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ABSTRACT

How neural networks process overlapping input patterns is a fundamental ques-
tion in both neuroscience and artificial intelligence. Traditionally, overlaps in
neural activity are viewed as interference, requiring separation for better perfor-
mance. However, an alternative perspective suggests that these overlaps may en-
code meaningful semantic relationships between concepts. In this paper, we pro-
pose a framework where persistent overlap between episodic patterns represent
semantic components across episodic experiences, and the statistics of these over-
laps how each semantic concept relates to others.
To explore this idea, we introduce an Episode Generation Protocol (EGP) that
defines a mapping between the semantic structure of episodes and input pattern
generation. Paired with our EGP, we use Homeostatic Binary Networks (HBNs),
a simplified yet biologically-inspired model incorporating key features such as ad-
justable inhibition, Hebbian learning, and homeostatic plasticity.
Our contributions are threefold: (1) We formalize a link between episodic seman-
tics and neural patterns through our EGP. This EGP can be used for systematic
study of semantic learning in artificial neural networks. (2) We introduce HBNs
as an analytically tractable network that extracts semantic structure in its internal
model (3) We show that HBNs align their performance with Maximum A Posteri-
ori and Maximum Likelihood Estimation strategies depending on the homeostatic
regime. Similarly, we provide an example of how our EGP can be used as an
experimental protocol in neuroscience to make different models of learning com-
pete.

1 INTRODUCTION

Understanding how neural networks learn and process overlapping patterns is a central question in
neuroscience and artificial intelligence (AI) (O’Reilly, 2000). Overlapping patterns are many times
viewed as sources of interference or noise, which need to be separated in order to avoid a degraded
performance (French, 1999; Goodfellow et al., 2013). Another view is that overlaps might not only
represent interference but also encode meaningful semantic relationships. In particular, overlaps
are proposed to encode the similarities between the concepts represented by different patterns
(De Falco et al., 2016; Gastaldi et al., 2021; Gastaldi & Gerstner, 2024) (see Fig. 1A). However,
this outlook typically assumes that each pattern separately represents a concept, and that the overlap
is a consequence of the concepts being semantically related. A different interpretation, which we
explore here, is that activity patterns correspond to the full content of episodes, and the overlaps
between patterns represent common concepts in the episodes encoded by both patterns (Fig. 1B).
Understanding the meaning of these overlaps is tightly related to the notion of semantics. In this
sense, the interplay between semantics and learning has puzzled researchers in AI and cognitive
sciences for decades, with a recovered popularity in the relatively recent years (Saxe et al., 2019;
Chrysanthidis et al., 2022; Ben-Shaul et al., 2023; Ravichandran et al., 2024).

In order to study how semantics impact learning, we propose an Episode Generation Proto-
col (EGP), which samples input with a well-defined semantic structure. Paired with this EGP, we
introduce Homeostatic Binary Networks (HBNs), a minimal model that incorporates biologically-
inspired elements such as adjustable inhibition, Hebbian learning, and homeostatic plasticity. Due
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to their simplicity, for certain regimes, one can obtain the closed-form trajectories of semantically-
labeled populations of weights in these networks.

The main contributions of this work are:

• Proposing an Episode Generation Protocol (EGP) with an associated Semantic Structure,
which allows testing semantic learning in artificial neural networks.

• Presenting Homeostatic Binary Networks (HBNs). This simplification of biologically-
inspired neural networks allows a direct link between a formally defined Semantic Structure
and its learning dynamics.

• Using the EGP to obtain different behavioural signatures of a plethora of models used in
neuroscience, relating them to responses in prototype learning and masked input prediction.

2 RESULTS

2.1 EPISODE GENERATION PROTOCOL (EGP) FOR SEMANTIC LEARNING

To test neural networks’ ability to extract semantic relationships from inputs, we propose an Episode
Generation Protocol (EGP). This framework connects episodic patterns to semantic structure, en-
abling systematic testing of learning systems. The EGP defines episodes as combinations of con-
cepts (e.g., Italy and pizza) across attributes (e.g., place and food) (Fig. 1C, left), with sampling
probabilities specifying the stochastic relationships between concepts (Fig. 1C, center).

Each episode maps to an input pattern where concepts activate subsets of neurons, forming a list of
K One-Hot encodings for each attribute. Having multiple neurons coding for each concept allows
further noise injection without totally erasing the original meaning. Here, variability is introduced
by randomly choosing Nswap/2 active neurons, and Nswap/2 inactive neurons, and flipping their
activity. This results in a total of Nswap neurons stochastically changing their original state, but
overall preserving the total number of active neurons. The process episode −→ input pattern −→
noise defines the episode-input mapping of the EGP (Fig. 1C, right), which could however take
alternative forms to the one proposed here.

The semantic structure of the EGP is formalized as a matrix SS, where each entry SSij represents
the conditional probability of episode concept j given episode concept i (Fig. 1E). For example,
in an EGP where Italy only appears with pizza, the probability of pizza given Italy is 1, while Italy
given pizza is 0.5 due to the shared occurrence of pizza with France (Fig. 1D). This structure encodes
asymmetries and causal relationships between concepts, extending beyond standard methods such as
Representational Similarity Analysis (Kriegeskorte et al., 2008; Schapiro et al., 2017a) or Point-wise
Mutual Information (Fano, 1968; De Falco et al., 2016).

Importantly, the EGP generalizes (and formalizes the semantic structure of) previously used over-
lapping input protocols, providing a general framework for testing semantic learning. In Appendix
A.3, we re-frame prior datasets (Schapiro et al., 2017b; Singh et al., 2022; Fung & Fukai, 2023)
within this protocol, highlighting its applicability to formalize existing experiments.

2.2 SEMANTIC LEARNING IN RECURRENT NEURAL NETWORKS

We start examining how the semantic structure of an EGP influences the learned connectivity in
various recurrent network architectures. Recurrent neural networks (RNNs) are networks in which
every unit receives input from the rest, and are widely used in machine learning and neuroscience.
Here, we train three different types of RNNs: a Hopfield-Tsodyks network (Tsodyks & Feigel’man,
1988), a Boltzmann Machine (Ackley et al., 1985), and a feed-forward network (Appendix B) where
the output has the same size as the input. We show the connectivity both early and late in training
of the feed-forward network.

