 2016) from Duolingo uses both correct and
incorrect counts, while the Predictive Performance Equation (PPE; Walsh et al., 2018) models the
elapsed time of every past interaction with a power function to account for spacing effects. By using
shallow regression models with predefined features, these models achieve interpretability, but sacrifice
prediction accuracy. Latent variable models use a probabilistic two-state Hidden Markov Model
(Käser et al., 2017; Sao Pedro et al., 2013; Baker et al., 2008; Yudelson et al., 2013), representing
either mastery or non-mastery of a given KC. These models are limited to binary states by design,
do not account for learner dynamics, and for some, their numerous parameters hinder scalability.
Another probabilistic model, HKT (Wang et al., 2021) accounts for structure and dynamics by
modeling knowledge evolution as a multivariate Hawkes process. Close in spirit to our PSI-KT, this
approach tracks KC structure but lacks any learner-specific representations.

Deep learning methods. Deep learning methods use flexible models with many parameters to
achieve high prediction accuracy. However, this flexibility also makes it difficult to interpret their
learned internal representations. The first deep learning methods explicitly modeled sequential
interactions with recurrent neural networks to overcome the dependence on fixed summary statistics
in simpler regression models, with Deep Knowledge Tracing (DKT; Piech et al., 2015) pioneering the
use of Long Short-Term Memory (LSTM) networks (Hochreiter & Schmidhuber, 1997). A similar
architecture, DKTF (Nagatani et al., 2019) incorporated additional input features, whereas Shen
et al. (2021) proposed an intricate modular architecture aimed at recovering interpretable learner
representations, but neglecting KC relations. Structure-aware models leverage KC dependencies,
accounting for the fact that human knowledge acquisition is structured by dependency relationships
(i.e., concept maps; Hill, 2005; Koponen & Nousiainen, 2018; Lynn & Bassett, 2020). Tong et al.
(2020) empirically estimate KC dependencies from the frequencies of successful transitions. AKT
(Ghosh et al., 2020) relies on the attention mechanism (Vaswani et al., 2017) to implicitly capture
structure (Pandey & Karypis, 2019; Choi et al., 2020; Shin et al., 2021; Liu et al., 2023), whereas
GKT (Nakagawa et al., 2019) models it explicitly based on graph neural networks (Kipf & Welling,
2016). Recent work towards interpretable deep learning KT uses engineered features such as learner
mastery and exercise difficulty (Minn et al., 2022), or infers them with neural networks (QIKT; Chen
et al., 2023, IEKT; Long et al., 2021). While diverse approaches to interpretability exist (see Chen
et al., 2023, for review), a comprehensive evaluation framework is still lacking.
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Figure 1: PSI-KT is a hierarchical probabilistic state-space model of learning. (a) Latent knowledge
states for different KCs (colored curves) are inferred from observations. (b) Full hierarchical model
for a single learner: cognitive traits sn control the coupled dynamics of states zkn, which give rise to
observations yn. (c) The dynamics combine memory decay (Eq. 6) and structural influences (Eq. 5).

Here, we present our predictive, scalable and interpretable KT model (PSI-KT) as a psychologically-
informed probabilistic deep learning approach, together with a comprehensive evaluation framework
for interpretability.

3 JOINT DYNAMICAL AND STRUCTURAL MODEL OF LEARNING

In this section, we describe PSI-KT, our probabilistic hierarchical state-space model of human learning
(Fig. 1). Briefly, observations of learner performance y (Fig. 1a, filled/unfilled boxes) provide indirect
and noisy evidence about latent knowledge states z (colored curves, with matching dots in Fig. 1b).
These latent states evolve stochastically, in line with the psychophysics of memory (temporal decay in
Fig. 1c), while simultaneously being subject to structural influences from performance on prerequisite
KCs (structure in Fig. 1c). We introduce a second latent level of learner-specific traits s (Fig. 1b, top),
which govern the knowledge dynamics in an interpretable way.

Below, we describe the method in more detail. We start with the generative model (Sec. 3.1). Next,
we discuss the joint approximate Bayesian inference of latent variables and estimation of generative
parameters (Sec. 3.2). Finally, we show how to derive multi-step performance predictions (see
Sec. 3.3 and Fig. 7 in Appendix A.4 for a graphical overview of inference and prediction).

