
Reconstructing 3-D FRI shapes from tomographic
projections at unknown angles

Kate L.Y. Zhao, Renke Wang, Pier Luigi Dragotti
Dept. of Electrical and Electronic Engineering, Imperial College London

{kate.zhao22, renke.wang19, p.dragotti}@imperial.ac.uk

Abstract—Conventional methods for 3-D reconstruction from
2-D tomographic projections require prior knowledge of pro-
jection orientation. Without such information, reconstruction
typically becomes a non-convex optimization problem. However,
previous work has demonstrated perfect reconstruction of bilevel
convex polyhedra from unknown orientations given a minimum
number of projections. In this paper, we further extend that
theory by generalizing reconstruction to arbitrary shapes. We
represent objects and their projections as multidimensional finite
rate of innovation (FRI) signals. We retrieve FRI parameters
through the use of isotropic, exponential approximating kernels to
obtain the signal’s exponential moments, followed by application
of 2-D harmonic retrieval methods. FRI parameters are then
paired across different projections. Finally, an algebraic method
is applied to retrieve the orientation angles of the samples,
allowing for successful reconstruction.

Index Terms—multidimensional sampling, exponential approx-
imation, cryogenic electron microscopy (cryo-EM), finite rate
of innovation (FRI), 3-D reconstruction, sampling at unknown
locations, unknown view tomography (UVT)

I. INTRODUCTION

The technology to reconstruct 3-D volumes from their 2-D
projections has revolutionized numerous imaging applications
across several fields. These include macroscopic tasks in
vision-based domains, such as object recognition and motion
capture [1], or in medical imaging, for example in CT scanning
and diagnostics [2]. With improvements in capture and pro-
cessing technology over the past decades, biological structures
that comprise the fundamental building blocks of life can
now be imaged at sub-cellular resolution. A revolutionary
technique is cryo-electron microscopy (cryo-EM), which is
commonly used for single particle analysis of viruses, proteins,
and other macromolecules [3]. In cryo-EM, samples are frozen
at cryogenic temperatures and a series of 2-D projection
images are taken at a variety of unknown angles with an
electron microscope [3]. Reconstruction of the 3-D structure
fundamentally becomes an inverse problem, where the key is
to identify the angular orientation of the projections.

Reconstruction algorithms fall broadly into two categories:
conventional and deep learning based. Conventional methods
can be further divided into two sub-categories. In the first
sub-category, if projection angles are known or accurately
estimated, the central slice theorem gives rise to methods
such as filtered back projection [4]. If orientation angles are
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unknown, reconstruction is posed as a non-convex optimiza-
tion problem [5]. Evidently, reconstruction results are sensitive
to initialisation and may converge to local minima over a
large search space. On the other hand, learning-based methods
have emerged as alternatives with the proliferation of GPU-
based computing. One class of unsupervised networks (such
as CryoGAN and CryoDRGN) does not require priors, but ne-
cessitates large training datasets for accurate performance [6],
[7]. Other networks encode molecular information in reference
based representation. In particular, AtomVAE and CryoFOLD
represent imaging subjects as mixtures of Gaussians [8], [9]. In
all these cases, reconstruction is made additionally challenging
due to experimental conditions, such as microscopic imaging
aberrations and low signal to noise ratio [10].

In this paper, we propose a reconstruction method that uses
a limited number of projections taken at unknown angles that
can accurately recover 3-D objects of arbitrary shape. The
key to this approach is based on the representation of any
object as a summation of point sources sampled by a kernel.
Specifically, projection samples can be described as signals
with finite rate of innovation (FRI), allowing for the retrieval of
point sources with conventional methods such as matrix pencil.
Following this, projection orientations and 3-D structure can
be obtained through variations of the method outlined in [11].

