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Abstract
Machine learning algorithms minimizing average
risk are susceptible to distributional shifts. Distri-
butionally Robust Optimization (DRO) addresses
this issue by optimizing the worst-case risk within
an uncertainty set. However, DRO suffers from
over-pessimism, leading to low-confidence predic-
tions, poor parameter estimations as well as poor
generalization. In this work, we conduct a theo-
retical analysis of a probable root cause of over-
pessimism: excessive focus on noisy samples. To
alleviate the impact of noise, we incorporate data
geometry into calibration terms in DRO, result-
ing in our novel Geometry-Calibrated DRO (GC-
DRO) for regression. We establish the connection
between our risk objective and the Helmholtz free
energy in statistical physics, and this free-energy-
based risk can extend to standard DRO methods.
Leveraging gradient flow in Wasserstein space,
we develop an approximate minimax optimization
algorithm with a bounded error ratio and elucidate
how our approach mitigates noisy sample effects.
Comprehensive experiments confirm GCDRO’s
superiority over conventional DRO methods.

1. Introduction
Machine learning algorithms with empirical risk minimiza-
tion (ERM) have been shown to perform poorly under dis-
tribution shifts, especially sub-population shifts where sub-
stantial data subsets are underrepresented in the average
risk due to their small sample sizes. As an alternative, Dis-
tributionally Robust Optimization (DRO) (Namkoong &
Duchi, 2017; Blanchet & Murthy, 2019; Liu et al., 2022a;
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Gao & Kleywegt, 2022; Gao et al., 2022) aims to optimize
against the worst-case risk distribution within a predefined
uncertainty set. This uncertainty set is centered around the
training distribution, and generalization performance can be
guaranteed when the test distribution falls within this set.

However, DRO methods have been found to experience
the over-pessimism problem in practice (Hu et al., 2018;
Zhai et al., 2021) (i.e., low-confidence predictions, poor
parameter estimations, and generalization). Recent studies
have sought to address this issue. From the uncertainty set
perspective, Blanchet et al. (2019b); Liu et al. (2022a;b) pro-
posed data-driven methods to learn distance metrics from
data. However, these approaches remain vulnerable to noisy
samples, as demonstrated in Table 2. Recently, Słowik &
Bottou (2022); Agarwal & Zhang (2022) observed that DRO
may overly focus on sub-populations with higher noise lev-
els, leading to suboptimal generalization. Consequently,
from the risk objective perspective, they suggest incorpo-
rating calibration terms to mitigate this issue. Nevertheless,
applicable calibration terms either require expert knowl-
edge or are computationally intensive, and few practical
algorithms have been proposed.

To devise a practical calibration term for DRO, we first aim
to identify the root causes of over-pessimism, which we
attribute to the excessive focus on noisy samples that fre-
quently exhibit higher prediction errors. For typical DRO
methods (Namkoong & Duchi, 2017; Staib & Jegelka, 2019;
Duchi & Namkoong, 2021; Liu et al., 2022b), based on
a simple yet insightful linear example, we theoretically
demonstrate that the variance of estimated parameters be-
comes substantially large when noisy samples have higher
densities, in line with the empirical findings reported in
(Zhai et al., 2021). Furthermore, we demonstrate that ex-
isting outlier-robust regression methods are not directly ap-
plicable for mitigating noisy samples in DRO scenarios
where both noisy samples and distribution shifts coexist,
highlighting the non-trivial nature of this problem.

In this work, inspired by the ideas in (Słowik & Bottou,
2022; Agarwal & Zhang, 2022), we design calibration terms,
i.e., total variation and entropy regularization, to prevent
DRO from excessively focusing on random noisy samples.
In conjunction with the Geometric Wasserstein uncertainty
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set (Liu et al., 2022b) utilized in our methods, these calibra-
tion terms effectively incorporate information from the data
manifold, leading to improved regulation of the worst-case
distribution in DRO. Specifically, during the optimization,
the total variation term penalizes the variation of weighted
prediction errors along the data manifold, preventing ran-
dom noisy samples from gaining excessive densities. The
entropy regularization term, also used in (Liu et al., 2022b),
acts as a non-linear graph Laplacian operator that enforces
the smoothness of the sample weights along the manifold.
These calibration terms work together to render the worst-
case distribution more reasonable for DRO, leading to our
Geometry-Calibrated DRO (GCDRO) approach. We vali-
date the effectiveness of our GCDRO on both simulation
and real-world data.

Furthermore, from a statistical physics perspective, we
demonstrate that our risk objective corresponds to the
Helmholtz free energy, comprising three components: inter-
action energy, potential energy, and entropy. The free energy
formulation generalizes typical DRO methods such as KL-
DRO (Hu & Hong, 2013), χ2-DRO (Duchi & Namkoong,
2021), MMD-DRO (Staib & Jegelka, 2019) and GDRO (Liu
et al., 2022b). This physical interpretation provides a novel
perspective for understanding different DRO methods by
drawing parallels between the worst-case distribution and
the steady state in statistical physics, offering valuable in-
sights. From the free energy point of view, our GCDRO
specifically addresses the interaction energy between sam-
ples to mitigate the effects of noisy samples. Motivated by
the study of the Fokker-Planck equation (FPE, Chow et al.
(2017); Esposito et al. (2021)), through gradient flow in the
Geometric Wasserstein space, we derive an approximate
minimax algorithm with a bounded error ratio e−CTin after
Tin inner-loop iterations. Our optimization method supports
any quadratic form of interaction energy, potentially paving
the way for designing more effective calibration terms for
DRO in the future.

2. Preliminaries: Noisy Samples Bring
Over-Pessimism in DRO

Notations. X ∈ X denotes the covariates, Y ∈ Y denotes
the target, fθ(·) : X → Y is the predictor parameterized by
θ ∈ Θ. P̂N denotes the empirical counterpart of distribution
P (X,Y ) with N samples, and p = (p1, . . . , pN )T ∈ RN

+

is the probability vector. [N ] = {1, 2, . . . , N} denotes the
set of integers from 1 to N . The random variable of data
points is denoted by Z = (X,Y ) ∈ Z . The random vector
of n dimension is denoted by h⃗n = (h1, . . . , hn)

T . We
use δx to represent Dirac measure on the single point x.
GN = (V,E,W ) denotes a finite weighted graph with N
nodes, where V = [N ] is the vertex set, E is the edge set
and W = {wij}(i,j)∈E is the weight matrix of the graph.

And (x)+ = max(x, 0).

Distributionally Robust Optimization (DRO) is formulated
as:

θ∗(P ) = argmin
θ∈Θ

sup
Q∈P(P )

EQ[ℓ(fθ(X), Y )] (1)

where ℓ is the loss function (typically mean square error) and
P(P ) = {Q : Dist(Q,P ) ≤ ρ} denotes the ρ-radius un-
certainty ball around the distribution P . Different distance
metrics derive different DRO methods, e.g., f -divergence
DRO (f -DRO, Ben-Tal et al. (2013)) with the Cressie-Read
family of Rényi divergence, Wasserstein DRO (WDRO,
Sinha et al. (2018); Blanchet & Murthy (2019); Blanchet
et al. (2019a;b)), MMD-DRO (Staib & Jegelka, 2019) with
maximum mean discrepancy, Geometric DRO (GDRO, Liu
et al. (2022b)) with Geometric Wasserstein distance, and
some refined distance metrics recently (Wang et al., 2021;
Blanchet et al., 2023). Although DRO methods are designed
to resist sub-population shifts, they have been observed to
have poor generalization performances statistically (Słowik
& Bottou, 2022; Zeng & Lam, 2022; Iyengar et al., 2023)
and empirically (Hu et al., 2018; Frogner et al., 2019), which
is referred to as over-pessimism.

