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Despite advances in DNA sequencing technology, assembly 
of complex genomes remains a major challenge, particularly 
for genomes sequenced using short reads, which yield highly 
fragmented assemblies1–3. Here we show that genome-wide 
in vivo chromatin interaction frequency data, which are 
measurable with chromosome conformation capture–based 
experiments, can be used as genomic distance proxies to 
accurately position individual contigs without requiring 
any sequence overlap. We also use these data to construct 
approximate genome scaffolds de novo. Applying our approach 
to incomplete regions of the human genome, we predict the 
positions of 65 previously unplaced contigs, in agreement with 
alternative methods in 26/31 cases attempted in common. 
Our approach can theoretically bridge any gap size and should 
be applicable to any species for which global chromatin 
interaction data can be generated.

In genome assembly, massive amounts of short DNA sequencing reads 
can be assembled into sets of small contigs, but joining these contigs 
into scaffolds, a process known as scaffolding, is often difficult owing 
to the presence of repetitive sequences4,5. Currently, high-throughput 
scaffolding is based on <40 kb long-insert paired-end read libraries. 
Improving the degree of completion of genome sequences typically 
relies on low-throughput or laborious methods such as fluorescence 
immunofluorescence in situ hybridization (FISH)6–9, bacterial artifi-
cial chromosome (BAC)-based sequencing10. Although the advance-
ment of sequencing technology is producing longer reads and thus 
increasing the size of contigs, recent assessments of genome assem-
blers11,12 show that complex genome assemblies, which rely only on 
sequencing data, are still highly ambiguous and fragmented, owing 
to gap sizes beyond that of long-insert molecules. In fact, even in the 
human genome, despite the massive effort invested in its completion, 
~30 Mb of human euchromatic DNA remains unassembled9. Thus, 
high-throughput sequencing and genome assembly technology have 
reached a point at which an increase in the number of short reads 
does not substantially improve assembly quality.

Hi-C is an experimental technique that measures the in vivo 
spatial interaction frequency between chromatin segments over 
the whole genome, by cross-linking loci that are in close physical 
proximity and quantifying them with high-throughput, paired-
end sequencing13. Every uniquely mapped paired-end read indi-
cates an interaction between two genomic loci, so that the number 

of read pairs that map to distant DNA fragments can be treated as 
an unnormalized interaction frequency. Notably, all Hi-C experi-
ments in eukaryotes to date have shown, in addition to species- 
specific and cell type–specific chromatin interactions, two 
canonical interaction patterns. One pattern, distance-dependent  
decay (DDD), is a general trend of decay in interaction frequency as 
a function of genomic distance. The second pattern, cis-trans ratio 
(CTR), is a significantly higher interaction frequency between loci 
located on the same chromosome, even when separated by tens of 
megabases of sequence, versus loci on different chromosomes13–18.  
These patterns may reflect general polymer dynamics, where 
proximal loci have a higher probability of randomly interacting19, 
as well as specific nuclear organization features such as the forma-
tion of chromosome territories, the phenomenon of interphase 
chromosomes tending to occupy distinct volumes in the nucleus 
with little mixing20. Although the exact details of these two pat-
terns may vary between species, cell types and cellular conditions, 
they are ubiquitous and prominent. In fact, these patterns are so 
strong and consistent that they are used to assess experiment qual-
ity and are usually normalized out of the data in order to reveal  
detailed interactions14,15,21.

Here we propose that genome assembly technology can take advan-
tage of the three-dimensional structure of genomes. We show that 
the features which make the canonical Hi-C interaction patterns a 
hindrance for the analysis of specific looping interactions, namely 
their ubiquity, strength and consistency, make them a powerful tool 
for estimating the genomic position of contigs.

