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ABSTRACT

One of the greatest challenges of reinforcement learning is efficient exploration,
especially when training signals are sparse or deceptive. The main difficulty of
exploration lies in the size and complexity of the state space, which makes simple
approaches such as exhaustive search infeasible. Our work is based on two im-
portant observations. On one hand, modern computing platforms are extremely
scalable in terms of number of computing nodes and cores, which can complete
asynchronous and well load-balanced computational tasks very fast. On the other
hand, Divide-and-Conquer is a commonly used technique in computer science to
solve similar problems (such as SAT) of doing efficient search in extremely large
state space. In this paper, we apply the idea of divide-and-conquer in the context
of intelligent exploration. The resulting exploration scheme can be combined with
various specific intrinsic rewards designed for the given task. In our exploration
scheme, the learning algorithm can automatically divide the state space into re-
gions, and each agent is assigned to explore one of these regions. All the agents
run asynchronously and they can be deployed onto modern distributed computing
platforms. Our experiments show that the proposed method is highly efficient and
is able to achieve state-of-the-art results in many RL tasks such as MiniGrid and
Vizdoom.

1 INTRODUCTION

Deep reinforcement learning is a very important learning framework to train intelligent agents to
solve complex tasks (Sutton & Barto, 2018). Despite recent success stories in a variety of real tasks
(Silver et al., 2016; Vinyals et al., 2019; Lee et al., 2020), the difficulty of exploration remains a ma-
jor challenge for DRL when the reward is sparse or deceptive (Burda et al., 2018). Recent research
in exploration has made significant progresses thanks to the idea of intrinsic motivation (Schmid-
huber, 2010). Intrinsic motivation could be viewed as objectives for unsupervised reinforcement
learning (Levine, 2020), and their goal is usually not to guide the agent to complete a specific task,
but to help the agent to discover interesting states and trajectories which could help the agent to un-
derstand the environment and find possible target solutions for specific tasks. Many previous works
on intrinsic motivation (Raileanu & Rocktäschel, 2020; Burda et al., 2018; 2019) can be understood
as proposing some kind of metrics to measure the novelty of the states, and then using the metric
as an intrinsic reward to encourage agents to reach novel states, such as count-based exploration
(Bellemare et al., 2016) and ICM (Pathak et al., 2017).

Despite of the significant progresses that have been made, in theory, efficient exploration is still very
challenging if not impossible, due to the infeasible size of the state space to be explored. Similar
difficulties are usually seen in the state-space search problems in theoretical computer science. For
example, in SMT or SAT problems (De Moura & Bjørner, 2008), one is required to search for a
feasible solution to satisfy certain constraints, and these problems are usually NP complete because
of the exponential size of the state space.

A very common class of practical algorithms to solve these search problems is divide and conquer.
The algorithm first tries to divide the state space into certain pieces and then search for results in
each piece of state space. A significant benefit of this approach is it can be easily modified to take
advantage of modern distributed/concurrent computing hardware, because it can naturally divide
a hard problem into smaller and simpler ones, allowing different computing nodes to complete
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the tasks asynchronously. Divide-and-conquer type of algorithms are among the state-of-the art
algorithms to solve SMT or SAT problems.

In this paper, we take inspiration from divide and conquer algorithms in theoretical computer science
and try to adapt them to the exploration problems in RL. Different from traditional exploration
mechanisms with a single exploring agent, we train a number of concurrent exploring agents. We
carefully design our intrinsic reward such that each exploring agent is encouraged to explore only
one region in the state space. In other words, the state space is automatically divided into several
components, where each agent is responsible for exploring one of these components.

In order to achieve this, we first choose a reward function based on intrinsic motivation, e.g. count-
based reward or ICM. This function is able to output a novelty score for a given transition. We
initialize K agents, each agent is equipped with its own version of reward function. Then we design
a multi-party intrinsic reward for each agent consisting of two parts: (1) a reward to discourage the
agent to visit states which has already been explored by other agents. (2) a self exploration reward
to encourage the agent to visit novel states which has not been visited by itself. Agents run in a fully
asynchronous manner, no agent has to wait for other other agent’s progress to take exploration steps.
All agents communicate with each other through shared memory, under the abstraction of a simple
read-write shared object, which can be made lock-free, i.e., the learning system can always progress
regardless of some computing nodes may delay or fail. These properties make our algorithm highly
scalable. Our experiments show that the proposed method is highly efficient and is able to achieve
state-of-the-art results in many RL tasks such as MiniGrid and Vizdoom.