In this section, we identify one of the root causes of the
over-pessimism of DRO: the excessive focus on noisy sam-
ples with typically high prediction errors.
• We showcase DRO methods’ excessive focus on noisy
samples in practice and reveal their probability densities are
linked to high prediction errors in worst-case distributions.
• Through a simple yet insightful regression example, we
prove that such a phenomenon leads to high estimation vari-
ances and subsequently poor generalization performance.
• We demonstrate that existing outlier-robust regression
methods are not directly applicable for mitigating noisy
samples in DRO scenarios, emphasizing the non-trivial na-
ture of this problem.

Problem Setting Given the underlying clean distribution
Pclean = (1 − α)Pmajor + αPminor, 0 < α < 1

2 , the goal of
DRO can be viewed as achieving good performance across
all possible sub-populations Pminor. Denote the observed
contaminated training distribution by Ptrain. Based on Hu-
ber’s ϵ-contamination model (Huber, 1992), we formulate
Ptrain as:

Ptrain = (1− ϵ)Pclean + ϵQ̃ = (1− ϵ)(1− α)Pmajor︸ ︷︷ ︸
major sub-population

+

(1− ϵ)αPminor︸ ︷︷ ︸
minor sub-population

+ ϵQ̃︸︷︷︸
noisy sub-population

,

where Q̃ is an arbitrary noisy distribution (typically with
larger noise scale), 0 < ϵ < 1

2 is the noise level. Note that
the minor sub-population could represent any distribution
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Figure 1: Visualizing the Worst-Case Distribution for Different DRO Methods: We show the data manifold and sample
weights for each point, where blue points represent the major group, green ones represent the minor group, and red ones are
noisy samples. The bars display the total sample weights of different groups, and the original group ratio is major (93.1%),
minor (4.9%), noisy (2%).

with a proportion of α in P . However, we explicitly specify
it here to emphasize the distinction between our setting and
the traditional Huber’s ϵ-contaminated setting, as the latter
does not take sub-population shifts into account.

This corresponds with real scenarios where (1) different
sub-populations (e.g., demographic groups or data sources)
and (2) noisy samples (e.g., measurement errors, data col-
lection errors) coexist. We expect a perfect DRO algorithm
should achieve consistent performance across Pmajor and
Pminor while unaffected by the noise from Q̃. This is a typi-
cal problem setting in DRO literature (Duchi & Namkoong,
2021; Zhai et al., 2021).

Empirical Observations. Following a typical regression
setting (Duchi & Namkoong, 2021; Liu et al., 2022b), we
demonstrate the worst-case distribution of KL-DRO, χ2-
DRO, and GDRO in Figure 1, where the size of each point
is proportional to its density. In this scenario, the underly-
ing distribution P comprises a known major sub-population
(95%, blue points) and a minor sub-population (5%, green
points). And the noise level ϵ in Ptrain is 2%. DRO meth-
ods are expected to upweight samples from minor sub-
population to learn a model with uniform performances
w.r.t. sub-populations. However, from Figure 1, we could
observe that KL-DRO, χ2-DRO and GDRO excessively fo-
cus on noisy samples, resulting in a noise level 10 to 15
times larger than the original. This observation helps to
explain their poor performance on this task (detailed results
can be found in Table 2).

Theoretical Analysis. To support our observations, we
first analyze the worst distribution of KL-DRO, χ2-DRO
and GDRO, shedding light on the underlying reasons for
this phenomenon.

Proposition 2.1 (Worst-case Distribution). Denote the
worst-case distribution Q̂∗

N as:

Q̂∗
N := arg sup

Q∈P(P̂N )

N∑
i=1

qiℓ(fθ(xi), yi), (2)

For different choices of Dist(·, ·) in P(P ) = {Q :

Dist(Q,P ) ≤ ρ}, we have Q̂∗
N =

∑
i∈[N ] q

∗
i δ(xi,yi). De-

note ℓ(fθ(xi), yi) (abbr. ℓi) as the prediction error of sam-
ple i ∈ [N ], we have:

• KL-DRO: q∗i /q
∗
j ∝ exp

(
ℓi−ℓj

η

)
, and η > 0 is the dual

parameter;
• GDRO’s final state (gradient flow step T → ∞): q∗i /q

∗
j ∝

exp
(

ℓi−ℓj
η

)
, and η > 0 is the dual parameter;

• χ2-DRO: q∗i /q
∗
j = (ℓi − λ)+/(ℓj − λ)+, and λ ≥ 0 is

the dual parameter.

Proposition 2.1 demonstrates that for KL-DRO, χ2-DRO,
and GDRO (large gradient flow step), the relative density
between samples is solely determined by their prediction
errors, indicating that a larger prediction error results in
a higher density. However, in our problem setting, sam-
ples from both minor sub-population Pminor and noisy
sub-population Q̃ exhibit high prediction errors. The pri-
mary goal of DRO is to focus on the minor sub-population
Pminor, but the presence of noisy samples in Q̃ significantly
interferes with this objective and hurts model learning. As
shown in Figure 1, for KL-DRO, χ2-DRO and GDRO, noisy
samples attract much density. Intuitively, it is not surpris-
ing that an excessive focus on noisy samples can have a
detrimental impact. As KL-DRO, χ2-DRO, and GDRO
can be viewed as optimization within a weighted empirical
distribution, we use the following simple example with the
weighted least square model to demonstrate how this ex-
cessive focus on noisy samples can lead to high estimation
variance, ultimately causing over-pessimism.

Example (Weighted Least Square). Consider the data gen-
eration process as Y = kX + ξ, where X,Y ∈ R and
random noise ξ satisfies ξ ⊥ X , E[ξ] = 0 and E[ξ2] (abbr.
σ2) is finite. Assume that the training dataset XD con-
sists of clean samples {x(i)

c , y
(i)
c }i∈[Nc] and noisy samples

{x(i)
o , y

(i)
o }i∈[No] with σ2

c < σ2
o . Consider the weighted

least-square model f(X) = θX . Denote the sample weight
of a clean sample (x

(i)
c , y

(i)
c ) as w

(i)
c ∈ R+, i ∈ [Nc],
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and the sample weight of a noisy sample (x
(i)
o , y

(i)
o ) as

w
(i)
o ∈ R+, i ∈ [No] with

∑
i∈[Nc]

w
(i)
c +

∑
i∈[No]

w
(i)
o = 1.

Given the fixed covariates in the dataset XD = {x(i)
c }Nc

1 ∪
{x(i)

o }No
1 , the variance of the estimator θ̂ is given by:

Var[θ̂|XD] =

∑Nc
i=1(w

(i)
c )2(x

(i)
c )2σ2

c +
∑No

i=1(w
(i)
o )2(x

(i)
o )2σ2

o[∑Nc
i=1 w

(i)
c (x

(i)
c )2 +

∑No
i=1 w

(i)
o (x

(i)
o )2

]2 ,

where the minimum variance above is achieved if and only
if w(j)

o /w
(i)
c = σ2

c/σ
2
o < 1,∀i ∈ [Nc], j ∈ [No].