3.1 PROBABILISTIC STATE-SPACE GENERATIVE MODEL

We conceptualize observations of learner performance as noisy measurements of an underlying time-
dependent knowledge state, specific to each learner and KC. The evolution of knowledge states reflects
the process of learning and forgetting, governed by learner-specific traits. Additionally, knowledge of
different KCs informs one another according to learned prerequisite relationships. We translate these
modeling assumptions into a generative model consisting of three main components:(i) the learner
knowledge state across KCs, zℓ

n = [zℓ,1n . . . zℓ,Kn ]⊺ ∈ RK (colored curves in Fig. 1a), (ii) learner-
specific cognitive traits sℓn ∈ R4 (top row in Fig. 1b), and (iii) a shared static graph A of KCs whose
edges aik quantify the probability for a KC i to be a prerequisite for KC k (Fig. 1c).

State-space model. State-space models (SSMs) are a framework for partially observable dynamical
processes. They represent the inherent noise of measurements y by an emission distribution p(yn | zn),
separate from the stochasticity of state dynamics, modeled as a first-order Markov process with
transition probabilities p(zn | zn−1). The state dynamics are initiated by sampling from an initial
prior p(z1) to iteratively feed the transition kernel, and predictions can be drawn at any time from the
emission distribution. To represent the influence of individual cognitive traits over the knowledge
dynamics, we additionally condition the z-transitions on the traits s (which also can be observed only
indirectly). The three-level SSM hierarchy of PSI-KT consists of:

Level 2 (latent cognitive traits): sℓn ∼ pθ(s
ℓ
n | sℓn−1) := N (sℓn |Hsℓn−1, R) (1)

Level 1 (latent knowledge states): zℓ
n ∼ pθ(z

ℓ
n | zℓ

n−1, s
ℓ
n) :=

∏
k N (zℓ,kn |mℓ,k

n , wℓ
n) (2)

Level 0 (observed learner performance): ŷℓn ∼ p(yℓn | zℓ,kn ) := Bern(sigmoid(zℓ,kn )). (3)
The choice of Gaussian initial priors (discussed below) and Gaussian transitions ensures tractability,
while the Bernoulli emissions model the observed binary outcomes. We now unpack this model and
all its parameters in detail, starting with the knowledge dynamics.
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Knowledge states z. Recent KT methods (e.g., Nagatani et al., 2019) use an exponential forgetting
function based on psychological theories (Ebbinghaus, 1885). Here, we augment this approach by
adding stable long-term memory (Averell & Heathcote, 2011), and model the knowledge dynam-
ics zℓ,k of an isolated KC k as a mean-reverting stochastic (Ornstein-Uhlenbeck; OU) process:

dzℓ,k/dt = αℓ(µℓ − zℓ,k) + σℓη(t). (4)
Accordingly, the state of knowledge zℓ gradually reverts to a long-term mean µℓ with rate αℓ, subject
to white noise fluctuations η(t) scaled by volatility σℓ. To account for the influence of other KCs,
we adjust the mean µℓ

n using prerequisite weights aik (defined in Eq. 7 below), modulated by the
learner’s transfer ability γℓ

n:
µ̃ℓ,k
n := µℓ

n + (γℓ
n/K)

∑
i ̸=k a

ik zℓ,in . (5)

We obtain the mean mℓ,k
n and variance wℓ

n of the transition kernel in Eq. 2 by marginalizing the OU
process over one time step τ ℓn := tℓn − tℓn−1, which can be done analytically1 ,

mℓ,k
n = rℓn z

ℓ,k
n−1 + (1− rℓn) µ̃

ℓ,k
n , with retention ratio rℓn := e−αℓ

nτ
ℓ
n ∈ (0, 1). (6)

As the time since the last interaction τ ℓn grows, the retention ratio rℓn decreases exponentially with
rate αℓ

n, and the knowledge state reverts to the long-term mean µ̃ℓ,k
n , which partly depends on the

learner’s mastery of prerequisite KCs (Eq. 5). This balances short-term and long-term learning,
reflecting empirical findings from memory research (Averell & Heathcote, 2011). The structural
influences are accounted for in the dynamics of zℓ,kn , thus justifying the conditional independence
assumed in Eq. 2. A Gaussian initial prior pθ(z

ℓ,k
1 ) = N (zℓ,k1 |z̄, w1), where z̄, w1 ∈ R are part of

the generative parameters θ, completes our dynamical model of knowledge states.