II. PROBLEM FORMULATION

A. Data Acquisition

We approximate a 3-D object of arbitrary shape with the
function g(r) = g(x, y, z), which is composed of a mixture
of K isotropic basis functions φ(r) located at {vk}Kk=1 in R3

space:

g(r) =

K∑
k=1

akφ(r− vk). (1)

We also impose the condition that
∑K

k=1 vk = 0. For
J ≥ 3 projections of the object captured at distinct angles,
the orientation of each projection plane is described by the
direction vector dj ∈ R3 and limited to the rectangular
viewing window Πj . The 2-D projections, {Ij(x, y)}Jj=1, are
thus obtained through the application of the Radon transform
to g(r), as described in Equation (2):

Ij(x) = Ij(x, y) = Pj{g(r)}(x, y) (2)

=

∫
R3

g(r)δ(x− rTuj,x − sj,x)δ(y − rTuj,y − sj,y)d
3r



where
• Pj{·} denotes the projection operator onto the 2-D ob-

servation window Πj .
• uj = [uj,x,uj,y] ∈ R3 are the unit vectors of the pro-

jection plane Πj . Consequently, they obey the following
relations: uj,x⊥uj,y and uj,x × uj,y = dj , j = 1, ..., J .

• sj = [sj,x, sj,y] ∈ R2 denotes the shifts of the projection
plane along uj in their respective x and y directions.

This process is illustrated in Figure 1.

Fig. 1: An example of a 3-D shape g(r) and its parallel beam
projection onto Πj . The origin of the projection is located at
Oj at a shift sj away from the true origin.

Considering the model description in Equation (1), the
continuous 2-D projection can be described as follows,

Ij(x) = Ij(x, y) =

K∑
k=1

akPj{φ(r− vk)}

=

K∑
k=1

akPj{φ}(x− pk,j) (3)

where pk,j = [pxk,j , p
y
k,j ] ∈ R2 is the projection of the kth

source vk onto Πj . Since φ(r) is assumed to be isotropic and
radially symmetric in 3-D, its 2-D projections Pj{φ}(x) are
identical regardless of orientation. From Equation (2), the 2-D
locations of the projected point sources pk,j can be written in
terms of their 3-D positions vk, unit vectors uj and shifts sj
as follows:

pk,j = [vT
k uj,x + sj,x,v

T
k uj,y + sj,y]

T . (4)

The process of capturing a projection on a physical imaging
sensor discretizes the image. The sampled discrete projection
image Ij [m,n] can then be modelled as follows:

Ij [m,n] = ⟨Ij(x, y), δ(x/Tx −m, y/Ty − n)⟩

=

∫∫ ∞

−∞
Ij(x, y)δ(x/Tx −m, y/Ty − n)dxdy

=

K∑
k=1

akPj{φ}(mTx − pxk,j , nTy − pyk,j)

(5)

where ⟨·, ·⟩ denotes the inner product and Tx and Ty are the
sampling periods along uj,x and uj,y , respectively. Here, we
assume for simplicity point-like sampling, but our approach
can handle cases where filtering happens before sampling.

Since g(r) is the summation of isotropic 3-D functions
located at {vk}, the problem of reconstructing g(r) is akin
to recovering point sources and their amplitudes in R3 space.

B. Sampling Interpretation

The discrete signal Ij [m,n] can be interpreted as the projec-
tion of a sum of 3-D Dirac delta functions,

∑K
k=1 akδ(r−vk),

onto the plane Πj . This projection is subsequently filtered
using a 2-D function Pj{φ}(x) and uniformly sampled along
uj,x and uj,y with sampling periods Tx and Ty , respectively.
Moreover, it belongs to the class of signals with finite rate
of innovation due to its composition of isotropic 3-D func-
tions [16]. As such, the acquisition process illustrated in
Section II-A is equivalent to sampling the 2-D tomographic
projection of a 3-D FRI signal at unknown angles.

In conventional sampling schemes, perfect reconstruction of
classes of FRI signals is possible given appropriate selection of
sampling kernel and reconstruction strategy. Of particular in-
terest to our application is the class of exponential reproducing
kernels [13]. In this paper, for the sake of problem stability and
generalization, we loosen the exact reproduction requirement
to that of exponential approximation, and make use of the
generalized Kaiser-Bessel window function (KBWF) φ(r),
which has compact support and rotational symmetry [12]. As
such, it is a commonly used basis function in tomography. The
KBWF is given below in Equation (6), where w is the order of
the modified Bessel function Iw(·), γ > 0 is the window taper,
and b > 0 is the support radius. Note that ρ ∈ RN , N ∈ Z+

and ||ρ|| refers to the Euclidean norm.