From the results, we make the following remarks:
• If noisy samples have higher weights than clean samples
(e.g., wo/wc > 1), the variance of the estimated parameter
θ̂ will be larger, suggesting that the learned θ̂ could be
significantly unstable.
• In conjunction with Proposition 2.1, DRO methods tend
to assign high weights to noisy samples, which can lead
to unstable parameter estimation. While this example is
relatively simple, this phenomenon aligns with the empirical
findings in Zhai et al. (2021), which demonstrate that DRO
methods can be quite unstable when confronted with label
noise. Furthermore, directly analyzing the effect of noisy
samples remains an open problem in the field of DRO.

Relationship with conventional outlier-robust regression.
We would like to explain why conventional outlier-robust re-
gression methods cannot be directly applied to our problem.
The main challenge stems from the coexistence of noisy
samples and minor sub-populations, both of which typi-
cally exhibit high prediction errors, leading to a misleading
worst-case distribution in DRO. Conventional outlier-robust
regression methods (Diakonikolas & Kane, 2018; Klivans
et al., 2018; Diakonikolas et al., 2022) primarily focus on
mitigating the effects of outliers without considering sub-
population shifts. As a result, these methods are not directly
applicable in this context. For instance, the L2-estimation-
error of outlier-robust linear regression is O(ϵ log(1/ϵ)) (Di-
akonikolas & Kane, 2018), where ϵ represents the noise
level in Equation 1. However, as analyzed in Proposition
2.1 and demonstrated in Figure 1, during the optimization
of DRO, the noise level ϵ significantly increases, rendering
even outlier-robust estimation quite inaccurate. Moreover,
Klivans et al. (2018) propose finding a pseudo distribution
with minimal prediction errors to avoid outliers (see Algo-
rithm 5.2 in Klivans et al. (2018)). Nevertheless, this ap-
proach might inadvertently exclude minor sub-populations,
which should be the focus under sub-population shifts, due
to the main challenge: the coexistence of noisy samples
and minor sub-populations. Zhai et al. (2021) incorporate
this idea into DRO. Still, their method requires an implicit
assumption that the prediction errors of noisy samples are
higher than those of minor sub-populations, which does not
always hold in practice. And Bennouna & Van Parys (2022)
build the uncertainty set via two measures, KL-divergence

and Wasserstein distance, leading to a combined approach
of KL-DRO and ridge regression. Despite this, as we dis-
cussed earlier, DRO tends to increase the noise level in data,
making it difficult to fix using ridge regression.

Based on the analysis above, we stress the importance of
integrating more information from data. In pursuit of this,
we propose to leverage the unique geometric properties that
distinguish noisy samples from minor sub-populations to
address this issue.

3. Proposed Method
In this work, with a focus on regression, we introduce
our Geometry-Calibrated DRO (GCDRO). The fundamen-
tal idea is to utilize data geometry to distinguish between
random noisy samples and minor sub-populations. It is
motivated by the fact that prediction errors for minor sub-
populations typically exhibit local smoothness along the
data manifold, a property that is not shared by noisy sam-
ples.

Discrete Geometric Wasserstein Distance. We briefly
revisit the definition of the discrete geometric Wasserstein
distance. Given a weighted finite graph GN = (V,E,W ),
the probability set P(GN ) supported on the vertex set
V is defined as P(GN ) = {p ∈ RN |

∑N
i=1 pi =

1, pi ≥ 0, for i ∈ V }, and its interior is denoted as
Po(GN ). A velocity field v = (vij)i,j∈V ∈ RN×N

on GN is defined on the edge set E satisfying that
vij = −vji if (i, j) ∈ E. ξij(p) is a function
interpolated with the associated nodes’ densities pi, pj .
The flux function pv ∈ RN×N on GN is defined as
pv := (vijξij(p))(i,j)∈E and its divergence is defined
as divGN

(pv) := −(
∑

j∈V :(i,j)∈E

√
wijvijξij(p))

N
i=1 ∈

RN . Then for distributions p0,p1 ∈ Po(GN ), the dis-
crete geometric Wasserstein distance (Chow et al., 2017;
Liu et al., 2022b) is defined as:

GW2
GN

(p0,p1) := inf
v

{∫ 1

0

1

2

∑
(i,j)∈E

ξij(p(t))v
2
ijdt

s.t.
dp

dt
+ divGN

(pv) = 0,p(0) = p0,p(1) = p1

}
.

(3)
Equation 3 computes the shortest (geodesic) length among
all potential plans, integrating the total kinetic energy of
the velocity field throughout the transportation process. A
key distinction from the Wasserstein distance is that it only
permits density to appear at the graph nodes.

Formulation Given training dataset Dtr = {(xi, yi)}Ni=1

and a finite weighted graph GN = (V,E,W ) representing
the inherent structure of sample covariates. Denote the
empirical marginal distribution as P̂X , the formulation of
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GCDRO is:

min
θ∈Θ

sup
q:GW2

GN
(P̂X ,q)≤ρ︸ ︷︷ ︸

Geometric Wasserstein set

{
RN (θ,q) :=

N∑
i=1

qiℓ(fθ(xi), yi)

− α

2
·
∑

(i,j)∈E

wijqiqj(ℓi − ℓj)
2

︸ ︷︷ ︸
Calibration Term I

−β ·
N∑
i=1

qi log qi︸ ︷︷ ︸
Calibration Term II

}
,

(4)
where ρ is the pre-defined radius of the uncertainty set, ℓi
is the loss on the i-th sample and wij ∈ W denotes the
edge weight between sample i and j. α and β are hyper-
parameters.

Illustrations. In our formulation, for any distribution q
within the uncertainty set,
Calibration term I

∑
(i,j)∈E wijqiqj(ℓi − ℓj)

2 calculates
the graph total variation of prediction errors along the data
manifold that is characterized by GN . Intuitively, when
selecting the worst-case distribution, this term imposes a
penalty on distributions that allocate high densities to ran-
dom noisy samples, as this allocation significantly amplifies
the overall variation in prediction errors. Conversely, this
term does not penalize distributions that allocate high densi-
ties to minor sub-populations, as their errors are smooth and
have a relatively small impact on the total variation along
the manifold. This differing phenomenon arises from the
distinct geometric properties of random noisy samples and
minor sub-populations, as samples from the latter typically
cluster together on the data manifold. Further, during the
optimization of model parameter θ, this term acts like a vari-
ance term, resulting in a quantile-like risk objective, which
helps to mitigate the effects of outliers.
Calibration term II

∑N
i=1 qi log qi represents the nega-

tive entropy of distribution q. As discussed in Section 3.2,
during optimization, this term transforms into a non-linear
graph Laplacian operator that encourages sample weights
to be smooth along the manifold, avoiding extreme sample
weights in the worst-case distribution.