Learner-specific cognitive traits s. The dynamics of knowledge states (Eqs. 4- 6) are parameterized
by learner-specific cognitive traits (αℓ

n, µ
ℓ
n, σ

ℓ
n, γ

ℓ
n), which we collectively denote sℓn. Specifically,

αℓ represents the forgetting rate (Ebbinghaus, 1885; Averell & Heathcote, 2011), µℓ (via µ̃ℓ,n
k )

captures long-term memory consolidation (Meeter & Murre, 2004) for practiced KCs and expected
performance for novel KCs, σℓ quantifies knowledge volatility, and γℓ measures transfer ability
(Bassett & Mattar, 2017) from knowledge of prerequisite KCs. These traits can develop during
learning according to Eq. 1, starting from a Gaussian prior pθ(sℓ1) = N (sℓ1|s̄, R1) where s̄ ∈ R4 and
the diagonal matrices H,R1, R ∈ R4×4 are also part of the global parameters θ.

Shared prerequisite graph A. In our model, prerequisite relations influence knowledge dynamics
via the coupling introduced in Eq. 5. We now discuss an appropriate parameterization for the weight
matrix of the prerequisite graph, A := {aik}i,k∈1:K . We assume that prerequisites are time- and
learner-independent so that, in the spirit of collaborative filtering (Breese et al., 2013), we can
pool evidence from all learners to estimate them. To prevent a quadratic scaling in the number of
KCs, we do not directly model edge weights but derive them from KC embedding vectors uk in
lower dimension uk ∈ RD with D ≪ K, collected in embedding matrix UK×D. A basic integrity
constraint for a connected pair is that dependence of KC i on KC k should trade off against that of k
on i, i.e., no mutual prerequisites: aik + aki = 1. With this in mind, we exploit the factorization
of aik introduced by Lippe et al. (2021) in terms of a separate probability of edge existence p(i�k)
and definite directionality p(i→k | i�k):

aik := p(i→k | i�k) p(i�k)

= sigmoid((ui)⊺uk) sigmoid((ui)⊺(M −M⊺)uk), (7)
where the skew-symmetric combination M −M⊺ of a learnable matrix M prevents mutual prerequi-
sites. Having presented the generative model, we now turn to inference and prediction.

3.2 APPROXIMATE BAYESIAN INFERENCE AND AMORTIZATION WITH A NEURAL NETWORK

We now describe how we learn the generative model parameters θ and how we infer the latent
states s, z introduced in Section 3.1 using a neural network (“inference network”). Since learner-
specific latent states s and z are deducible solely from limited individual data, we expect non-
negligible uncertainty. This motivates our probabilistic treatment of these states using approximate
Bayesian inference. By contrast, the model parameters θ (KC parameters U,M in Eq. 7, transition
parameters s̄, H,R1, R in Eq. 1, and z̄, w1 in Eq. 2) can be estimated from all learners, and we thus

1Särkkä & Solin (2019) — the variance is wℓ
n = (σℓ

n)
2(1− e−2αℓ

nτℓ
n)/(2αℓ

n).
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treat them as point-estimated parameters as described below (detailed derivation in Appendix A.1.)
Here, without loss of generality, we show the inference for a single learner.