φ(ρ) =


(√

1−(||ρ||/b)2
)w

Iw

(
γ
√

1−(||ρ||/b)2
)

Iw(γ) 0 ≤ ||ρ|| ≤ b,

0 otherwise.
(6)

The Radon transform of the KBWF admits a closed form
expression as provided in [12]. In the context of FRI, unlike
ideal sampling kernels (e.g., exponential splines) that allow
for perfect reconstruction, the KBWF does not inherently
guarantee exact recovery of the innovation parameters due to
its approximate nature.

In the following section, we will demonstrate reconstruction
of an arbitrarily shaped 3-D object (modeled with g(r) in
Equation (1) with K ≥ 4) given J ≥ 3 sampled projections.
We start by recovering the projected vertices {pk,j} and
amplitudes {ak} from the discrete 2-D projections Ij [m,n].
Next, we perform parameter pairing across projections to
simultaneously identify the vectors {uj}, {dj}, and {sj},
allowing for recovery of the 3-D object.

III. RECONSTRUCTION METHOD

A. Recovering pk,j and ak

The first step in reconstruction is recovering the 2-D
parameters {pk,j} and {ak} in each projection. Since the



KBWF cannot exactly reproduce exponentials, we leverage
the approximate reproduction framework proposed in [13]. We
start by finding the coefficients cα,β(r,q),(m,n) in the following
approximation, where αr = α0 + rζ, r = 0, 1, ..., R and
βq = β0 + qξ, q = 0, 1, ..., Q:∑
m,n∈Z

cα,β(r,q),(m,n)Pj{φ} (x/Tx −m, y/Ty − n) ≈ eαrxeβqy.

(7)
The coefficients are calculated using the interpolation formula
in [13], which allows the reproduced function from the lhs
of Equation (7) to interpolate the exponentials at each integer
point. The 2-D generalization of the interpolation formula is
provided below:

cα,β(r,q),(m,n) =
1∑

h,l∈Z e
−αrhe−βqlPj{φ}(h, l)

eαrmeβqn.

(8)
The coefficients are then used to calculate the exponential

moments, τrq , of the projection signal. Specifically:

τrq =
∑
m,n

cα,β(r,q),(m,n)Ij [m,n]

(a)
= ⟨Ij(x, y),

∑
m,n

cα,β(r,q),(m,n)Pj{φ}(x/Tx −m, y/Ty − n)⟩

(b)
≈ ⟨

K∑
k=1

akδ(x− pk,j), e
αrxeβqy⟩

(c)
=

∫ ∞

−∞

K∑
k=1

akδ(x− pk,j)e
αrxeβqydxdy

=
∑
j,k

ake
αrp

x
k,jeβqp

y
k,j =

∑
j,k

âk,jµ
r
kλ

q
k

(9)

where (a) is from the linearity of the inner product, (b)
follows from Equation (7), and (c) represents the rth and
qth approximate exponential moment of Ij(x, y). The expo-
nential moments can be expressed as the form in the final
line of Equation (9), where âk,j = ake

α0p
x
k,jeβ0p

y
k,j and

µk = eζp
x
k,j , λk = eξp

y
k,j . The choice of R and Q in αr and βq

determines the number of moments, where R,Q ≥ 2K − 1.
The amplitudes âk,j and locations µk, λk can be found

through a variety of 2-D harmonic retrieval techniques. In
our case, we make use of the algebraically coupled matrix
pencil (ACMP) algorithm presented in [14] for simultaneous
and accurate retrieval of µk and λk.