3.1. Free Energy Implications on Worst-case
Distribution

We first demonstrate the free energy implications of our
risk objective RN (θ,q). Intuitively, the change of sample
weights across N samples (the inner maximization problem
of RN (θ,q)) can be analogously related to the dynamics
of particles in a system, wherein the concentration of densi-
ties coincides with the aggregation of particle masses at N
distinct locations (in the case of infinite samples, these loca-
tions converge to the data manifold). As a result, a deeper
understanding of the steady state in a particle system can
offer valuable insights into the worst-case distribution for

DRO.

Building on this analogy, we can dive deeper into the physics
of particle interactions. When particles exist within a po-
tential energy field, they are subject to external forces. Si-
multaneously, there are interactions among the particles
themselves, leading to a constant state of motion within
the system. In statistical physics, a key point of interest
is identifying when a system reaches a steady state. In a
standard process like the reversible isothermal process, it is
established that spontaneous reactions consistently move in
the direction of decreasing Helmholtz free energy (Fu et al.,
1990; Reichl, 1999; Friston, 2010), which consists of inter-
action energy, potential energy and the negative entropy:

E(q) = q⊤Kq︸ ︷︷ ︸
Interaction Energy

+ q⊤V︸ ︷︷ ︸
Potential Energy

−β

N∑
i=1

(−qi log qi)︸ ︷︷ ︸
Temperature×Entropy

= −RN (θ,q).
(5)

By taking V = −ℓ⃗ and Kij =
α
2wij(ℓi−ℓj)

2 for (i, j) ∈ E,
our risk objective is a special case of Helmholtz free energy,
where the potential energy of sample i is −ℓiqi and the inter-
action energy between sample i and j is α

2wij(ℓi−ℓj)
2qiqj .

Specifically, such mutual interactions can manifest as repul-
sive forces between adjacent particles, thereby preventing
the concentration of mass in locations where local prediction
errors are significantly high. And this explains from a phys-
ical perspective why our calibration term I could mitigate
random noisy samples.

Additionally, Proposition 3.1 offers physical interpretations
to comprehend the worst-case distribution of various DRO
methods. We make some remarks: (1) current DRO method-
ologies, except MMD-DRO, do not explicitly formulate
the interaction term between samples in their design con-
siderations (χ2-DRO does not involve interaction between
samples), despite the corresponding interaction energy be-
tween particles being a common phenomenon in physics; (2)
MMD-DRO simply uses kernel gram matrix for interaction
and lacks efficient optimization algorithms; (3) by consider-
ing this interaction energy, our proposed GCDRO is capable
of mitigating the impacts of random noisy samples.

Proposition 3.1 (Free Energy Implications). The dual
reformulations of some typical DRO methods are
equivalent to the free-energy-based minimax problem

minθ∈Θ,λ≥0 maxq∈P

{
λρ − E(q, θ, λ)

}
with different

choices of P, ρ and K,V,H[q] in the free energy E . Details
are shown in Table 1.

Through free energy, we could understand the type of en-
ergy or steady state that DRO methods strive to achieve, and
design better interaction energy terms in DRO. Moreover,
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Table 1: Free energy implications of some DRO methods. ∆N denotes the N -dimensional simplex, η in marginal DRO is
the dual parameter.

Method Energy Type Specific Formulation

Interaction Potential Entropy K V H[q] P

KL-DRO % " " - −ℓ⃗ H[q] ∆N

χ2-DRO " " % λI −ℓ⃗ - ∆N

MMD-DRO " " %
Kernel Gram

Matrix K
−ℓ⃗− 2λ

N K⊤1 - ∆N

Marginal χ2-DRO % " % - −(ℓ⃗− η)+ -
∆N with Hölder

continuity

GDRO % " " - −ℓ⃗ H[q]
Geometric

Wasserstein Set

GCDRO " " "
Interaction
Matrix K

−ℓ⃗ H[q]
Geometric

Wasserstein Set

our optimization, as outlined in Section 3.2, could accom-
modate multiple quadratic forms of interaction energy.

3.2. Optimization

Then we derive an approximate minimax optimization for
our GCDRO. For the inner maximization problem, we ap-
proximate it via the gradient flow of −RN (θ,Q) w.r.t. Q in
the geometric Wasserstein space (Po(GN ),GWGN

). We
show that the error rate is O(e−CTin) after Tin iterations
inner loop, which gives a nice approximation.

We denote the continuous gradient flow as q : [0, T ] →
Po(GN ), the probability density of sample i at time t
is abbreviated as qi(t), and the time-discretized gradient
flow with time step τ as q̂τ . For inner maximization,
we utilize the τ -time-discretized gradient flow (Villani,
2021) for −RN (θ,q) in the geometric Wasserstein space
(Po(GN ),GW2

GN
) as:

q̂τ (t+ τ) = argmax
q∈Po(GN )

RN (θ,q)− 1

2τ
GW2

GN
(q̂τ (t),q).

(6)
The gradient of q in Equation 6 is given as (when τ → 0):

dqi
dt

=
∑

(i,j)∈E

wijξij

(
q, ℓi − ℓj + β(log qj − log qi)+

α
( ∑
h∈N(j)

(ℓh − ℓj)
2wjhqh −

∑
h∈N(i)

(ℓh − ℓi)
2wihqh

))
,

(7)
where E is the edge set of GN , wij is the edge weight
between node i and j, N(i) denotes the set of neighbors
of node i, ℓi denotes the loss of sample i, and ξij(·, ·) :
P(GN )× R → R is:

ξij(q, v) := v ·
(
I(v > 0)qj + I(v ≤ 0)qi

)
, v ∈ R,

which is the upwind interpolation commonly used in sta-
tistical physics and guarantees that the probability vector
q keeps positive. From the gradient, we could see that the

entropy regularization acts as a non-linear graph Laplacian
operator to make the sample weights smooth along the man-
ifold. Equation 7 is discretized via Forward Euler Method
as:

qi(t+ τ) = qi(t) + τ · dqi
dt

, (8)

where τ is the learning rate. In our algorithm, we fix the
steps of the gradient flow to be Tin and prove that the error
ratio is e−CTin compared with the ground-truth worst-case
risk RN (θ,q∗) constrained in an ρ(θ, Tin)-radius ball.
Proposition 3.2 (Approximation Error Ratio). Given the
model parameter θ, denote the distribution after time Tin

as qTin(θ), and the distance to training distribution P̂X as
ρ(θ, Tin) := GW2

GN
(P̂X ,qTin(θ)) (abbr. ρ(θ)). Assume

RN (θ,q) is convex w.r.t q. Then define the ground-truth
worst-case distribution q∗(θ) within the ρ(θ)-radius ball
as:

q∗(θ) := arg sup
q:GW2

GN
(P̂X ,q)≤ρ(θ)

RN (θ,q).

The upper bound of the error rate of the objective function
RN (θ,qTin) satisfies:

RN (θ,q∗)−RN (θ,qTin)

RN (θ,q∗)−RN (θ, P̂X)
< e−CTin ,

C = 2mλsec(L̂)λmin(∇2RN )
1

(r + 1)2
> 0,

where L̂ is the Laplacian matrix of GN . λsec, λmin are the
second smallest and smallest eigenvalue, m, r are constants
depending on RN , GN , β.