The networks are trained on episodes sampled from an EGP with a simple yet asymmetric semantic
structure (Fig. 2A-B). After training, synaptic strength is normalized between 0 and 1, (Fig. 2C).
For each network, we calculate the correlation coefficient rsem between this normalized connectivity
matrix and the semantic structure of the EGP (maximum value of cosine similarity considering both
the original weight matrix and its transpose).
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Figure 1: A: Overlapping neuronal activity patterns as proposed in De Falco et al. (2016); Gastaldi
et al. (2021); Gastaldi & Gerstner (2024). Here each pattern corresponds to a concept, and the over-
lap between patterns is a result of the patterns being semantically related. B: Our proposed view of
engram overlaps. Here, activity patterns code for episodes, and the persistent overlap between pat-
terns are the concepts. C: Schematics of our Episode Generation Protocol (EGP). An EGP contains
(left) episode attributes (in this example place and food, blue) and instances of attributes (concepts,
beige). Episodes (sets that contain one concept per attribute), are sampled following a pre-defined
probability distribution that depends on each possible pair (center, brown). Finally (right), the sam-
pled episode is mapped to an input pattern by activating subsets of neurons corresponding to each of
the concepts present in the episode. Some final variability within episodes is induced by randomly
flipping the activities of Nswap/2 active and Nswap/2 inactive neurons. D: Example of the semantic
structure of Italy induced by the EGP in 1C. From the probabilities of each possible episode, one
can derive the conditional probabilities associated to Italy being present in the episode. E: Semantic
structure of the EGP in 1C.

We find that the semantic structure of the EGP is moderately to highly correlated with recurrent
connectivity after learning (Fig. 2C), suggesting the semantic structure, as here defined, has a non-
negligible impact in learning for a variety of architectures. Interestingly, the feed-forward network
shows stronger alignment at early stages of training, to then move to an identity representation
(see Appendix B). The Hopfield-Tsodyks network shows the strongest alignment with the semantic
structure, but is inherently limited by its necessarily symmetric connectivity. These results open the
door to the possibility of a network extracting semantics in full.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: A: Diagram summarizing the episode sampling process of this EGP. B: Semantic Struc-
ture associated to this EGP. C: Normalized connectivity for 4 different networks: A feed-forward
network trained with self-supervised learning (early and late stages of learning), a network with
Hopfield-Tsodyks connectivity, and a Boltzmann machine with only visible units.

2.3 HOMEOSTATIC BINARY NETWORKS (HBNS)

Building on the previous results, we propose a biologically-constrained recurrent neural network
(RNN) designed to extract episode semantics without the need for symmetric connections: the
Homeostatic Binary Network (HBN). HBNs are inspired by classic models of Hebbian learn-
ing (Hopfield, 1982; Tsodyks & Feigel’man, 1988) and competitive learning (Rumelhart & Zipser,
1985). Additional homeostatic mechanisms, that here take the form of a generalization of winner-
take-all dynamics (using a top-K operation) and synaptic renormalization, are crucially included
to facilitate semantic learning. These homeostatic principles align with regularization methods in
artificial neural networks (Hofmann & Mäder, 2021), which constrain network activity and weight
distribution.

Network Architecture The network consists of two distinct regions (place and food; Fig. 3A),
corresponding to inputs representing different attributes. HBNs operate in two modes (Fig. 3A):

• Input-Driven Mode: Input determines the activity, ignoring recurrent weights (equa-
tion 3).

• Pattern Completion Mode: Recurrent weights drive network activity to recall previously
learned patterns (equation 4 and equation 10)

Activity-Level Homeostasis. HBNs ensure homeostasis at the activity level through binary acti-
vation and fixed sparsity constraints. After both input and recurrent processing (Fig. 3A; Eq. equa-
tion 3 and equation 4), the network applies a top-K activation function (equation 5). This operation
activates the K highest values in each region while suppressing the rest (Fig. 3B), mimicking the
effect of adjustable inhibition observed in biological neural networks (Table 1, equation 6).

Synaptic-Level Homeostasis. At the synaptic level, homeostasis is achieved through synaptic
renormalization (Fig. 3C). This mechanism constrains the sum of incoming and outgoing synaptic
weights for each neuron to remain below fixed thresholds (win

max and wout
max, respectively; Table 1,

equation 8 and equation 9). These constraints give rise to three distinct learning regimes, which
interact differently with the semantic structure of episodes.

Weight trajectories and Semantic Structure. In Appendix C, we show how weight trajectories
depend on input statistics. We find that the network primarily can be described by 3 regimes:

• HBN (out) : Outgoing homeostasis dominates (wmax
out << wmax

in )

wij −→ p(xi = 1|xj = 1) (1)

• HBN (balanced) : Outgoing and incoming homeostasis are balanced (wmax
out ≈ wmax

in , no
analytical solution found)

• HBN (in) : Incoming homeostasis dominates (wmax
out >> wmax

in )

wij −→ p(xj = 1|xi = 1) (2)
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where p(xi = 1|xj = 1) is the probability that (during learning), neuron i is active if neuron j is
active.

It should be highlighted that synaptic renormalization plays a key role in obtaining the previ-
ous results. As pure hebbian learning keeps track of the joint firing probability, homeostatic
mechanisms that multiplicatively depresses synapses whenever there is a pre (incoming home-
ostasis) or a post (outgoing homeostasis) firing transforms a joint distribution into a conditional
probability. Furthermore, these results showcase the motivation for HBNs as a model for semantic
learning, as synapses converge to conditional firing probabilities, matching the associated semantic
structure under the assumption that neurons track input statistics sufficiently well.

Semantic Learning in Recurrent Connections. To investigate the representations emerging in
HBN’s recurrent connections during acquisition, we trained it on the same EGP of the previous sec-
tion Fig. 2A). Weights from pre-neuron j to post-neuron i were color-coded based on the episode
concept each neuron represented (Fig. 3C, right). Synapses were grouped by their conceptual pair-
ings: self-connections (black), within-attribute connections (blue), place-to-pizza (green), place-to-
croissant (red), and food-to-place (orange). These groupings reflect shared conditional likelihoods
(compare Fig. 3B and Fig. 3C, right).

Weight trajectories were analyzed for three homeostatic regimes: Outgoing Dominance (wout
max ≪

win
max), Balanced (win

max = wout
max), and Incoming Dominance (wout

max ≫ win
max; Fig. 3D1, right). These

regimes were chosen due to a phase transition in learning dynamics (Appendix C; Fig. 3D3), where
the outcome largely depends on the homeostatic balance. In this sense, in Fig. 3D3 one can see how
the final weights are independent of the out/in homeostasis ratio except for a narrow region (these
related to the 3 regimes explained above). Theoretical learning trajectories (dashed lines) closely
approximated mean-field simulations (solid lines; Fig. 3D1).