2 RELATED WORK

Intrinsic Motivation The study of intrinsic motivation has been of interest for some time
(Schmidhuber, 2010). Earlier works on intrinsic motivation tended to analyse with psychology
and combined with reinforcement learning in tabular setting (Deci et al., 1981; Singh et al., 2005).
With the breakthroughs of deep reinforcement learning, there has been a surge of interest in applying
intrinsic motivation with deep neural networks for hard exploration RL problems, in which count-
based exploration and curiosity-driven exploration are two main promising research branches. For
count-based methods, the agent is encouraged to explore rarely visited states, while for curiosity-
driven methods, the agent is encouraged to explore via learning the world model. Count (Bellemare
et al., 2016) extends count-based methods to non-tabular setting by deriving pseudo-counts with a
density model. Ostrovski et al. (2017) adapts Bellemare et al. (2016) with PixelCNN. RND (Burda
et al., 2018) uses random network distillation to measure the familiarity of states, and RGU (Badia
et al., 2020) combines RND with an episodic novelty module. ICM(Pathak et al., 2017) builds a for-
ward dynamic model and an inverse dynamic model to measure the curiosity for exploration. RIDE
(Raileanu & Rocktäschel, 2020) has similar networks with ICM while using a different intrinsic
reward combined with episodic state visitation counts. AMIGo (Campero et al., 2020) proposes
a meta-learning framework for generating adversarially motivated intrinsic goals in curriculum to
guide agent exploration. RAPID (Zha et al., 2021) ranks past trajectories with episodic scores and
does imitation learning for distillation. AGAC (Flet-Berliac et al., 2021) formulates an actor-critic
framework with adversary. Our work is different from above by building a multi-agent learning
mechanism to accelerate exploration.

Distributed Reinforcement Learning The scalability of large scale distributed learning in DRL
is a main challenge for reinforcement learning. Most of previous works scale up deep reinforcement
learning with distributed asynchronous SGD (Dean et al., 2012) by distributing RL components.
Gorila (Nair et al., 2015) scales DQN (Mnih et al., 2015) with distributed Q networks and replay
buffers. A3C (Mnih et al., 2016) uses multiple workers for training and collects all gradients for
parameter synchronous. Unlike A3C, IMPALA (Espeholt et al., 2018) transfers all trajectories to
multiple central learners for distributed learning. Ape-X (Horgan et al., 2018) consists of a dis-
tributed replay buffers and a synchronous learner for value-based methods. SEED RL (Espeholt
et al., 2019) and OpenAI Rapid (OpenAI, 2018) apply central GPU based inference for acceleration.
For most of the above works, the main parallelism exploited by the distributed framework is data
parallelism, e.g. they use multiple nodes for collecting data, and divide minibatches among comput-
ing nodes and aggregate on the gradients computed by each node. Our model, on the other hand, can
be viewed as taking advantage a new parallelism specific to RL problems — state space parallelism.
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Instead of dividing minibatches for the nodes, we let the agents divide the state space into pieces,
which greatly improves exploration efficiency.

3 BACKGROUND

3.1 PROBLEM FORMULATION

In this paper, we consider an RL problem formulated as a Markov Decision Process(MDP), which
is defined as a tuple MDP = {S,A, P,R, γ}, where S is the state space, A is the action space of the
agent, P is the transition probabilities which represents the stochastic transition function S×A→ S,
R(s, a) is the reward function after the agent executes an action, γ is the discount factor. The goal is
to maximize the expected accumulated rewards R = E(

∑T
t=0 γ

tr(st, at)) the agent receives when
executing series of optimal actions in episodes with policy π.

In our method, other than the rewards rt received from environment at timestep t, our agents also
receive a intrinsic reward Rt as an guidance for efficient exploration. The intrinsic reward is a
parameterized function of state and action Rt(s, a) = fθ(s, a),where the parameters θ = θ(M)
depends on the agent’s history or replay buffer M . For example, in count-based reward, θ is the
number of visits at each state.

Instead of a single exploring agent, our proposed method trains K independent exploring agents.
The exploring agents do not communicate or affect each other directly, however they indirectly
affect each other through the intrinsic rewards. Each agent uses its own history or replay memory to
train its own version of fθ(the intrinsic motivation model). For any agent, the total intrinsic reward
used for agent training is formed by combining all trained reward functions of all the agents.