The next step is finding the amplitudes of the exponential
moments, which becomes the simple task of solving a Van-
dermonde system with an unique solution. The final step in
identifying projection parameters is to account for geometric
shifts, which is solved for using the following expression given
for the x direction:

K∑
k=1

pxk,j
(d)
=

(
K∑

k=1

vT
k

)
uj,x +Ksj,x

(e)
= Ksj,x (10)

where (d) is based on Equation (4) and (e) follows from the
fact that the geometric center of {vk} is at the origin. The

same expression is applied to determine the shift in the y
direction.

B. Pairing Across Projections

Given the positions and amplitudes of the projected 2-D
functions for each Ij [m,n], the next task is to pair them across
the different projections. Namely, we want to determine if pk,j

and pk′,l in Ij [m,n] and Il[m,n] correspond to the same point
vk in 3-D. This pairing is done through amplitude comparison
and rank criterion, with the latter outlined in [11].

We first use the recovered amplitude information as an
initial pass for pairing across different projections. If two
recovered amplitudes ak,j and ak′,l from different projections
can be uniquely associated, then their corresponding 2-D
location pk,j and pk′,j are inferred to correspond to the same
3-D point vk. Therefore, we start by pairing all sets of pk,j

and pk′,l with unique and identical amplitudes. We take the
paired 2-D locations and arrange them into the matrix Υ1:

Υ1 =


pT
1,j pT

1,l

pT
2,j pT

2,l
...

...
pT
L,j pT

L,l

 , (11)

where the rows consist of correctly paired projection points. In
[11], it is shown that correctly paired projection points yields
a rank deficient matrix Υ, with maximum rank 3, so we use
this condition to validate our pairing.

Assuming that L pairs have been matched, the subset of
remaining (K − L) parameters are used to create the matrix
Υ2. Following the method in [11], the order of rows in one
column are permuted until rank deficiency is achieved. The
initial step of pairing with amplitudes reduces the number of
permutations required from K! to (K−L)!, which significantly
eases computation time. When the correct pairing is reached,
all K values of pk,j and pk′,l form a rank deficient matrix
Υ:

Υ =

[
Υ1

Υ2

]
=


pT
1,j pT

1,l

pT
2,j pT

2,l
...

...
pT
K,j pT

K,l

 . (12)

This is used to determine the unit vectors uj and by
extension, the projection angles.

C. Projection Angle Estimation

The steps for estimating projection orientations follows the
procedure outlined in [11]. We start by creating Ωx from the
paired projection positions, which is defined below. Note that
Ωy is created in a similar manner.

Ωx =

 px
1,1 · · ·px

1,J
...

px
1,K · · ·px

K,J


K×J

=

v
T
1
...

vT
K


K×3

[
u1x · · · uJx

]
3×J

= VUx

(13)



Ωx and Ωy are concatenated to form Ω = [Ωx|Ωy]. Evidently,
Ω can be factorized as Ω = V[Ux|Uy] = VU. Next, the
singular value decomposition of Ω = USVT yields the first
estimate for U, denoted as Û:

Û = [Ûx|Ûy] = SVT . (14)

This initial estimate is related to the true unit vectors
through the linear transform Q ∈ R3×3, where U = QÛ.
Using the fact that U has unit norm columns, we can state the
following relations: ûT

j,xQ
TQûj,x = 1 and ûT

j,yQ
TQûj,y =

1, which yield a system of 2J linear equations altogether.
Defining M = QTQ, we recognize that it is a symmetric
matrix with six unknowns, thus requiring at least six (=2J)
equations to solve, necessitating the condition J ≥ 3. This is
solved to identify Q, which is then applied to U to obtain
the true unit vectors of each projection. Finally, the direction
vectors dj are computed using cross product between the uj,x

and uj,y , up to a rigid rotation.

D. 3-D Object Recovery

Once the unit direction vectors are found, vk is determined
from the series of linear equations formed by Ωx and Ωy .
Using the 3-D geometric centers and amplitudes, the 3-D
object is fully reconstructed using Equation (1).

Therefore, given Ij [m,n], j = 1, ..., J with J ≥ 3 at
unknown orientations, the projection angles and the arbitrary
3-D object comprised of K ≥ 4 isotropic functions can be
exactly reconstructed up to an orthogonal transformation. The
full method is summarized in Algorithm 1.