Post-convergence, weights under outgoing and incoming dominance were proportional to condi-
tional firing probabilities, linking them to episodic semantics (Appendix C). Simulations confirmed
these results, revealing that the final weight matrix had an associated semantic correlation much
higher than previously tested networks (Fig. 3D2). Specifically, connections aligned with the se-
mantic structure for outgoing dominance (wij reflecting the probability of concept associated to i
given concept associated to j. For incoming dominance, this was inverted, aligning with the trans-
pose of the semantic structure.

2.4 BEHAVIORAL SIGNATURES OF SEMANTIC LEARNING

Ultimately, one of the goals of HBNs and other networks studied here is to serve as models of the
nervous system. While we have shown that HBNs can encode semantic structures in their connec-
tions with a high degree of fidelity, this does not necessarily mean they mimic biological neural
networks. In this section, we study the behavioural signatures of HBNs and alternative models pre-
viously used to describe learning in humans. To do so, we train different networks using our EGP,
and then study network responses in two different tasks: (i) pattern completion of noisy input and
(ii) pattern completion of semantically-masked input. In addition to the previous models, we also
include here Modern Hopfield network (Ramsauer et al., 2020), which we did not study in section
2.2 due to the absence of explicit recurrent connections. In this sense, the results presented here
could be extended to any network that has been trained to recover/generate input patterns.

One motivation of this section is characterizing how different types of network make predictions
over out-of-distribution input. But, more importantly, this section also provides with a battery of
model-specific predictions that could be tested using a similar protocol in human or animal subjects,
for example using the matrix heatmap representation of input vectors as visual cues.

2.4.1 RECALL OF SEMANTIC PROTOTYPES FROM NOISY INPUT

It has recently been shown Kang & Toyoizumi (2024) that recurrent neural networks using a
Hopfield-Tsodyks connectivity can identify semantic prototypes from input. Semantic prototypes
can be understood as an average pattern common across many episodes that share a concept, and
here would correspond to the list of One-Hot encodings that represent episodic content before adding
noise (Fig. 4A-B).
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Table 1: HBN Function, Training, and Testing Implementation
HBN Function and Implementation

Function Implementation Equation(s)
Input
processing

Pre-activation zi corresponds to the input xinput
i

zi = xinput
i (3)

Recurrent
processing

Pre-activation for each region zi corresponds to
the sum of weights wij times input xj zi =

∑
j

wijxj (4)

Nonlinear
activation

Activation function: x = top-K(z). The K neu-
rons in region l with highest zi have xi = 1 and
the rest xi = 0. xregion

i = [top-K(zregion)]i
(5)

Adjustable
inhibition

This activation function can be interpreted as a
step with a threshold that depends on the layer in-
put z and K. xi = H

(
zi − θ(z;K)

)
(6)

HBN During Train (Acquisition)
Function Implementation Equation(s)
Hebbian
learning

Pre-post pairing.
∆wHebb

ij = λxixj (7)
Homeostatic
plasticity (in)

Multiplicative synaptic renormalization over in-
coming synapses. When the total sum of incom-
ing weights at post-neuron i exceeds a threshold
win

max by a value ϵi, each weight wil is normalized
to impose

∑
l wil = win

max.

if
∑
l

w
(t)
il = win

max + ϵi

=⇒ w
(t+1)
il = w

(t)
il

win
max

win
max + ϵi

(8)
Homeostatic
plasticity (out)

Multiplicative synaptic renormalization over out-
going synapses. When the total sum of outgoing
weights at pre-neuron j exceeds a threshold wout

max
by a value ϵj , each weight wkj is normalized to
impose

∑
k wkj = wout

max.

if
∑
k

w
(t)
kj = wout

max + ϵj

=⇒ w
(t+1)
kj = w

(t)
kj

wout
max

wout
max + ϵj

(9)
HBN During Test (Recall)

Function Implementation Equation(s)
Pattern
completion

The recurrent layer can project a network state x
into its recurrent connections.

xregion ← top-K
(
[W ·x]region

)
(10)

To test the ability of different networks to recover semantic prototypes from noisy versions of input,
we train each network on input with the same amount of noise as in previous section (Nswap = 4),
and then test each network by providing inputs with varying levels of noise, (from Nswap = 4 to
Nswap = 100, which would correspond to a totally random pattern.

We find that almost all networks tend to drive their neural activity toward the semantic prototype
(the input pattern before the swaps; Fig. 4B, bottom) of each episode element (Appendix E) and Fig.
4C). Notably, the performance (measured as the cosine similarity between the recovered pattern and
the input pattern before noise), follows a very similar curve for all networks except for an HBN
with outgoing homeostasis and the Boltzmann machine. In the case of HBN (out), the average
performance is comparable to the rest of networks, but it shows a much higher variance. Further
inspection shows the reason is that this network is biased to recovering recovering overall-most-
likely episodes, even when the original input corresponded to a less likely example. On the other
hand, the Boltzmann machine shows an overall lower performance, being the only network that is
not able to accurately recover semantic prototypes from input examples.
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Figure 3: A: When Input-Driven, the network activity is the result of performing the top-K activa-
tion over the input. During testing, the network can pattern-complete the original input by activating
the projection of input-driven activity onto the recurrent weights. B: Homeostasis in the network ac-
tivity imposes a fixed level of sparsity by applying a top-K activation over the pre-activation values.
For 3 different pre-activation distributions z (1), (2), and (3) (illustrative, not actual input sampled
from our EGP), the post-activation distribution is always N −K 0’s and K 1’s. C: Synaptic home-
ostasis is implemented via outgoing (top) and incoming (bottom) homeostasis, which respectively
ensure that the total amount of incoming and outgoing weights are bounded to maximum values
win

max and wout
max. D: Semantic Learning in HBNs. D1: Weight trajectories across learning, synapses

coloured as shown in right. Dashed lines indicate theory (only Outgoing and Incoming Dom.) D2:
Normalized connectivity and semantic correlation (below), for each network, after learning. D3:
Final weights for different ratios wmax

out /w
max
in .

These results hilight the first behavioural signatures of two specific types of network: HBN (out) can
accurately learn semantic prototypes, but is biased to most-likely episodes for very high levels of
noise. In contrast, a Boltzmann machine (without hidden units) has a poor performance in prototype
learning regardless of noise levels. These two properties could be well captured by behavioural
experiments in humans or other animals.