3.2.1 INFERENCE ON A FIXED LEARNING HISTORY

Here, we assume the full interaction history Hℓ
1:N is available for inferring the posterior over

latents pθ(zℓ
1:N , sℓ1:N | yℓ1:N ). We approach the problem using variational inference (VI). In VI, we

select a distribution family qϕ with free parameters ϕ to approximate the posterior pθ by minimizing
their Kullback-Leibler divergence. This can only be done indirectly, by maximizing a lower bound to
the marginal probability of the data, the evidence lower bound (ELBO). Here, we adopt the mean-
field approximation qϕ(z

ℓ
1:N , sℓ1:N | yℓ1:N ) = qϕ(z

ℓ
1:N ) qϕ(s

ℓ
1:N ) and jointly optimize the generative θ

and variational ϕ parameters using variational expectation maximization (EM; Dempster et al., 1977;
Beal & Ghahramani, 2003; Attias, 1999). Motivated by real-world scalability, we introduce an
inference network (see Appendix A.3 for the architecture) to amortize the learning of variational
parameters ϕ across learners, and we employ the reparametrization trick (Kingma & Welling, 2014)
to optimize the single-learner ELBO:

ELBOℓ(θ, ϕ) = Eqϕ(sℓ1:N )

[
− log qϕ(s

ℓ
1:N ) + log pθ(s

ℓ
1) +

∑N
n=2 log pθ(s

ℓ
n | sℓn−1)

]
+ Eqϕ(zℓ

1:N )

[
− log qϕ(z

ℓ
1:N ) + log pθ(z

ℓ
1) +

∑N
n=1 log pθ(y

ℓ
n | zℓ,xn

n )
]

+ Eqϕ(zℓ
1:N ) qϕ(sℓ1:N )

[∑N
n=2 log pθ(z

ℓ
n | zℓ

n−1, s
ℓ
n)
]
. (8)

The SSM emissions and transitions were introduced in Eqs. 1-3, along with the respective initial
priors. To allow for a diversity of combinations of learner traits to account for the data, we model the
variational posterior across learners, qϕ(s1:N ), as a mixture of Gaussians (see Appendix A.4).

3.2.2 INFERENCE IN CONTINUAL LEARNING

In real-world educational settings, a KT model must flexibly adapt its current variational param-
eters ϕn with newly available interactions (xℓ

n+1, t
ℓ
n+1, y

ℓ
n+1). Retraining on a fixed, augmented

historyHℓ
n+1 to obtain an updated ϕn+1 is possible (Eq. 8), but expensive. Instead, in PSI-KT, we

use the parameters ϕn of the current posterior qϕn(z
ℓ
n, s

ℓ
n) to form a next-time prior,

p̃(zℓ
n+1, s

ℓ
n+1) := Eqϕn (zℓ

n,s
ℓ
n | yℓ

1:n)

[
pθ(s

ℓ
n+1 | sℓn) pθ(zℓ

n+1 | sℓn+1, z
ℓ
n)
]
. (9)

Due to the Bayesian nature of our model, we can now update this prior with the new evidence yℓn+1

at time tℓn+1 using variational continual learning (VCL; Nguyen et al., 2017; Loo et al., 2020), i.e.,
by maximizing the ELBO:

ELBOℓ
VCL(θ, ϕn+1) = Eqϕn+1

(sℓn+1)

[
− log qϕn+1

(sℓn+1)
]

+ Eqϕn+1
(zℓ

n+1)

[
− log qϕn+1

(zℓ
n+1) + log pθ(y

ℓ
n+1 | z

ℓ,xn+1

n+1 )
]

+ Eqϕn+1
(zℓ

n+1,s
ℓ
n+1)

[
log p̃(zℓ

n+1, s
ℓ
n+1)

]
. (10)

Maximizing this ELBOℓ
VCL allows us to update the parameters ϕn+1 based on a new interac-

tion (xℓ
n+1, t

ℓ
n+1, y

ℓ
n+1) directly from the previous parameters ϕn, i.e., without retraining.

3.3 PREDICTIONS

To predict a learner’s performance on KC xℓ
n+1 at tℓn+1, we take the current variational distributions

over sℓn and zℓ
n and transport them forward by analytically convolving them with the respective

transition kernels (Eqs. 1 and 2). We then draw z
ℓ,xn+1

n+1 from the resulting distribution, and predict
the outcome ŷℓn+1 by Eq. 3. When predicting multiple steps ahead, we repeat this procedure without
conditioning on any of the previously predicted ŷℓn+m.