We make some remarks:
• For the assumption that RN is convex w.r.t. q, the Hessian
is given by ∇2RN = βdiag(1/q1, ..., 1/qN ) + 2K. Since
K is a sparse matrix whose nonzero elements in each row is
far smaller than N , it is easily satisfied in empirical settings
that the Hessian matrix ∇2RN is diagonally dominant and
thus positive definite, making the inner maximization con-
cave w.r.t q.
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• During the optimization, our algorithm finds an approx-
imately worst-case distribution that is close to the ground-
truth one within a ρ(θ)-radius uncertainty set. Our robust-
ness guarantee is similar to Sinha et al. (2018) (see Equation
12 in Sinha et al. (2018)).
• The error ratio is e−CTin , enabling a nice approximation
efficiently with finite Tin steps.

3.3. Mitigate the Effects of Random Noisy Samples

Finally, we prove that our GCDRO method effectively de-
emphasizes ’noisy samples’ with locally non-smooth pre-
diction errors. Due to the challenge of assessing interme-
diate states in gradient flow, we focus on its final state (as
Tin → ∞).

For the worst-case distribution q∗, we denote the density ra-
tio between samples as γ(i, j) := q∗i /q

∗
j . In sensitivity anal-

ysis, when only sample i is perturbed with label noises, we
denote the density ratio in the new worst-case distribution
q̃∗ as γnoisy(i, j) := q̃∗i /q̃

∗
j . The sample weight sensitivity

ξ(i, j) is defined as ξ(i, j) = log γnoisy(i, j) − log γ(i, j),
which measures how much density ratio changes under per-
turbations on one sample. Larger ξ(i, j) indicates larger
sensitivity to noisy samples.

Proposition 3.3. Denote N(i) as the set of neighbors
of the i-th sample. Denote that A =

∑
k∈N(i) q̃

∗
kwik,

B =
∑

k∈N(i) q̃
∗
kwik(ℓi − ℓk), and C =

∑
k∈N(i)(q̃

∗
k −

q∗k)wik(ℓi−ℓk)
2−
∑

k∈N(j)(q̃
∗
k−q∗k)wjk(ℓk−ℓj)

2.Denote
the excess error induced by label noises on the i-th sample
as δ = ℓnoisy

i − ℓi. When

δ ≥ δmin :=

{
−B

A +

√(
B
A

)2 − C
A if B2 −AC ≥ 0,

0, otherwise.

For any α > 0, we have ξGCDRO < ξGDRO. Furthermore,
there exists M > 0 such that for any α > M , we have
ξGCDRO(i, j) < 0 < min{ξχ2−DRO(i, j), ξGDRO(i, j)(=
ξKL-DRO(i, j))}, indicating that GCDRO is not sensitive to
locally non-smooth noisy samples.

Remark. Here we make some remarks: (a) B denotes the
weighted average of the error gap in the neighborhood of the
i-th sample; (b) Both terms in C represent the changes of
local smoothness in the neightborhoods of the i-th and j-th

samples respectively; (c) −B
A =

∑
k∈N(i) q̃

∗
kwikℓk∑

k∈N(i) q̃
∗
kwik

− ℓi also
captures the local smoothness. Specifically, it measure the
gap between the weighted average error in the i-th sample’s
neighborhood and the error of sample i. Intuitively, smaller
|BA | means a smoother neighborhood; (d) The form of M is
M = 1/(Aδ + 2B + C

δ ) ≤ 1/(2
√
AC + 2B).

Relaxation of Proposition 3.3 We then proceed to relax
the condition δ ≥ δmin (to a looser condition) to give clearer

insights on how it relates to the local smoothness. Denote

δrelax = max
k∈N(i)

|ℓk − ℓi| ·

1 +

√√√√ ∑
t∈N(i)

wit
q∗t
q̃∗t

 > δmin,

(9)
and the condition could be simplified to: when δ ≥ δrelax, for
any α > 0, we have the above conclusion. This condition
mainly relies on the local smoothness of the error within
the i-th sample’s neighborhood, which is measured by the
maximal error gap between ℓi and its neighbors.

Implementation & Complexity. In practice, we do a grid
search over α ∈ [0.1, 10] on an independent held-out val-
idation dataset to select the best α. For our GCDRO, GN

is constructed as a k-nearest neighbor (kNN) graph from
training data once and for all only at the initialization step.
For large-scale datasets, we use NN-Descent to estimate the
kNN graph with an almost linear complexity of O(N1.14).
Since the sample weights are transferred along the edges
of the graph, the simulation of gradient flow can be imple-
mented similarly to message propagation with DGL package
(Wang et al., 2019), which scales linearly with sample size
and enjoys parallelization by GPU. The implementation
above ensures the adaptability to large-scale data.

4. Experiments
In this section, we test the empirical performances of our
proposed GCDRO on simulation data and real-world re-
gression datasets with natural distribution shifts. As for
the baselines, we compare with empirical risk minimization
(ERM), WDRO, two typical f -DRO methods, including
KL-DRO, χ2-DRO (Duchi & Namkoong, 2021), GDRO
(Liu et al., 2022b), HRDRO (Bennouna & Van Parys, 2022)
and DORO (Zhai et al., 2021), where HRDRO and DORO
are designed to mitigate label noises.

4.1. Simulation Data

Data Generation. We design simulation settings with
both sub-population shifts and noisy samples. The input co-
variates X = [S,U, V ]T ∈ R10 consist of stable covariates
S ∈ R5, irrelevant ones U ∈ R4 and the unstable covariate
V ∈ R:

[S,U ] ∼ N (0, 2I9), ε ∼ N(0, 0.5),

V ∼ Laplace(sign(r) · Y, 1/5 ln |r|)
Y = θTSS + 0.1S1S2S3 + ε,

where θS ∈ R5 is the coefficients of the true model,
|r| > 1 is the adjustment factor for each sub-population,
and Laplace(·, ·) denotes the Laplace distribution. From the
data generation, the relationship between S and Y stays
invariant under different r, U ⊥ Y , while the relationship

7
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Table 2: Results on the simulation data. We report the average root mean square errors (RMSE) over 5 runs, excluding the
small standard deviations.

Weak Label Noise (noise level 0.5%) Strong Label Noise (noise level 5%)

Train (major) Train (minor) Test Mean Test Std
Parameter
Est Error Train (major) Train (minor) Test Mean Test Std

Parameter
Est Error

ERM 0.337 0.850 0.598 0.264 0.423 0.368 0.855 0.599 0.243 0.431
WDRO 0.337 0.851 0.589 0.292 0.424 0.368 0.857 0.600 0.268 0.432
χ2-DRO 0.596 0.765 0.680 0.088 0.447 1.072 0.708 0.875 0.193 0.443
KL-DRO 0.379 1.616 0.974 0.660 0.886 0.468 1.683 1.037 0.621 0.913
HRDRO 0.325 1.298 0.794 0.516 0.693 0.330 1.343 0.801 0.522 0.694
DORO 0.347 0.793 0.565 0.230 0.384 0.334 0.919 0.611 0.295 0.449
GDRO 0.692 0.516 0.605 0.094 0.198 0.618 0.752 0.677 0.063 0.421
GCDRO 0.411 0.554 0.482 0.070 0.190 0.494 0.591 0.540 0.044 0.268

between V and Y is controlled by r, which varies across
sub-populations. Intuitively, sign(r) controls whether the
spurious correlation V -Y is positive or negative. And |r|
controls the strength of the spurious correlation: the larger
|r| is, the stronger the spurious correlation is. Furthermore,
in order to conform to real data which are naturally assem-
bled with label noises (Zhai et al., 2021), we introduce label
noises by an ϵ proportion of labels as Y ′ ∼ N (0,Std(Y )).
ϵ controls the noise level.
Settings. In training, we generate 9,500 points with
r = 1.9 (majority, strong positive spurious correlation
V -Y ) and 500 points with r = −1.3 (minority, weak
negative spurious correlation V -Y ). In testing, we vary
r ∈ {3.0, 2.3,−1.9,−2.7} to simulate different spurious
correlations V -Y . We use linear model with mean square
error (MSE) and report the prediction root-mean-square
errors (RMSE) for each sub-population, the mean and stan-
dard deviation of prediction errors among all testing sub-
populations. Also, we report the parameter estimation errors
∥θ̂ − θ∗∥2 of all methods (θ∗ = (θTS , 0, . . . , 0)

T ). The re-
sults over 10 runs are shown in Table 2.