We first use the CTR pattern to tackle the problem of scaffold aug-
mentation, in which most of the genome is assumed to be correctly 
assembled and the challenge is to predict both the chromosome and 
locus of an unplaced contig, based on its pattern of interaction with 
the placed contigs. This is the situation for the majority of published 
‘finished’ complex genomes, including human and mouse. Because 
most of the genome is assembled, it is possible to observe, quantify 
and computationally model the DDD and CTR interaction patterns, 
even if they are genome-specific or condition-specific. This model can 
then be used to estimate the positions of new contigs. Prior knowledge 
of the canonical patterns for a particular species is not needed.

As an initial test, we performed simulations on the human genome 
hg19 assembly22 and a previously published Hi-C data set16 obtained 
from male H1 embryonic stem cells (ESCs). To demonstrate the robust-
ness of our approaches when using a relatively low number of reads,  
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we chose to use only a third of the Hi-C reads 
available for this cell type in the data set. We 
first quantified the CTR pattern by partition-
ing the human genome into 100-kb bins, each 
representing a large virtual contig, and cal-
culated for each placed contig its average interaction frequency with 
each chromosome. To simulate a more difficult scenario and evaluate 
localization over long ranges, we omitted from this statistic the inter-
action data of the contig with its flanking 1 mb on each side, where 
the strongest Hi-C interaction signals are present. Then, we asked 
how well this statistic separates interchromosomal interactions from 
intrachromsomal interactions (Fig. 1a). We found that the average 
interaction frequency strongly separates inter- from intrachromo-
somal interactions, with an average area under the curve (AUC) of 
0.9998, suggesting this statistic is highly predictive of which chro-
mosome a contig belongs to. Next, we trained a simple multiclass 
model, a naive Bayes classifier, to predict the chromosome of each 
contig based on its average interaction frequency with each chromo-
some (Online Methods). To test the classifier, for each contig in the 
genome, we removed the interaction data for the contig and a flank-
ing region of 1, 2, 5 or 10 Mb on each side, and used the classifier to 
predict the position of the contig solely from Hi-C data (Fig. 1b,c), 
achieving a genome-wide accuracy of 0.998 when leaving out 1 Mb on 
each side. By thresholding the associated posterior probabilities for 
each prediction output by the classifier to identify high-confidence 
predictions, we find that at a threshold of P > 0.2 the classifier can 
achieve a near-constant error rate of <0.005 even when leaving 10-Mb  

gaps on each side of the contig (100 times the size of the contig).  
We conclude that the CTR interaction pattern can be used to accu-
rately predict to which chromosome an unplaced contig belongs, even 
if it is flanked by large gaps.

Next we sought to predict the genomic locus along a chromosome of 
an unplaced contig, given its chromosome and interaction pattern with 
placed contigs on the chromosome. We used the assembled portion of 
the genome to fit a probabilistic single-parameter exponential decay 
model describing the relationship between Hi-C interaction frequency 
and genomic distance (the DDD pattern). We removed in turn each 
contig from the chromosome, along with a flanking region of 1 Mb on 
each side, for the reasons mentioned previously, and estimated its most 
likely position by given its interaction profile and the decay model 
(Fig. 1d). We quantified the prediction error as the absolute value of 
the distance between the predicted position and the actual position. 
Our results show a cross-validated, genome-wide median error of  
1.1 Mb. Additionally, 89.5% of the contigs are placed within 2 Mb of 
their actual position and 24.0% are within 0.5 Mb of their actual posi-
tion (Fig. 1d, inset). We conclude that the DDD interaction pattern can 
be used to accurately predict the position of an unlocalized contig.