4 EVALUATIONS

Table 1: Dataset characteristics

Dataset → Assist12 Assist17 Junyi15

# Learners L 46,674 1,709 247,606
# KCs K 263 102 722
# Int’s / 106 3.5 0.9 26

We argue above that KT for personalized education must
predict accurately, scale well with new data, and provide
interpretable representations. We now empirically assess
these desiderata, comparing PSI-KT with up to 8 baseline
models across three datasets from online education plat-
forms. Concretely, we evaluate (i) prediction accuracy,
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Figure 2: Within-learner prediction performance (mean ±SEM) as a function of cohort sizes from
100 to the maximum available in each dataset (we omit HLR for legibility; see Table 2.)

quantifying both within-learner prediction and between-learner generalization (Sec. 4.1), (ii) scalabil-
ity in a continual learning setting (Sec. 4.2), and (iii) interpretability of learner representations and
prerequisite relations (Sec. 4.3).

Datasets. Assistments and Junyi Academy are non-profit online learning platforms for pre-college
mathematics. We use Assistments’ 2012 and 2017 datasets2 (Assist12 and Assist17) and Junyi’s 2015
dataset3 (Junyi15; Chang et al., 2015), which in addition to interaction data, provides human-annotated
KC relations (see Table 1 and Appendix A.3.2 for details).

We select HLR from Duolingo and PPE as two influential psychologically-informed regression
models. From the models that use learnable representations, we include two established deep learning
benchmarks, DKT and DKTF, which capture complex dynamics via LSTM networks, as well as the
interpretability-oriented QIKT.

4.1 PREDICTION AND GENERALIZATION PERFORMANCE

In our evaluations, we mainly focus on prediction and generalization when training on 10 interactions
from up to 1000 learners. Good KT performance with little data is key in practical ITS to minimize the
number of learners on an experimental treatment (principle of equipoise, similar to medical research;
Burkholder, 2021), to mitigate the cold-start problem, and to extend the usefulness of the model
to classroom-size groups. To provide ITS with a basis for adaptive guidance and long-term learner
assessment, we always predict the 10 next interactions. Figure 2 shows that PSI-KT’s within-learner
prediction performance is robustly above baselines for all but the largest cohorts (>60k learners,
Junyi15), where all deep learning models perform similarly. The advantage of PSI-KT comes from
its combined modeling of KC prerequisite relations and individual learner traits that evolve in time
(see Appendix Fig. 13 for ablations). The between-learner generalization accuracy of the models
above, when tested on 100 out-of-sample learners, is shown in Table 2, where fine-tuning indicates
that parameters were updated using (10-point) learning histories from the unseen learners. PSI-KT
shows overall superior generalization except on Junyi15 (when fine-tuning).

4.2 SCALABILITY IN CONTINUAL LEARNING

In addition to training on fixed historical data, we also conduct experiments to demonstrate PSI-KT’s
scalability when iteratively retraining on additional interaction data from each learner. This parallels
real-world educational scenarios, where learners are continuously learning (Sec. 3.2.2). Each model
is initially trained on 10 interactions from 100 learners. We then incrementally provide one data point
from each learner, and evaluate the training costs and prediction accuracy. Figure 3 shows PSI-KT
requires the least retraining time, retains the best prediction accuracy, and thus achieves the most
favorable cost-accuracy trade-off (details in Appendix A.5.3).

4.3 INTERPRETABILITY OF REPRESENTATIONS

We now evaluate the interpretability of both learner-specific cognitive traits sℓ and the prerequisite
graphs A. We first show that our model captures learner-specific and disentangled traits that correlate
with behavior patterns. Next, we show that our inferred graphs best align with ground truth graphs,
and the edge weights predict causal support on downstream KCs.

4.3.1 LEARNER-SPECIFIC COGNITIVE TRAITS

For each learner, PSI-KT infers four latent traits, each with a clear dynamical role specified by the
OU process (Eqs. 5-6). In contrast, high-performance baselines (AKT, DKT, and DKTF) describe
learners via 16-dimensional embeddings solely constrained by network architecture and loss mini-
mization. Another model QIKT constructs 3-dimensional embeddings with each element connected

2
https://sites.google.com/site/assistmentsdata

3
https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=1198
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Table 2: Prediction accuracy. FT indicates additional fine-tuning and ↑ indicates larger values are
better. The best model performance is in bold and the 2nd best is underlined.