2.4.2 PREDICTIVE BIASES IN SEMANTIC LEARNING

Given an input that has been conceptually masked (activity in the region coding for one of the
attributes place or food), one can have different predictive strategies. If a clear cue for place is
given, what food should be predicted? One option is assume the cue given as a prior, and perform
Maximum A Posteriori Estimation (MAP) over the different foods:

argmax
target

p
(
target in episode|cue in episode

)
(11)

In this case, the predicted food is the most likely to appear in an episode, given the cue shown is also
present. A different strategy would be predicting the concept that would make the given cue most
likely, which would correspond to Maximum Likelihood Estimation (MLE):

argmax
target

p
(
cue in episode|target in episode

)
(12)

In order to understand how HBNs and the rest of the networks studied relate to these prediction
strategies, we train different models on input with a semantic structure as 9. This semantic structure

7
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Figure 4: Behavioural signatures of semantic learning in neural networks A: Prototype learning,
a noisy version of input is presented, and the network has to recover the semantic prototype. B:
Examples of corrupted input (top) and their corresponding semantic prototype (bottom) C: Perfor-
mance of prototype learning across networks. Shadowed areas show standard deviations. D: Recall
from partially-masked input. E: Schematic of differences between MAP and MLE. F: Examples of
predicted neural activity upon MAP and MLE.

has been design to obtain fairly dissimilar responses under MLE and MAP paradigms. This also
allows obtaining further behavioural signatures of each different form of learning, making specific
predictions on participants performance.

Table 2 summarizes the performance of HBNs trained under different regimes, as well as other base-
line models. The MAP and MLE scores where obtained by computing the dot product between the
behavioural distribution of selected (highest average) concepts given a cue with the known solution
from input statistics. MAP bias and MLE bias take only into account those cue-recall pair in which
the answer was different for MAP and MLE.

As expected (Appendx F.2), HBN (out) distinctively outperforms the rest of networks in MAP, as
well as showing a perfect bias towards this predictive strategy. Similarly, HBN (both balanced
and in) show a very good performance and bias in MLE. The rest of networks in general show
intermediate to good performances, but all of them have a strong bias towards one or the other.
Notably Boltzmann machines have a very good performance in MAP, despite bad performance in
prototype learning.

Overall, distinctive behavioural signatures of different have been obtained to be compared with
potential experiments. Notably, the space of all possible semantic structures is by all means not
fully explored here, with this a single example of applicability of the method.

Table 2: Performance comparison of MAP and MLE metrics. Metrics obtained over trials of 1000
episodes. Standard deviations show difference between 4 different trials of 1000 episodes each.

Model MAP score MLE score MAP bias MLE bias
HBN (Out) 0.9954± 0.007 0.67± 0.03 1± 0 0± 0
HBN (Balanced) 0.6805± 0.008 0.9990± 0.04 0.04± 0.01 0.9992± 0.0004
HBN (In) 0.681± 0.003 0.9990± 0.0003 0± 0 1± 0
Hopfield-Tsodyks 0.731± 0.004 0.983± 0.002 0.18± 0.01 0.982± 0.002
Modern Hopfield 0.93± 0 0.63± 0.1 1± 0 0± 0
Feed-Forward 0.9357± 0.0005 0.5± 0 1± 0 0± 0
Boltzmann Machine 0.993± 0.002 0.731± 0.008 0.993± 0.002 0.09± 0.01
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3 DISCUSSION

To study the impact of episode semantics in learning (semantic learning), we have proposed an
Episode Generation Protocol (EGP) -and a corresponding Semantic Structure. We have tested
how different Recurrent Neural Networks (RNNs) are able to extract semantics into its recurrent
weights. While there exists a non-negligible correlation between the semantic structure and the
learned weights, none of the tested networks were able to extract semantics in full. We have pro-
posed a model designed for this purpose (Homeostatic Binary Networks, HBNs). We show that
these outperform previously tested networks, with an almost perfect alignment with the semantic
structure of the EGP. Then, we explore behavioural signatures of different models typically used in
neuroscience. Results suggest that HBNs, in different regimes of synaptic homeostasis, are biased
to perform Maximum A Posteriori (MAP) or Maximum Likelihood Estimation (MLE). Similarly,
we propose that our EGP can be used in behavioural experiments with animals or humans to vali-
date/falsify the ability of the different networks to explain learning in biological agents.

Our EGP supposes a step forward in the study of semantic learning in artificial neural networks,
generalizing frameworks that assume associations between input and output (McClelland & Rogers,
2003; Saxe et al., 2019) and also moving beyond defining semantics as a mere segregation of con-
cepts (Ben-Shaul et al., 2023), which ignore the semantic web that these concepts form. In this
sense, we hope our EGP and Semantic Structure inspire future experiments in interpretability in
artificial intelligence , providing a framework to systematically study how neural networks capture
input statistics in its internal structure. While not in the main scope of this study, an example of the
interplay between learning via back-propagation of errors and semantic learning has been shown in
??. In this sense, we have shown how the semantic structure guides learning trajectories in initial
learning phases even in a simple setup where a feed-forward network is trained to be an identity.
Crucially, when this training was performed over masked input, the correlation between network
and semantic structure was kept consistently high. This result aligns with recent studies report-
ing facts in Large Language Models being stored in the feed-forward connections of its transformer
blocks (Nanda et al., 2023), considering that next-word prediction can be seen as a formed of masked
self-supervised learning.

HBNs build upon long-standing ideas like Hopfield networks (Hopfield, 1982) and competitive
learning (Rumelhart & Zipser, 1985). One relatively novel aspect in HBNs is incorporating outgo-
ing homeostasis, which has also recently been included in Fung & Fukai (2023). While their work
focuses on learning in feed-forward connections, competition for presynaptic resources (outgoing
homeostasis) was already found to help learning with overlapping patterns.

The learning dynamics in HBNs are heavily impacted by the Semantic Structure of episodes,
with final weights actually matching the Semantic Structure matrix when outgoing homeostasis
dominates, and its transpose when incoming homeostasis dominates. While their performance
in prototype learning is comparable to that of classic models of sparse storage, as can be the
Hopfield-Tsodyks (Tsodyks & Feigel’man, 1988) connectivity, HBNs can also capture asymmetric
semantic relationships. Furthermore, our results challenge the view that patterns with an overlap
over a certain threshold become indistinguishable (Gastaldi et al., 2021). This is crucially allowed
by adjustable synaptic inhibition (via our top-K activation function), without which one would get
representational collapse. Our study has implications in the reconciliation of error-free (Hebbian)
and error-driven (predictive) learning (Kumar, 2021; Zheng et al., 2022). In this sense, although
our network model is essentially Hebbian and does not use an explicit error signal, it is able to find
asymmetric predictive relations among its input and goes beyond purely associative learning, as
shown by its ability to perform Maximum A Priori Estimation (MAP) and Maximum Likelihood
Estimation (MLE).