To show the utility of our approach for improving finished genomes, 
we collected two sets of contigs from hg19 (ref. 22) and HuRef7,  
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Figure 1  Interaction frequency accurately 
predicts chromosome and locus for scaffold 
augmentation. (a) Average interaction frequency 
strongly separates interchromosomal from 
intrachromosomal interactions. For each 100-kb 
contig in chromosome 1, we calculate its average  
interaction frequency with each chromosome. 
We exclude interaction data from the contig’s 
1-Mb regions on each side, where the strongest 
interaction frequencies are typically found. 
The box plot shows the distribution of average 
interaction frequencies of all contigs over 
all chromosomes and demonstrates that the 
distribution of interchromosomal interaction 
frequencies is separated from intrachromosomal 
interaction frequencies. Whiskers represent 
minimal and maximal points within 1.5 of the 
interquartile range. (b) Naive Bayes predictive 
performance at various gap sizes. We trained 
a naive Bayes classifier and predicted the 
chromosome of each contig, leaving out a 1-, 2-, 
5- or 10-Mb flanking region on each side of the 
contig. Confident predictions are predictions  
with a posterior probability of at least 0.2.  
(c) Genome-wide view of naive Bayes predictive 
performance. The prediction for each contig is 
marked by a short vertical line, colored according 
to its true chromosome. Predictions showed were 
performed leaving out a 1-Mb flanking region 
on each side of the contig. Predictions that did 
not pass the confidence threshold are marked 
as “NC”. (d) Interaction frequencies accurately 
predict chromosomal locus. For every contig,  
we exclude interaction data from the contig’s 
1-Mb flanking regions on each side and then 
predict its location in cross-validation. The inset 
shows the cumulative distribution of the absolute 
prediction error. All statistics are genome-wide.
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totaling 65 contigs (13.6 mb in total) that had 
sufficient Hi-C interaction data for further 
analysis and predicted their locations (Fig. 2  
and Supplementary Table 1). As validation, 
we compared our predictions to a recent 
study9 that predicted the location of some 
of these contigs using extensive population 
SNP data to perform admixture mapping. 
Our predictions agree with the previous 
results for 26/31 (84%) of the contigs placed 
by both methods (Online Methods and 
Supplementary Table 1). In addition, 24/30 (80%) of our predictions 
were consistent with FISH localization measurements compiled in the 
same study. We conclude that our method can be used to increase the 
level of completion of complex genome assemblies by placing contigs 
that have proven difficult to assemble despite years of efforts, as in the 
case of the human genome.

Next, we explored whether Hi-C data could be used for de novo 
genome scaffolding. The challenge is to determine the karyotype (i.e., 
the number of chromosomes and the chromosomal assignment) and 
position of all contigs simultaneously based on their mutual inter
action frequencies. De novo scaffolding is markedly more difficult 
than scaffold augmentation for two main reasons. First, as we have no 
knowledge of any contig positions, we cannot observe or fit the CTR 
and DDD functions. Instead, we must make assumptions regarding 

how interaction frequencies relate to genomic distance and hope that 
these crude approximations produce useful results. Second, instead of 
resolving only the distances of a single unplaced contig from an array 
of placed contigs, all distances between all contigs must be resolved 
jointly. Under most formulations of this problem, calculation of a 
global optimal solution cannot be guaranteed.

To examine scaffolding over long ranges, we simulated a large-gap 
scenario where we retained every tenth contig in the human genome 
so that we were left with an array of 100-kb virtual contigs sepa-
rated by 900-kb gaps, thus omitting the bulk of the Hi-C signal. First, 
we asked whether it was possible to group all the contigs into their 
respective chromosomes de novo (de novo karyotyping). Assuming 
the DDD was approximately exponential, we transformed the matrix 
of interaction frequencies into approximate unscaled genomic dis-

tances (Online Methods). These distances are 
very crude approximations because at far dis-
tances the Hi-C interaction frequency, given 
as a discrete read number, will approach zero 
and thus will not distinguish between vastly 
different far distances. We applied standard 
average-linkage hierarchical clustering to 
the approximate distance matrix, and found 
that the maximal average cluster step (Online 
Methods) occurs at the point where 23 clus-
ters are formed (Fig. 3a), demonstrating  
that the number of chromosomes is predicted 
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Figure 2  Scaffold augmentation of the human 
genome. (a) Interaction frequency data of an 
unplaced contig (chr1103279180085) with 
its predicted chromosome. Green bar marks 
the predicted contig position. (b) Predicted 
positions of unplaced contigs. Vertical lines 
indicate contigs. Green and red colors indicate 
agreement and disagreement, respectively,  
with previous predictions9.
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a