Dataset Experiment HLR PPE DKT DKTF HKT AKT GKT QIKT PSI-KT

Within ↑ .54.03 .65.01 .65.03 .60.01 .55.01 .67.02 .63.03 .63.03 .68.02
Between ↑ .50.03 .50.02 .55.02 .51.01 .54.00 .58.02 .61.02 .60.02 .61.03Assist12
w/ FT ↑ .52.02 .53.01 .58.00 .55.01 .55.00 .61.00 .62.02 .60.03 .62.02

Within .45.01 .53.02 .57.02 .53.03 .52.03 .56.02 .56.04 .58.02 .63.02
Between .33.03 .51.02 .51.00 .48.00 .51.02 .47.01 .53.02 .50.02 .53.02Assist17
w/ FT .41.04 .51.00 .51.03 .53.01 .51.03 .51.02 .54.03 .51.04 .56.02

Within .55.02 .66.03 .79.03 .78.01 .63.02 .81.02 .78.02 .81.02 .83.02
Between .48.02 .55.02 .76.00 .76.02 .61.01 .73.01 .77.03 .76.03 .79.03Junyi15
w/ FT .52.00 .65.03 .81.01 .84.01 .64.03 .83.00 .79.03 .80.03 .80.02
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Figure 3: Continual learning. (Top) Cumulative training time. (Bottom) Prediction accuracy on the
next 10 time steps. We omit results when time is above, or accuracy is below, the range of the axes.

to scores of knowledge acquisition, knowledge mastery, and problem-solving. We collectively refer
to these learner-specific variables as learner representations. Here, we empirically show that PSI-KT
representations provide superior interpretability. We ask that learner representations be 1) specific
to individual learners, 2) consistent when trained on partial learning histories, 3) disentangled (i.e.,
component-wise meaningful, as in Bengio et al., 2013), and 4) and operationally interpretable, so
that they can be used to personalize future curricula. We evaluate desiderata 1-3 with information-
theoretic metrics (Table 3; see Appendix A.6 for details), and desideratum 4 with regressions against
behavioral outcomes (Table 4).

Table 3: Specificity, consistency, and disen-
tanglement vs. best baseline.

Metric Dataset Baseline PSI-KT

Specificity
MI(s; ℓ) ↑

Assist12 8.8 8.4
Assist17 10.1 10.0
Junyi15 13.5 14.4

Consistency−1

Eℓsub MI(sℓ; ℓsub) ↓

Assist12 12.2 7.4
Assist17 6.4 6.4
Junyi15 7.7 5.0

Disentanglement
DKL(s∥ℓ) ↑

Assist12 2.3 7.4
Assist17 0.6 8.4
Junyi15 5.0 11.5

Specificity, consistency, and disentanglement.
Learner representations s should be maximally spe-
cific about learner identity ℓ, which can be quantified
by the mutual information MI(s; ℓ) = H(s)− H(s | ℓ)
being high, where H denotes (conditional) entropy. Ad-
ditionally, when we infer representations sℓsub from
different subsets of the interactions of a fixed learner,
they should be consistent, i.e., each sℓsub should be
minimally informative about the chosen subset (av-
eraged across subsets), such that Eℓsub MI(sℓ; ℓsub) =
Eℓsub [H(s|ℓ)− H(s|ℓsub)] should be low. Note that se-
quential subsets are unsuitable for this evaluation, since
representations evolve in time to track learners’ pro-
gression. Instead, we define subsets as groups of KCs
whose average presentation time is approximately uniform over the duration of the experiment (see
Appendix A.6.1 for details). Lastly, learner representations should be disentangled, such that each
dimension is individually informative about learner identity. We measure disentanglement with
DKL(s∥ℓ) := H(s)− H(s | ℓ)diag, a form of specificity that ignores correlations across sℓ dimensions
by estimating the conditional entropy only with diagonal covariances.

In empirical evaluations (Table 3), PSI-KT’s representations offer competitive specificity despite
being lower-dimensional, and outperform all baselines in consistency and disentanglement. While
disentanglement aids interpretability (Freiesleben et al., 2022), it does not itself entail domain-
specific meaning for representational dimensions. We now demonstrate that PSI-KT representations
correspond to clear behavioral patterns, which is crucial for future applications in educational settings.