Our work can be placed in the context of Complementary Learning Systems (CLS) theory
(McClelland et al., 1995; O’Reilly et al., 2014), via both our Episode Generation Protocol and
Homeostatic Binary Networks. Our EGP can be used to formalize the semantic structure of standard
input generation protocols in the literature, adding one level of complexity to quasi-orthogonal
inputs typically used and adding the notion of semantic structure to those that already use highly
overlapping input patterns. As computational models of biological neural networks, HBNs, on
the other side, present several advantages over other models of semantization and/or systems
consolidation: (i) HBNs are analytically tractable, (ii) HBNs do not use less biologically-plausible
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learning mechanisms such as back-propagation (Saxe et al., 2019) or Contrastive Hebbian Learning
(Singh et al., 2022), (iii) HBNs are computationally very inexpensive, which strikes compared to
other biologically-inspired architectures, many times using spiking networks (Remme et al., 2021;
Tomé et al., 2022; Chrysanthidis et al., 2022).

Our work also presents several limitations. In the case of the EGP, the episode-input map-
ping proposed here is, besides the variability introduced by neuronal activity swapping, the
simplest one could think of, making it essentially a one-hot encoding. Future work could study
what representations emerge in more complex episode-input mappings, for example introducing a
linear-nonlinear relationship between episode concepts and input patterns. Another limitation here,
where simplicity in the input has been prioritized in favour of a mechanistic yet intuitive study, is
the absence of application to more complex problems to study learning in modern artificial neural
networks. Future work could leverage on this limitation by exploring EGPs based on standard
benchmarks. An example of this would be imposing a specific semantic structure between pairs of
MNIST digits and then presenting a network with stacked images that follow these statistics. While
self-supervised learning (Bromley et al., 1993; Gui et al., 2024) has been shown to project input
into a latent manifold that is semantics-aware (Ben-Shaul et al., 2023), future work could explore if
it also captures semantic relationships between concepts (in this case right and left digit). Finally,
another limitation of the EGP in the form presented here, as a model of episodic input generation, is
that it does not take into account temporal correlations present in real-life episodes. Extending the
protocol in this sense could lead to better understanding how temporal aspects of semantics can be
extracted in neural networks.

HBNs, while presenting multiple advantages, crucially depend on parameters such as K that here
where imposed to match known input structure and statistics. Understanding how K (which is
equivalent to the sparsity levels) can be meta-learned to optimize learning would be primordial to
asses its applicability both in AI and neuroscience. Additionally, the model and the theoretical
derivations included make several assumptions that also challenge its validity, such as the ability of
the network to perfectly track input statistics and disconnect from recurrent weights during learning.
While these are standard practices in computational models of biological learning (Clark & Abbott,
2024), activity and learning dynamics are not perfectly decoupled in actual neural systems. Finally,
connected to a limitation of the EGP previously highlighted, learning in HBNs does not take into
account temporal sequences. The ability to make predictions in time is crucial for episodic and
semantic memory, and extensions of the model to allow this, as done in Chaudhry et al. (2024)
would be crucial to obtain a model that aims at fully capture learning in biological agents.

REFERENCES

David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning algorithm for boltzmann
machines. Cognitive science, 9(1):147–169, 1985.

Ido Ben-Shaul, Ravid Shwartz-Ziv, Tomer Galanti, Shai Dekel, and Yann LeCun. Reverse engineer-
ing self-supervised learning. Advances in Neural Information Processing Systems, 36:58324–
58345, 2023.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah. Signature verifi-
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A GENERATING OVERLAPPING INPUT PATTERNS WITH AN EPISODE
GENERATION PROTOCOL

A.1 EPISODE GENERATION PROTOCOL

The Episode Generation Protocol (EGP) is a generative process that samples input neural activity.
Our proposed EGP is defined as follows:

EPISODES, EPISODE ATTRIBUTES AND EPISODE CONCEPTS

All episodes share a structure, such that every episode contains one episode concept per episode
attribute. In this sense, if attributes are A,B,C..., an episode is constructed by selecting a concept
a ∈ A, another b ∈ B, another c ∈ C... The set of all possible episodes can thus be defined as:

E = {{a, b, c, . . . } | a ∈ A, b ∈ B, c ∈ C, . . . } (13)

In other words, an episode e ∈ E is a collection of episode concepts a, b, c, ... such that concept a
belongs to episode attribute A, concept b belongs to episode attribute B, etc.

In this study, for illustrative purposes, we assume that episodes are related to lunch experi-
ences, such that one attribute is place and another attribute is food. Episodes are therefore specified
by choosing pi ∈ place and fj ∈ food, resulting in episodes of the form

E = {{pi, fj} | pi ∈ place, fj ∈ food} (14)

EPISODE PROBABILITY DISTRIBUTION

As a generative process, our EGP samples episodes as a previous step to sampling an input pattern.
This is done by fixing a probability distribution over episodes. In our particular example of place
and food, one has to fix

P
(
e = {pi, fj}

)
(15)

such that
0 ≤ P

(
e = {pi, fj}

)
≤ 1 ,

∑
i,j

P (e = {pi, fj}) = 1 (16)

EPISODE-INPUT MAPPING

After an episode (pi, fj) has been sampled, the EGP returns an input pattern. Here, we assume
the input vector can be split into a place and a food region. Then, for each region, we use a
list of K repeated One-Hot encodings, where the encoding represents which of all the concepts
corresponding to that attribute is present in the episode. Intuitively, each region corresponds to a
single attribute, and can be visualized as a matrix that contains as many rows as possible episode
concepts in that attribute, and K columns. All entries of the row that correspond to the concept
present in the episode are 1 and the rest are 0.

To account for variability between different presentations of the same episode (not all episodes, even
though they contain the same concepts, will be exactly the same), we further add some stochasticity
by randomly picking Nswap/2 inactive neurons and Nswap/2 active neurons and inverting their
activity (a total of Nswap neurons randomly change their activity). This ensures that activity sparsity
in the sensory layer is maintained (the number of flips from 0 to 1 is the same as the number of flips
from 1 to 0).