b Figure 3  De novo karyotyping (chromosome 
assignment). We retained every tenth 100-kb  
contig in the genome, leaving 0.9-Mb gaps 
between contigs. We then transformed the 
interaction frequencies into approximate distances 
and applied standard average linkage hierarchical 
clustering to the approximate distance matrix, 
without using any prior knowledge regarding the 
positions of the contigs. (a) Average clustering 
step length along the final 1,000 clustering 
steps (inset shows final 80 steps). We find the 
maximum located at the point where 23 clusters 
remain. (b) The cluster assignment for each 
contig is marked by a short vertical line, colored 
according to its true chromosome.
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correctly. There was a high correspondence between the clusters 
and chromosomes; 99.3% of all contigs were placed on the correct  
chromosome (Fig. 3b).

Finally, we asked whether we could use interaction frequencies 
between unlocalized contigs to estimate their positions along a 
chromosome. We used a probabilistic model that assumes the DDD 
is approximately exponential, and attempted to find a set of likely 
contig positions for our simulated 100-kb virtual contigs (Online 
Methods). We arbitrarily scaled the predicted contig positions to 
range from 0 to 1. The predicted positions were highly consistent with 
their actual positions along most of the chromosomes (Fig. 4a and 
Supplementary Fig. 1). We estimate a median error rate of ~2 Mb and 
an error <10 Mb in ~93% of the predictions (Supplementary Table 2).  
As an alternative method of evaluation, we compared the ranks (contig 
order) of the predicted and actual positions (Fig. 4b). The ranked pre-
dictions seemed slightly more accurate than the predicted positions, 
with an estimated median rank error of 1 (Supplementary Table 2),  
possibly suggesting that the distances between neighboring con-
tigs were distorted because of local variations in the DDD function. 
This was expected owing to the presence of locus-specific structures 
such as chromatin loops and structural domains16,19,23. Notably, our 
approach lays out an entire contiguous scaffold for each chromosome, 
rather than the highly fragmented scaffolds resulting from long-insert 
scaffolding. Most chromosomes contain no significant translocation 
or inversion errors, with a minority of chromosomes containing 1–2 
major inversion errors.

We next applied de novo scaffolding to a previously published set of 
contigs from human chromosome 14 produced by the ALLPATHS-LG  
assembler24 from actual sequencing libraries as part of the GAGE 
assembly12 evaluation. We mapped Hi-C data to the assembled set of 
contigs (median contig size 20 kb), and estimated their chromosomal 
positions using our approach for de novo chromosome scaffolding 
(Online Methods). We then compared the predicted positions to 
the actual positions of the contigs when aligned to hg19 (Fig. 4c,d). 
The contigs were assembled into one large segment, containing one 
major inversion. Within each segment, the predicted positions were 
consistent with the actual positions. We estimated a median error of 
976 kb with less than 10 Mb error in 96.4% of the predictions, and a 
median rank error of 6 (Supplementary Table 3). We conclude that 
the DDD pattern can be used to achieve accurate de novo chromo-
some scaffolding in various assembly scenarios, even without precise 
knowledge of the decay function and without the use of long-insert 
paired-end data.

In conclusion, we show that high-throughput in vivo genome-wide 
chromatin interaction data can be used to infer genomic location. We 
provide a conceptual framework with which additional experimental 
and computational strategies may be applied for further improvement 
(Supplementary Discussion). Although genome assembly methods 
have reached a point where increased sequencing depth does not 

improve assembly quality, our method importantly resuscitates the 
usefulness of additional sequence reads, as its resolution is largely a 
factor of the number of Hi-C reads. The power of our method may 
be attributed not to the sophistication of the computational tools, 
which are purposefully simple, but rather to two canonical inter
action patterns. The fact that these patterns are strong, consistent 
across the genome, and ubiquitous in all species, cell types and con-
ditions observed to date, suggests that this method is widely appli-
cable. Finally, we have addressed only two out of several possible 
applications of Hi-C data for genome assembly, which include tar-
geted assembly (for example, by using 4C25,26 or 5C27), detection of  
assembly errors, resolution of nonunique genomic sequences and 
detection of chromosomal aberrations.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Data sets. Throughout the paper we use human genome assembly hg19  
(ref. 22). Unplaced contigs were taken from hg19 and HuRef7.