Operational interpretability. Having shown that PSI-KT captures specific, consistent, and disentan-
gled learner features, we now investigate whether these features relate to meaningful aspects of future
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behavior, which would be useful for scheduling operations for ITS. We indeed find that the learner
representations of PSI-KT forecast interpretable behavioral outcomes, such as performance decay or
initial performance on novel KCs. Concretely, consider the observed one-step performance difference
∆yℓn := yℓn − yℓn−1. We expect it to be lower for longer intervals τ ℓn = tℓn − tℓn−1 due to forgetting.
However, we recognize no clear trend when plotting ∆yℓn over τ ℓn for the Junyi15 dataset (Fig. 4,
top right). We can explain this observation because different learners forget on different time scales.
Plotting the same test data instead over scaled intervals τ ℓnα

ℓ
n (Fig. 4, top center) shows a clear trend

against an exponential fit (solid line) with less variability, demonstrating that αℓ
n (derived from past

data only) adjusts for individual learner characteristics and can be interpreted as a personalized rate
of forgetting. Here, the choice of the factor αℓ

n is motivated by our inductive bias (Eq. 4). The trend
is much less clear for all baselines: Fig. 4 (top left) uses the best fitting component across all learner
representations from all baselines (full results in Fig. 8 in Appendix A.6.4). Analogously, when we
consider initial performance on a novel KC, we find for PSI-KT that µ̃ℓ,k

n (which aggregates mastery
of prerequisites for KC k at time tn, see Eq. 5) explains it better than the best baseline Fig. 4 (bottom
panels). Table 4 shows that these superior interpretability results are significant and hold across all
datasets. In Appendix A.6.4, we discuss two more behavioral signatures (performance variability and
prerequisite influence) and show they correspond to the remaining components γℓ

n and σℓ
n.

4.3.2 PREREQUISITE GRAPH

PSI-KT infers a prerequisite graph based on all learners’ data, which helps it to generalize to un-
seen learners. Beyond helping prediction, reliable prerequisite relations are an essential input for
curriculum design, motivating our interest in their interpretability. Figure 5a shows an exemplary
inferred subgraph with the prerequisites of a single KC. To quantitatively evaluate the graph, we (i)
measure the alignment of the inferred vs. ground-truth graphs and (ii) correlate inferred prerequisite
probability with a Bayesian measure of causal support obtained from unseen behavioral data.

Alignment with ground-truth graphs. We analyze the Junyi15 dataset, which uniquely provides
human-annotated evaluations of prerequisite and similarity relations between KCs. We discuss here
the alignment of prerequisites and leave similarity for Appendix A.7. The Junyi15 dataset provides
both an expert-identified prerequisite for each KC,and crowd-sourced ratings (6.6 ratings on average
on a 1-9 scale). To compare with expert annotations, we compute the rank of each expert-identified
prerequisite relation i→ k in the relevant sorted list of inferred probabilities {ajk}Kj=1 and take the
harmonic average (mean reciprocal rank, MRR; Yang et al., 2014). Next, we compute the negative
log-likelihood (nLL) of inferred edges aik using a Gaussian estimate of the (rescaled) crowd-sourced
ratings for the i → k KC pair. We finally calculate the Jaccard similarity (JS) between the set of
inferred edges (aik > 0.5) and those identified by experts as well as crowd-sourced edges with
average ratings above 5. The results in Table 5 (left columns) consistently highlight PSI-KT’s superior
performance across all criteria (see Appendix A.7.1 for details).

Causal support across consecutive interactions. For education applications, we are interested in
how KC dependencies impact learning effectiveness. If KC i is a prerequisite of KC k, mastering
KC i contributes to mastering KC k, indicating a causal connection. In this analysis, we show
that inferred edge probabilities aij (Eq. 7) correspond to causal supporti→k (Eq. 11), derived from
behavioral data through Bayesian causal induction (Griffiths & Tenenbaum, 2009). Specifically, we
model the relationship between a candidate cause C and effect E, i.e., a pair of KCs in our case,
while accounting for a constant background cause B, representing the learner’s overall ability and the
influences of other KCs. We consider two hypothetical causal graphs, where Graph 0 Gi↛k represents
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Figure 4: Operational interpretability of represen-
tations, Junyi15 dataset. See text for axes labels
and Appendix A.6.4 for additional results.

