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Abstract
Equivalences between infinite neural networks and Gaussian processes have been established
for explaining the functional prior and training dynamics of deep learning models. In this
paper we cast the hidden units of finite-width neural networks as the inter-domain inducing
points of a kernel, then a one-hidden-layer network becomes a kernel regression model. For
dot-product kernels on both Rd and Sd−1, we derive the kernel functions for inducing points.
Empirically we conduct toy experiments to validate the proposed approaches.

1. Introduction

Connections between Gaussian processes (GP) and deep neural networks (DNN) have been
drawn to explain the success of deep learning. Specifically, infinite-width neural networks
have been demonstrated equivalent to Gaussian processes of a NNGP kernel (Neal, 1995;
Lee et al., 2018), which state that the prior of a infinite random neural network is a GP
prior over functions. Furthermore, neural tangent kernels (NTK) (Jacot et al., 2018; Arora
et al., 2019) are shown to govern the training dynamics of infinite neural networks. Given
these equivalences between infinite neural networks and Gaussian processes, finite-width
neural networks can be regarded as random feature approximations (Rahimi and Recht, 2008;
Ghorbani et al., 2020) of the corresponding GP. Using the Jacobians as feature maps, Khan
et al. (2019) also associate finite Bayesian neural networks to equivalent Gaussian processes.

For a finite-width one-hidden-layer network, the theory of random feature approximations
requires the weights of the first layer to be fixed after initialization, which is contrary to
the real training and cannot learn adaptive representations of the data manifold. In this
paper we cast an alternative perspective, formulating the one-hidden-layer networks as
conducting Nystrom approximations (Drineas and Mahoney, 2005) instead of random feature
approximations. Specifically, for a kernel k, each hidden unit σ(w>mx) corresponds to an
inter-domain inducing point zm (Titsias, 2009; Lázaro-Gredilla and Figueiras-Vidal, 2009).
The overall network f(x) =

∑M
m=1 aiσ(w

>
mx) is then equivalently f(x) =

∑M
m=1 aik(x, zm).

In such way, the fully connected network is formulated as a kernel regression model, where
the weights {wm}Mm=1 in the first layer are M inducing locations and the weights a in the
second layer are linear coefficients.
∗ Equal contribution. Author ordering determined by coin flip.
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2. Background: Inter-domain GP and Variational Fourier Features

Inter-domain Gaussian processes (Lázaro-Gredilla and Figueiras-Vidal, 2009) introduce the
inducing points uz by integrating with an inducing function z(x),

uz =

∫
f(x)z(x)dx, (1)

Depending on the inducing function z(x), the inter-domain inducing points lead to various
kernel influences kx(·), which can be obtained via,

k(z,x) = Ef [f(x)uz] =
∫
k(x,x′)z(x′)dx′, (2)

k(z, z′) = Ef [uzuz′ ] =
∫
k(x,x′)z(x)z′(x′)dxdx′, (3)

Evaluating the kernels k(z,x), k(z, z′) requires integrations, which are usually intractable.
Variational Fourier Features (VFF) (Hensman et al., 2017) propose a variation of the inter-
domain GPs by directly specifying the kernel function k(z,x). In concrete, let the inducing
function z ∈ H belong to the reproducing kernel Hilbert space H of k, VFF defines the
inducing points by the RKHS inner product instead of the `2 inner product,

uz = 〈f, z〉H, (4)

Since the RKHS inner product is also a linear operator, the kernel functions can be computed,

k(z,x) = E[uzf(x)] = E[〈f ∗ f(x), z〉H] = 〈k(x, ·), z〉H = z(x), (5)
k(z, z′) = E[uzuz′ ] = E[〈f, z〉H〈f, z′〉H] = 〈z, z′〉H. (6)

The kernel function k(z,x) is exactly the inducing function z, and k(z, z′) is the RKHS
inner product between z and z′. Therefore, how to choose the inducing functions z1, ..., zM
affects the accuracy of variational approximations and the computational cost. Specifically,
Hensman et al. (2017) applies sinusoidal Fourier features on a one-dimensional bounded
segment H[a,b]. Furthermore, Burt et al. (2020) propose orthogonal features for stationary
kernels k(x,x) = κ(x − x′), whose resulting kernel matrix Kzz is diagonal. Dutordoir
et al. (2020) propose to use the spherical harmonics as inducing functions for zonal kernels
k(x,x) = κ(x>x′). Because the spherical harmonics are eigenfunctions of zonal kernels, they
are also orthogonal to each other. However, the aforementioned variational features are all
data-independent, which might suffer the curse-of-dimensionality issue.