Analysis. From Table 2, Our proposed GCDRO out-
performs all baselines under different strengths of label
noises, which demonstrates its effectiveness. Compared
with GDRO, we could see that our calibration terms in
Equation 4 is effective to mitigate label noises. In contrast,
compared with ERM, all typical DRO methods, especially
χ2-DRO and KL-DRO, are strongly affected by label noises.
Besides, although DORO is designed to mitigate outliers,
it does not perform well under strong noises (κ = 5%), be-
cause it relies on the assumption that noisy points have the
largest prediction errors, which does not always hold. Recall
Figure 1, the worst-case distribution of our GCDRO signifi-
cantly upweighs on the minority (green points) and does not
put much density on the noisy data (red points), while the
others put much higher weights on the noisy samples and
perform poorly.

4.2. Real-world Data

We use three real-world regression datasets with natural
distribution shifts, including bike-sharing prediction, house
price, and temperature prediction. For all these experiments,
we use a two-layer MLP model with mean square error
(MSE). We use the Adam optimizer (Kingma & Ba, 2015)
with the default learning rate 1e− 3. And all methods are
trained for 5e3 epochs. The hyper-parameter search space
is specified in Appendix.

Datasets.
(1) Bike-sharing dataset (Dua & Graff, 2017) contains the
daily count of rental bikes in the Capital bike-sharing system
with the corresponding 11 weather and seasonal covariates.
The task is to predict the count of rental bikes of casual
users. Note that the count of casual users is likely to be
more random and noisy, which is suitable to verify the
effectiveness of our method. We split the dataset according
to the season for natural shifts. In the training data, the ratio
of four seasons’ data is 9 : 7 : 5 : 3. We test on the rest of
the data and report the prediction error of each season.

(2) House Price dataset1 contains house sales prices from
King County, USA. The task is to predict the transaction
price of the house via 17 predictive covariates such as the
number of bedrooms, square footage of the house, etc. We
divide the data into 5 sub-populations according to the built
year of each house with each sub-population covering a span
of 25 years. In training, we use data from the first group
(built year < 1920) and report the prediction error for each
testing group.

(3) Temperature dataset (Dua & Graff, 2017) is largely
composed of the LDAPS model’s next day’s forecast data,
in-situ maximum and minimum temperatures of present-
day, and geographic auxiliary variables in South Korea from
2013 to 2017. The task is to predict the next-day’s maximum
air temperatures based on the 22 covariates. We divide

1https://www.kaggle.com/c/house-prices-advanced-
regression- techniques/data
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(a) Bike-sharing (b) House Price (c) Temperature

Figure 2: Results (over 5 runs) of real-world datasets with natural shifts. The average results and the standard deviations
(error bars in the figure) are showed. Note that we do not manually add label noises here, since real-world datasets
intrinsically contain noises.

the data into 5 groups corresponding with 5 years. In the
training data, the ratio of five years’ data is 9 : 7 : 5 : 3 : 1.
We test on the rest of the data and report the prediction error
of each year. More details could be found in Appendix.

Analysis. From the results in Figure 2a, our proposed GC-
DRO outperforms all baselines under strong shifts, with the
most stable performances under natural distribution shifts.
In contrast, we could see that the performances of ERM
drop a lot under distribution shifts, and DRO methods have
better performance as well as robustness. Furthermore, in
Appendix C, we visualize the learned manifold in Figure 3
and see that the learned kNN graph fits the data manifold
well. We also show the performances of our GCDRO are
relatively stable across different choices of k in Figure 4. In
all, our GCDRO only needs the input graph GN to represent
the data structure and any manifold learning or graph learn-
ing methods could be plugged in to give a better estimation
of GN .

5. Future Directions
Our work deals with the over-pessimism in DRO via geomet-
ric calibration terms and provides free energy implications.
The high-level idea could inspire future research on (1) re-
lating free energy with DRO; (2) designing more reasonable
calibration terms in DRO; (3) incorporating data geometry
in general risk minimization algorithms. We hope this work
could help to make DRO methods more effective in prac-
tice. And future improvements may be extend this method
to classification scenarios with more complicated data like
images and languages.
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A. Implementation
For our GCDRO, GN is constructed as a k-nearest neighbor (kNN) graph from training data once and for all only at the
initialization step. For large-scale datasets, we use NN-Descent to estimate the kNN graph with an almost linear complexity
of O(N1.14). Since the sample weights are transferred along the edges of the graph, the simulation of gradient flow can be
implemented similarly to message propagation with DGL package (Wang et al., 2019), which scales linearly with sample
size and enjoys parallelization by GPU. The implementation above ensures the adaptability to large-scale data.

B. Improvements of our work.
In Section 2, we have introduced the typical DRO methods in detail and demonstrated the over-pessimism problem. Here
we compare our work with several DRO works and clarify their differences.
(1) With MMD-DRO: MMD-DRO (Staib & Jegelka, 2019) also has a quadratic term in its dual reformulation, while Staib &
Jegelka (2019) focuses on the equivalence between MMD-DRO and Hilbert norms and there is no efficient or applicable
algorithm yet. Further, it remains the risk objective unchanged (the quadratic term is from MMD distance) and just uses
the Gaussian RBF kernel. Our work firstly incorporates the data geometry into the design of the calibration term and
demonstrates its relationship with Helmholtz free energy, and we propose an applicable algorithm that could be used under
deep models.
(2) With GDRO: GDRO (Liu et al., 2022b) uses the discrete geometric Wasserstein distance to build the uncertainty set,
and intuitively demonstrates its superiority. Our work theoretically analyzes the over-pessimism problem and attributes the
cause of over-pessimism to the excessive focus on noisy samples in DRO. And for the risk objective function, our work
further introduces the graph total variation term to mitigate the effects of noisy samples, which is theoretically justified and
empirically verified. From our results, GDRO is heavily affected by noisy samples, while our GCDRO has a much better
performance. Further, this work relates the newly-proposed risk objective to the Helmholtz free energy and unifies some
typical DRO methods into it, which is a new perspective to view DRO methods and could inspire future research.
(3) With DORO: DORO (Zhai et al., 2021) proposes to dismiss data samples with the top losses and then performs DRO,
and we compare with it in our experiments. Theoretically, this method relies on the implicit assumption that noisy samples
must have larger prediction errors than hard clean samples. However, this assumption does not always hold, and as shown in
our experiments, it has some effects but does not work very well.

