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Abstract

We study the matrix denoising problem of estimating the singular vectors of a
rank-1 signal corrupted by noise with both column and row correlations. Existing
works are either unable to pinpoint the exact asymptotic estimation error or, when
they do so, the resulting approaches (e.g., based on whitening or singular value
shrinkage) remain vastly suboptimal. On top of this, most of the literature has
focused on the special case of estimating the left singular vector of the signal
when the noise only possesses row correlation (one-sided heteroscedasticity). In
contrast, our work establishes the information-theoretic and algorithmic limits of
matrix denoising with doubly heteroscedastic noise. We characterize the exact
asymptotic minimum mean square error, and design a novel spectral estimator
with rigorous optimality guarantees: under a technical condition, it attains positive
correlation with the signals whenever information-theoretically possible and, for
one-sided heteroscedasticity, it also achieves the Bayes-optimal error. Numerical
experiments demonstrate the significant advantage of our theoretically principled
method with the state of the art. The proofs draw connections with statistical
physics and approximate message passing, departing drastically from standard
random matrix theory techniques.

1 Introduction

Matrix denoising is a central primitive in statistics and machine learning, and the problem is to
recover a signal X ∈ Rn×d from an observation A = X +W corrupted by additive noise W . This
finds applications across multiple domains of sciences, e.g., imaging [24, 63], biology [14, 46] and
astronomy [70, 5]. When X has low rank and W i.i.d. entries, A is the standard model for principal
component analysis, typically referred to as the Johnstone spiked covariance model [42]. When
n, d are both large and proportional, which corresponds to the most sample-efficient regime, its
Bayes-optimal limits are well understood [52], and it has been established how to achieve them
efficiently [56]. Minimax/non-asymptotic guarantees are also available in special cases, such as
sparse PCA [18], Gaussian mixtures [72] and certain joint scalings of (n, d) [57].

However, in most applications, noise is highly structured and correlated, thereby calling for more
realistic assumptions on W than having i.i.d. entries. A recent line of work addresses this concern
by studying matrix denoising with heteroscedastic noise [1, 69, 33, 44, 26], resting on two basic
ideas: whitening and singular value shrinkage. Whitening refers to multiplying the data matrix by
the square root of the inverse covariance, in order to reduce the model to one with i.i.d. noise; and
singular value shrinkage retains the singular vectors of the data while deflating the singular values to
correct for the noise. Though the exact asymptotic performance of these algorithms has been derived
[69, 33, 44, 26], their optimality is yet to be determined from a Bayesian standpoint. In fact, we will
prove that whitening and shrinkage are not the correct way to approach Bayes optimality.
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Main contributions. We focus on the prototypical model A = X +W , where X = λ
nu

∗v∗⊤ is a
rank-1 signal, λ is the signal-to-noise ratio (SNR), and W = Ξ1/2W̃Σ1/2 is doubly heterogeneous
noise. Here u∗, v∗ follow i.i.d. priors; W̃ contains i.i.d. Gaussian entries; the covariance matrices
Ξ,Σ capture column and row correlations; and we consider the typical high-dimensional regime in
which n, d are both large and proportional. Our main results are summarized below.

1. We design an efficient spectral estimator to recover u∗, v∗, and we provide a precise asymp-
totic analysis of its performance, see Theorem 5.1. This estimator is given by the top singular
vectors of a matrix obtained by carefully pre-processing A, see (5.3).

2. When the priors of u∗, v∗ are standard Gaussian, we show in Corollary 5.2 that the spectral
estimator above is optimal in the following sense: (i) under a technical condition, it achieves
the optimal weak recovery threshold, namely its mean square error is non-trivial as soon
as this is information-theoretically possible; (ii) it achieves the Bayes-optimal error for
u∗ (resp. v∗) when Ξ (resp. Σ) is the identity. These optimality guarantees follow from
rigorously obtaining the asymptotic minimum mean square error (MMSE) for the estimation
of the whitened signals Ξ−1/2u∗ and Σ−1/2v∗, see Theorem 4.2.

Our spectral estimator only involves matrix multiplication and computing principal singular vectors.
Practically, this can be efficiently done using standard SVD algorithms or power iteration [48].
For both one-sided and double heteroscedasticity, numerical experiments in Figures 2 and 3 show
significant advantage of our spectral estimator for moderate SNRs over HeteroPCA [76] and shrinkage-
based methods, i.e., Whiten-Shrink-reColor [44, 45], OptShrink [59], and ScreeNOT [27].

Proof techniques. We take a completely different route from classical approaches in statistics and
random matrix theory (e.g., whitening and shrinkage), and instead exploit tools from statistical physics
and the theory of approximate message passing. In particular, the MMSE for the whitened signals
Ξ−1/2u∗,Σ−1/2v∗ is obtained via an interpolation argument [10, 52, 53]. This result allows us to
derive the weak recovery threshold for estimating the true signals u∗, v∗. Moreover, for one-sided
heteroscedasticity, this MMSE coincides with that for estimating the true signal on the homoscedastic
side. Evaluating the Bayes-optimal estimators requires solving high-dimensional integrals that are
computationally intractable. To circumvent this issue, we propose an efficient spectral method that
still enjoys optimality guarantees. Its design and analysis draw connections with a family of iterative
algorithms called approximate message passing (AMP) [11, 32]. All our results are mathematically
rigorous, with the only technical condition being “(5.1) implies σ∗

2 < 1” in Theorem 5.1 that we only
managed to verify numerically, but not analytically; see Remark 5.1.

2 Related work
Research on matrix denoising in the homoscedastic case (Ξ = In,Σ = Id) has a rich history, and in
random matrix theory properties of the spectrum and eigenspaces ofA have been studied exhaustively.
Most prominently, the BBP phase transition phenomenon [4] (and its finite-sample counterpart [60])
unveils a threshold of the SNR λ above which a pair of outlier singular value and singular vector
emerge. Under i.i.d. priors, the asymptotic Bayes-optimal estimation error has been derived [52, 53],
rigorously justifying predictions from statistical physics [47]. The proof uses the interpolation method
due to Guerra [35], originally developed in the context of mean-field spin glasses. Besides low-rank
matrix estimation, this method (including its adaptive variant [10] and the Aizenman–Sims–Starr
scheme [2]) has also been applied to a range of problems, including spiked tensor estimation [49],
generalized linear models [9], stochastic block models [74] and group synchronization [73].

Moving to the heteroscedastic case, an active line of work concerns optimal singular value shrinkage
methods [44, 33, 45, 69, 59, 26]. These methods can be regarded as a special family of rotationally
invariant estimators, which apply a univariate function η : R≥0 → R to each empirical singular value.
An example widely employed by practitioners is the thresholding function ηθ(y) = y1{y > θ}
[27]. In the presence of noise heteroscedasticity, most of these results are based on whitening [43].
Another model of noise heterogeneity common in the literature takes W = W̃ ◦∆◦1/2, where W̃
has i.i.d. Gaussian entries, ∆ is a deterministic block matrix with fixed (i.e., constant with respect to
n, d) number of blocks, and ◦ denotes the element-wise product. This means that the entries of the
noise are independent but non-identically distributed, and they follow the variance profile ∆. The
corresponding low-rank perturbation A, known as a spiked inhomogeneous matrix, has attracted
attention from both the information-theoretic [12, 66, 36] and the algorithmic sides [38, 50, 61].
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Spiked inhomogeneous matrices have some connections with the model considered in this paper: if
∆ has rank 1, such A can be realized by taking Ξ,Σ to be diagonal with suitable block structures.
Finally, non-asymptotic results for the heteroscedastic and the inhomogeneous models have been
derived in varying generality in [76, 82, 23, 1, 17]. We highlight that our paper is the first to establish
information-theoretic and algorithmic limits for doubly heteroscedastic noise.

Our characterization of the spectral estimator relies on an AMP algorithm that converges to it by
performing power iteration. AMP refers to a family of iterative procedures, whose performance in
the high-dimensional limit is precisely characterized by a low-dimensional deterministic recursion
called state evolution [11, 15]. Originally introduced for compressed sensing [28], AMP algorithms
have been developed for various settings, including low-rank estimation [56, 31, 6] and inference in
generalized linear models [64, 65, 71]. Beyond statistical estimation, AMP proves its versatility as
both an efficient algorithm and a proof technique for studying e.g. posterior sampling [58], spectral
universality [30], first order methods with random data [22], mismatched estimation [8], spectral
estimators for generalized linear models [79, 80] and their combination with linear estimators [54].

3 Problem setup

Consider the following rank-1 rectangular matrix estimation problem with doubly heteroscedastic
noise where we observe

A =
λ

n
u∗v∗⊤ +W ∈ Rn×d, (3.1)

and aim to estimate u∗, v∗. The following assumptions are imposed throughout the paper. The
dimensions n, d→ ∞ obey the proportional scaling n/d→ δ ∈ (0,∞), where δ is the aspect ratio.
The SNR λ ∈ [0,∞) is a known constant (relative to n, d). The signals (u∗, v∗) ∼ P⊗n ⊗ Q⊗d

have i.i.d. priors, where P,Q are distributions on R with mean 0 and variance 1. The unknown noise
matrix has the form W = Ξ1/2W̃Σ1/2 ∈ Rn×d, with W̃i,j

i.i.d.∼ N (0, 1/n) independent of (u∗, v∗).
The covariances Ξ ∈ Rn×n,Σ ∈ Rd×d are known, deterministic,1 strictly positive definite and satisfy

lim
n→∞

1

n
Tr(Ξ) = lim

d→∞

1

d
Tr(Σ) = 1. (3.2)

Their empirical spectral distributions (ESD) converge (as n, d → ∞ s.t. n/d → ∞) weakly to the
laws of the random variables Ξ and Σ. Furthermore, ∥Ξ∥2, ∥Σ∥2 are uniformly bounded over d. The
supports of Ξ,Σ are compact subsets of (0,∞). For all ε > 0, there exists d0 ∈ N s.t. for all d ≥ d0,

supp(ESD(Ξ)) ⊂ supp(Ξ) + [−ε, ε], supp(ESD(Σ)) ⊂ supp(Σ) + [−ε, ε]. (3.3)

The trace assumption (3.2) on the covariances is for normalization purposes since the values of the
traces, if not 1, can be absorbed into λ. The support assumption (3.3) excludes outliers in the spectra
of covariances which may contribute to undesirable spikes in A [69].

4 Information-theoretic limits

For mathematical convenience, in this section, we switch to an equivalent rescaled model

Y :=
√
nA =

√
γ

n
u∗v∗⊤ + Ξ1/2ZΣ1/2 ∈ Rn×d, (4.1)

where γ := λ2 and Z =
√
nW̃ contains i.i.d. elements Zi,j

i.i.d.∼ N (0, 1). Abusing terminology, we
refer to γ as the SNR of Y . Define also α := 1/δ ∈ (0,∞) so that d/n → α. The scaling of the
parameters in (4.1) turns out to be more convenient for presenting the results in this section. Results
for Y can be easily translated to A by a change of variables.

Let ũ∗ := Ξ−1/2u∗ and ṽ∗ := Σ−1/2v∗ denote the whitened signals. The main result of this section
is Theorem 4.2, which characterizes the performance of the matrix minimum mean square error

1All our results hold verbatim if Ξ,Σ are random matrices independent of each other and of u∗, v∗, W̃ .
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(MMSE) associated to the estimation of ũ∗(ṽ∗)⊤, ũ∗(ũ∗)⊤ and ṽ∗(ṽ∗)⊤, via the corresponding
Bayes-optimal estimators:

MMSEn(γ) :=
1

nd
E
[∥∥ũ∗(ṽ∗)⊤ − E

[
ũ∗(ṽ∗)⊤

∣∣Y ]∥∥2
F

]
, (4.2)

MMSEu
n(γ) :=

1

n2
E
[∥∥ũ∗(ũ∗)⊤ − E

[
ũ(ũ∗)⊤

∣∣Y ]∥∥2
F

]
, (4.3)

MMSEv
n(γ) :=

1

d2
E
[∥∥ṽ∗(ṽ∗)⊤ − E

[
ṽ∗(ṽ∗)⊤

∣∣Y ]∥∥2
F

]
. (4.4)

Our characterization involves a pair of parameters (q∗u, q
∗
v) ∈ R2

≥0 defined as the largest solution to

qu = E

[
αγqvΞ

−2

1 + αγqvΞ
−1

]
, qv = E

[
γquΣ

−2

1 + γquΣ
−1

]
. (4.5)

Here and throughout the paper, all expectations involving Ξ,Σ are computed as integrals against the
limiting spectral distributions of Ξ,Σ.

The proposition below, proved in Appendix A, justifies the existence of the solution to (4.5) and
identifies when a non-trivial solution emerges.
Proposition 4.1. The fixed point equation (4.5) always has a trivial solution (0, 0). There exists a
non-trivial solution (q∗u, q

∗
v) ∈ R2

>0 if and only if

αγ2E
[
Σ

−2
]
E
[
Ξ
−2
]
> 1, (4.6)

in which case the non-trivial solution is unique.