Behavioural
signature Dataset Best Baseline PSI-KT

Performance
difference

Assist12 0.01, .67 0.30, <.001
Assist17 −0.03, .30 0.56, <.001
Junyi15 0.03, .06 0.72, <.001

Initial
performance

Assist12 0.04, .01 0.54, <.001
Assist17 0.05, .01 3.70, <.001
Junyi15 0.04, .02 0.92, <.001

Table 4: Coefficients and p-values of regres-
sions relating exp(−αℓ

n τ
ℓ
n) and µ̃ℓ,k

n to unseen
behavioral data across datasets.
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Table 5: (Left) Alignment of inferred graphs with annotated graphs for the Junyi15 dataset. (Right) Re-
gression coefficients and p-values relating causal support to inferred edge probabilities. All baseline
models either lack significance or negatively predict causal support (Appendix Fig. 12).

Metric MRR ↑ JS expert ↑ JS crowd ↑ nLL ↓ coefficient ↑, p-value ↓

Dataset Junyi15 Assist12 Assist17 Junyi15

Best Baseline .0082 .0015 .0047 3.03 1.05, .253 0.22, .792 0.42, .593
PSI-KT .0086 .0019 .0095 4.11 1.15, .003 0.28, <.001 0.97, <.001

(a) (b)

(c)
Binned mean ± SE
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Figure 5: Graph interpretability. (a) Subgraph inferred by PSI-KT on the Junyi15 dataset, showing
prerequisites of target KC ‘area of parallelograms‘. (b) Hypothesized causal graphs, where Graph
1 assumes a causal relationship exists from KC i to KC k, while Graph 0 is the null hypothesis.
(c) Regression of edge probabilities against causal supports. Insets show the best baseline model.

the null hypothesis of no causal relationship, and Graph 1 Gi→k assumes the causal relationship
exists, i.e. correct performance on KC i causally supports correct performance on KC k (Fig. 5b).
We estimate causal support for each pair of KCs i→ k based on all consecutive interactions in the
behavioral data H from KC i at time tn to KC k at time tn+1, as a function of the difference in
log-likelihoods of the two causal graphs (see Appendix A.7.3 for details):

supporti→k := logP (H |Gi→k)− logP (H |Gi↛k). (11)
We then use regression to predict supporti→k as a function of edge probabilities aij inferred from
different models. The results are visualized in Figure 5c and summarized in Table 5 (right). The larger
coefficients indicate that our inferred graphs possess superior operational interpretability (Sec. 4.3).

5 DISCUSSION

We propose PSI-KT as a novel approach to knowledge tracing (KT) with compelling properties for
intelligent tutoring systems: superior predictive accuracy, excellent continual-learning scalability, and
interpretable representations of learner traits and prerequisite relationships. We further find that PSI-
KT has remarkable predictive performance when trained on small cohorts whereas baselines require
training data from at least 60k learners to reach similar performance. An open question for future
KT research is how to combine PSI-KT’s unique continual learning and interpretability properties
with performance that grows beyond this extreme regime. We use an analytically marginalizable
Ornstein-Uhlenbeck process for knowledge states in PSI-KT, resulting in an exponential forgetting
law, similar to most recent KT literature. Future work should support ongoing debates in cognition
by offering alternative modeling choices for memory decay (e.g., power-law; Wixted & Ebbesen,
1997), thus facilitating empirical studies at scale. And while our model already normalizes reciprocal
dependencies in the prerequisite graph, we anticipate that enforcing regional or global structural
constraints, such as acyclicity, may benefit inference and interpretability. Although we designed PSI-
KT with general structured domains in mind, our empirical evaluations were limited to mathematics
learning by dataset availability. We highlight the need for more diverse datasets for structured KT
research to strengthen representativeness in ecologically valid contexts. Overall, our work combines
machine learning techniques with insights from cognitive science to derive a predictive and scalable
model with psychologically interpretable representations, thus laying the foundations for personalized
and adaptive tutoring systems.
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