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Abstract

This work contributes to the ongoing discussion on the trade-off between perfor-
mance and generalization in reinforcement learning, particularly in the context of
sim-to-real transfer in robotics. We investigate the generalization capabilities of
policies learned using differentiable simulators in contact-rich robotic scenarios.
While first-order optimization achieves a higher sample efficiency, it has been
empirically shown to be unstable in loco-manipulation problems. We demonstrate
that, while first-order methods achieve superior performance and sample efficiency
in training, they exhibit less robustness to environmental variations. To address this
limitation, we propose augmenting them with sharpness-aware optimization. Our
simulation results show that this approach improves the generalization of learned
policies over a larger magnitude of perturbation noise.

1 Introduction

Transfer learning from simulation to unknown environments has gained relevance in robotics as it
allows for policy learning in simulation and subsequent transfer to real robots. This method bypasses
the impractical process of collecting real-world demonstrations. However, the main challenges in
sim-to-real transfer learning are the discrepancies between computer simulation and real-world robot
dynamics [1, 2].

Reinforcement Learning (RL) has been successfully employed to learn robust control policies for
robotic environments from simulation data [3, 4]. A major downside of RL is the large amount of
training data it needs to approximate the policy gradient. In response to this challenge, differentiable
simulators have emerged as a powerful tool for sample-efficient policy optimization in robotics. By
providing analytic gradients of a policy’s value function, they enable the use of first-order policy
gradient (FoPG) methods [5]. These methods leverage the gradient information to update the policy
parameters in the direction of the steepest ascent, leading to faster convergence and improved sample
efficiency compared to zeroth-order methods and potentially lower computational cost.

However, the effectiveness of FoPG methods heavily relies on the quality and accuracy of the
simulator gradients. In real-world robotics applications, such as locomotion and manipulation, the
dynamics often involve complex contact interactions between objects. These contact dynamics are
inherently non-differentiable [6, 7], posing challenges for differentiable simulators.

In this ongoing work, we demonstrate that while the first-order policy method Short Horizon Actor-
Critic (SHAC) [8] is more sample-efficient and achieves better rewards than the zeroth-order method
Proximal Policy Optimization (PPO) [9], it lacks generalization capabilities in noisy environments. By
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integrating SHAC with the Adaptive Sharpness-Aware Minimization (ASAM) [10], we significantly
enhance its generalization capabilities while retaining its sample efficiency. Our findings suggest
that this approach offers a robust solution for simulation-to-reality transfer in robotics, effectively
addressing the limitations of existing methods.

2 Related Work

Differentiable simulators [11–14] have emerged as a promising tool in model-based reinforcement
learning for sample-efficient policy optimization in robotics. Policy Optimization with Differentiable
Simulation (PODS) [5] and SHAC leverage the analytical gradients provided by such simulators
to improve sample efficiency compared to model-free reinforcement learning algorithms like PPO.
SHAC, in particular, addresses the challenges of contact-rich dynamics by employing a truncated
learning window and a critic function smoothing technique. Adaptive Horizon Actor-Critic (AHAC)
[15] extends SHAC by dynamically truncating the optimization horizon based on contact information.

To enhance the generalization capabilities of learned policies, previous work relied on domain
randomization [16] and domain adaption [17]. Independent of these methods, techniques such as
Sharpness-Aware Minimization (SAM) [18] and its adaptive variant Adaptive Sharpness-Aware
Minimization (ASAM) [10], which seek flatter minima during training, have shown promise in
improving the generalization of deep learning models. However, to the best of our knowledge, none
of the existing algorithms that leverage differentiable simulation gradients actively search for flat
local minima, which have been shown to improve generalization in deep learning.

3 Motivation

A fundamental concept in deep learning is the relationship between the sharpness of local minima
in the loss landscape and the generalization capabilities of neural networks [19]. Previous work in
deep learning shows that noise in gradient updates can improve generalization [20]. It has also been
demonstrated that in dynamic environments with highly deformable objects and fluids, differentiable
simulators produce rugged loss landscapes [21]. These sharp local optima are especially prevalent
in contact-rich environments which need to employ simplifications to ensure differentiability [22].
Policies learned from FoPG might get trapped into these sharp local optima rather than learning
more robust and transferable strategies. In contrast, zeroth-order methods like PPO, which rely
on noisy gradient estimates, may naturally avoid such sharp minima and avoid overfitting, hence
converging to more generalizable solutions [23]. We hypothesize that the gradient information
provided by differentiable simulators may inadvertently lead optimization algorithms toward sharp
local minima in the policy space. This hypothesis is supported by the results shown in Fig. 1. We
evaluate policy robustness by varying key simulation parameters: contact stiffness and damping .
This creates environments that challenge policies beyond their training distribution. While SHAC
achieves higher rewards in the original settings, PPO demonstrates a broader range of validity across
varied parameters, suggesting greater robustness to environmental changes.

Figure 1: Reward heatmaps for SHAC (left) and PPO (right) policies under varying contact stiffness
and damping in the Ant environment.
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4 Method

In this work, we propose to incorporate the adaptive sharpness-aware optimization (ASAM) technique
[10] into the short-horizon actor-critic (SHAC) algorithm [8] to improve the robustness of learned
policies against local sharp minima in noisy environments. We focus on SHAC because of its
well-documented, pytorch-based open-source implementations and promising performance results.