We are now ready to state our main result on the MMSE.
Theorem 4.2. Assume P = Q = N (0, 1). For almost every γ > 0,

lim
n→∞

MMSEn(γ) = E
[
Ξ
−1
]
E
[
Σ

−1
]
− q∗uq

∗
v , (4.7)

lim
n→∞

MMSEu
n(γ) = E

[
Ξ
−1
]2

− q∗u
2, lim

n→∞
MMSEv

n(γ) = E
[
Σ

−1
]2

− q∗v
2. (4.8)

We note that

lim
n→∞

1

nd
E
[∥∥ũ∗(ṽ∗)⊤∥∥2

F

]
= lim

n→∞

1

nd
E
[
∥ũ∗∥22

]
E
[
∥ṽ∗∥22

]
= E

[
Ξ
−1
]
E
[
Σ

−1
]
, (4.9)

where the last step follows from Proposition G.2. This quantity represents the trivial error in the
estimation of ũ∗(ṽ∗)⊤, which is achieved by the all-0 estimator. Analogous considerations hold for

ũ∗(ũ∗)⊤ and ṽ∗(ṽ∗)⊤, for which the trivial estimation error is E
[
Ξ
−1
]2

and E
[
Σ

−1
]2

, respectively.
Thus, Proposition 4.1 and Theorem 4.2 identify (4.6) as the condition for non-trivial estimation, and
the smallest γ that satisfies (4.6) gives the weak recovery threshold.

We show below that the weak recovery threshold is the same for the estimation of the true signals
u∗v∗⊤, u∗u∗⊤ and v∗v∗⊤. In this case, since the signal priors are Gaussian, using the same passages
as in (4.9) one has that the trivial estimation error for u∗v∗⊤, u∗u∗⊤ and v∗v∗⊤ is always equal to 1.

Corollary 4.3. Assume P = Q = N (0, 1). The MMSE associated to the estimation of u∗v∗⊤ is
non-trivial, i.e,

lim
n→∞

1

nd
E
[∥∥∥u∗v∗⊤ − E

[
u∗v∗⊤

∣∣∣Y ]∥∥∥2
F

]
< 1 (4.10)

if and only if (4.6) holds. The same result holds for the MMSE of u∗u∗⊤ and v∗v∗⊤.

Proof strategy. To derive the characterizations in Theorem 4.2, we write the posterior distribution
of u∗, v∗ given Y in a Gibbs form, i.e., its density is the exponential of a Hamiltonian normalized by
a partition function. The interpolation argument relates the log-partition function (also referred to as
the ‘free energy’) of the posterior to that of the posteriors of two Gaussian location models. Since
i.i.d. Gaussianity is key to this approach, the challenge is to handle noise covariances. Our idea is
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to incorporate the covariances into the priors. In terms of the Hamiltonian, the model is equivalent
to the estimation of the whitened signals Ξ−1/2u∗,Σ−1/2v∗, whose priors have covariances, in the
presence of i.i.d. Gaussian noise. We then manage to carry out the interpolation argument for the
equivalent model and evaluate the free energy of the corresponding Gaussian location models.

Specifically, let us starting by writing down the expression of the posterior distribution after setting
up some notation. For u ∈ Rn, v ∈ Rd, let ũ := Ξ−1/2u, ṽ := Σ−1/2v. Define the densities

dP̃ (ũ) :=
√
det(Ξ) dP⊗n(Ξ1/2ũ), dQ̃(ṽ) :=

√
det(Σ) dQ⊗d(Σ1/2ṽ),

where the determinant factors ensure that the integrals equal 1. With P = Q = N (0, 1), we have
P̃ = N (0n,Ξ

−1), Q̃ = N (0d,Σ
−1), and from Bayes’ rule the posterior of (u∗, v∗) given Y is

dP (u, v |Y ) =
1

Zn(γ)
exp
(
Hn(Ξ

−1/2u,Σ−1/2v)
)
dP⊗n(u) dQ⊗d(v), (4.11)

where the Hamiltonian and the partition function are given respectively by

Hn(ũ, ṽ) :=

√
γ

n
ũ⊤Zṽ +

γ

n
ũ⊤ũ∗ṽ⊤ṽ∗ − γ

2n
∥ũ∥22∥ṽ∥

2
2, (4.12)

Zn(γ) :=

∫ ∫
exp
(
Hn(Ξ

−1/2u,Σ−1/2v)
)
dP⊗n(u) dQ⊗d(v) =

∫ ∫
exp(Hn(ũ, ṽ)) dP̃ (ũ) dQ̃(ṽ).

(4.13)

Define the free energy as

Fn(γ) :=
1

n
E[logZn(γ)]. (4.14)

The major technical step is to characterize Fn(γ) in the large n limit in terms of a bivariate functional
F introduced below. This is the core component to derive the MMSE characterization.

For a positive random variable Σ subject to the conditions in Section 3, let

ψΣ(γ) :=
1

2

(
γE
[
Σ

−1
]
− E

[
log
(
1 + γΣ

−1
)])

. (4.15)

As shown in Appendix B, ψΣ(γ) is the limiting free energy of a Gaussian channel, in which one
wishes to estimate x∗ ∈ Rn from the observation Y =

√
γx∗ + Σ1/2Z corrupted by anisotropic

Gaussian noise with covariance Σ. Using (4.15), let us define the replica symmetric potential F :

F(qu, qv) := ψΞ(αγqv) + αψΣ(γqu)−
αγ

2
quqv,

and the set of critical points of F :

C(γ, α) :=
{
(qu, qv) ∈ R2

≥0 : ∂1F(qu, qv) = 0, ∂2F(qu, qv) = 0
}

=
{
(qu, qv) ∈ R2

≥0 : qu = 2ψ′
Ξ
(αγqv), qv = 2ψ′

Σ
(γqu)

}
(4.16)

=
{
(qu, qv) ∈ R2

≥0 : (qu, qv) solves (4.5)
}
,

where the last equality is a direct calculation of ψ′
Ξ
, ψ′

Σ
. The following result, proved in Appendix C,

shows that the limit of Fn(γ) is given by a dimension-free variational problem involving F(qu, qv).

Theorem 4.4 (Free energy). Assume P = Q = N (0, 1). Then, we have

lim
n→∞

Fn(γ) = sup
qv≥0

inf
qu≥0

F(qu, qv) = sup
(qu,qv)∈C(γ,α)

F(qu, qv),

and supqv infqu and sup(qu,qv) are achieved by the same (q∗u, q
∗
v) in Proposition 4.1.

Remark 4.1 (Equivalent models). Informally, the above result says that the matrix model (4.1) is
equivalent at the level of Hamiltonian to the following two statistically uncorrelated vector models:

Y u :=
√
αγq∗vu

∗ + Ξ1/2Zu ∈ Rn, Y v :=
√
γq∗uv

∗ +Σ1/2Zv ∈ Rd, (4.17)

with q∗u, q
∗
v the largest solution to (4.5) and (u∗, v∗, Zu, Zv) ∼ P⊗n⊗Q⊗d⊗N (0n, In)⊗N (0d, Id).
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Remark 4.2 (Gaussian priors). Theorem 4.4 crucially relies on having Gaussian priors P,Q. This
assumption is mainly used to derive single-letter (i.e., dimension-free) expressions of the free energy
of the vector models in (4.17) which, under Gaussian priors, are nothing but Gaussian integrals. The
free energy, and hence the MMSE, are expected to be sensitive to the priors. Indeed, this is already
the case in the homoscedastic setting Ξ = In,Σ = Id [52]. An extension towards general i.i.d. priors
is a challenging open problem and, in fact, without posing additional assumptions on Ξ,Σ, it is
unclear whether a single-letter expression for free energy and MMSE is possible.

At this point, the MMSE can be derived from the above characterization of free energy. Indeed, let

D(α) := {γ > 0 : F has a unique maximizer (q∗u, q
∗
v) over C(γ, α)}.

The envelope theorem [51, Corollary 4] ensures that D(α) is equal to R>0 up to a countable set.
Using algebraic relations between free energy and MMSE, we prove (4.7) and (4.8) for all γ ∈ D(α)
(and, thus, for almost every γ > 0). Then, using the Nishimori identity (Proposition G.4) and
the fact that the ESDs of Ξ,Σ are upper and lower bounded by constants independent of n and d,
Corollary 4.3 also follows. The formal arguments are contained in Appendix D.

5 Spectral estimator

This section introduces a spectral estimator that meets the weak recovery threshold and, for one-sided
heteroscedasticity, attains the Bayes-optimal error. Suppose that the following condition holds

λ4

δ
E
[
Σ

−2
]
E
[
Ξ
−2
]
> 1, (5.1)

which is equivalent to (4.6). Under this condition, the fixed point equations (4.5) have a unique pair of
positive solutions (q∗u, q

∗
v). For convenience, we also define the rescalings µ∗ := λq∗v/δ, ν

∗ := λq∗u,
and the auxiliary quantities

b∗ :=
1

δ
E
[

λ

λν∗ +Σ

]
, c∗ := E

[
λ

λµ∗ + Ξ

]
. (5.2)

Now, we pre-process the data matrix A as

A∗ := λ(λ(µ∗ + b∗)In + Ξ)−1/2Ξ−1/2AΣ−1/2(λ(ν∗ + c∗)Id +Σ)−1/2, (5.3)

from which we obtain the spectral estimators

û := ηu
√
n

Ξ1/2(λ(µ∗ + b∗)In + Ξ)−1/2(λµ∗In + Ξ)u1(A
∗)∥∥Ξ1/2(λ(µ∗ + b∗)In + Ξ)−1/2(λµ∗In + Ξ)u1(A∗)
∥∥
2

, (5.4a)

v̂ := ηv
√
d

Σ1/2(λ(ν∗ + c∗)Id +Σ)−1/2(λν∗Id +Σ)v1(A
∗)∥∥Σ1/2(λ(ν∗ + c∗)Id +Σ)−1/2(λν∗Id +Σ)v1(A∗)
∥∥
2

, (5.4b)

where u1(·)/v1(·) denote the top left/right singular vectors and

ηu :=

√
λµ∗

λµ∗ + 1
, ηv :=

√
λν∗

λν∗ + 1
. (5.5)

Note that ηu, ηv > 0, provided that (5.1) holds. The pre-processing of A in (5.3) and the form of
the spectral estimators in (5.4) come from the derivation of a suitable AMP algorithm, and they are
discussed at the end of the section. We finally defer to Appendix E.3 the definition of the scalar
quantity σ∗

2 obtained via a fixed point equation depending only on Ξ,Σ, λ, δ, see (E.26) for details.

Our main result, Theorem 5.1, shows that, under the criticality condition (5.1), the matrix A∗ exhibits
a spectral gap between the top two singular values, and it characterizes the performance of the spectral
estimators in (5.4), proving that they achieve weak recovery of u∗ and v∗, respectively.
Theorem 5.1. Suppose that (5.1) holds and that, for any c > 0,

lim
β↓s

E

[
Σ

∗

β − cΣ
∗

]
= lim

β↓s
E

( Σ
∗

β − cΣ
∗

)2
 = ∞, lim

α↓sup supp(Ξ
∗
)
E

[
Ξ
∗

α− Ξ
∗

]
= ∞, (5.6)
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(a) Ξ = In and Σ a Toeplitz matrix with ρ = 0.9. (b) Ξ a circulant matrix with c = 0.1, ℓ = 5 and Σ a
Toeplitz matrix with ρ = 0.5.

Figure 1: Top two singular values of A∗ in (5.3), where d = 4000, δ = 4 and each simulation is
averaged over 10 i.i.d. trials. The singular values computed experimentally (‘sim’ in the legends and
× in the plots) closely match our theoretical prediction in (5.7) (‘thy’ in the legends and solid curves
with the same color in the plots). The threshold λ∗ is such that equality holds in (5.1). We note that
the green curve corresponding to σ∗

2 is smaller than 1 for λ > λ∗, i.e., when (5.1) holds.

where Ξ
∗
:= λ

λ(µ∗+b∗)+Ξ
, Σ

∗
:= λ

λ(ν∗+c∗)+Σ
and s := c · sup supp(Σ∗

). Let A∗, û, v̂, σ∗
2 be defined

in (5.3), (5.4) and (E.26), and σi(A∗) denote the i-th largest singular value of A∗. Then, if σ∗
2 < 1,

the following limits hold in probability:

lim
n→∞

σ1(A
∗) = 1 > σ∗

2 = lim
n→∞

σ2(A
∗), (5.7)

lim
n→∞

|⟨û, u∗⟩|
∥û∥2∥u∗∥2

= ηu, lim
d→∞

|⟨v̂, v∗⟩|
∥v̂∥2∥v∗∥2

= ηv (5.8)

lim
n→∞

1

n2

∥∥∥u∗u∗⊤ − ûû⊤
∥∥∥2
F
= 1− η4u, lim

d→∞

1

d2

∥∥∥v∗v∗⊤ − v̂v̂⊤
∥∥∥2
F
= 1− η4v , (5.9)

lim
n→∞

1

nd

∥∥∥u∗v∗⊤ − ûv̂⊤
∥∥∥2
F
= 1− η2uη

2
v . (5.10)

Remark 5.1 (Assumptions). To guarantee a spectral gap for A∗ and the weak recoverability of u∗, v∗
via the proposed spectral method, we also require the algebraic condition σ∗

2 < 1. We conjecture
that this condition is implied by (5.1), and we have verified that this is the case in all our numerical
experiments (see Figure 1 for two concrete examples). The additional assumption (5.6) is a mild
regularity condition on the covariances. It ensures that the densities of Ξ

∗
,Σ

∗
decay sufficiently

slowly at the edges of the support, so that σ∗
2 is well-posed [79].