For Hi-C data, we used a previously published data set16. Specifically, we 
used a third of the reads available for human H1 ESC, totaling ~248 M unique 
mapped reads, except when stated otherwise. As described previously28,  
Hi-C reads were mapped using a customized pipeline, filtered for restriction 
fragment PCR amplifications, dangling ends and self-circles, and summed 
in 100-kb nonoverlapping bins. Oversequenced bins were removed and 
Sinkhorn-Knopp balancing was applied to the interaction matrices to correct 
for bin-specific biases. We note, however, that the matrix correction did not 
have a significant effect on the results. Hi-C matrices are available at: http://
my5c.umassmed.edu/triangulation/.

All analysis was implemented in Python, mainly using Scipy and 
scikit-learn29 modules. Code was deposited in a public repository at: 
https://github.com/NoamKaplan/dna-triangulation/ and is available as  
Supplementary Data.

Scaffold augmentation: chromosome prediction. For each contig, we cal-
culated its mean interaction frequency with each chromosome and used this 
statistic to quantify the CTR pattern. Each contig can then be associated with 
a vector (a1, …, a23) representing its mean interaction frequency with each 
chromosome. This naturally fits into a multiclass classification framework, 
where we fit a function that maps such vectors to one of 23 chromosomes.

We chose to train a simple naive Bayes classifier on the data. For the observed 
variables a1, …, a23, the naive Bayes classifier assumes these variables are con-
ditionally independent given the chromosome variable c. To make predictions, 
the naive Bayes classifier then calculates the posterior probability:
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=
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where p(c) is a prior probability proportional to the number of contigs in 
each chromosome, p(ai|c) is a conditional multinomial distribution and Z 
is a normalization factor. The chromosome with the highest posterior prob-
ability is selected.

All predictions were performed using a cross-validation scheme. Each 
contig was left out along with a flanking region, a model was trained on the 
remaining data and predictions were made on the left out contig. This process 
was repeated for all contigs.

We use the associated posterior probabilities as a measure of confidence. 
We define all predictions with posterior probability ≥0.2 to be confident  
predictions.

To quantify the separation between the cis and trans mean interaction fre-
quencies, we used the standard AUC (area under ROC curve) metric. An AUC 
of 1 for a given chromosome means that when ranking all contigs by their 
mean interaction frequencies, the ranks of all contigs from that chromosome 
are higher than those of contigs from other chromosomes, whereas an AUC 
of 0.5 is the value expected by randomly shuffling the ranks.

Scaffold augmentation: locus prediction. One can view the pairwise inter-
action matrix resulting from a Hi-C experiment as the result of a random 
process where n interactions are sampled, with repetition, from the set of 
all m2 possible pairwise interactions. This process is described exactly by a 
multinomial distribution, where each possible interaction is associated with its 
own probability. The probability mass function of the multinomial distribution 
in this context is given by:
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where xi,j is the number of times an interaction between contigs i and j is 
observed, n is the total number of interactions sampled and pi,j is the prob-
ability associated with the interaction between contigs i and j.

However, in the case of Hi-C this would require m2 parameters pi,j to model 
the data. Since m is equal to the total number of contigs, this number will be 
very large. Thus, it is useful to introduce constraints on these probabilities. 