SHAC leverages analytical gradients from dFlex a differentiable simulator engine and addresses the
challenges of contact-rich dynamics, long horizons, and sample inefficiency. In each learning episode,
the algorithm samples N trajectories {τi}Ni=1 of short-horizons of length h≪ H in parallel from the
simulator, where H is the full task horizon. The SHAC policy loss is defined as:

LS(θ) = −
1

Nh

N∑
i=1

[( t0+h−1∑
t=t0

γt−t0R(sit,ait)
)
+ γhVϕ(s

i
t0+h)

]
, (1)

where sit and ait ∼ N (µθ(s
i
t), σθ(s

i
t)), are the state and action at step t of the i-th trajectory, γ is the

discount factor, and Vϕ is the critic function. The mini-max optimization of ASAM is defined by:

min
θ

LASAM
S (θ) + λ∥θ∥22 where LASAM

S (θ) ≜ max
∥T−1

θ ϵ∥p≤ρ
LS(θ + ϵ), (2)

where LS(θ) is the SHAC policy loss. The inner maximization problem seeks a scale-invariant
perturbation ϵ within a norm ball of radius ρ that maximizes the training loss. This identifies the
worst-case loss within the local neighborhood, while the outer minimization adjusts the model
parameters θ to minimize this worst-case loss, steering the optimization towards flatter minima.

The proposed SHAC-ASAM algorithm combines the sample efficiency of SHAC, with improved
robustness provided by ASAM. This results in more stable policies in noisy environments, making
ASAM-SHAC well-suited for learning robust policies in contact-rich, long-horizon tasks with limited
sample budgets while potentially helping in improving sim-to-real transfer.

Algorithm 1 ASAM-SHAC Policy Learning
1: Initialize policy πθ, value function Vϕ, and target value function Vϕ0

← Vϕ.
2: for learning episode = 1, 2, . . . ,M do
3: Sample N short-horizon trajectories of length h by the parallel differentiable simulation from

the final states of the previous trajectories.
4: Compute the SHAC policy loss Lθt defined in 1 from the sampled trajectories and Vϕ0 .
5: Compute the analytical gradient∇L(θt).
6: Update the policy πθt using ASAM:

1. Determine the normalization operator T−1
θ based on the model parameters, which

adapts the size of the neighborhood during the optimization.
2. Compute the perturbation ϵt and update the model parameters temporarily:

ϵt = ρ
T 2θt∇L(θt)
∥Tθt∇L(θt)∥2

θ̃t = θt + ϵt (3)

3. Update the model parameters using the gradient at the perturbed point:

θt+1 = θt − αt(∇L(θ̃t) + λ · θt) (4)

7: Compute estimated values for all the states in sampled trajectories as in Eq. 7 from [8].
8: Fit the value function Vϕ using the critic loss defined in Eq. 6 from [8].
9: Update target value function: Vϕ0

← αVϕ0
+ (1− α)Vϕ.

10: end for
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5 Experiments & Results

5.1 Noise Injection on Action Space

Figure 2 illustrates the average episode reward as a function of the noise strength injected into policy
actions. Each algorithm is evaluated using three policies. To assess robustness, we add noise to each
component of the action vector a = (a1, ..., an) ∈ [−1, 1]n, with n number of actions. The noise
injection process is described as follows:

• Clip each action component: ai = clip(ai,−1, 1)
• Generate noise vector: n = (n1, ..., nn), where ni ∼ U(−1, 1)
• Combine action and noise: a′ = (1− λ)a+ λn

Here, λ ∈ [0, 0.5] controls the noise strength. We tested λ values ranging from 0 (no noise) to 0.5
(equal weight to the original action and noise). The results indicate that SHAC-ASAM significantly
enhances robustness, outperforming the baseline SHAC and maintaining higher rewards than PPO up
to λ = 0.15. Notably, SHAC-ASAM avoids the performance decline observed in SHAC at λ ≈ 0.05.

The radius parameter ρ in SHAC-ASAM is crucial for balancing performance and generalization
by adjusting the characteristics of the local optima. It determines the neighborhood size for the
worst-case loss in the sharpness-aware optimization algorithm. Larger ρ values lead to flatter minima,
enhancing generalization by reducing sensitivity to noise. Conversely, smaller ρ values revert to the
original SHAC behavior, achieving higher peak performance but with reduced noise robustness. This
relationship is illustrated in Figure 3. The results confirm our hypothesis that flatter minima improve
generalization and demonstrate the trade-off between generalization and performance.

Figure 2: Evaluation of 3 SHAC, SHAC-
ASAM (ρ = 0.75), and PPO policies in
Ant with increasing action noise.

Figure 3: Reward vs Action Noise for poli-
cies trained with SHAC-SAM for different
ρ values

6 Conclusion & Future Work

While first-order methods are more sample efficient, we demonstrated that they lead to policies that
struggle to generalize to unseen environments. To address this, we integrated a sharpness-aware
optimizer into SHAC. Our initial results indicate that this novel approach, SHAC-ASAM, can indeed
enhance the generalization capabilities of the trained policy. To validate our preliminary findings, we
plan to train policies across a broader range of environments and incorporate more diverse perturbation
mechanisms. The key idea of applying ASAM to a differentiable simulator is generalizable, and
similar improvements are expected with other first-order algorithms like AHAC or PODS.

In our ongoing work, we plan to implement ASAM for AHAC and benchmark our findings. Addi-
tionally, we aim to include a dynamic adjustment of the parameter ρ during training to automatically
balance the trade-off between generalization and sample efficiency. To mitigate the additional compu-
tational cost of SHAC-ASAM, further investigation is needed, potentially leading to the development
of more efficient and tailored methods for sharpness-aware optimization.
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