Remark 5.2 (Signal priors). Theorem 5.1 does not require the prior distributions P,Q to be Gaussian,
and it is valid for any i.i.d. prior with mean 0 and variance 1.

On the one hand, Corollary 4.3 shows that, if (5.1) is violated, the problem is information-theoretically
impossible, i.e., no estimator achieves non-trivial error. On the other hand, Theorem 5.1 exhibits
a pair of estimators that achieves non-trivial error as soon as (5.1) holds – under the additional
assumption σ∗

2 < 1 which we conjecture to be implied by (5.1). Thus, the spectral method in (5.4) is
optimal in terms of weak recovery threshold. Though such estimators do not attain the optimal error,
when both priors are Gaussian and Ξ = In, ûû⊤ is the Bayes-optimal estimate for u∗u∗⊤.
Corollary 5.2. Assume P = Q = N (0, 1), and consider the setting of Theorem 5.1 with the
additional assumption Ξ = In. Then, ηu =

√
q∗u, i.e., ûû⊤ achieves the MMSE for u∗u∗⊤.

The claim readily follows by noting that, when Ξ = In, the first equation in (4.5) becomes

q∗u =
αγq∗v

1 + αγq∗v
=

(λ2/δ)(δµ∗/λ)

1 + (λ2/δ)(δµ∗/λ)
=

λµ∗

1 + λµ∗ = η2u,

where the last equality is by the definition (5.5) of ηu. Let us highlight that, even if Ξ = In, û still
makes non-trivial use of the other covariance Σ1/2. At the information-theoretic level, this is reflected
by the fact that Σ1/2 enters q∗u through the fixed point equations (4.5). Therefore, even though the
matrix model in (4.1) is equivalent to a pair of uncorrelated vector models in (4.17) in the sense of
the free energy, the tasks of estimating u∗ and v∗ cannot be decoupled.
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(a) Normalized correlation with u∗ (b) Normalized correlation with v∗ (c) Matrix MSE for u∗v∗⊤

Figure 2: Performance comparison when Ξ = In and Σ is a circulant matrix. The numerical results
closely follow the predictions of Theorem 5.1, and our spectral estimators in (5.4) outperform all
other methods (Leeb–Romanov, OptShrink, ScreeNOT, and HeteroPCA), especially at low SNR.

(a) Normalized correlation with u∗ (b) Normalized correlation with v∗ (c) Matrix MSE for u∗v∗⊤

Figure 3: Performance comparison when Ξ is a Toeplitz matrix and Σ is circulant. The numerical
results closely follow the predictions of Theorem 5.1, and our spectral estimators in (5.4) outperform
all other methods (Leeb, OptShrink, and ScreeNOT), especially at low SNR.

Numerical experiments. Figures 2 and 3 demonstrate the advantage of our method over existing
approaches, and they display an accurate agreement between simulations (‘sim’ in the legends and ×
in the plots) and the theoretical predictions of Theorem 5.1 (‘thy’ in the legends and solid curves with
the same color in the plots), both plotted as a function of λ. In both figures, n = 4000, d = 2000 (so
δ = 2), and P = Q = N (0, 1). Each data point is computed from 20 i.i.d. trials and error bars are
reported at 1 standard deviation. We let Ξ be either the identity or a Toeplitz matrix [77, 41, 19], i.e.,
Ξi,j = ρ|i−j| with ρ = 0.9. We let Σ be a circulant matrix [40, 39]: the first row has 1 in the first
position, c = 0.0078 in the second through (ℓ+ 1)-st position and in the last ℓ positions (ℓ = 300),
with the remaining entries being 0; for 2 ≤ i ≤ d, the i-th row is a cyclic shift of the (i− 1)-st row to
the right by 1 position. Both matrices satisfy (5.6) and the conditions of Section 3.

Our spectral estimator outperforms all other approaches: Leeb–Romanov [44], OptShrink [59],
ScreeNOT [27], and HeteroPCA [76] in the one-sided heteroscedastic case (Figure 2); Leeb [45],
OptShrink, and ScreeNOT in the doubly heteroscedastic case (Figure 3). When computing the
normalized correlation with the signals (left/right overlap), the performance of Leeb–Romanov and
Leeb is the same as the estimators Ξ1/2u1(Ξ

−1/2AΣ−1/2),Σ1/2v1(Ξ
−1/2AΣ−1/2) referred to as

‘whiten’ in Figures 2a and 2b; the performance of OptShrink and ScreeNOT is the same as the
estimators u1(A), v1(A) referred to as ‘vanilla’ in Figures 3a and 3b. The advantage of our approach
(in black) is especially significant at low SNR; as SNR increases, Leeb-Romanov and Leeb (in red)
achieve similar performance; a much larger SNR (> 2 and > 3 in Figures 2 and 3) is required by
HeteroPCA, OptShrink and ScreeNOT (in magenta, blue and green) to perform comparably.

Finally, Figure 4 shows the presence of spectral outliers in A∗ and their absence in A at a fixed λ.

Proof strategy. The design and analysis of the spectral estimator in (5.4) comprise two steps,
detailed in Appendix E. The first step is to present an AMP algorithm dubbed Bayes-AMP for matrix
denoising with doubly heteroscedastic noise. Specifically, its iterates are updated as

ut = Ξ−1AΣ−1ṽt − btΞ
−1ũt−1, ũt = g∗t (u

t), ct =
1

n
Tr((∇g∗t (ut))Ξ−1), (5.11)
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(a) λ = 1, Ξ = In and Σ a Toeplitz matrix with ρ = 0.9.

(b) λ = 2, Ξ a circulant matrix with c = 0.1, ℓ = 5 and Σ a Toeplitz matrix with ρ = 0.5.

Figure 4: Spectra of A and A∗ averaged over 10 i.i.d. trials, where d = 4000, δ = 4. An outlier
singular value emerges in the spectrum of A∗ due to the pre-processing on A.

vt+1 = Σ−1A⊤Ξ−1ũt − ctΣ
−1ṽt, ṽt+1 = f∗t+1(v

t+1), bt+1 =
1

n
Tr((∇f∗t+1(v

t+1))Σ−1),

where ∇ denotes the Jacobian matrix, and the functions g∗t , f
∗
t+1 are specified below in (5.12).

As common in AMP algorithms, the iterates (5.11) are accompanied with a state evolution which
accurately tracks their behavior via a simple deterministic recursion: the joint empirical distribution
of (u∗, v∗, ut, vt+1) converges to the random variables (U∗, V ∗, Ut, Vt+1), see Proposition E.1 for a
formal statement and the recursive description of the laws of such random variables. Then, the name
‘Bayes-AMP’ is motivated by the fact that g∗t , f

∗
t+1 are the posterior-mean denoisers given by

g∗t (u) := E[U∗ |Ut = u], f∗t+1(v) := E[V ∗ |Vt+1 = v]. (5.12)

Remarkably, Bayes-AMP operates on Ξ−1AΣ−1, as opposed to the widely adopted ansatz of
considering the whitened matrix Ξ−1/2AΣ−1/2. The advantage of operating on Ξ−1AΣ−1 is that
the fixed point of the corresponding state evolution matches the extremizers of the free energy in
(4.5). This would not be the case if Bayes-AMP used the whitening Ξ−1/2AΣ−1/2. Indeed, one
can repeat the analysis of an AMP that operates on Ξ−1/2AΣ−1/2. The fixed point equations of the
resulting state evolution do not match the information-theoretically optimal one in (4.5). In particular,
the weak recovery threshold coming out of this approach is strictly larger than the optimal one in
(4.6), as long as at least one of Ξ,Σ is not a multiple of the identity. Since these derivations led to
suboptimal results, the details were left out from the paper.

The design of Bayes-AMP and the proof of its state evolution follow a two-step reduction detailed in
Appendix F. Using a change of variables, we show in Appendix F.2 that Bayes-AMP can be realized
by an auxiliary AMP with non-separable denoising functions (meaning that gt, ft+1 cannot be written
as univariate functions applied component-wise) operating on Ξ−1/2AΣ−1/2 = λ

n ũ
∗(ṽ∗)⊤ + W̃ .

Then, in Appendix F.1 we simulate the auxiliary AMP using a standard AMP operating on the i.i.d.
Gaussian matrix W̃ , whose state evolution has been established in [13, 34].

However, Bayes-AMP by itself is not a practical algorithm since it needs a warm start, i.e., an
initialization that achieves non-trivial error. Thus, the second step is to design a spectral estimator
that solves the fixed point equation of Bayes-AMP, which turns out to be an eigen-equation for A∗.

To offer the readers an intuition on how the spectral estimators arise from Bayes-AMP, we now
heuristically derive the form (5.3) of A∗ and the expression (5.4) of the spectral estimator. To do so,
we note that the large-n limits of ct, bt+1 coincide with the auxiliary quantities c∗, b∗ defined in (5.2).
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Furthermore, when the priors of u∗, v∗ are Gaussian, (5.12) reduces to
g∗t (u) = λ(λµ∗Ξ−1 + In)

−1u, f∗t+1(v) = λ(λν∗Σ−1 + Id)
−1v,

where we recall that µ∗ = λq∗v/δ and ν∗ = λq∗u are rescalings of the non-trivial solution (q∗u, q
∗
v) of

(4.5). Denoting by u, v the fixed points of the iteration (5.11), after some manipulations we have
g(Ξ)u = A∗f(Σ)v, f(Σ)v = A∗⊤g(Ξ)u,

where A∗ is given in (5.3) and
g(Ξ) :=

√
λ(λ(µ∗ + b∗)In + Ξ)1/2(λµ∗In + Ξ)−1Ξ1/2,

f(Σ) :=
√
λ(λ(ν∗ + c∗)Id +Σ)1/2(λν∗Id +Σ)−1Σ1/2.

This suggests that A∗ has top singular value equal to 1 and (g(Ξ)u, f(Σ)v) are aligned with the corre-
sponding singular vectors (u1(A∗), v1(A

∗)). Moreover, state evolution implies that the distribution
of the fixed point (u, v) is close to that of

(µ∗Ξ−1u∗ +
√
µ∗/λwu, ν

∗Σ−1v∗ +
√
ν∗/λwv),

with (wu, wv) ∼ N (0n,Ξ
−1) ⊗ N (0d,Σ

−1) independent of u∗, v∗. Thus, to obtain estimates of
(u∗, v∗), we take (Ξg(Ξ)−1u1(A

∗),Σf(Σ)−1v1(A
∗)) and suitably rescale their norm, which leads

to the expressions in (5.4). More details on the above heuristics are discussed in Appendix E.2.

The most outstanding step remains to make the heuristics rigorous. This involves proving that
Ξut,Σvt+1 are aligned with the proposed spectral estimator, which allows for a performance charac-
terization via state evolution. The formal argument is carried out in Appendix E.4.

6 Concluding remarks

In this work, we establish information-theoretic limits and propose an efficient spectral method with
optimality guarantees, for matrix estimation with doubly heteroscedastic noise. On the one hand,
under Gaussian priors, we give a rigorous characterization of the MMSE; on the other hand, we
present a spectral estimator that (i) achieves the information-theoretic weak recovery threshold, and
(ii) is Bayes-optimal for the estimation of one of the signals, when the noise is heteroscedastic only
on the other side. While our analysis focuses on rank-1 estimation, we expect that all results admit
proper extensions to rank-r signals, where r is a constant independent on n, d.

The design and analysis of the spectral estimator draws connections with approximate message
passing and, along the way, we introduce a Bayes-AMP algorithm which could be of independent
interest. In this paper, we employ Bayes-AMP solely as a proof technique. However, one could use
the spectral method designed here as an initialization of Bayes-AMP itself, after suitably correcting
its iterates. This strategy has been successfully carried out for i.i.d. Gaussian noise in [56] and for
rotationally invariant noise in [55, 81]. Bayes-AMP is well equipped to exploit signal priors more
informative than the Gaussian one, and AMP algorithms are known to achieve the information-
theoretically optimal estimation error for low-rank matrix inference [56, 6]. Nevertheless, we point
out two obstacles towards doing so in the presence of doubly heteroscedastic noise. First, for general
priors, establishing the information-theoretic limits remains a challenging open problem, and it is
unclear whether a low-dimensional characterization of the free energy (and, hence, of the MMSE) is
possible. Second, even for Gaussian priors, Bayes-AMP reduces to the proposed spectral estimator,
which is not Bayes-optimal for the general case of doubly heteroscedastic noise.