3.2 CONCURRENT SHARED OBJECTS

A commonly used primitive in concurrent or distributed computing is concurrent shared objects. It is
basically the user interface of concurrent data structures. A concurrent shared objects is composed
of several methods which all processes can call. The behavior of a shared object is defined by
its sequential execution traces. For example, a concurrent Set object has three methods, add(v),
find(v) and remove(v). The behavior of this concurrent object is defined by the sequential executions
of an ordinary (non-concurrent) Set data type. Also, a property called ”linearizability” is applied
to guarantee consistent usage of the concurrent object. Linearizability basically says that for any
concurrent execution traces of the concurrent object, one can find a sequential execution trace which
yields exactly the same results and the sequential execution trace preserves the real time ordering
of the concurrent execution trace. In other words, all the methods of the concurrent objects can be
viewed as executed atomically. In this paper, we assume all concurrent objects are linearizable.

4 DIVIDE AND EXPLORE

We design a learning mechanism named Divide-and-Explore (D&E) to realize the idea mentioned
above. An overview of D&E is illustrated in Fig.1. The learning framework consists of n indepen-
dent agents {A1, A2, . . . , An}, and each agent tries to explore a particular region in the state space.
We let replay memory M i denote the set of all the past experiences of the ith agent Ai in the form
(sit, a

i
t, r

i
t, s

i
t+1). Let M = (M1, · · ·Mn) be the collection of replay memories of all agents. Note

that in practice we usually don’t need to store all the past experiences in the replay memory, but
some sufficient statistics of the experiences is enough.

Our algorithm first specifies a learnable intrinsic motivation model fθ as a reward function, and θ
is the model’s parameters. For each agent Ai, we keep track of a distinct model f i = fθi , where
θi = θ(M i) is a function of the replay memory of agent Ai. When agent Ai takes a transition
(sit, a

i
t, r

i
t, s

i
t+1), for every agent Aj , our training architecture computes a intrinsic reward r̂i,jt based

on the transition and the agent’s f j , as following

r̂i,jt = f j(sit, a
i
t, r

i
t, s

i
t+1) (1)
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Figure 1: An Overview of Divide and Explore. Agents are exploring different regions of state space automat-
ically, and intrinsic motivations are shared across all the agents for updating.

Intuitively, r̂i,jt measures the transition’s novelty for agent Aj . If r̂i,jt is large, it means that the state
si+1 is rarely visited and not explored fully by Agent Aj . The intrinsic motivation model fθ can
be selected with any kind of count-based, curiosity-driven and memory-based exploration methods
(e.g. Pathak et al. (2017); Burda et al. (2018)) according to the specified task.

4.1 DIVIDE AND EXPLORE REWARD

Here we define the D&E intrinsic reward for agent learning as below:

Rit = ωo
∑
j 6=i

r̂i,jt + ωsr̂
i,i
t (2)

where ωo(n− 1) + ωs = 1.

According to the definition, the D&E reward aggregates other agents’ intrinsic rewards and the
agent’s own intrinsic reward, which encourages the agent to explore the state space where all agents
have rarely explored. This mechanism enables full use of all agents’ experience and gets rid of
wasting time on fully explored state space so as to improve exploration efficiency. The weights ωo
and ωs determine the exploration preference between agent separability and self exploration. If ωo
is zero, the algorithm turns out to be conventional intrinsic-driven exploration, while if ωs is zero,
the algorithm only considers separability and the agent may converge to a local state space where
other agents haven’t visited and stop exploring further. In practice, we set ωo > ωs to encourage
agents to explore separately while keeping self exploration.

With the D&E intrinsic reward, the total reward is defined as follows:

r̃it = rit + αitR
i
t (3)

where rit is the task reward provided by the environment, and αit is the weight of D&E intrinsic
reward. Base on the definition above, we are able to turn a sparse reward task into a dense one,
and apply conventional model free reinforcement learning algorithms such as PPO (Schulman et al.,
2017) or IMPALA (Espeholt et al., 2018) to train the agent policy.