Specifically, we want these constraints to formally represent an assumption 
regarding how the interaction probability is associated with the genomic dis-
tance between loci, with a small number of parameters. We assume that the 
probability of two loci interacting decays approximately exponentially with 
their distance. So, formally, we would like to define the probability of sampling 
an interaction between two contigs at positions si and sj as:
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where α < 0 is a scale parameter. However, we must add a normalization term 
to ensure that the sum of probabilities over all possible interactions is 1, so we 
define the final probabilities as:
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resulting in the probabilistic model:
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Thus, we parameterize the probabilities of the multinomial function with a 
much smaller number of parameters, namely the position of each contig and 
the single scale parameter (a total of m + 1 parameters). This provides us with 
a precise probabilistic model that formalizes our knowledge and assumptions 
regarding how the experimental data are generated.

Next, we can estimate the parameters of the model to using the maximum-
likelihood approach. The log-likelihood for a multinomial distribution is  
given by:

L p p x x n xm m mm i j
j

m

i

m
( ,..., | ,..., ) log( !) log( !, , , , ,11 11

11
= −

==
∑∑ )) log, ,+

==
∑∑ x pi j
j

m

i

m

i j
11

Given a data set, the first two terms are constant and can thus be omitted as 
they will not affect the solution.

We then obtain the final function for optimization:
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To estimate the position of an unplaced contig µ, we first use the positions of 
the known contigs to estimate the negative scaling parameter α that maximizes 
Q given the known positions and observed reads. Next, we find the position 
by estimating sµ that maximizes:
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where nµ is the sum of interactions with µ.
All predictions were performed using a cross-validation scheme as 

explained previously.

Augmenting the human genome. We compiled a set of 65 unplaced human 
contigs from hg19 (ref. 22) and HuRef7, totaling 13.6 Mb. We then binned 
each contig into 100-kb bins. To predict a contig’s position, we separately pre-
dicted the position of each of its bins. Bin predictions were generally in good 
agreement, but if the bins were mapped to multiple chromosomes, we chose 
the chromosome assignment to be that of the bin with the highest posterior 
probability and also chose this bin for locus prediction.

We compared our predictions to those made by population admixture map-
ping9 and to FISH measurements7–9. As these data were generally limited to 
chromosomal cytoband resolution or lower, we counted prediction agreements 
as those that are on the same chromosome and within the same region (<= 2  
cytobands for 24/26 contigs). We did not observe any cases in which the 
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chromosome prediction agreed but the location within the chromosome was 
in strong disagreement.

De novo karyotyping. We transformed Hi-C interaction frequency data into 
approximate distances by adding 1 and taking the log, and then flipping by 
subtracting the data from its maximum. Next, we applied average linkage 
hierarchical clustering to the approximate distance matrix. This clustering 
scheme starts with singleton clusters, and at each clustering step the two closest 
clusters are merged to form a new cluster, where distance between clusters is 
defined as the average distance between all intercluster pairs:

d C C
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1 2

1 2

1 2=
∈ ∈
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where C1 and C2 are clusters, |Ci| is the cardinality of cluster Ci and Dij is the 
approximate distance between contigs i and j.

To estimate the number of chromosomes, we sought an intrinsic measure 
that would indicate what a likely number of chromosomes may be. A natural 
measure of progression of the hierarchical clustering process is the average 
distance between the clusters being merged at each step. In this context, the 
clustering step length, defined as the difference between average distances 
associated with consecutive clustering steps, can be indicative of a stable par-
titioning30. As the clustering step length may be sensitive to noise, we derived 
a robust version of this metric by repetitively (n = 20) randomly sampling and 
clustering a random 80% of the data, and finally averaging the clustering step 
length. We thus examine the final 1,000 clustering steps, under the assump-
tion that the actual number of chromosomes is less than 1,000 and find the 
maximal average cluster step. We estimate the number of chromosomes to be 
the number of clusters remaining at this point.

It is important to note that estimation of the correct number of clusters is 
not strictly required for the accuracy of the clusters themselves. As long as 
there is some point in the clustering tree where the clusters are highly accurate, 
any clustering up to that stage would also be accurate, so even if we overesti-
mate the number of chromosomes it should not affect cluster quality.