Finally, the proposed spectral estimator makes non-trivial use of the covariances Ξ,Σ, which are
assumed to be known. When such matrices possess additional structure – e.g., they are sparse [21],
their inverses are sparse [19] or they are circulant or Toeplitz [75] – their consistent estimation
is possible, see also the survey [20]. However, in general, Ξ,Σ cannot be consistently estimated
from the data when n and d grow proportionally. Thus, a challenging open problem is to construct
estimators that retain comparable performance without knowing the noise covariances. The paper
[33] addresses the challenge of unknown covariances by considering a modified model where one
additionally observes an independent copy of noise. The statistician can then estimate the covariance
from the noise-only observation and use it as a surrogate of the true covariance for estimating the
signals from the spiked model. It is possible to derive similar results in the doubly heteroskedastic
setting considered in our paper. If the covariances are completely unknown, then our model (with
Gaussian priors) is equivalent to a spiked matrix model with a certain bi-rotationally invariant noise.
This problem is expected to exhibit rather different behaviors than when covariances are known, see
[7, 29] for recent progress on understanding the statistical and computational limits for such models.

10



Acknowledgments and Disclosure of Funding

YZ thanks Shashank Vatedka for discussions at the early stage of this project. MM thanks Jean
Barbier for sharing his insights into the interpolation argument. This research is partially supported by
the 2019 Lopez-Loreta Prize and by the Interdisciplinary Projects Committee (IPC) at the Institute of
Science and Technology Austria (ISTA). This work was done in part while the authors were visiting
the Simons Institute for the Theory of Computing.

References
[1] Joshua Agterberg, Zachary Lubberts, and Carey E. Priebe. Entrywise estimation of singular

vectors of low-rank matrices with heteroskedasticity and dependence. IEEE Trans. Inform.
Theory, 68(7):4618–4650, 2022. 1, 3

[2] Michael Aizenman, Robert Sims, and Shannon L. Starr. Extended variational principle for the
sherrington-kirkpatrick spin-glass model. Phys. Rev. B, 68:214403, Dec 2003. 2

[3] Z. D. Bai and Y. Q. Yin. Limit of the smallest eigenvalue of a large-dimensional sample
covariance matrix. Ann. Probab., 21(3):1275–1294, 1993. 42, 48, 49

[4] Jinho Baik, Gérard Ben Arous, and Sandrine Péché. Phase transition of the largest eigenvalue
for nonnull complex sample covariance matrices. Ann. Probab., 33(5):1643–1697, 2005. 2

[5] Stephen Bailey. Principal component analysis with noisy and/or missing data. Publications of
the Astronomical Society of the Pacific, 124(919):1015, sep 2012. 1

[6] Jean Barbier, Francesco Camilli, Marco Mondelli, and Manuel Sáenz. Fundamental limits in
structured principal component analysis and how to reach them. Proc. Natl. Acad. Sci. USA,
120(30):Paper No. e2302028120, 7, 2023. 3, 10

[7] Jean Barbier, Francesco Camilli, Marco Mondelli, and Yizhou Xu. Information limits and
thouless-anderson-palmer equations for spiked matrix models with structured noise. CoRR,
abs/2405.20993, 2024. 10

[8] Jean Barbier, TianQi Hou, Marco Mondelli, and Manuel Saenz. The price of ignorance: how
much does it cost to forget noise structure in low-rank matrix estimation? In Advances in Neural
Information Processing Systems, volume 35, pages 36733–36747, 2022. 3

[9] Jean Barbier, Florent Krzakala, Nicolas Macris, Léo Miolane, and Lenka Zdeborová. Optimal
errors and phase transitions in high-dimensional generalized linear models. Proc. Natl. Acad.
Sci. USA, 116(12):5451–5460, 2019. 2

[10] Jean Barbier and Nicolas Macris. The adaptive interpolation method: a simple scheme to prove
replica formulas in Bayesian inference. Probab. Theory Related Fields, 174(3-4):1133–1185,
2019. 2, 17

[11] Mohsen Bayati and Andrea Montanari. The dynamics of message passing on dense graphs, with
applications to compressed sensing. IEEE Trans. Inform. Theory, 57(2):764–785, 2011. 2, 3

[12] Joshua K. Behne and Galen Reeves. Fundamental limits for rank-one matrix estimation
with groupwise heteroskedasticity. In International Conference on Artificial Intelligence and
Statistics, pages 8650–8672, 2022. 2

[13] Raphaël Berthier, Andrea Montanari, and Phan-Minh Nguyen. State evolution for approximate
message passing with non-separable functions. Inf. Inference, 9(1):33–79, 2020. 9, 46

[14] Tejal Bhamre, Teng Zhang, and Amit Singer. Denoising and covariance estimation of single
particle cryo-em images. Journal of Structural Biology, 195(1):72–81, 2016. 1

[15] Erwin Bolthausen. An iterative construction of solutions of the TAP equations for the
Sherrington-Kirkpatrick model. Comm. Math. Phys., 325(1):333–366, 2014. 3

[16] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities. Oxford
University Press, Oxford, 2013. 52

11



[17] T. Tony Cai, Rungang Han, and Anru R. Zhang. On the non-asymptotic concentration of
heteroskedastic Wishart-type matrix. Electron. J. Probab., 27:Paper No. 29, 40, 2022. 3

[18] T. Tony Cai, Zongming Ma, and Yihong Wu. Sparse PCA: optimal rates and adaptive estimation.
Ann. Statist., 41(6):3074–3110, 2013. 1

[19] T. Tony Cai, Zhao Ren, and Harrison H. Zhou. Optimal rates of convergence for estimating
Toeplitz covariance matrices. Probab. Theory Related Fields, 156(1-2):101–143, 2013. 8, 10

[20] T. Tony Cai, Zhao Ren, and Harrison H. Zhou. Estimating structured high-dimensional co-
variance and precision matrices: optimal rates and adaptive estimation. Electron. J. Stat.,
10(1):1–59, 2016. 10

[21] T. Tony Cai and Harrison H. Zhou. Optimal rates of convergence for sparse covariance matrix
estimation. Ann. Statist., 40(5):2389–2420, 2012. 10

[22] Michael Celentano, Chen Cheng, and Andrea Montanari. The high-dimensional asymptotics of
first order methods with random data. arXiv preprint arXiv:2112.07572, 2021. 3

[23] Chen Cheng, Yuting Wei, and Yuxin Chen. Tackling small eigen-gaps: fine-grained eigenvector
estimation and inference under heteroscedastic noise. IEEE Trans. Inform. Theory, 67(11):7380–
7419, 2021. 3

[24] Lucilio Cordero-Grande, Daan Christiaens, Jana Hutter, Anthony N. Price, and Jo V. Hajnal.
Complex diffusion-weighted image estimation via matrix recovery under general noise models.
NeuroImage, 200:391–404, 2019. 1

[25] Romain Couillet and Walid Hachem. Analysis of the limiting spectral measure of large random
matrices of the separable covariance type. Random Matrices Theory Appl., 3(4):1450016, 23,
2014. 39

[26] Xiucai Ding, Yun Li, and Fan Yang. Eigenvector distributions and optimal shrinkage estimators
for large covariance and precision matrices. arXiv preprint arXiv:2404.14751, 2024. 1, 2

[27] David Donoho, Matan Gavish, and Elad Romanov. ScreeNOT: exact MSE-optimal singular
value thresholding in correlated noise. Ann. Statist., 51(1):122–148, 2023. 2, 8

[28] David L. Donoho, Arian Maleki, and Andrea Montanari. Message passing algorithms for
compressed sensing. Proceedings of the National Academy of Sciences, 106:18914–18919,
2009. 3

[29] Rishabh Dudeja, Songbin Liu, and Junjie Ma. Optimality of approximate message passing
algorithms for spiked matrix models with rotationally invariant noise. CoRR, abs/2405.18081,
2024. 10

[30] Rishabh Dudeja, Subhabrata Sen, and Yue M Lu. Spectral universality of regularized linear
regression with nearly deterministic sensing matrices. IEEE Transactions on Information
Theory, 2024. 3

[31] Zhou Fan. Approximate message passing algorithms for rotationally invariant matrices. The
Annals of Statistics, 50(1):197–224, 2022. 3

[32] Oliver Y Feng, Ramji Venkataramanan, Cynthia Rush, Richard J Samworth, et al. A unifying
tutorial on approximate message passing. Foundations and Trends® in Machine Learning,
15(4):335–536, 2022. 2

[33] Matan Gavish, William Leeb, and Elad Romanov. Matrix denoising with partial noise statistics:
optimal singular value shrinkage of spiked F-matrices. Inf. Inference, 12(3):Paper No. iaad028,
46, 2023. 1, 2, 10

[34] Cédric Gerbelot and Raphaël Berthier. Graph-based approximate message passing iterations.
Inf. Inference, 12(4):Paper No. iaad020, 67, 2023. 9, 46

[35] Francesco Guerra. Broken replica symmetry bounds in the mean field spin glass model. Comm.
Math. Phys., 233(1):1–12, 2003. 2

12



[36] Alice Guionnet, Justin Ko, Florent Krzakala, and Lenka Zdeborová. Low-rank matrix estimation
with inhomogeneous noise. arXiv preprint arXiv:2208.05918, 2022. 2

[37] Philip Hartman. Ordinary differential equations, volume 38. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 2002. 27

[38] David Hong, Fan Yang, Jeffrey A. Fessler, and Laura Balzano. Optimally weighted PCA for
high-dimensional heteroscedastic data. SIAM J. Math. Data Sci., 5(1):222–250, 2023. 2

[39] Adel Javanmard and Andrea Montanari. Confidence intervals and hypothesis testing for high-
dimensional regression. J. Mach. Learn. Res., 15:2869–2909, 2014. 8

[40] Adel Javanmard and Andrea Montanari. Hypothesis testing in high-dimensional regression
under the Gaussian random design model: asymptotic theory. IEEE Trans. Inform. Theory,
60(10):6522–6554, 2014. 8

[41] Adel Javanmard and Andrea Montanari. Debiasing the Lasso: optimal sample size for Gaussian
designs. Ann. Statist., 46(6A):2593–2622, 2018. 8

[42] Iain M. Johnstone. On the distribution of the largest eigenvalue in principal components analysis.
Ann. Statist., 29(2):295–327, 2001. 1

[43] Boris Landa, Thomas T. C. K. Zhang, and Yuval Kluger. Biwhitening reveals the rank of a
count matrix. SIAM J. Math. Data Sci., 4(4):1420–1446, 2022. 2

[44] William Leeb and Elad Romanov. Optimal spectral shrinkage and PCA with heteroscedastic
noise. IEEE Trans. Inform. Theory, 67(5):3009–3037, 2021. 1, 2, 8

[45] William E. Leeb. Matrix denoising for weighted loss functions and heterogeneous signals.
SIAM J. Math. Data Sci., 3(3):987–1012, 2021. 2, 8

[46] Jeffrey T. Leek. Asymptotic conditional singular value decomposition for high-dimensional
genomic data. Biometrics, 67(2):344–352, 2011. 1

[47] Thibault Lesieur, Florent Krzakala, and Lenka Zdeborová. Mmse of probabilistic low-rank
matrix estimation: Universality with respect to the output channel. In 2015 53rd Annual Allerton
Conference on Communication, Control, and Computing (Allerton), pages 680–687, 2015. 2

[48] Yue M. Lu. Householder dice: a matrix-free algorithm for simulating dynamics on Gaussian
and random orthogonal ensembles. IEEE Trans. Inform. Theory, 67(12):8264–8272, 2021. 2

[49] Clément Luneau, Jean Barbier, and Nicolas Macris. Mutual information for low-rank even-order
symmetric tensor estimation. Inf. Inference, 10(4):1167–1207, 2021. 2

[50] Pierre Mergny, Justin Ko, and Florent Krzakala. Spectral phase transition and optimal pca in
block-structured spiked models. arXiv preprint arXiv:2403.03695, 2024. 2

[51] Paul Milgrom and Ilya Segal. Envelope theorems for arbitrary choice sets. Econometrica,
70(2):583–601, 2002. 6, 30, 31

[52] Léo Miolane. Fundamental limits of low-rank matrix estimation: the non-symmetric case. arXiv
preprint arXiv:1702.00473, 2017. 1, 2, 6, 17

[53] Léo Miolane. Fundamental limits of inference: A statistical physics approach. Theses, Ecole
normale supérieure - ENS PARIS ; Inria Paris, June 2019. 2, 17, 52

[54] Marco Mondelli, Christos Thrampoulidis, and Ramji Venkataramanan. Optimal combination
of linear and spectral estimators for generalized linear models. Foundations of Computational
Mathematics, pages 1–54, 2021. 3

[55] Marco Mondelli and Ramji Venkataramanan. Pca initialization for approximate message
passing in rotationally invariant models. In Advances in Neural Information Processing Systems,
volume 34, pages 29616–29629, 2021. 10