4.2 AUTOMATIC REWARD WEIGHT DECAY FOR EXPLOITATION

While the main goal of Divide-and-Explore is to encourage efficient exploration, we also consider
the trade-off between exploration and exploitation. In conventional model free reinforcement learn-
ing, the trade-off is usually controlled in the agent roll out process via ε-greedy (Mnih et al., 2015)
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or the action probability distribution (Mnih et al., 2016). Because in D&E we use intrinsic reward to
encourage agent to explore, we reduce the intrinsic reward weight to make agent pay more attention
to the trajectories with high extrinsic reward, especially when the agent has trained a lot and has a
probability of obtaining some rewards. The decay of intrinsic reward weight can be formulated as
α = dt · α0, and dt is decay factor. Compared to linear decay, we design an adaptive decay method
as follows:

αit = ditα0 = max{1− 1

U
(

N∑
j=0

φN−jRij), 0} · α0 (4)

in which α0 > 0 is the initial value of αit, d
i
t is the decay factor of agent Ai at time t, N is the

number of Ai’s historical episodes andRij is the return of episodes. We consider more about newly
generated episodes by introducing φ ∈ (0, 1]. U is a hyperparameter, which determines the decay
rate, and in general, we let U =

∑N
j=0 φ

N−jR∗. According to Eq.4, αit has negative correlation
with the sum of historical rewards and is adjusted automatically during training, which matches the
goal of trade-off.

4.3 FULLY ASYNCHRONOUS UPDATES WITH CONCURRENT DATA STRUCTURES

In order to speed up computing and scale our approach to large number of exploring agents, we use
non-blocking concurrent computing primitives in our implementation. In our algorithm, the reward
functions f i = fθi , i = 1, 2 · · ·n is shared across all agents. Only agent Ai is allowed to modify θi,
but all agents can read θi. We can store θ = (θ1, θ2, · · · θn) in a shared concurrent object O.

In the terminology of concurrent data structures, we define O as a concurrent object that allows
two operations, read(i) which returns a copy of θi and update(i, v) which overwrite current θi into
value v. A lot of concurrent data structures could be used to implement this concurrent object, such
as read-write locks (locking), transactional memory or software transactional memory (lock-free).
In our work, we use software transactional memory since it is non-blocking, making our algorithm
fully asynchronous.

Our approach is summarized in Algorithm 1. All the agents are trained asynchronously in a dis-
tributed training framework, and the shared objectO is read every L steps. Besides, there is a special
attribute of D&E that all agents will be convergence as long as only one agent accomplishes the task.
With the shared intrinsic motivation and learning mechanism, the failure experience of other agents
is transferred to the succeeding agent as bad cases to avoid repetition of wrong exploration, which
demonstrates the superiority of this algorithm.

5 EXPERIMENTS

In this section, we evaluate D&E on two challenging reinforcement learning research platforms
MiniGrid (Chevalier-Boisvert et al., 2018) and VizDoom (Kempka et al., 2016), and both of them
have hard exploration environments with sparse rewards, which are commonly used as benchmarks.
For all our experiments, we compare our approach against various state-of-the-art baselines for hard
exploration including Count (Bellemare et al., 2016), ICM (Pathak et al., 2017), RND (Burda et al.,
2018), AMIGo (Campero et al., 2020), RIDE (Raileanu & Rocktäschel, 2020), RAPID (Zha et al.,
2021) and AGAC (Flet-Berliac et al., 2021).

5.1 MINIGRID EXPERIMENTS

Environment The MiniGrid environments are a set of procedurally-generated 2D grid worlds
with sparse reward. Following AGAC (Flet-Berliac et al., 2021)’s setting, we choose three types
of tasks for experiments: MultiRoom(MR), KeyCorrider(KC) and ObstructedMaze(OM). In the
MultiRoom tasks, there are multiple rooms connected one-by-one with doors. The agent has to go
through these rooms to reach a goal. In the KeyCorrider tasks, several rooms are nested together
and the mission of the agent is to find a key so as to open a locked room and pick up an object. For
the last, the ObstructedMaze tasks are updated versions of KeyCorrider and most challenging where
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Algorithm 1 Divide and Explore
1: Input: Time horizon T , decay frequency K, reward model update frequency L, reward weight
ω and α0

2: Initialize n agent policies {π1, π2, ..., πn} and the shared object contains reward model param-
eters O, agent replay memory {M1,M2, ...,Mn}. For each agent policy, initialize a local copy
of reward models θ̂1, θ̂2, · · · θ̂n.

3: for iteration=1,2,... until convergence do
4: for all agents Ai, i = 1, 2 · · ·n do asynchronously
5: Roll out T timesteps with πi in the environment
6: for every L steps do
7: Update local reward model parameters θ̂j = O.read(j), j 6= i
8: end for
9: Compute total rewards using Eq.3 based on locally stored θ̂1, θ̂2, · · · θ̂n.