3. Neural Networks as Inter-domain Inducing Points

In this section we adopt the theory of variational Fourier features and reformulate neural
networks as inter-domain inducing points. Specifically, we can explain each neuron σ(w>x) as
one inducing function z in VFF. Compared to previous variational features (Hensman et al.,
2017; Burt et al., 2020; Dutordoir et al., 2020), our proposed features are fully trainable and



naturally adapt to high dimensions. Specifically, for d-dimensional inputs, a one-hidden-layer
neural network is defined as the function,

f(x) =
M∑
m=1

amσ(w
>
mx), (7)

where σ is the activation function and M is the number of hidden units. W = [w1, ...,wM ] ∈
Rd×M and a ∈ RM are trainable parameters. We assume a dot-product kernel k(x,x′) =
τ(x>x′), where τ is a positive-type function (Berlinet and Thomas-Agnan, 2011). For w ∈ Rd,
we define the inducing function z as σ(w>x). Then the network has M inducing functions.

3.1. Dot-Product Kernels on Rd

In this subsection we assume the input domain X = Rd. As shown by Smola et al. (2001),
the analytic kernel k is positive semidefinite if and only if τ admits a Taylor expansion
with nonnegative coefficients, i.e., τ(t) =

∑∞
j=0 βjt

j , βj ≥ 0. We further assume the Taylor
expansion of the activation, σ(t) =

∑∞
j=0 αjt

j . Given the Taylor expansions, the kernel
admits the feature map,

k(x,x′) =
∞∑
j=0

βj(x
>x′)j =

∞∑
j=0

βj
∑

1≤i1,...,ij≤d
xi1 · · ·xijx′i1 · · ·x

′
ij = 〈ϕ(x), ϕ(x

′)〉, (8)

Where the feature map ϕ(x) = [
√
βjxi1 · · ·xij ]j,i1,...,ij . The variational feature σ(w>x) can

be represented as an inner product with the feature map ϕ. Specifically,

σ(w>x) =

∞∑
j=0

αj(w
>x)j =

∞∑
j=0

αj
∑

1≤i1,...,ij≤d
xi1 · · ·xijwi1 · · ·wij (9)

=
∞∑
j=0

∑
1≤i1,...,ij≤d

(
αj√
βj

wi1 · · ·wij

)(√
βjxi1 · · ·xij

)
= 〈ζ(w), ϕ(x)〉. (10)

where the weights ζ(w) = [
αj√
βj
wi1 · · ·wij ]j,i1,...,ij . Because each term of the feature map

ϕ(x) is one independent monomial, the RKHS inner product between σ(w>x) and σ(w′>x)
equals to the `2 inner product of ζ(w) and ζ(w′).

〈σ(w>x), σ((w′)>x)〉H = 〈ζ(w), ζ(w′)〉 =
∞∑
j=0

α2
j

βj

∑
1≤i1,...,ij≤d

w′i1 · · ·w
′
ijwi1 · · ·wij (11)

=
∞∑
j=0

α2
j

βj

(
w>w′

)j
= ρ(w>w′). (12)

where we define ρ(t) =
∑∞

j=0

α2
j

βj
tj . Therefore, the kernel function k(σ(w>·),x) = σ(w>x)

and k(σ(w>·), σ(w′>·)) = ρ(w>w′).