13



[56] Andrea Montanari and Ramji Venkataramanan. Estimation of low-rank matrices via approximate
message passing. Ann. Statist., 49(1):321–345, 2021. 1, 3, 10

[57] Andrea Montanari and Yuchen Wu. Fundamental limits of low-rank matrix estimation with
diverging aspect ratios. arXiv preprint arXiv:2211.00488, 2022. 1

[58] Andrea Montanari and Yuchen Wu. Posterior sampling from the spiked models via diffusion
processes. arXiv preprint arXiv:2304.11449, 2023. 3

[59] Raj Rao Nadakuditi. OptShrink: an algorithm for improved low-rank signal matrix denoising by
optimal, data-driven singular value shrinkage. IEEE Trans. Inform. Theory, 60(5):3002–3018,
2014. 2, 8

[60] Boaz Nadler. Finite sample approximation results for principal component analysis: a matrix
perturbation approach. Ann. Statist., 36(6):2791–2817, 2008. 2

[61] Aleksandr Pak, Justin Ko, and Florent Krzakala. Optimal algorithms for the inhomogeneous
spiked wigner model. In Advances in Neural Information Processing Systems, volume 36, pages
76409–76424, 2023. 2

[62] Dmitry Panchenko. The Sherrington-Kirkpatrick model. Springer Monographs in Mathematics.
Springer, New York, 2013. 52

[63] Henrik Pedersen, Sebastian Kozerke, Steffen Ringgaard, Kay Nehrke, and Won Yong Kim.
k-t pca: Temporally constrained k-t blast reconstruction using principal component analysis.
Magnetic Resonance in Medicine, 62(3):706–716, 2009. 1

[64] S. Rangan. Generalized approximate message passing for estimation with random linear mixing.
In IEEE International Symposium on Information Theory (ISIT), 2011. 3

[65] Sundeep Rangan, Philip Schniter, and Alyson K Fletcher. Vector approximate message passing.
IEEE Transactions on Information Theory, 65(10):6664–6684, 2019. 3

[66] Galen Reeves. Information-theoretic limits for the matrix tensor product. IEEE Journal on
Selected Areas in Information Theory, 1(3):777–798, 2020. 2

[67] R. Tyrrell Rockafellar. Convex analysis. Princeton Landmarks in Mathematics. Princeton
University Press, Princeton, NJ, 1997. 30

[68] Charles M. Stein. Estimation of the mean of a multivariate normal distribution. The Annals of
Statistics, 9(6):1135–1151, 1981. 52

[69] Pei-Chun Su and Hau-Tieng Wu. Data-driven optimal shrinkage of singular values under
high-dimensional noise with separable covariance structure. arXiv preprint arXiv:2207.03466,
2022. 1, 2, 3

[70] O. Tamuz, T. Mazeh, and S. Zucker. Correcting systematic effects in a large set of photometric
light curves. Monthly Notices of the Royal Astronomical Society, 356(4):1466–1470, 02 2005. 1

[71] Ramji Venkataramanan, Kevin Kögler, and Marco Mondelli. Estimation in rotationally invariant
generalized linear models via approximate message passing. In International Conference on
Machine Learning (ICML), 2022. 3

[72] Yihong Wu and Harrison H. Zhou. Randomly initialized EM algorithm for two-component
Gaussian mixture achieves near optimality in O(

√
n) iterations. Math. Stat. Learn., 4(3-4):143–

220, 2021. 1

[73] Kaylee Y Yang, Timothy LH Wee, and Zhou Fan. Asymptotic mutual information in quadratic
estimation problems over compact groups. arXiv preprint arXiv:2404.10169, 2024. 2

[74] Xiaodong Yang, Buyu Lin, and Subhabrata Sen. Fundamental limits of community detection
from multi-view data: multi-layer, dynamic and partially labeled block models. arXiv preprint
arXiv:2401.08167, 2024. 2

14



[75] Ming Yuan. High dimensional inverse covariance matrix estimation via linear programming. J.
Mach. Learn. Res., 11:2261–2286, 2010. 10

[76] Anru R. Zhang, T. Tony Cai, and Yihong Wu. Heteroskedastic PCA: algorithm, optimality, and
applications. Ann. Statist., 50(1):53–80, 2022. 2, 3, 8

[77] Cun-Hui Zhang and Stephanie S. Zhang. Confidence intervals for low dimensional parameters
in high dimensional linear models. J. R. Stat. Soc. Ser. B. Stat. Methodol., 76(1):217–242, 2014.
8

[78] Lixin Zhang. Spectral analysis of large dimentional random matrices. PhD thesis, National
University of Singapore, 2007. 39

[79] Yihan Zhang, Hong Chang Ji, Ramji Venkataramanan, and Marco Mondelli. Spectral estimators
for structured generalized linear models via approximate message passing. arXiv preprint
arXiv:2308.14507, 2023. 3, 7, 39

[80] Yihan Zhang, Marco Mondelli, and Ramji Venkataramanan. Precise asymptotics for spectral
methods in mixed generalized linear models. arXiv preprint arXiv:2211.11368, 2022. 3

[81] Xinyi Zhong, Tianhao Wang, and Zhou Fan. Approximate message passing for orthogonally
invariant ensembles: Multivariate non-linearities and spectral initialization. arXiv preprint
arXiv:2110.02318, 2021. 10

[82] Yuchen Zhou and Yuxin Chen. Deflated heteropca: Overcoming the curse of ill-conditioning in
heteroskedastic pca. arXiv preprint arXiv:2303.06198, 2023. 3

15



Notation. All vectors are column vectors. The singular values of a matrix A ∈ Rn×d (where
n ≥ d without loss of generality) are denoted by σ1(A) ≥ · · · ≥ σd(A) ≥ 0 and the corresponding
left/right singular vectors are denoted by u1(A), · · · , ud(A) ∈ Sn−1 and v1(A), · · · , vd(A) ∈ Sd−1.
The (real) eigenvalues of a symmetric matrix B ∈ Rd×d are denoted by λ1(B) ≥ · · · ≥ λd(B)
and the corresponding eigenvectors are denoted by v1(B), · · · , vd(B) ∈ Sd−1 (which will not be
confused with the right singular vectors, whenever they are different, since we will never talk about
both simultaneously for a square asymmetric matrix). We generally put overlines on capital letters
to indicate a scalar random variable, e.g., X ∈ R, whose support is denoted by supp(X). The
limit/liminf/limsup in probability are denoted by p-lim,p-liminf,p-limsup. The product distribution
whose i-th (i ∈ [k]) marginal is given by Pi is denoted by P1⊗· · ·⊗Pk, with the shorthand P⊗k when
all Pi’s are equal to P . The gradient of f : Rn → R, or with abuse of notation, the Jacobian matrix of
F : Rn → Rd are denoted by ∇f ∈ Rn,∇F ∈ Rd×n. The partial derivative of f(x1, · · · , xn) with
respect to xi is denoted by either ∂

∂xi
f(x1, · · · , xn) or ∂if(x1, · · · , xn). All log and exp are to the

base e. We use the standard notation of sup(S), inf(S) for a subset S ⊂ R. We generally use C > 0
to denote a sufficiently large constant independent of n, d. Its dependence on other parameters will
be specified, though its value may change across passages. We use the standard big O notation.

A Proof of Proposition 4.1

We eliminate qu and write a fixed point equation only involving qv:

qv = E

 γE
[

αγqvΞ
−2

αγqvΞ
−1

+1

]
Σ

−2

γE
[

αγqvΞ
−2

αγqvΞ
−1

+1

]
Σ

−1
+ 1

.
Denote the RHS by f(qv). Recall that we are only interested in non-negative solutions (qu, qv). So
let us restrict attention on f to the domain R≥0. We have f(0) = 0 and

f ′(qu) = E

 γΣ
−2(

γE
[

αγqvΞ
−2

αγqvΞ
−1

+1

]
Σ

−1
+ 1
)2
E
 αγΞ

−2(
αγqvΞ

−1
+ 1
)2
 > 0,

f ′(0) = αγ2E
[
Σ

−2
]
E
[
Ξ
−2
]
,

f ′′(qv) = −2

E

 αγΞ
−2(

αγqvΞ
−1

+ 1
)2

2

E

 γ2Σ
−3(

γE
[

αγqvΞ
−2

αγqvΞ
−1

+1

]
Σ

−1
+ 1
)3


+E

 γΣ
−2(

γE
[

αγqvΞ
−2

αγqvΞ
−1

+1

]
Σ

−1
+ 1
)2
E
 α2γ2Ξ

−3(
αγqvΞ

−1
+ 1
)3

 < 0,

lim
qv→∞

f(qv) = E

 γE
[
Ξ
−1
]
Σ

−2

γE
[
Ξ
−1
]
Σ

−1
+ 1

 ∈ (0,∞).

It then becomes evident that a non-trivial fixed point qv > 0 exists if and only if f ′(0) > 1 and in
this case, the non-trivial fixed point is unique.

Finally, by the first equation in (4.5), there is a non-trivial fixed point qu if and only if there is a
non-trivial fixed point qv , which completes the proof.

B Auxiliary Gaussian channel

We formally introduce here the auxiliary model mentioned in Section 4. Consider a Gaussian channel
with blocklength n, input x∗, output Y , anisotropic Gaussian noise Σ1/2Z and SNR γ:

Y =
√
γx∗ +Σ1/2Z ∈ Rn, (B.1)
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where

(x∗, Z) ∼ P⊗n ⊗N (0n, In).

By similar derivations as in Section 4, the posterior distribution of x∗ given Y can be written as

dP (x |Y ) =
1

Zn(γ)
exp(Hn(x)) dP

⊗n(x),

where the Hamiltonian and the partition function are

Hn(x) := γx∗⊤Σ−1x+
√
γZ⊤Σ−1/2x− γ

2
x⊤Σ−1x,

Zn(γ) :=

∫
Rn

exp(Hn(x)) dP
⊗n(x).

Define the free energy as

Fn(γ) :=
1

n
E[logZn(γ)].

With P = N (0, 1), Zn(γ) becomes a Gaussian integral that can be computed as below using
Proposition G.1:

Zn(γ) =
1√

det(γΣ−1 + In)
exp

(
1

2

(
γΣ−1x∗ +

√
γΣ−1/2Z

)⊤(
γΣ−1 + In

)−1
(
γΣ−1x∗ +

√
γΣ−1/2Z

))
.

Therefore, by Proposition G.2,

p-lim
n→∞

Fn(γ) = −1

2
E
[
log
(
γΣ

−1
+ 1
)]

+
1

2
γ2E

[
Σ

−2
(
γΣ

−1
+ 1
)−1

]
+

1

2
γE
[
Σ

−1
(
γΣ

−1
+ 1
)−1

]
=

1

2

(
γE
[
Σ

−1
]
− E

[
log
(
1 + γΣ

−1
)])

. (B.2)

The above functional is nothing but ψΣ(γ) introduced in (4.15) which will play an important role in
characterizing the free energy of the original model (4.1).

C Proof of Theorem 4.4

Before diving into the proof, we make further notation adjustments for the ease of applying the
interpolation argument. Specifically, we will henceforth assume γ = 1 by incorporating the actual
value of γ into the prior distributions P,Q,∫

R
x2 dP (x) = γ,

∫
R
x2 dQ(x) = 1.

This is obviously equivalent to the previous setting. So we can drop the dependence on γ and write
MMSEn,Zn,Fn for MMSEn(γ),Zn(γ),Fn(γ) defined in (4.2), (4.13) and (4.14).

We will also assume that Ξ,Σ are diagonal. This is without loss of generality since the Gaussianity
of P,Q, W̃ ensures that both the prior distributions and the noise matrix are rotationally invariant.
Furthermore, we truncate P,Q so that they are supported on [−K,K] for a constant K > 0. The
approximation error in the free energy due to truncation can be made arbitrarily small if K is
sufficiently large, since the free energy is pseudo-Lipschitz in the prior distribution with respect to
the Wasserstein-2 metric.

The proof follows an interpolation argument [10, 52, 53] with suitable modifications to take care of
the noise heteroscedasticity featured by the covariances Ξ,Σ. To start with, define the interpolating
models:

Yt :=

√
1− t

n
u∗v∗⊤ + Ξ1/2ZΣ1/2 ∈ Rn×d,

Y u
t :=

√
αq1(t)u

∗ + Ξ1/2Zu ∈ Rn,
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Y v
t :=

√
q2(t)v

∗ +Σ1/2Zv ∈ Rd,

where q1(t), q2(t) ≥ 0 are to be determined and

(u∗, v∗, Z, Zu, Zv) ∼ P⊗n ⊗Q⊗d ⊗N (0nd, Ind)⊗N (0n, In)⊗N (0d, Id). (C.1)

By definition, Y0 = Y is the model that we would like to understand, and Y u
t , Y

v
t are instances of

Gaussian channels in (B.1) whose free energy we have already understood (see (B.2)). The idea is
that Yt serves as a path parametrized by t ∈ [0, 1] from the original model Y to the target models
(Y u

1 , Y
v
1 ). The crux of the interpolation argument lies in showing that Yt and (Y u

t , Y
v
t ) are equivalent

(at the level of free energy) along the path.