10: Update πi with RL algorithm like PPO
11: Update agent replay memory M i

12: Compute new model parameters based on the replay memory θ̂i = θi(M i)

13: Update shared object by calling shared method O.update(i, θ̂i)
14: end for
15: for every K steps do
16: Update reward weight α with Eq.4
17: end for
18: end for
19: Return the optimal policy π∗

the key is hidden in boxes and the door is obstructed by balls. For all tasks, we make use of partial
observations, which means the observation space is a 7x7x3 tensor indicating the information of
partially-observable grid cells, and there are 7 actions for executing.

D&E with Count-based Exploration Due to the simplicity of 2D grid environment, we count
the states in the form of tabular as exploration bonus in the MiniGrid tasks, which has been used
in previous works, e.g. Count (Bellemare et al., 2016), RIDE (Raileanu & Rocktäschel, 2020) and
AGAC (Flet-Berliac et al., 2021). Therefore, We combine count-based exploration with D&E for
experiments. In detail, we define the intrinsic reward by:

r̂i,jt = 1/

√ ∑
s∈Mj

I(s = sit+1) + 1 (5)

where I(·) is indicator function.We also introduce an inner-episodic count mask as a multiplier by
replacing original reward weight αit with:

αit ← I(
∑
s∈Ci

I(s = sit) = 0)αit (6)

where Ci is the trajectory in current episode. With this mask, if a state has been visited in the
trajectory, the intrinsic reward will be masked, which improve the exploration efficiency.

Training We use PPO (Schulman et al. (2017)) as a standard model free RL algorithm to train
all the agents. For fair comparison, the architecture of actor and critic network we use is the same
as AGAC’s network in Flet-Berliac et al. (2021), which consists of 3 convolutional blocks and a
fully connected layer for feature processing. More concretely, each convolutional block contains a
32-filter 3x3 convolution with stride size 2, and the hidden size of fully connected layer is 512. The
number of agents in D&E is set to 3 as default for all tasks. More hyperparameters can be seen in
Appendix A.

Results We train D&E with various MiniGrid tasks and compare the results with baselines in
both exploration efficiency and performance. For exploration efficiency, we illustrated the learning

6



Under review as a conference paper at ICLR 2022

Figure 2: Performance of D&E and baselines in MiniGrid. We plot the best agent’s performance in
D&E.

Task KC-S4R3 KC-S5R3 MR-N10S10 MR-N12S10 OM-2Dlhb OM-1Q OM-2Q

D&E 0.91 0.90 0.60 0.60 0.16 0.39 0.09
AGAC 0.93 0.90 0.52 0.51 0.04 0.09 0.20
RAPID 0.90 0.00 0.54 0.55 0.00 0.00 0.00
RIDE 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AMIGo 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RND 0.00 0.00 0.00 0.00 0.03 0.00 0.00
ICM 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Count 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 1: Final performance of D&E and baselines on MiniGrid environments. All the methods are
trained in 50M total timesteps.

curves of D&E and baselines in less than 50M timesteps in Fig.2. Because of the training con-
currency in all D&E’s agents, we record the best agent’s performance for D&E with the agent’s
timesteps by default. In all the tasks, D&E achieves state-of-the-art results and the performance
boosts with much less timesteps compared to other methods especially AGAC and RAPID. Only in
the ObstructedMaze-2Q task, the performance of AGAC is comparable with D&E.

For performance only, we report the final performance of all methods in Table 1. All baselines
are trained in 50M timesteps. Due to the multi-agent learning mechanism, the total number of
timesteps used in D&E is directly proportional to the number of agents. Therefore, we only record
the performance of D&E at 16.7M timesteps for a fair comparison. As we can see in the table, D&E
performs best in most scenarios while several approaches such as RND, ICM and Count totally
failed in all the listed tasks.

For better understanding the exploration efficiency, we also plot the state visitation heatmaps of the
challenging MultiRoom-N12-S10 task with 1M timesteps in Fig.3. The policies are trained in a
singleton environment. While D&E finds a good trajectory to the last room with few wrong actions,
AGAC spends more time in the journey, and RAPID is stuck in the sixth room.
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Figure 3: State visitation heatmaps in the MultiRoom-N12-S10 task. All the comparison methods
only train 1M timesteps.