Algorithm 1 Full 3-D shape reconstruction algorithm
Inputs: 2-D projections {Ij [m,n]}Jj=1, J ≥ 3
Outputs: 3-D geometric centers {vk}Kk=1, projection
orientations {dk}Kk=1, 2-D planar shifts {sj}Jj=1, K ≥ 4

1: Compute the exponential moments τrq for each projection
based on Equation (9).

2: Apply 2-D harmonic retrieval to the exponential moments
to recover amplitudes ak and positions pk,j .

3: Calculate 2-D planar shifts by solving Equation (10) and
apply corrections to pk,j .

4: Pair sets of {pk,j}Lk=1, L ≤ K based on amplitudes ak.
5: Pair the remaining sets of (K − L) points {pk,j}Kk=L+1

based on the rank criterion.
6: Determine the unit direction vectors uj,x,uj,y of each

projection by applying SVD to Ω and then finding Q.
7: Compute the orientations of each projection dj by taking

the cross product between uj,x and uj,y .
8: Find the geometric centers {vk}Kk=1 from the series of

linear equations formed by Ωx and Ωy

9: Reconstruct the full 3-D object using Equation (1).

IV. NUMERICAL SIMULATION

The method outlined above is applied to g(r) comprised
of K = 12 isotropic functions and J = 3 projections at
randomly selected orientations. In the spirit of cryo-EM based

applications, we select the molecular model of polylactic acid
(PLA) as positional reference for g(r) [17]. The 3-D model
and its 3 random projections are shown in Figure 2. The

Fig. 2: g(r) comprised of 12 isotropic functions. (a) shows
the 3-D molecular model and (b) shows projections of (a) at
3 random orientations.

isotropic function is the 2-D KBWF with modified Bessel
order w = 2, support radius b = 0.1, and window taper
γ = 19. Exponential approximation coefficients are calculated
using the interpolation formula provided in Equation (8). The
sampling period is Tx = Ty = 1/62. The first step of
reconstruction is applying the method outlined in Section
III to accurately determine the geometric centers pk,j and
amplitudes aj,k of the molecules, which are demonstrated for
a selected projection in Figure 3. Finally, the recovered object
along with its unit vectors are shown in Figure 4.

Fig. 3: The original and recovered 2-D FRI parameters. (a)
shows accurate ak values at locations pk,j and (b) shows pk,j

directly for a projection.

Fig. 4: The original and reconstructed object with uj and
dk. (a) shows g(r), (b) shows the recovered object, and
(c) shows the recovered object after applying an orthogonal
transformation.

V. CONCLUSION

We have proposed a method for accurate reconstruction of
an arbitrarily shaped 3-D object from J ≥ 3 2-D projections
while simultaneously identifying unknown projection orienta-
tions. In the future, we will analyse resiliency of the method
to noise and we will study how to increase noise resiliency
with the number J of projections.
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[13] J. A. Urigüen, T. Blu, and P. L. Dragotti, ”FRI sampling with arbitrary
kernels,” IEEE Transactions on Signal Processing, vol. 61, no. 21, pp.
5310-5323, 2013.

[14] F. Vanpoucke, M. Moonen, Y. Berthoumieu, ”An efficient subspace
algorithm for 2-D harmonic retrieval,” Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process, 1994, pp. 461-464.

[15] R. Wang and P. L. Dragotti, ”Perfect reconstruction of classes of 3D non-
bandlimited signals from gomographic projections at unknown angles,”
2023 31st European Signal Processing Conference (EUSIPCO), 2023,
pp. 1903-1907.

[16] P. L. Dragotti, M. Vetterli and T. Blu, ”Sampling Moments and
Reconstructing Signals of Finite Rate of Innovation: Shannon Meets
Strang–Fix,” in IEEE Transactions on Signal Processing, vol. 55, no. 5,
pp. 1741-1757, May 2007.

[17] National Institutes of Health, ”PLA,” 3d.nih.gov.
https://3d.nih.gov/entries/3DPX-014616 (accessed Jan 2025).