To study the interpolating models (Yt, Y u
t , Y

v
t ), define the Hamiltonian

Hn,t(ũ, ṽ; q1, q2) :=

√
1− t

n
ũ⊤Zṽ +

1− t

n
ũ⊤ũ∗ṽ⊤ṽ∗ − 1− t

2n
∥ũ∥22∥ṽ∥

2
2

+ αq1ũ
⊤ũ∗ +

√
αq1ũ

⊤Zu − αq1
2

∥ũ∥22

+ q2ṽ
⊤ṽ∗ +

√
q2ṽ

⊤Zv − q2
2
∥ṽ∥22.

(C.2)

Then the posterior distribution of (u∗, v∗) given (Yt, Y
u
t , Y

v
t ) is

dP (u, v |Yt, Y u
t , Y

v
t ) =

1

Zn,t
exp
(
Hn,t(Ξ

−1/2u,Σ−1/2v; q1(t), q2(t))
)
dP⊗n(u) dQ⊗d(v).

(C.3)

Let the partition function be

Zn,t :=

∫
Rd

∫
Rn

exp
(
Hn,t(Ξ

−1/2u,Σ−1/2v; q1(t), q2(t))
)
dP⊗n(u) dQ⊗d(v)

=

∫
Rd

∫
Rn

exp(Hn,t(ũ, ṽ; q1(t), q2(t))) dP̃ (ũ) dQ̃(ṽ). (C.4)

Define the free energy as

fn(t) :=
1

n
E[logZn,t]. (C.5)

The Gibbs bracket ⟨·⟩n,t denotes the expectation with respect to the posterior distribution in (C.3):

⟨g(ũ, ṽ)⟩n,t :=
1

Zn,t

∫
Rd

∫
Rn

g(ũ, ṽ) exp(Hn,t(ũ, ṽ; q1(t), q2(t))) dP̃ (ũ) dQ̃(ṽ), (C.6)

for any g : Rn × Rd → R such that the expectation exists. That is,

⟨g(ũ, ṽ)⟩n,t = E[g(ũ∗, ṽ∗) |Yt, Y u
t , Y

v
t ],

where we recall the notation

ũ∗ := Ξ−1/2u∗, ṽ∗ := Σ−1/2v∗. (C.7)

We will also use the notation ⟨·⟩n for the Gibbs bracket with respect to the original posterior
dP (u, v |Y ) in (4.11).
Lemma C.1. Consider fn(t) defined in (C.5) with t ∈ {0, 1}. Assume that q1(0), q2(0) satisfy

q1(0) ≥ 0, q2(0) ≥ 0, lim
n→∞

q1(0) = lim
n→∞

q2(0) = 0.

Then we have

fn(0) = Fn +O(q1(0) + q2(0)), (C.8)
lim

n→∞
fn(1) = ψΞ(αq1(1)γ) + αψΣ(q2(1)) + oK , (C.9)

where limK→∞ oK = 0.
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Proof. To show the first statement (C.8), let us control fn(0)−Fn. Denoting

H′
n,t(ũ, ṽ; q1, q2) := αq1ũ

⊤ũ∗ +
√
αq1ũ

⊤Zu − αq1
2

∥ũ∥22 + q2ṽ
⊤ṽ∗ +

√
q2ṽ

⊤Zv − q2
2
∥ṽ∥22

and recalling the Gibbs bracket notation ⟨·⟩n, we have

fn(0)−Fn =
1

n
E
[
log

Zn,0

Zn

]
=

1

n
E
[
log
〈
exp
(
H′

n,0(ũ, ṽ; q1(0), q2(0))
)〉

n

]
, (C.10)

where the outer expectation is over all randomness in u∗, v∗, Zu, Zv. The second equality above
follows since

Hn,0(ũ, ṽ; q1(0), q2(0)) = Hn(ũ, ṽ) +H′
n,0(ũ, ṽ; q1(0), q2(0)).

We will derive double-sided bounds on fn(0)−Fn.

To upper bound it, use Jensen’s inequality E[log(·)] ≤ logE[·] on the partial expectation over Zu, Zv

in (C.10):

fn(0)−Fn ≤ 1

n
E

u∗,v∗

[
log E

Zu,Zv

[〈
exp
(
H′

n,0(ũ, ṽ; q1(0), q2(0))
)〉

n

]]
=

1

n
E

u∗,v∗

[
log

〈
E

Zu,Zv

[
exp
(
H′

n,0(ũ, ṽ; q1(0), q2(0))
)]〉

n

]
,

where the equality is legit since ⟨·⟩n does not depend on Zu, Zv. By the Gaussian integral formula
(Proposition G.1), the inner expectation equals

E
Zu,Zv

[
exp
(
H′

n,0(ũ, ṽ; q1(0), q2(0))
)]

= exp
(
αq1(0)ũ

⊤ũ∗ + q2(0)ṽ
⊤ṽ∗

)
.

Replacing the Gibbs bracket with max, we obtain an upper bound:

fn(0)−Fn ≤ 1

n
E

u∗,v∗

[
log max

(ũ,ṽ)∈Ξ−1/2[−K,K]n×Σ−1/2[−K,K]d
exp
(
αq1(0)ũ

⊤ũ∗ + q2(0)ṽ
⊤ṽ∗

)]
≤ αq1(0)∥Ξ∥−1

2 K2 + q2(0)∥Σ∥−1
2 K2 d

n

≤ 2αq1(0)K
2

inf supp(Ξ)
+

2αq2(0)K
2

inf supp(Σ)
, (C.11)

where the last inequality holds for all sufficiently large n by (3.3) and n ≍ d.

To lower bound fn − Fn, we use Jensen’s inequality again but this time on the Gibbs bracket in
(C.10):

fn(0)−Fn ≥ 1

n
E
[〈
H′

n,0(ũ, ṽ; q1(0), q2(0))
〉
n

]
=

1

n
E

u∗,v∗

[〈
E

Zu,Zv

[
H′

n,0(ũ, ṽ; q1(0), q2(0))
]〉

n

]
.

(C.12)

Since (Zu, Zv) ∼ N (0n, In)⊗N (0d, Id), the inner expectation equals

E
Zu,Zv

[
H′

n,0(ũ, ṽ; q1(0), q2(0))
]
= αq1(0)ũ

⊤ũ∗ − αq1(0)

2
∥ũ∥22 + q2(0)ṽ

⊤ṽ∗ − q2(0)

2
∥ṽ∥22.

So

max
(ũ,ṽ)∈Ξ−1/2[−K,K]n×Σ−1/2[−K,K]d

∣∣∣∣ E
Zu,Zv

[
H′

n,0(ũ, ṽ; q1(0), q2(0))
]∣∣∣∣

≤ 3

2
αq1(0)∥Ξ∥−1

2 nK2 +
3

2
q2(0)∥Σ∥−1

2 dK2.

Using this, we obtain a lower bound on fn −Fn by replacing the Gibbs bracket on the RHS of (C.12)
with −max|·|:

fn(0)−Fn ≥ − 1

n
E

u∗,v∗

[
max

(ũ,ṽ)∈Ξ−1/2[−K,K]n×Σ−1/2[−K,K]d

∣∣∣∣ E
Zu,Zv

[
H′

n,0(ũ, ṽ; q1(0), q2(0))
]∣∣∣∣]
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≥ −3

2
αq1(0)∥Ξ∥−1

2 K2 − 3

2
q2(0)∥Σ∥−1

2 K2 d

n

≥ − 3αq1(0)K
2

inf supp(Ξ)
− 3αq2(0)K

2

inf supp(Σ)
, (C.13)

where the last inequality holds for all sufficiently large n by (3.3) and n ≍ d. Combining (C.11)
and (C.13) gives the first result (C.8).

We then prove the second statement (C.9). Since fn is pseudo-Lipschitz as a function of the priors,
up to a term oK that vanishes as K → ∞ uniformly over n, it suffices to ignore the truncation at K
and assume P = N (0, γ), Q = N (0, 1). From the definition (C.4) of Zn,t, we have

Zn,1 =

∫
Rd

∫
Rn

exp
(
H′

n,1(Ξ
−1/2u,Σ−1/2v; q1(1), q2(1))

)
dP⊗n(u) dQ⊗d(v)

=

√
det(Ξ)

γn det(Ξ/γ + αq1(1)In)

× exp

(
1

2

(
αq1(1)ũ

∗ +
√
αq1(1)Z

u
)⊤

(Ξ/γ + αq1(1)In)
−1
(
αq1(1)ũ

∗ +
√
αq1(1)Z

u
))

×

√
det(Σ)

det(Σ + q2(1)Id)
exp

(
1

2

(
q2(1)ṽ

∗ +
√
q2(1)Z

v
)⊤

(Σ + q2(1)Id)
−1
(
q2(1)ṽ

∗ +
√
q2(1)Z

v
))

,

where in the second equality, we use the Gaussian integral formula (Proposition G.1). Therefore

lim
n→∞

fn(1) = lim
n→∞

1

n
E[logZn,1]

=
1

2
αq1(1)γE

[
Ξ
−1
]
− 1

2
E
[
log
(
1 + αq1(1)γΞ

−1
)]

+
α

2
q2(1)E

[
Σ

−1
]
− α

2
E
[
log
(
1 + q2(1)Σ

−1
)]
,

verifying the identity (C.9). In the second equality, we have used Proposition G.2.

Lemma C.2 (Free energy variation). For all t ∈ (0, 1),

f ′n(t) =
α

2
q′1(t)q

′
2(t)−

1

2
E

[〈(
ũ⊤ũ∗

n
− q′2(t)

)(
ṽ⊤ṽ∗

n
− αq′1(t)

)〉
n,t

]
. (C.14)

Proof. From the definitions (C.4) and (C.5), we compute

f ′n(t) =
1

n
E
[

1

Zn,t

∂

∂t
Zn,t

]
=

1

n
E
[

1

Zn,t

∫
Rd

∫
Rn

(
∂

∂t
Hn,t(ũ, ṽ; q1(t), q2(t))

)
exp(Hn,t(ũ, ṽ; q1(t), q2(t))) dP̃ (ũ) dQ̃(ṽ)

]
=

1

n
E

[〈
∂

∂t
Hn,t(ũ, ṽ; q1(t), q2(t))

〉
n,t

]
.

By the definition (C.2), the time derivative of the Hamiltonian is

∂

∂t
Hn,t(ũ, ṽ; q1(t), q2(t)) = − 1

2
√

(1− t)n
ũ⊤Zṽ − 1

n
ũ⊤ũ∗ṽ⊤ṽ∗ +

1

2n
∥ũ∥22∥ṽ∥

2
2

+ αq′1(t)ũ
⊤ũ∗ +

√
α

2
√
q1(t)

q′1(t)ũ
⊤Zu − α

2
q′1(t)∥ũ∥

2
2

+ q′2(t)ṽ
⊤ṽ∗ +

1

2
√
q2(t)

q′2(t)ṽ
⊤Zv − 1

2
q′2(t)∥ṽ∥

2
2.

(C.15)
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The expectation of ⟨∂tHn,t⟩n,t can be computed using the Stein’s lemma (Proposition G.7). Indeed,
let us consider the term

E
[〈
ũ⊤Zṽ

〉
n,t

]
=

n∑
i=1

d∑
j=1

E
[
⟨ũiṽj⟩n,tZi,j

]
=

n∑
i=1

d∑
j=1

E

[
∂⟨ũiṽj⟩n,t
∂Zi,j

]

=

n∑
i=1

d∑
j=1

√
1− t

n
E
[〈
ũ2i ṽ

2
j

〉
n,t

]
−

n∑
i=1

d∑
j=1

√
1− t

n
E
[
⟨ũiṽj⟩2n,t

]
=

√
1− t

n
E
[〈

∥ũ∥22∥ṽ∥
2
2

〉
n,t

]
−
√

1− t

n
E
[〈
ũ⊤ũ∗ṽ⊤ṽ∗

〉
n,t

]
,

(C.16)

where the last step is by the Nishimori identity (Proposition G.4). So the first line of (C.15) upon
taken the Gibbs bracket and the expectation becomes

− 1

2n
E
[〈
ũ⊤ũ∗ṽ⊤ṽ∗

〉
n,t

]
.

Similar cancellations happen for the second and third lines of (C.15). Putting them together, we
obtain

f ′n(t) = − 1

2n2
E
[〈
ũ⊤ũ∗ṽ⊤ṽ∗

〉
n,t

]
+

α

2n
q′1(t)E

[〈
ũ⊤ũ∗

〉
n,t

]
+

1

2n
q′2(t)E

[〈
ṽ⊤ṽ∗

〉
n,t

]
,

which is the same as (C.14) with the parentheses opened up.

In what follows, our strategy is:

1. Show that
〈
ũ⊤ũ∗

〉
n,t

is concentrated around its mean E
[〈
ũ⊤ũ∗

〉
n,t

]
;

2. Choose q2(t) to be the solution to

q′2(t) =
1

n
E
[〈
ũ⊤ũ∗

〉
n,t

]
.