Timesteps 1M 2M 3M 4M 5M 6M

D&E 0.23 ± 0.5 0.96± 0.1 0.97± 0.02 0.97± 0.01 0.97± 0.001 0.97± 0.001
AGAC 0.12± 0.5 0.84± 0.1 0.95± 0.1 0.97± 0.01 0.97± 0.001 0.97± 0.001
RIDE ≤ 0. ≤ 0. ≤ 0. ≤ 0. ≤ 0. 0.95± 0.001
ICM ≤ 0. ≤ 0. ≤ 0. ≤ 0. ≤ 0. 0.95± 0.001
Rapid ≤ 0. ≤ 0. ≤ 0. ≤ 0. ≤ 0. ≤ 0.
AMIGo ≤ 0. ≤ 0. ≤ 0. ≤ 0. ≤ 0. ≤ 0.
RND ≤ 0. ≤ 0. ≤ 0. ≤ 0. ≤ 0. ≤ 0.
Count ≤ 0. ≤ 0. ≤ 0. ≤ 0. ≤ 0. ≤ 0.

Table 2: Performance of D&E and baselines on the VizDoom environment.

5.2 VIZDOOM EXPERIMENTS

Environment The VizDoom environments are a series of Doom-based 3D scenarios for rein-
forcement learning. We choose the MyWayHome task following AGAC (Flet-Berliac et al., 2021)’s
setting. The MyWayHome task consists of multiple rooms and corridors, which is a 3D naviga-
tion task that the agent explores rooms to find the object. Different from MiniGrid, the state is an
ego-centric visual observation with a size of 42x42x4, and the number of action is 5.

D&E with Curiosity-Driven Exploration In order to demonstrate the generality of D&E and
compare with baselines, we get rid of using count-based reward and combine D&E with the
curiosity-driven exploration method ICM (Pathak et al., 2017). Every agent has its independent
ICM which calculates intrinsic reward based on transition (st, at, st+1). For each agent, the ICM is
trained together with its policy and shared across all the agents. We set the learnable reward model
f i mentioned in Eq.1 as the ICM model, following ICM’s definition with normalization.

Training and Results Following MiniGrid experiments, we train D&E in VizDoom with minor
changes. We use the same network architecture of actor and critic with different state input in
VizDoom, but replace count-based exploration with ICM using the original implementation. The
hyperparameters are reported in Appendix A. We list the comparison results in Table 2 and D&E
outperforms other baselines in any selected timesteps. Interestingly, while ICM is slow to solve the
task, D&E learns fast and achieves high performance. Even when we compare D&E at 2M timesteps
(6M timesteps in total agents) with ICM at 6M timesteps, the performance of D&E is still better.

5.3 ABLATION STUDY

In the ablation study, we aim to answer following questions: 1) Is D&E capable to guide agents to
explore different regions of state space separately? 2) Compared to single-agent setting, is D&E’s
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learning mechanism a key reason to improve exploration efficiency? 3) How the number of agents
influence the performance?

For question 1, we train D&E on the KeyCorridorS6R3 task with singleton environment, and the
number of agents is 3. The exploration process of different agents is shown in Fig.4, in which state
visitation count in historical trajectories is accumulated and visualized in the form of heatmap. As
we can see in the figure, it is clear that three agents are exploring different regions of the environment
separately, which validates the learning mechanism of D&E.

Figure 4: Exploration processes of three different agents in singleton environment.

Figure 5: The performance of D&E with different number of agents.

For question 2 and 3, we train D&E on the KeyCorridorS6R3 task with various number of agents
in singleton environment. The left figure in Fig.5 shows the best agent’s learning curve under dif-
ferent agent number setting, which confirms that the number of agent brings benefits to the training
efficiency of the algorithm. In fact, if the number of agents is one, the method is a conventional
count-based method. On the other hand, as shown in the right figure in Fig.5, we also plot the num-
ber of training timesteps required when the return of episode reaches 0.8 and 0.9 for the first time.
While the more agents, the less time algorithm needs to be trained, it shows a diminishing marginal
effect. Thus, the number of agents should be chosen according to the task.