De novo chromosome scaffolding. For de novo chromosome scaffolding we 
use the same probabilistic model developed for augmentation locus predic-
tion. Here we estimate both the parameters s1,…,sm (contig positions) and α 
(scaling of our probabilistic model) from the observed data:
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Because we only assume that the interaction frequencies are inversely propor-
tional to genomic distances, we arbitrarily restrict the positions s1,…,sm to the 
interval [0,1] and α to be negative.

To solve the optimization problem, we randomly initialize the parameters 
s1,…,sm in the interval [0,1] and α in the interval [0,−10], and then apply the 
L-BFGS numerical optimization algorithm31, supplying it with the gradient 
of Q for speed. As the optimization problem is nonconvex, it can have many 
local optima and we cannot guarantee a globally optimal solution. Thus, each 
problem is run multiple times with different initializations. We found that solv-
ing this problem for a set of ~1,000 contigs produced by the ALLPATHS-LG 
assembler typically takes 1–5 min on a single CPU. For this scale of problem, 

~2,000 iterations are typically sufficient to achieve a good solution. However, 
we note that further runs are expected to improve the solution (inferred from 
a simulation of a near-optimal solution, as estimated by initialization with the 
actual positions of the contigs).

Finally, we note that we defined xi,j not as the measured number of inter
actions but rather as the logarithm of the measured number of interactions 
plus 1. We found this transformation to be helpful, most likely due to suppres-
sion of multiplicative errors (we do not explicitly model noise) in the data and 
better numerical properties.

For de novo scaffolding of an actual set of contigs, we obtained the set of 
human chromosome 14 contigs assembled by ALLPATH-LG24 in the GAGE 
evaluation12. Again we used human H1 ESC Hi-C data from Dixon et al.16, but 
here we used all available reads (~750 M total, ~15 M unique mapped reads for 
this set of contigs). We next filtered contigs that do not match (95% identity 
for 95% of the sequence) a position on hg19 chromosome 14 and contigs with 
insufficient mapped data. The remaining set of 1,016 contigs has a median 
contig length of 20 kb. Because Hi-C signal grows, approximately, in direct 
linear proportion to the size of the contig, we normalized the Hi-C signal on 
each contig by its size.

Evaluation of de novo scaffolding is nontrivial, as several different metrics 
exist, each with its own strengths and weaknesses. We thus decided on multiple 
evaluation metrics, including a strict comparison of absolute positions. To 
compare positions, we needed to appropriately scale the predicted positions. 
We fit a regression line between the actual and predicted positions. If there 
was a major breakpoint (in most chromosomes there were none), such as an 
inversion, we fit the segments separately. In order to minimize the effect of 
outliers on the linear fit, we used an iterative fitting scheme where first the 
top and bottom 5% of the data are excluded from regression, and in following 
iterations data with residuals of more than 10 Mb are excluded. The resulting 
linear regression essentially provides a formula for transforming the predicted 
positions so that they can be compared with the actual positions. We pro-
ceeded to compare the rescaled predicted positions with the actual positions 
by calculating the median error and the fraction of errors larger than 10 Mb. 
It is important to note that these measures are likely overestimating the actual 
error, due to a couple of reasons. First, whereas visually the fits seem reason-
able, they are clearly not optimal. Incorrect scaling can increase the error in 
the majority of contigs. Second, gap errors have a cumulative effect on these 
metrics. An incorrect gap size at a single point will effectively introduce errors 
in the absolute positions of all following points even though their relative dis-
tances and ordering are correct, so a few incorrectly predicted gap sizes could 
significantly increase the apparent error. Visual inspection of our results sug-
gests that this may indeed be the case. As an alternative measure of perform-
ance, we compared the ranks (ordering) of predicted and actual positions. As 
here also a single mispredicted rank can distort all following ranks, we shifted 
the predicted ranks by an integer so that the median signed rank error would 
be zero. We then evaluated the results by calculating the median rank error, 
the fraction of rank errors greater than 10 and the fraction of correct neighbors 
(where actually neighboring contigs are predicted to be neighboring).
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