Once Items 1 and 2 are done, we then have

Fn ≈ fn(0) = fn(1)−
∫ 1

0

f ′n(t) dt

≈ ψΞ(αq1(1)γ) + αψΣ(q2(1))−
∫ 1

0

α

2
q′1(t)q

′
2(t) dt

+

∫ 1

0

1

2
E

[〈(
ũ⊤ũ∗

n
− q′2(t)

)(
ṽ⊤ṽ∗

n
− αq′1(t)

)〉
n,t

]
dt

≈ ψΞ(αq1(1)γ) + αψΣ(q2(1))−
∫ 1

0

α

2
q′1(t)q

′
2(t) dt,

where the first line above uses (C.8) in Lemma C.1; the second line uses (C.9) in Lemma C.1 and
Lemma C.2; the third line uses Items 1 and 2. This will almost lead to the desired characterization of
the free energy Fn in Theorem 4.4:

sup
qv≥0

inf
qu≥0

ψΞ(αγqv) + αψΣ(qu)−
α

2
quqv.

Consider the function

ϕt(q1, q2) =
1

n
logZn,t.

Note that ϕt(q1, q2) also depends on n, u∗, v∗, Z, Zu, Zv, and E[ϕt(q1, q2)] = fn(t) where the
expectation is over (u∗, v∗, Z, Zu, Zv) distributed according to (C.1).
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Lemma C.3 (Free energy concentration). Fix a constant M > 0. There exists a constant C > 0
depending only on K,M,α,Ξ,Σ such that for any t ∈ [0, 1], 0 ≤ q1(t), q2(t) ≤M and sufficiently
large n,

E[|ϕt(q1, q2)− E[ϕt(q1, q2)]|] ≤
C√
n
.

Proof. Fix u∗, v∗. Consider ϕt(q1, q2) as a function of (Z,Zu, Zv). Then∥∥∇(Z,Zu,Zv)ϕt(q1, q2)
∥∥2
2

= ∥∇Zϕt(q1, q2)∥22 + ∥∇Zuϕt(q1, q2)∥22 + ∥∇Zvϕt(q1, q2)∥22

=

n∑
i=1

d∑
j=1

 1

n
E

〈√1− t

n
ũiṽj

〉
n,t

2

+

n∑
i=1

(
1

n
E
[
⟨√αq1ũi⟩n,t

])2

+

d∑
j=1

(
1

n
E
[
⟨√q2ṽj⟩n,t

])2

≤ 1

n3
E
[〈

∥ũ∥22∥ṽ∥
2
2

〉
n,t

]
+
αq1
n2

E
[〈

∥ũ∥22
〉
n,t

]
+
q2
n2

E
[〈

∥ṽ∥22
〉
n,t

]
≤ α

n
∥Ξ∥−1

2 ∥Σ∥−1
2 K4 +

α

n
M∥Ξ∥−1

2 K2 +
α

n
M∥Σ∥−1

2 K2 ≤ C

n
,

where C > 0 is a constant depending only on α,M,Ξ,Σ,K. The penultimate line is by Cauchy–
Schwarz and the last line holds for all sufficiently large n by (3.3) and n ≍ d. Then by the Gaussian
Poincaré inequality (Proposition G.8),

E
Z,Zu,Zv

[∣∣∣∣ϕt(q1, q2)− E
Z,Zu,Zv

[ϕt(q1, q2)]

∣∣∣∣] ≤√ Var
Z,Zu,Zv

[ϕt(q1, q2)] ≤
C√
n
. (C.17)

The above result holds for any fixed u∗, v∗. We then verify that EZ,Zu,Zv [ϕt(q1, q2)] has bounded
difference as a function of u∗, v∗. We do so by bounding the derivatives of EZ,Zu,Zv [ϕt(q1, q2)] with
respect to u∗i , v

∗
j for any i ∈ [n], j ∈ [d]. We have

∂

∂u∗i
E

Z,Zu,Zv
[ϕt(q1, q2)] =

1

n
E

Z,Zu,Zv

[〈
∂

∂u∗i
Hn,t(ũ, ṽ; q1, q2)

〉
n,t

]
, (C.18)

and a similar expression holds for the derivative with respect to v∗j . Recall the definition of Hn,t from
(C.2). We have

∂

∂u∗i
Hn,t(Ξ

−1/2u,Σ−1/2v; q1, q2) =
1− t

n
v⊤Σ−1v∗(Ξ−1)i,iui + αq1(Ξ

−1)i,iui,

where we have used the fact that Ξ is diagonal. Therefore,∣∣∣∣ ∂∂u∗i Hn,t(Ξ
−1/2u,Σ−1/2v; q1, q2)

∣∣∣∣ ≤ 1

n
· dK2∥Σ∥−1

2 · ∥Ξ∥−1
2 K + αq1 · ∥Ξ∥−1

2 K ≤ C,

where C > 0 is a constant depending only on α,M,K,Ξ,Σ. The last inequality holds for all
sufficiently large n. A similar bound holds for ∂

∂v∗
j
Hn,t(Ξ

−1/2u,Σ−1/2v; q1, q2). This, by (C.18),

implies that EZ,Zu,Zv [ϕt(q1, q2)] as a function of (u∗, v∗) satisfies the bounded difference property
with ci = C/n (see Proposition G.9). So by Proposition G.9,

E
u∗,v∗

[∣∣∣∣ E
Z,Zu,Zv

[ϕt(q1, q2)]− E
u∗,v∗

[
E

Z,Zu,Zv
[ϕt(q1, q2)]

]∣∣∣∣] ≤
√

Var
u∗,v∗

[
E

Z,Zu,Zv
[ϕt(q1, q2)]

]
≤ C√

n
.

(C.19)

Finally using (C.17) and (C.19) and the triangle inequality,
E[|ϕt(q1, q2)− E[ϕt(q1, q2)]|]

≤ E
u∗,v∗

[
E

Z,Zu,Zv

[∣∣∣∣ϕt(q1, q2)− E
Z,Zu,Zv

[ϕt(q1, q2)]

∣∣∣∣]+ ∣∣∣∣ E
Z,Zu,Zv

[ϕt(q1, q2)]− E
u∗,v∗

[
E

Z,Zu,Zv
[ϕt(q1, q2)]

]∣∣∣∣]
≤ C√

n
,

concluding the proof.
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Suppose a, b ≥ 0 are constants. With q1 = sna
2, q2 = snb

2, we can write Hn,t in (C.2) as

Hn,t(ũ, ṽ; sna
2, snb

2) = Hn,t(ũ, ṽ) +Hu
n,a(ũ) +Hv

n,b(ṽ),

where

Hn,t(ũ, ṽ) :=

√
1− t

n
ũ⊤Zṽ +

1− t

n
ũ⊤ũ∗ṽ⊤ṽ∗ − 1− t

2n
∥ũ∥22∥ṽv∥

2
2,

Hu
n,a(ũ) := αsna

2ũ⊤ũ∗ + a
√
αsnũ

⊤Zu − αsna
2

2
∥ũ∥22,

Hv
n,b(ṽ) := snb

2ṽ⊤ṽ∗ + b
√
snṽ

⊤Zv − snb
2

2
∥ṽ∥22.

Fix A ≥ 2. Define

ϕu(a) =
1

nsn
log

∫
Rn

exp
(
Hu

n,a(ũ)
)
dP̃ (ũ), ϕv(b) =

1

nsn
log

∫
Rd

exp
(
Hv

n,b(ṽ)
)
dQ̃(ṽ),

ξun(sn) := sup
1/2≤a≤A+1/2

E[|ϕu(a)− E[ϕu(a)]|], ξvn(sn) := sup
1/2≤b≤A+1/2

E[|ϕv(b)− E[ϕv(b)]|],

(C.20)

Υu(ũ) :=
1

nsn

∂

∂a
Hu

n,a(ũ), Υv(ṽ) :=
1

nsn

∂

∂b
Hb

n,b(ṽ).

Denote by ⟨g(u∗, v∗)⟩n,a,b the conditional expectation of g(u∗, v∗) given

Yt, Y u
t (a) := a

√
αsnu

∗ + Ξ1/2Zu, Y v
t (b) := b

√
snv

∗ +Σ1/2Zv, (C.21)

where the expectation is with respect to the distribution in (C.1).

Corollary C.4. Let sn = n−1/32 and A ≤
√
M/sn − 1/2 for a constant M > 0 independent of n.

Then there exists a constant C > 0 depending only on K,α,Ξ such that for all sufficiently large n,

ξun(sn) ≤
C

sn
√
n
.

Proof. Note that if b = 0, t = 1, it holds that Hn,1(ũ, ṽ; sna
2, 0) = Hu

n,a(ũ) and ϕ1(sna2, 0) =
snϕ

u(a). The conclusion then follows immediately from Lemma C.3 since by the assumption on A,
q1 = sna

2 ∈ [0,M ] for any 1/2 ≤ a ≤ A+ 1/2.

Lemma C.5. Let sn = n−1/32. For all A ≥ 2,

1

A− 1

∫ A

1

E
[〈∣∣∣Υu(ũ)− E

[
⟨Υu(ũ)⟩n,a,b

]∣∣∣〉
n,a,b

]
da ≤ C

(
1

√
nsn

+
√
ξun(sn)

)
,

where C > 0 only depends on α,Ξ,K.

Proof. By the triangle inequality,

E
[〈∣∣∣Υu(ũ)− E

[
⟨Υu(ũ)⟩n,a,b

]∣∣∣〉
n,a,b

]
≤ E

[〈∣∣∣Υu(ũ)− ⟨Υu(ũ)⟩n,a,b
∣∣∣〉

n,a,b

]
+ E

[〈∣∣∣⟨Υu(ũ)⟩n,a,b − E
[
⟨Υu(ũ)⟩n,a,b

]∣∣∣〉
n,a,b

]
.

(C.22)

We will bound the two terms on the RHS separately. We first bound

1

A− 1

∫ A

1

E
[〈∣∣∣Υu(ũ)− ⟨Υu(ũ)⟩n,a,b

∣∣∣〉
n,a,b

]
da

≤

(
1

A− 1

∫ A

1

E

[〈(
Υu(ũ)− ⟨Υu(ũ)⟩n,a,b

)2〉
n,a,b

]
da

)1/2

. (C.23)
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The first two derivatives of ϕu are

(ϕu)′(a) =
1

nsn

∫
Rn exp

(
Hu

n,a(ũ)
)

∂
∂aH

u
n,a(ũ) dP̃ (ũ)∫

Rn exp
(
Hu

n,a(ũ)
)
dP̃ (ũ)

= ⟨Υu(ũ)⟩n,a,b, (C.24a)

(ϕu)′′(a) =
1

nsn

〈( ∂

∂a
Hu

n,a(ũ)

)2
〉

n,a,b

−
〈
∂

∂a
Hu

n,a(ũ)

〉2

n,a,b

+

〈
∂2

∂a2
Hu

n,a(ũ)

〉
n,a,b


= nsn

[〈
Υu(ũ)2

〉
n,a,b

− ⟨Υu(ũ)⟩2n,a,b
]
+
α

n

[
2
〈
ũ⊤ũ∗

〉
n,a,b

−
〈
∥ũ∥22

〉
n,a,b

]
.

(C.24b)

Since there exists C > 0 depending only on α,Ξ,K such that for all sufficiently large n,∣∣∣∣αn
[
2
〈
ũ⊤ũ∗

〉
n,a,b

−
〈
∥ũ∥22

〉
n,a,b

]∣∣∣∣ ≤ 4αK2

inf supp(Ξ)
=: C, (C.25)

the second result (C.24b) above implies that for all sufficiently large n,〈(
Υu(ũ)− ⟨Υu(ũ)⟩n,a,b

)2〉
n,a,b

≤ 1

nsn
((ϕu)′′(a) + C).

Consequently,∫ A

1

E

[〈(
Υu(ũ)− ⟨Υu(ũ)⟩n,a,b

)2〉
n,a,b

]
da ≤ 1

nsn
(E[(ϕu)′(A)]− E[(ϕu)′(1)] + C(A− 1)).

(C.26)

To proceed, we compute for any a,

E[(ϕu)′(a)] = E
[
⟨Υu(ũ)⟩n,a,b

]
, (C.27)

which is by (C.24a). By definition,

Υu(ũ) =
1

n

(
2αaũ⊤ũ∗ +

√
α/snũ

⊤Zu − αa∥ũ∥22
)
,

whose expectation is therefore given by

E
[
⟨Υu(ũ)⟩n,a,b

]
=

2αa

n
E
[〈
ũ⊤ũ∗

〉
n,a,b

]
+

√
α

n
√
sn

E
[〈
ũ⊤Zu

〉
n,a,b

]
− αa

n
E
[〈

∥ũ∥22
〉
n,a,b

]
.