3.2. Dot-Product Kernels on Sd−1

In this subsection we assume the input lies on the sphere Sd−1 = {x|x ∈ Rd, ‖x‖2 = 1}.
Compared to the previous subsection, the change of input domain has substantial influences.
For example, the neural network kernel (NNGP) (Neal, 1995; Lee et al., 2018) and the neural
tangent kernel (NTK) (Jacot et al., 2018) depend on the norms x>x,x′>x on Rd, thus the
previous analyses do not apply. Furthermore, if we restrict x ∈ Sd−1, the previous feature
map terms

√
βjxi1 · · ·xij in ϕ(x) are not independent monomials anymore, thus the derived

RKHS inner products are not applicable either.
The theory of spherical harmonics (Thomson and Tait, 1888; Morimoto, 1998) is an

important tool for analyzing functions on sphere, which we will adopt for computing the
RKHS inner products. Denote by P dn(ξ) the associated Legendre polynomials on [−1, 1],
which form a complete orthogonal basis for functions on Sd−1. The Addition formula (see
e.g. Gallier, 2009, Proposition 1.18) states that, if {Yn,j}n,j are a set of spherical harmonics
on Sd−1, for any x,x′ ∈ Sd−1,

The Addition Formula: P dn(x · x′) =
|Sd−1|
N(d, n)

N(d,n)∑
j=1

Yn,j(x)Yn,j(x
′). (13)

Where |Sd−1| is the area of Sd−1, and N(d, n) =
(
n+d−1
n

)
−
(
n+d−3
n−2

)
is the number of spherical

harmonics of degree n. Because {P dn(ξ)}∞n=0 is a complete orthogonal basis, the Funk-Hecke
formula (Smola et al., 2001; Gallier, 2009; Müller, 2012) states, for any analytic function f
on [−1, 1],

The Funk-Hecke Formula: f(ξ) =
∞∑
n=0

N(d, n)
|Sd−2|
|Sd−1|

P dn(ξ)f̂(n), (14)

where f̂(n) =
∫ 1
−1 f(ξ

′)P dn(ξ
′)(1− ξ′2)

d−3
2 dξ′ 1. Now we can use these established results in

spherical harmonics for the proposed variational features. Since k(x,x′) = τ(x>x′), we apply
the Funk-Hecke formula for τ and rewrite P dn using the Addition formula,

k(x,x′) =

∞∑
n=0

|Sd−2|
N(d,n)∑
j=1

Yn,j(x)Yn,j(x
′)τ̂(n) = 〈ϕ(x), ϕ(x′)〉, (15)

where ϕ(x) = [
√
|Sd−2|τ̂(n)Yn,j(x)]n,j . Furthermore, we define w̃ = w

‖w‖2 so that w̃ ∈ Sd−1,
and the function σ̃‖w‖2(x

>w̃) := σ(x>w). Then we can expand the function σ̃‖w‖2 using
the Funk-Hecke formula,

σ(x>w) =
∞∑
n=0

|Sd−2|
N(d,n)∑
j=1

Yn,j(x)Yn,j(w̃)ˆ̃σ‖w‖2(n) = 〈ϕ(x), ζ(w)〉, (16)

where ζ(w) = [
√
|Sd−2|/τ̂(n)ˆ̃σ‖w‖2(n)Yn,j(w̃)]n,j , and ˆ̃σ‖w‖2(n) is the integral in Funk-Hecke

formula for σ̃‖w‖2 . Because the spherical harmonics {Yn,j}n,j are complete orthonormal basis

1. We use ·̂ to represent this integral operation hereafter.



of the function space on Sd−1, the RKHS inner product can be computed as,

〈σ(x>w), σ(x>w′)〉H = 〈ζ(w), ζ(w′)〉 = |Sd−2|
∞∑
n=0

ˆ̃σ‖w‖2(n)
ˆ̃σ‖w′‖2(n)

τ̂(n)

N(d,n)∑
j=1

Yn,j(w̃)Yn,j(w̃′)

=
|Sd−2|
|Sd−1|

∞∑
n=0

ˆ̃σ‖w‖2(n)
ˆ̃σ‖w′‖2(n)

τ̂(n)
N(d, n)P dn(w̃ · w̃′). (17)

where we used the Addition formula again in the last equality. Therefore, we have derived the
RKHS inner products for the proposed variational features. Because the associated Legendre
polynomials can be obtained using standard libraries, such as Scipy (Virtanen et al., 2020),
what we need are only one-dimensional integrals for κ, σ̃‖w‖2 , σ̃‖w′‖2 . Furthermore, we can
use a truncated summation n = 0, ..., nmax to approximate the infinite summation.