A.2 SEMANTIC STRUCTURE OF AN EGP

We refer to semantic field theory (Bussmann et al., 2006) in order to define what is the semantic
structure of an EGP. According to this school, the meaning of a word is not isolated but dependent
on its relation to the rest of the words. While our task is not one of language, we can use
this same paradigm to define the meaning of episode concepts. In this sense, the meaning of
our episode concepts depends on how they are related to the rest. Intuitively, even if a house
is exactly the same for two dogs, the meaning of that house for each will be very different if it
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is always presented with food to one dog and always presented with an annoying whistle to the other.

In this light, we use the conditional probabilities of being present in an episode between
episode concepts

P (i ∈ e|j ∈ e) =
P (i ∈ e, j ∈ e)

P (j ∈ e)
∀i, j ∈ A ∪B ∪ C ∪ ... (17)

as a proxy for the semantic structure of an EGP, which we define as the matrix of these conditional
probabilities:

semantic structure ≡ {SSij} ;SSij = P (i ∈ e|j ∈ e) (18)
In other words, extracting the semantics of an EGP is equivalent to: (i) identifying episode concepts,
and (ii) extracting how likely is one episode concept i to be present in an episode e if an episode
concept j is also present.

One detail that should be noted is that episode attributes are simply groups of concepts the
sub-matrices of which are diagonal (they never co-occur together), and one does not necessarily
have to define them explicitly (as we do with place and food), nor they have to exist for that matter
(it could happen that all pairs of concepts have a non-zero probability of co-occurrence, so each
concept is its own episode attribute). However, here we use the notion of episode attributes to obtain
simpler semantic structures the intuition of which can be grasped more easily (by enforcing many
zeros in the matrix SS). Thus, while in practice the episode attributes are a property of the semantic
structure and do not need to be specified a priori in the EGP, here we do so as a story-telling trick,
slightly sacrificing the generality of our EGP definition.

14
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A.3 EGP AND SEMANTIC STRUCTURE OF INPUT USED IN PREVIOUS STUDIES

A.3.1 OVERLAPPING PATTERNS FROM SCHAPIRO ET AL. (2017B); SINGH ET AL. (2022)

A very interesting previously used protocol of generation of overlapping input is that used in Singh
et al. (2022), in turn inspired in an earlier experimental study (Schapiro et al., 2017b). In these
studies, inputs are drawings of satellites, together with textual attributes such as their name or class
(satellites of the same class share many visual features, and the class feature itself). Given that each
satellite is defined by: name, class, and visual feature 1 to 5, our protocol can also be used as a
framework (Fig. 5A), using an episode-input mapping that similarly encodes each attribute in a
separate network using a list of One-Hot encodings.

The associated Semantic Structure (Fig. 5B, left), which can be learned using an HBN with
outgoing homeostasis (Fig. 5B, right) uncovers each of the different episode attributes, but also the
highly asymmetric relationship that exists between them (Fig. 5B). For instance, while each name
conditions with probability one the class (alpha, beta, gamma), classes condition more weakly the
name, as given a class there are 4 possible associated names. Representation Similarity Analysis
(RSA) (Kriegeskorte et al., 2008) was successfully used in the past to understand semantics in this
dataset, which revealed a strong community structure. However, the relationships highlighter by
the Semantic Structure proposed here could not be uncovered, as RSA is an inherently symmetric
measure.
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Figure 5: A: EGP that mimics input generation in Singh et al. (2022). B: Obtained Semantic Struc-
ture (left) and weight matrix (right after training with outgoing homeostasis dominance.)
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A.3.2 OVERLAPPING PATTERNS FROM FUNG & FUKAI (2023)

To give another example of application in formalizing the generation of overlapping input with our
EGP, we also apply it to the input used in Fung & Fukai (2023). This very simple toy input was used
to understand how competition on presynaptic resources can aid pattern separation in a feed-forward
network. The patterns used were

(0, 1, 1, 0, 0, 0, 0, 0, 0) −→ p1

(0, 0, 1, 1, 0, 0, 0, 0, 0) −→ p2

(0, 0, 0, 0, 0, 1, 1, 0, 0) −→ p3

(0, 0, 0, 0, 0, 0, 1, 1, 0) −→ p4

(19)

By noting that positions 2 and 7 are sharedamong patterns p1 and p2, while positions 1,3,6, and 8 are
distinctive (not-shared) in each of the 4 patterns, our EGP can be used to frame this input generation
as shown in Fig. 6A. This yields a semantic structure whereby not-shared attributes completely
predict (conditional probability of 1) the shared attributes, while the opposite is only partially true
(conditional probability of 0.5) (Fig. 6B).

Figure 6: A: EGP that mimics input generation in Fung & Fukai (2023). B: Obtained Semantic
Structure (left) and weight matrix (right after training with outgoing homeostasis dominance).
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Figure 7: Semantic learning in a feed-forward network. A: Loss and semantic correlation across
training, identically using the input as output. B: Same as B, but masking one of the two regions.

B FEED-FORWARD NETWORK

A step in recurrent processing (equation 10) can be seen as the output of a feed-forward network
of the same input and output size. To study semantic learning in a setup more closely related to
artificial neural networks, we train a neural network consisting of an N × N linear mapping and a
sigmoid. In section 2.2, we train a feed-forward network to simply output the input (note how the
solution is trivially an identity matrix). Interestingly, learning dynamics are first guided by semantic
learning, with semantic correlation initially increasing (early in 2.2), to then slowly shifting towards
the actual solution (late in 2.2).
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C MEAN-FIELD LEARNING DYNAMICS (NO PHYSICAL CONNECTIONS)

Here we derive the learning dynamics of a weight wij . The intuition is very similar to that presented
in Rumelhart & Zipser (1985), which establishes the fixed points of a feed-forward network with
incoming homeostasis.

By including Hebbian, outgoing and incoming homeostatic plasticity, the weight change
∆wij at each timestep t is given by:

∆wij = λxixj −H
(
Sout
i (t)− wout

max

)
∆wout

ij −H
(
Sin
i (t)− win

max

)
∆win

ij (20)

where we have defined the dynamic variables

Sout
j (t) =

∑
k

wkj ; Sin
i (t) =

∑
l

wil (21)

which denote the total amount of presynaptic (outgoing) Sout
j and postsynaptic (incoming) Sin

i

connectivity. Note how every neuron in the network has associated these two variables. H(x)
is the Heaviside function, which takes value 1 if x ≥ 0 and 0 otherwise. This ensures that
outgoing (incoming) homeostatic plasticity only depresses synapses if the total outgoing (incoming)
connectivity is above wout

max (win
max).