6 CONCLUSIONS

We proposed a brand new algorithm named Divide-and-Explore(D&E) to handle the hard explo-
ration problem in reinforcement learning. Inspired by divide-and-conquer, D&E trains multiple
concurrent exploring agents, and successfully guides each agent exploring different regions of state
space with shared intrinsic motivations while keeping exploring the boundary, which produces state-
of-the-art results. More generally, D&E can be seen as a framework, which can combine existing
single-agent exploration methods, e.g. Count, ICM, RIDE and so on, to improve learning efficiency.
In the future work, we’d like to extend this idea to large scale setting and test it on general RL bench-
marks like atari games (Mnih et al., 2015) and MuJoCo tasks (Todorov et al., 2012). And we will
also explore the application of D&E on 3D navigation in robotics (Zhelo et al., 2018) or playtesting
coverage in games (Gordillo et al., 2021).
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A HYPERPARAMETERS

The hyperparameters of D&E used in both MiniGrid and VizDoom environments are listed in Table
3. For Count, RND, ICM, RIDE, we conduct experiments based on the authors’ implementation1,
while the policy networks are modified to be the same as D&E. And for other algorithms, we use
the authors’ implementations with default hyperparameters, e.g. AMIGo2, RAPID3 and AGAC4.

Parameter Value

Time horizon T 2048
Number of epochs 4
Number of minibatches 8
Learning rate 3e-4
Final learning rate 3e-5
Learning rate anneal schedule linear
Learning rate anneal steps 1e4 (3e4 in VizDoom)
Discount γ 0.99
GAE parameter λ 0.95
Gradient clip threshold 1.0 (5.0 in VizDoom)
Number of agents 3
Decay frequency K 1
Reward model update frequency L 2048
Reward weight ωo 0.465
Reward weight ωs 0.07
Reward weight α0 0.1
Threshold U 42 (30 in VizDoom)
Decay rate φ 0.98

Table 3: Hyperparameters used in D&E

B ADDITIONAL EXPERIMENTS

B.1 HARDER EXPLORATION TASK

There are many harder exploration tasks in MiniGrid that have not been well resolved in previous
studies, for example, MiniGrid-KeyCorridorS10R4-v0. The difficulty of this task comes from three
perspectives. Firstly, because the agent can only observe a small range of 7× 7, large map will con-
fuse corridors and rooms, making it difficult for the agent to know about its own location through ob-
servation. Secondly, the larger environment makes agent’s trajectory longer and the rewards become
more sparse, and this reinforces agent’s dependence on intrinsic rewards during training. Thirdly,
the larger environment makes the connection between rooms more complex, and agent often needs
to go through several rooms to find the key and the object. However, D&E achieves amazing per-
formance as shown in Fig.6, which shows that D&E does enhance ability to solve problems rather
than simply improve efficiency.

B.2 EXPERIMENT DETAILS

To the results mentioned in Fig.2, we plot the best performance in several independent runs of
baseline algorithms, to illustrate the benefits are mainly from the particular intrinsic motivation. As
shown in Fig.7, compared with independent runs, the interact between different agents and intrinsic
reward calculated from all agents’ replay buffer indeed accelerate the exploration efficiency.

1https://github.com/facebookresearch/impact-driven-exploration
2https://github.com/facebookresearch/adversarially-motivated-intrinsic-goals
3https://github.com/daochenzha/rapid
4https://github.com/yfletberliac/adversarially-guided-actor-critic
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Figure 6: The performance of D&E with different decay method.

Figure 7: Performance of D&E and baselines in MiniGrid. We plot the best agent’s performance in
D&E and best performance in several independent runs of baseline algorithms.

B.3 ABLATION EXPERIMENTS FOR DECAY METHOD

As a supplement, we also compare the effects of different intrinsic reward weight decay methods.
We compare the conventional linear decay and adaptive decay in the MiniGrid-KeyCorridorS6R3-v0
task. The intrinsic reward weight in the former is calculated as:

αit = max{1− N

U
, 0} · α0 (7)

while in the latter it is calculated as Eq.4. The results are shown in the left figure of Fig.8, which
validates the benefits of the adaptive decay method. Considering the historical episodes’ rewards,
agent can make trade-off between exploration and exploitation better, and reduce exploration when
it has found good trajectories and obtained high extrinsic rewards, which is similar with human
decision. We plot the curve of decay factor dt, and there are three phases in the training process.
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At the beginning, agent rarely find a trajectory to complete the task and the decay factor dt is
large which means that agent should pay more attention to intrinsic reward and explore as much
as possible. When train timesteps is larger than 2M, agent has an increasingly high probability of
completing tasks, and dt decreases fast. After 10M training, agent’s policy converges and it does
not need to explore.

Figure 8: The performance of D&E with different decay methods.
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