3.3. Unifying Radial Basis Function and Feed Forward Neural Networks

A radial basis function (RBF) network (Chen et al., 1991) implements a mapping f : Rd → R,

frbf (x) =
M∑
m=1

aiφ (‖x−wi‖) , (18)

where {wi}Mm=1 are RBF centers and φ is a given function. The hidden units depend
on the radial distances, thus they are called radial basis function networks. Specifically,
when φ (‖x−wi‖) = k(x,wi) is an instantiation from a stationary kernel k, the network is
equivalently written as frbf (x) =

∑m
i=1 aik(x,wi). For example, φ(t) = e−t

2/2 is associated
to the Squared Exponential kernel.

Feed forward neural networks (FFN) have been seen parallel with RBF networks. However,
our variational features provide a unified perspective: both FFN and RBF networks are
kernel regression models. Specifically, a FFN is represented as, fffn(x) =

∑m
i=1 aiσ

(
w>i x

)
.

Treating each hidden unit zi := σ
(
w>i ·

)
as a variational feature for a dot-product kernel

k(x,x′) = κ(x>x′), then the network is equivalently written as fffn(x) =
∑m

i=1 aik(x, zi)
as well. Therefore, both the RBF networks and the feed-forward neural networks are
instantiations of kernel regressions. If we regularize the data loss with the RKHS norm
‖f‖2H = a>Kzza, then we result in the kernel ridge regression, where Kzz is the kernel matrix
between inducing points,

[Kzz]ij = k(zi, zj) = 〈σ(w>i ·), σ(w>j ·)〉H, (19)

3.4. Nystrom Approximation Residuals as Predictive Variances

We can use the proposed variational features for stochastic variational Gaussian process
(SVGP) (Titsias, 2009; Hensman et al., 2015) as well. Denote by N (Kzza,S) the variational
posterior for inducing points u, and kzx = [σ(w>1 x), ..., σ(w

>
Mx)]>, the posterior predictive

mean and variance can be written as,

µ(x) = k>zxK
−1
zz Kzza =

M∑
m=1

amσ(w
>
mx) = f(x), (20)

σ2(x) = k(x,x)− k>zxK
−1
zz kzx + k>zxK

−1
zz SK

−1
zz kzx, (21)



We observe that the predictive mean function resembles the feed forward neural network f .
In this way, the weights in the first layer parameterize inducing locations and the weights in
the second layer parameterize the linear coefficients.

Instead of training (a,S) from scratch using SVGP objectives, we propose to directly
generate predictive variances from a post-trained network f . Suppose we have obtained a
M -hidden-unit neural network f trained using the standard losses, such as the squared loss
or the cross entropy. The neurons σ(w>1 x), ..., σ(w>Mx) are inducing points for the kernel
k, whose kzx and Kzz can be obtained directly. We compute the Nystrom approximation
residual of the inducing points, and use it as the predictive variance,

σ̂2(x) = k(x,x)− k>zxK
−1
zz kzx, (22)

The Nystrom approximation residual is a lower bound of σ2(x). However, since S is usually
small, σ̂2(x) is an accurate estimate of σ2(x). Here we present experimental results for
dot-product kernels on R and S2, where we firstly train the one-hidden-layer network, and
then output the Nystrom approximation residuals as the predictive variances.
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Figure 1: Visualizing the network mean and the predictive variances (Nystrom approximation
residuals). (a) We used the dot-product kernel k(x, x′) = cosh(xx′) and the activation σ = cos, then
the RKHS inner product function ρ = cosh. The predictive mean is the prediction of a 20-hidden-unit
network, and the predictive variance is the Nystrom residual σ̂2(x) from the trained network. (b) We
used the neural tangent kernel corresponding to one-hidden-layer networks with Erf activations. The
RKHS inner products can be computed as we introduced in Subsection 3.2. For any input-target pair
((x1, x2), y) in the training set, y ∈ {0, 1}. We normalized x1 ∈ [0, π], x2 ∈ [0, π2 ], and embeded it
on the sphere as (sin(x1) cos(x2), sin(x1) sin(x2), cos(x1)) ∈ S2. We trained a 100-hidden-unit neural
network using the squared loss, which outputs the predictive mean µ(x). Given the trained network,
we computed the Nystrom approximation residual for predictive variances σ̂2(x). In the figure, the
solid line represents µ(x) = 0.5 and the dashed lines represent µ(x)± σ̂(x) = 0.5.
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