With this formulation, we now aim to obtain the mean-field dynamics (average weight change
of a synapse). In this derivation, we will assume the neuronal firing probability distributions
p(xi = 1, xj = 1), p(xi = 1), and p(xj = 1) are known and fixed (in particular, these do not
depend on the synaptic state, i.e. there are no physical connections). Also, to alleviate notation, we
will use p(i, j) ≡ p(xi = 1, xj = 1), p(i) ≡ p(xi = 1), and p(j) ≡ p(xj = 1).

NO HOMEOSTATIC PLASTICITY REGIME

If a synapse has an initial state w0
ij , Sout

j (t = 0) < wout
max, and Sin

i (t = 0) < win
max, then the mean-field

dynamics can be simplified to:
⟨wij(t)⟩ = w0

ij + λp(i, j)t (22)

⟨Sout
j (t)⟩ = Sout

j (0) + λKp(j)t ; ⟨Sin
i (t)⟩ = Sin

j (0) + λKp(i)t (23)

Intuitively, as long as the threshold in total postsynaptic or presynaptic connectivity are not met, there
is only hebbian learning, which increases synaptic efficacy proportionally to time and the probability
of neurons i and j firing together. Similarly, also due to hebbian plasticity, the total presynaptic
and postsynaptic connectivity linearly increase with time, the marginal likelihood of the pre and
postsynaptic neurons to fire, and the amount of active neurons at each timestep (which is explicitly
controlled to be K via the top-K activation function). The advantage of obtaining the exact temporal
evolution of these variables is that from the own equations one can obtain their temporal validity.
This can be done by computing the average time it would take the total connectivity variables to
reach the threshold imposed by wout

max and win
max:

T out
j =

wout
max − λKp(j)

Sout
j (0)

; T in
i =

win
max − λKp(j)

Sin
j (0)

(24)

Resulting in equation 22 and equation 23 being valid if and only if t < min(T pre
j , T post

i ).

ONLY OUTGOING HOMEOSTASIS

We will now assume a synapse in which T out
j < T in

i (that is, outgoing homeostasis starts taking place
before incoming homeostasis). Under these conditions, let’s consider a time t such that T out

j ≤ t ≤
T post
i . Then, at any time that T out

j (t) > wout
max, synapse wij will be depressed following

Sout
j (t) > wout

max =⇒ wt+1
ij = wt

ij

wout
max

Sout
j (t)

⇐⇒ ∆wt
ij = wt

ij

[ wout
max

Sout
j (t)

− 1
]

(25)
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In our model, the only source of potentiation is hebbian learning. Therefore, if Sout
j (t) = wout

max
at a given time, the condition Sout

j (t) > wout
max can only be met upon future firing of neuron j.

Furthermore, synaptic renormalization (which guarantees that
∑

k(w
t
kj + ∆wt

ij) = wout
max), would

immediately drive Sout
j (t) back to wout

max. Eq. equation 25 can be expanded by rewriting Sout
j as

wout
max + ϵout

j and then using 1
1+ϵ ≈ 1− ϵ:

∆win
ij(t) = wt

ij

[ 1

1 + ϵpre/wout
max
− 1
]
= −wt

ij

ϵout
j

wout
max

(26)

Note how ϵout
j corresponds to the amount of extra presynaptic connectivity of neuron j with respect

to the threshold wout
max. This quantity can be obtained by taking into account that (i) homeostatic

plasticity consistently resets the total sum to wout
max and (ii) any extra connectivity has to come from

the connections formed with a single presynaptic firing, which leads to an increase of K in Sout
j .

Then, the average synaptic change over time can be expressed as:

⟨∆wt
ij⟩ = λp(i, j)− wt

ij

λKp(j)

wout
max

(27)

which can be interpreted as an exponential decay in wij :

d
⟨wij⟩
dt

= − 1

τw

(
⟨wij⟩ − wout

ij (∞)
)

(28)

with

τw ≡
wout

max

λKp(j)
; wpre

ij (∞) ≡ wout
max

Kp(j)
p(i, j) ∝ p(i|j) (29)

The latter is a result of notable importance, connecting the fixed point (in the absence of incoming
homeostasis) with the conditional firing probabilities of neurons i and j. The closed-form solution
of ⟨wij(t)⟩ is:

⟨wij(t)⟩ = (1− βw)⟨wij(T
out
j )⟩+ βwout

ij (∞) ; βw ≡ 1− exp
(
− (t− T out

j )/τw

)
(30)

, with ⟨Sout
j (t)⟩ remaining constant in time:

⟨Sout
j (t)⟩ = wout

max (31)

⟨Sin
i (t)⟩ can be obtained from its definition

⟨Sin
i (t)⟩ =

∑
l

⟨wil(t)⟩ (32)

Using equation can be slightly computationally inefficient, as one first has to obtain all the values
⟨wij(t)⟩ and then check if the assumption that Sin

i (t) < win
max is met. That can be bypassed only in

the case where all neurons have the same firing rate p(i) = p(j) = p, where a simplified expression
that does not require computing the weights before knowing the validity of that computation:

Sin
i (t) = (1− βin)S

in
i (T

out
j ) + βinS

in
j (∞) (33)

with

Sin
j (∞) = wout

max ; βin ≡ 1− exp
(
− (t− T out

j )/τin

)
; τin ≡

wout
max

λKp
(34)

An important case to consider is when Sin
j (∞) < win

max, as incoming homeostasis is effectively not
present, given that the postsynaptic connectivity is guaranteed to be below the threshold win

max. This
is reflected in the expression for T in

i , which now is:

T in
i = −τin log

(
win

max − Sin
j (∞)

Sin
i (T

in
j )− Sin

j (∞)

)
(35)

and only takes real values for Sin
j (∞) < win

max. If this condition is not met, then the total amount of
postsynaptic connectivity of neuron i eventually reaches win

max at t = T in
i .

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

ONLY INCOMING HOMEOSTASIS

A similar approach can be used to obtain the solutions when incoming homeostasis dominates
(T out

j > T in
i ).