C. Why uses kNN graph?
Manifold Assumption. The data manifold hypothesis indicates that high-dimensional data often lies in an unknown
lower-dimensional manifold embedded in ambient space (Roweis & Saul, 2000; Belkin & Niyogi, 2003; Levina & Bickel,
2004; Lunga et al., 2013; Brown et al., 2022) and is supported by strong evidence. From a theoretical perspective, Ozakin &
Gray (2009); Narayanan & Mitter (2010) prove that when such hypothesis holds, manifold learning and density estimation
scale exponentially with the low intrinsic dimension, but otherwise scale exponentially with the high ambient dimension
(Cacoullos, 1964). Therefore, as Brown et al. (2022) point out, one most plausible explanation for the success of machine
learning methods on real-world data is the existence of such lower intrinsic dimension, which enables learning on datasets
of fairly reasonable size, which is empirically verified by Pope et al. (2021). Also, for two of the real-world tabular datasets
used in this work, we visualize their 3-dimensional manifolds and calculate their intrinsic dimensions in Figure 3.

Figure 3: Visualization of the 3-dimensional manifold of the tabular datasets, and the numbers in the lower left represent the
intrinsic dimension according to (Levina & Bickel, 2004)
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Our GCDRO algorithm uses an input-weighted graph GN to approximate the data manifold. The kNN graph is a fundamental
and basic way to represent the data structure, and manifold learning is an area with intensive research. We have to clarify that
manifold learning is not the focus of this paper, which takes the data structure GN as input to design a DRO objective and
optimization algorithm that incorporates data geometric information for more reasonable worst-case distribution. Notably,
our GCDRO achieves significant performance in the experiments even with the simple kNN representation of data structure.
It proves that this direction for geometric-aware DROs is promising, and our proposed method could efficiently leverage the
geometric properties encoded in the input graph to mitigate the effects of harmful data points (note that no target information
is leaked into GN ). Actually, our GCDRO is compatible with any manifold learning or graph learning method. We do
believe that a more accurate estimated data structure with advanced manifold learning algorithms will further boost the
performance of GCDRO, and we leave this to future work.

Not Sensitive to k. For the house pricing dataset, we plot the results of our GCDRO with varying ks in Figure 4. We
could see that the performance of our algorithm is not affected much.

Figure 4: Results with varying k.

D. Experimental Details
Model & Loss function. For simulation data, we use linear models for all methods. For real-world data, we use two-layer
MLPs for all methods.

Optimizer. For all experiments, we use Adam with a learning rate of 1e− 3 in PyTorch for all methods.

Hyper-parameters. For KLDRO, WDRO and χ2-DRO, we grid search the radius of the uncertainty set within the range
of [1e − 3, 2e2], and we select the best hyper-parameters according to their testing performances. For GDRO, we grid
search the number of gradient flow steps within the range of [1e2, 2e3], the parameter β ∈ [1, 20] and we select the best
hyper-parameters according to its testing performances. For DORO, we set the noisy ratio to the ground-truth value for the
simulation data, and we grid search the ratio of noisy points within the range of [1e− 2, 5e− 1] for the real-world data. For
HRDRO, we use L1 loss as proposed in (Bennouna & Van Parys, 2022) and grid search ϵ ∈ [1e− 3, 1]. For GCDRO, we
grid search the number of gradient flow steps within the range of [1e2, 2e3], β ∈ [1, 20] and α ∈ [1e− 1, 1e1]. We select
the best hyper-parameters according to their testing performances.

Note that in our experiments, we found that model selection without domain information in the validation set is very hard,
which is also verified by (Zhai et al., 2021; Gulrajani & Lopez-Paz, 2021). And we believe this is still an open problem and
is fairly non-trivial.

E. Examples on Label Noise

Theorem E.1. Assume that the training data is a mixture of nc clean samples {x(i)
c , y

(i)
c } drawn from distribution Pc(X,Y )

and no noisy samples {x(i)
o , y

(i)
o } drawn from distribution Po(X,Y ). Consider a linear data generation process, i.e.
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Y = kX + ξ and ξ ⊥ X,E[ξ] = 0 and E[ξ2] is finite (abbr. σ2). The regression model is parameterized as f(x) = θ · x
and trained with Weighted Least Square estimation:

θ̂ = argmin
θ

nc∑
i=1

w(i)
c ∥(y(i)c − θ · x(i)

c )∥2 +
no∑
i=1

w(i)
o ∥(y(i)o − θ · x(i)

o )∥2. (10)

s.t.

nc∑
i=1

w(i)
c +

no∑
i=1

w(i)
o = 1, (11)

where w
(i)
c , w

(i)
o ≥ 0 are weights on clean and noisy samples respectively, and σ2

c < σ2
o . Then the variance of the least

square estimate θ̂ is given by:

Var[θ̂|XD] =

∑nc

i=1(w
(i)
c )2(x

(i)
c )2σ2

c +
∑no

i=1(w
(i)
o )2(x

(i)
o )2σ2

o[∑nc

i=1 w
(i)
c (x

(i)
c )2 +

∑no

i=1 w
(i)
o (x

(i)
o )2

]2 , (12)

where XD = {x(i)
c } ∪ {x(i)

o } is the sampled covariates in the dataset. Further, the variance of the estimator θ̂ achieves the
minimum if and only if:

∀1 ≤ i ≤ nc, 1 ≤ j ≤ no, γ(i, j) = w(j)
o /w(i)

c = σ2
c/σ

2
o , (13)

where γ(i, j) denotes the sample weight ratio between i and j.

The theorem is a direct corollary of the following lemma.
Lemma E.2. Assume that the training data contains n samples {x(i), y(i)}. Consider a linear data generation process
with heterogeneous noise, i.e. y(i) = kx(i) + ξi with ξi ⊥ X,E[ξi] = 0, and E[ξ2i ] is finite. The regression model is
parameterized as f(x) = θ · x and trained with Weighted Least Square estimation:

θ̂ = argmin
θ

n∑
i=1

w(i)∥(y(i) − θ · x(i))∥2. (14)

s.t.

n∑
i=1

w(i) = 1, (15)

where w(i) ≥ 0 are sample weights. Then the variance of the least square estimate θ̂ is given by:

Var[θ̂|XD] =

∑n
i=1(w

(i))2(x(i))2σ2
i[∑n

i=1 w
(i)(x(i))2

]2 , (16)

where XD = {x(i)} is the sampled covariates in the dataset. Further, the variance of the estimator θ̂ achieves the minimum
if and only if:

∀1 ≤ i ≤ n, 1 ≤ j ≤ n, w(i)σ2
i = w(j)σ2

j . (17)

Proof. According to the heterogeneous noise distribution, let y(i) = x(i) + ϵi, where ϵi ∼ N (0, σ2
i ). The least square

estimation of θ̂ is given by:

θ̂ = k +

∑n
i=1 w

(i)x(i)ϵi∑n
i=1 w

(i)(x(i))2
. (18)

Since E[θ̂|XD] = k, we have

Var[θ̂|XD] = E
∣∣∣∣ ∑n

i=1 w
(i)x(i)ϵi∑n

i=1 w
(i)(x(i))2

∣∣∣∣2 (19)