SCALING COMPETITION FOR PRE- AND POSTSYNAPTIC RESOURCES

In view of the previous results, one can define as wout
max ≡ ηoutKwmax (and similarly win

max ≡
ηinKwmax), with ηinηout, ηin determining the fraction of pre- and postsynaptic resources (respec-
tively) with respect to a value wmax, to obtain

wij

{
= ηout p(x

post
i = 1|xpre

j = 1)wmax if outgoing homeostasis dominates
= ηin p(xpre

j = 1|xpost
i = 1)wmax if incoming homeostasis dominates

(36)

with ηout/ηin determining the homeostatic balance of the network. In the following section we find
what are the input-driven network statistics, which allow calculating equation 36.

D CONNECTION BETWEEN EPISODE GENERATION PROTOCOL AND
INPUT-DRIVEN NETWORK STATISTICS

In order to connect our EGP with the learning dynamics established in Appendix C, we find the
expression for the marginal p(i), p(j) and joint p(i, j) probabilities of two neurons to fire. In the
absence of episode variability, where every neuron’s activity and the episode concepts map 1 to 1,
p(i, j) corresponds to the probability of the episode whose concepts are coded by neurons i and j.

If one takes into account the intra-episode variability, these probabilities are shifted, as every
originally active neuron has a probability Nswap/(2K) of being off, and every originally inactive
neuron a probability Nswap/(2(N −K)) of being on. From this, one can obtain p(i) as a function
of the original marginal firing probability p0(i):

p(i) =
K/2−Nswap/4

K/2

K/2−Nswap/4− 1

K/2− 1
p0(i) +

Nswap/4

N/2−K/2

(
1− p0(i)

)
(37)

where we have assumed two regions of size N/2 and K/2 active neurons in each.

In order to obtain the joint probability of two neurons i and j being active, there are 4 possi-
ble scenarios that could lead to such final state:

1. The two neurons are originally on, and none of them flips
2. Only neuron i is originally on, and neuron j flips
3. Only neuron j is originally on, and neuron i flips
4. Both neurons are originally off, and both neurons flip

At the same time, these different scenarios will yield a different result depending on whether the two
neurons belong to the same region or not. If they belong to the same region, the probability of no
neuron flipping is:

p(i) =

(
K
2 −

Nswap

4

)(
K
2 −

Nswap

4 − 1
)

K
2

(
K
2 − 1

) (38)

Given scenarios (ii) and (iii), and given the symmetry between both, the probability of one active
neuron not flipping and one inactive neuron flipping is (not that now the two processes are indepen-
dent):

p(ii) = p(iii) =

(
K
2 −

Nswap

4
K
2

)
·

(
Nswap

4
N
2 −

K
2

)
(39)

Finally, in scenario (iv), the probability that both inactive neurons flip is:

p(iv) =

Nswap

4
N
2 −

K
2

·
Nswap

4 − 1
N
2 −

K
2 − 1

(40)
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Figure 8: Example output patterns given noisy input across different tested networks

If, on the contrary, the two neurons belong to two different regions, then, for scenario (i), the proba-
bility of both neurons being on is;

p(i) =

(
K
2 −

Nswap

4

)(
K
2 −

Nswap

4

)
K
2 ·

K
2

(41)

for scenarios (ii) and (iii):

p(ii/iii) =

(
K
2 −

Nswap

4
K
2

)
·

(
Nswap

4
N
2 −

K
2

)
(42)

and for scenario (iv):

p(iv) =

Nswap

4
N
2 −

K
2

·
Nswap

4
N
2 −

K
2

(43)

Thus, the total probability of two neurons being active is

p(xi = 1, xj = 1) = p(i)p0(xi = 1, xj = 1) +

p(ii/iii)

(
p0(xi = 1, xj = 1) + p0(xi = 0, xj = 1)

)
+

p(iv)p0(xi = 0, xj = 0) (44)

E PROTOTYPE LEARNING ACROSS NETWORKS

F MAXIMUM A POSTERIORI AND LIKELIHOOD ESTIMATION IN
HOMEOSTATIC BINARY NETWORKS

F.1 SEMANTIC STRUCTURE

In this section, we use a different Semantic Structure with the goal of having key elements that are
distinctive (are different in MAP and MLE).
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Figure 9: Semantic Structure Used in MLE and MAP estimation

F.2 CONNECTION WITH LEARNING IN HBNS

Here, we show how, in the limit Nswap → 0, the network follows Maximum A Posteriori Esti-
mation (MAP) and Maximum Likelihood Estimation (MLE) in the limits wmax

out >> wmax
in and

wmax
out << wmax

in (respectively). The sketch idea is using the fact that in these regimes weights
reflect conditional appearance probability between episode elements. If the input for one region (in
this case place) is given, and the rest is random, recurrent (pre-activation) input depends linearly
on these conditional probabilities. After applying the top-K operation the element with highest
probability is set to 1 and the rest to 0.

We start by introducing the following notation: x
p/f
i is the activity of the ith neuron coding

for either a place concept p ∈ P ≡ {p1, p2} or a food concept f ∈ F ≡ {f1, f2, f3, f4} (each
possible place and food). A food-masked vector corresponding to an episode e = pe, fe is
characterized as

xp
i =

{
1 if p ∈ e

0 else
(45)

Note how this reshapes the vectors x from (N) to (regions, attributes per region, neurons per element).
Following this notation, an input vector where the attribute food is masked, and the episode is e, is
defined as:

xfood,f
i = 0 (46)

xplace,p
i =

{
1 if p ∈ e

0 else
(47)

that is, an input vector is only 1 in the neurons coding for the place present in episode e and 0
elsewhere.

zf
i =

∑
p

∑
j

wfp
ij x

p
j +

∑
f ′

∑
j

wff ′

ij xf ′

j (48)

Using that xp
j = δppe

and that in both regimes wff ′

ij = δff ′ , this can be simplified to

zf
i = Kwfpe +

∑
j

wff
ij xf

j (49)
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F.3 MAXMIMUM A POSTERIORI ESTIMATION (MAP)

In the limit of outgoing dominance, using EQUATION in equation 50,

zf
i = Kp(f ∈ e|pe ∈ e) +Nf (50)

Given that Nf is independent of f , and that the top-K operation is independent of an overall bias
and scale, assuming deviations in Nf with respect to K is small

xf
i = 1⇐⇒ f = argmax

f
p(f ∈ e|pe ∈ e) (51)

F.4 MAXIMUM LIKELIHOOD ESTIMATION (MLE)

A similar reasoning can be followed in the limit of incoming homeostatic dominance, to obtain

xf
i = 1⇐⇒ f = argmax

f
p(pe ∈ e|f ∈ e) (52)
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