=

∑n
i=1(w

(i))2(x(i))2σ2
i[∑n

i=1 w
(i)(x(i))2

]2 . (20)
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Next, we solve the minimum of Eq.16 w.r.t. sample weights w(i). Let αi = w(i)(x(i))2. We could formulate the variance in
Eq.16 as a function of α = (α1, ..., αn):

V (α) =

∑n
i=1 α

2
iσ

2
i /(x

(i))2

(
∑n

i=1 αi)
2 . (21)

Since V (λα) = V (α) for any λ > 0, we could assume
∑n

i=1 αi = 1 without loss of generality. Then the minimization of
V (α) is equivalent to:

min
α

V (α)

(
=

n∑
i=1

α2
iσ

2
i /(x

(i))2

)
(22)

s.t.

n∑
i=1

αi = 1. (23)

The first-order KKT condition gives:

∃C,∀1 ≤ i ≤ n, α∗
i = C(x(i))2/σ2

i , (24)

from which we can solve:

α∗
i =

(x(i))2/σ2
i∑n

j=1(x
(j))2/σ2

j

. (25)

Since ∇2
αV (α) = diag

[
2σ2

1/(x
(1))2, ..., 2σ2

n/(x
(n))2

]
is always positive definite, Eq.25 minimizes V (α). Correspondingly

w(i) ∝ 1/σ2
i , which finishes the proof.

F. Proofs
F.1. Proof of Proposition 2.1

Proof. (1) For KL-divergence as the distance function, we have the following optimization problem under finite samples.

min
θ∈Θ,λ≥0

sup
p∈∆n

{
n∑

i=1

piℓ(fθ(xi), yi)− λ

n∑
i=1

pi log pi + λ(ϵ− log n)

}
, (26)

Solve the inner supremum problem, and the worst-case distribution is like:

pi = exp

(
ℓi − η

λ
− 1

)
, η(ℓ) = λ log λ+ λ log

(
n∑

i=1

exp

(
ℓi
λ

− 1

))
, (27)

and the objective function becomes:

min
θ∈Θ,λ≥0

λ log

(
n∑

i=1

exp

(
ℓ(fθ(xi), yi))

λ

))
+ λ(ϵ+ log λ− log n). (28)

And we could compare the sample weights of different samples as:

pi
pj

= exp

(
ℓi − ℓj

λ

)
. (29)

(2) For χ2-divergence which is defined as f(x) = (x− 1)2, we have the following optimization problem.

min
θ∈Θ,λ≥0

sup
p∈∆n

{
n∑

i=1

piℓ(fθ(xi), yi) + λϵ− λ

n

n∑
i=1

(npi − 1)2

}
. (30)
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Solve the inner supremum problem, and we have the worst-case distribution like:

pi =
1

λn
(ℓi + λ− η)+, (31)

and the objective function becomes:

min
θ∈Θ,λ≥0,η∈R

n∑
i=1

1

2λ
(ℓi + λ− η)2+ + λϵ+ η − λ

2
. (32)

And we could compare the sample weights of different samples as:

pi
pj

=
(ℓi + λ− η)+
(ℓj + λ− η)+

, (33)

if pj > 0.

(3) For Maximal Mean Discrepancy (MMD) distance, we have the following optimization problem:

sup
p

{
n∑

i=1

piℓi + λϵ− λ(p− 1

n
)TK(p− 1

n
)

}
(34)

s.t.
n∑

i=1

pi = 1 (35)

pi ≥ 0, for i = 1, . . . , n (36)

Solve the inner supremum problem, and we have the worst-case distribution like:

p∗ =
1

2λ
K−1(ℓ− η +

2λ

n
K1)+, (37)

and the objective function becomes:

min
θ∈Θ,λ≥0,η∈R

1

4λ
(ℓ+

2λ

n
K1 − η)+K

−1(ℓ+
2λ

n
K1 − η)+ + λϵ+ η − λ

n2
1TK1. (38)

F.2. Proof of Proposition 3.1

Proof. The proof of KL-DRO, χ2-DRO and MMD DRO is obtained from the proof of Proposition 2.1. For marginal DRO,
it is easy to prove following Duchi et al. (2022). For GDRO, it is easy to prove following Liu et al. (2022b).

F.3. Proof of Proposition 3.2

Proof. The proof is based on the Theorem 5 in (Chow et al., 2017). From (Chow et al., 2017), we have

RN (q∞)−RN (q(t)) ≤ e−Ct(RN (q∞)−RN (q0)). (39)

Furthermore,

C := 2mλsec(L̂)λmin(∇2RN )
1

(r + 1)2
> 0, (40)

and

r =
√
2k max

(i,j)∈E
wij

∥HessRN∥1
λmin(HessRN )1.5

1−m

m2

λmax(L̂)

λsec(L̂)2

√
RN (q0)−RN (q∞), (41)

where k denotes the number of neighbors in the kNN graph, L̂ is the graph Laplacian matrix, λsec, λmin are the second
smallest and smallest eigenvalue, and

∥HessRN∥1 = sup
q∈P(GN )

∥HessRN (q)∥1, λmin(HessRN ) = min
q∈P(GN )

λmin(HessRN (q)), (42)
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and

m =
1

2

(
1

(1 + 2M)
1
β

)N−2

min

{
1

(1 + 2M)
1
β

,
1

N

}
. (43)

Then denote the real worst-case distribution within the ϵ(θ)-radius discrete Geometric Wasserstein-ball as q∗, that is,

q∗ = arg sup
q:GW2

GN
(P̂tr,q)≤ϵ(θ)

RN (θ, q), (44)

and we have

RN (q∞)−RN (q∗) +RN (q∗)−RN (q(t)) ≤ e−Ct(RN (q∞)−RN (q∗) +RN (q∗)−RN (q0)). (45)

Therefore, we have

RN (q∗)−RN (q(t)) ≤ e−Ct(RN (q∗)−RN (q0))− (1− e−Ct)(RN (q∞)−RN (q∗)), (46)

and
RN (q∗)−RN (q(t))

RN (q∗)−RN (q0)
≤ e−Ct − (1− e−Ct)

RN (q∞)−RN (q∗)

RN (q∗)−RN (q0)
< e−Ct. (47)

F.4. Proof of Proposition 3.3

Proof. Denote δ = ℓnoisy
i − ℓi. First, it is easy to prove that (through some simple calculation):

ξGDRO(i, j) =
δ

β
, (48)

ξGCDRO(i, j) =
1

β
(δ − α · h), (49)

where

h = δ2 · (
∑

k∈N(i)

q̃∗kwik) + δ · (
∑

k∈N(i)

2q̃∗kwik(ℓi − ℓk)) +
∑

k∈N(i)

(q̃∗k − q∗k)wik(ℓi − ℓk)
2 −

∑
k∈N(j)

(q̃∗k − q∗k)wjk(ℓk − ℓj)
2

= Aδ2 + 2Bδ + C.
(50)

Therefore, when

δ ≥ δmin :=

{
−B

A +
√
(BA )2 − C

A if B2 −AC ≥ 0,

0, otherwise.
(51)

we have h > 0, which gives that for any α > 0, ξGCDRO(i, j) < ξGDRO(i, j).

Furthermore, when δ − αh < 0, i.e. α > 1/(Aδ + 2B + C
δ ), we have ξGCDRO(i, j) < 0.
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