(C.28)

Using Stein’s lemma (Proposition G.7), the middle term is equal to
√
α

n
√
sn

E
[〈
ũ⊤Zu

〉
n,a,b

]
=

√
α

n
√
sn

n∑
i=1

E
[
Zu
i ⟨ũi⟩n,a,b

]
=

√
α

n
√
sn

n∑
i=1

E
[
∂

∂Zu
i

⟨ũi⟩n,a,b

]
=
aα

n
E
[〈

∥ũ∥22
〉
n,a,b

]
− aα

n
E
[〈
ũ⊤ũ∗

〉
n,a,b

]
.

Therefore,

E
[
⟨Υu(ũ)⟩n,a,b

]
=
αa

n
E
[〈
ũ⊤ũ∗

〉
n,a,b

]
, (C.29)

and ∣∣∣E[⟨Υu(ũ)⟩n,a,b
]∣∣∣ ≤ aC, (C.30)

where C depends only on α,Ξ,K.

Using the last inequality, we can further upper bound the RHS of (C.26) by CA
nsn

for someC depending
only on α,Ξ,K. Putting this back to (C.23), we get

1

A− 1

∫ A

1

E
[〈∣∣∣Υu(ũ)− ⟨Υu(ũ)⟩n,a,b

∣∣∣〉
n,a,b

]
da ≤

√
CA

nsn(A− 1)
≤
√

2C

nsn
, (C.31)
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since A ≥ 2.

Now it remains to bound the second term on the RHS of (C.22) which can be written as

E
[〈∣∣∣⟨Υu(ũ)⟩n,a,b − E

[
⟨Υu(ũ)⟩n,a,b

]∣∣∣〉
n,a,b

]
= E[|(ϕu)′(a)− E[(ϕu)′(a)]|] (C.32)

using (C.24a). To further bound the RHS, consider the following two functions

a 7→ ϕu(a) +
2αK2a2

inf supp(Ξ)
, a 7→ E[ϕu(a)] +

2αK2a2

inf supp(Ξ)
.

They are both differentiable and convex for all sufficiently large n since their second derivatives are
non-negative by (C.25) and (C.24b). Applying Proposition G.10 with the above two functions, taking
the expectation and using the triangle inequality, we have that for any 1 ≤ a ≤ A, 0 < a′ ≤ 1/2,

E[|(ϕu)′(a)− E[(ϕu)′(a)]|] ≤ E[(ϕu)′(a+ a′)]− E[(ϕu)′(a− a′)] + 3ξun(sn)/a
′ +

8αK2a′

inf supp(Ξ)
.

(C.33)

Then ∫ A

1

E[(ϕu)′(a+ a′)]− E[(ϕu)′(a− a′)] da

= (E[ϕu(A+ a′)]− E[ϕu(1 + a′)])− (E[ϕu(A− a′)]− E[ϕu(1− a′)])

= (E[ϕu(A+ a′)]− E[ϕu(A− a′)])− (E[ϕu(1 + a′)]− E[ϕu(1− a′)])

=

∫ a′

−a′
E[(ϕu)′(A+ a)] da−

∫ a′

−a′
E[(ϕu)′(1 + a)] da

≤ 4a′(A+ a′)C ≤ 8a′AC,

where the last step is by (C.27) and (C.30), and C depends only on α,Ξ,K. Using this in (C.33), we
obtain ∫ A

1

E[|(ϕu)′(a)− E[(ϕu)′(a)]|] da ≤ CA(a′ + ξun(sn)/a
′),

and the RHS is minimized by a′ =
√
ξun(sn) which lies in the interval (0, 1/2] for all sufficiently

large n due to Corollary C.4. Using this result in (C.32) and integrating over a, we have

1

A− 1

∫ A

1

E
[〈∣∣∣⟨Υu(ũ)⟩n,a,b − E

[
⟨Υu(ũ)⟩n,a,b

]∣∣∣〉
n,a,b

]
da ≤ CA

A− 1
· 2
√
ξun(sn) ≤ 4C

√
ξun(sn),

(C.34)

since A ≥ 2.

Finally, combining (C.22), (C.31) and (C.34) proves the lemma.

Lemma C.6. There exists C > 0 depending only on α,K,Ξ such that for any A ≥ 2,

1

A− 1

∫ A

1

1

n2
E

〈((ũ(1))⊤ũ(2) − E
[〈

(ũ(1))⊤ũ(2)
〉
n,a,b

])2
〉

n,a,b

da ≤ C

(
1

√
nsn

+
√
ξun(sn)

)
,

where ũ(1) = Ξ−1/2u(1), ũ(2) = Ξ−1/2u(2) with u(1), u(2) being two i.i.d. copies from the condi-
tional law of u∗, v∗ given (C.21).

Proof. Since supp(P ), supp(Q), ∥Ξ∥−1
2 are all bounded, by the triangle inequality,

1

n

∣∣∣∣E[〈Υu(ũ(1))(ũ(1))⊤ũ(2)
〉
n,a,b

]
− E

[
⟨Υu(ũ)⟩n,a,b

]
E
[〈

(ũ(1))⊤ũ(2)
〉
n,a,b

]∣∣∣∣ (C.35)

≤ ∥Ξ∥−1
2 K2E

[〈∣∣∣Υu(ũ)− E
[
⟨Υu(ũ)⟩n,a,b

]∣∣∣〉
n,a,b

]
. (C.36)
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On the other hand, let us compute (C.35) on the LHS of the above inequality. Recall from (C.29) in
the proof of Lemma C.5 that

E
[〈

Υu(ũ(1))
〉
n,a,b

]
=
αa

n
E
[〈

(ũ(1))⊤ũ(2)
〉
n,a,b

]
. (C.37)

Similar to (C.28), we have

E
[〈

Υu(ũ(1))(ũ(1))⊤ũ(2)
〉
n,a,b

]
=

2αa

n
E
[〈

(ũ(1))⊤ũ∗(ũ(1))⊤ũ(2)
〉
n,a,b

]
+

√
α

n
√
sn

E
[〈

(ũ(1))⊤Zu(ũ(1))⊤ũ(2)
〉
n,a,b

]
− αa

n
E

[〈∥∥∥ũ(1)∥∥∥2
2
(ũ(1))⊤ũ(2)

〉
n,a,b

]
.

Using Stein’s lemma and following similar derivations leading to (C.29), the second term on the RHS
equals

√
α

n
√
sn

E
[〈

(ũ(1))⊤Zu(ũ(1))⊤ũ(2)
〉
n,a,b

]
=
aα

n
E

[〈∥∥∥ũ(1)∥∥∥2
2
(ũ(1))⊤ũ(2)

〉
n,a,b

]

− 2aα

n
E
[〈

(ũ(1))⊤ũ(3)(ũ(1))⊤ũ(2)
〉
n,a,b

]
+
aα

n
E

[〈(
(ũ(1))⊤ũ(2)

)2〉
n,a,b

]
.

Therefore,

E
[〈

Υu(ũ(1))(ũ(1))⊤ũ(2)
〉
n,a,b

]
=
αa

n
E

[〈(
(ũ(1))⊤ũ(2)

)2〉
n,a,b

]
. (C.38)

Putting (C.37) and (C.38) together and using Nishimori identity (Proposition G.4), we have that
(C.35) equals

αa

n2

∣∣∣∣∣E
[〈(

(ũ(1))⊤ũ(2)
)2〉

n,a,b

]
− E

[〈
(ũ(1))⊤ũ(2)

〉
n,a,b

]2∣∣∣∣∣
=
αa

n2

∣∣∣∣∣∣E
〈((ũ(1))⊤ũ(2) − E

[〈
(ũ(1))⊤ũ(2)

〉
n,a,b

])2
〉

n,a,b

∣∣∣∣∣∣.
So by the inequality (C.36), for any a ≥ 1,

1

n2
E

〈((ũ(1))⊤ũ(2) − E
[〈

(ũ(1))⊤ũ(2)
〉
n,a,b

])2
〉

n,a,b

 ≤
∥Ξ∥−1

2 K2

α
E
[〈∣∣∣Υu(ũ)− E

[
⟨Υu(ũ)⟩n,a,b

]∣∣∣〉
n,a,b

]
.

Integrating over a ∈ [1, A] and invoking Lemma C.5 concludes the proof.

Lemma C.7 (Overlap concentration). Let R1, R2 : [0, 1]× R2
>0 → R≥0 be two continuous bounded

functions such that their partial derivatives with respect to the second and third arguments are
continuous and non-negative. Let sn = n−1/32. For (ε1, ε2) ∈ [1, 2]2, slightly abusing notation, let
q1(·, ε1, ε2), q2(·, ε1, ε2) be the unique solution to{

q1(0) = snε1
q2(0) = snε2

,

{
q′1(t) = R1(t, q1(t), q2(t))

q′2(t) = R2(t, q1(t), q2(t))
. (C.39)

Then there exists a constant C > 0 depending only on K, α, ∥R1∥∞, ∥R2∥∞, Ξ such that for every
t ∈ [0, 1], ∫ 2

1

∫ 2

1

1

n2
E

[〈(
ũ⊤ũ∗ − E

[〈
ũ⊤ũ∗

〉
n,t

])2〉
n,t

]
dε1 dε2 ≤ Cn−1/8.
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Proof. The existence and uniqueness of the solution to the Cauchy problem (C.39) is a direct
consequence of the Cauchy–Lipschitz theorem [37, Theorem 3.1, Chapter V]. For any t ∈ [0, 1], the
function Qt(ε1, ε2) = (q1(t, ε1, ε2), q2(t, ε1, ε2)) is a C1-diffeomorphism. Its Jacobian determinant
is given by the Liouville formula [37, Corollary 3.1, Chapter V] and can be lower bounded as

J(ε1, ε2) := det(∇Qt(ε1, ε2))

= s2n exp

(∫ t

0

∂2R1(s,Qs(ε1, ε2)) ds+

∫ t

0

∂3R2(s,Qs(ε1, ε2)) ds

)
≥ s2n, (C.40)

since the partial derivatives are non-negative by assumptions.

We then view the RHS below as a function of q1, q2 and denote it by

V (q1, q2) = E

[〈(
ũ⊤ũ∗ − E

[〈
ũ⊤ũ∗

〉
n,t

])2〉
n,t

]
. (C.41)

Denote Ωt = Qt([1, 2]
2)/sn and M := max{∥R1∥∞, ∥R2∥∞} + 2. Since R1, R2 ≥ 0 by as-

sumptions, q1, q2 are non-decreasing in t by (C.39). So for i ∈ {1, 2}, and any t ∈ [0, 1] and
(ε1, ε2) ∈ [1, 2]2,

qi(t, ε1, ε2)/sn ≥ qi(0, ε1, ε2)/sn = εi ≥ 1,

qi(t, ε1, ε2)/sn ≤ qi(1, ε1, ε2)/sn = s−1
n

∫ 1

0

q′i(t, ε1, ε2) dt+ s−1
n qi(0, ε1, ε2) ≤ s−1

n (∥Ri∥∞ + 2).

We obtain the relation Ωt ⊂ [1,M/sn]
2 for any t ∈ [0, 1].

Next, using the change of variable (r1, r2) = Qt(ε1, ε2)/sn, we have∫ 2

1

∫ 2

1

1

n2
E

[〈(
ũ⊤ũ∗ − E

[〈
ũ⊤ũ∗

〉
n,t

])2〉
n,t

]
dε1 dε2

=
1

n2

∫ 2

1

∫ 2

1

V (q1(t, ε1, ε2), q2(t, ε1, ε2)) dε1 dε2

=
1

n2

∫
Ωt

V (snr1, snr2)s
2
n

J(Q−1
t (snr1, snr2))

d(r1, r2)

≤ 1

n2

∫ M/sn

1

∫ M/sn

1

V (snr1, snr2) dr1 dr2, (C.42)

where the last step is by (C.40). Further applying the change of variable r1 = a2, we have that for all
r2 ≥ 1,

1

n2

∫ M/sn

1

V (snr1, snr2) dr1 =
1

n2

∫ √
M/sn

1

V (sna
2, snr2)2ada ≤

2
√
M/sn
n2

∫ √
M/sn

1

V (sna
2, snr2) da.

(C.43)

Recalling V from (C.41), we recognize that

V (sna
2, snr2) = E

[〈(
ũ⊤ũ∗ − E

[〈
ũ⊤ũ∗

〉
n,a,

√
r2

])2〉
n,a,

√
r2

]

= E

〈((ũ(1))⊤ũ(2) − E
[〈

(ũ(1))⊤ũ(2)
〉
n,a,

√
r2

])2
〉

n,a,
√
r2

,
where ⟨·⟩n,a,b is defined in (C.21) and the second equality is by Nishimori identity (Proposition G.4).
Since

√
M/sn ≥ 2 for all sufficiently large n, applying Lemma C.6, we get

1√
M/sn − 1

∫ √
M/sn

1

1

n2
V (sna

2, snr2) da ≤ C

(
1

√
nsn

+
√
ξun(sn)

)
,
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where C > 0 depends only on α,K,Ξ and ξun(sn) is given in (C.20) with A =
√
M/sn. Using this

back in (C.43) and then in (C.42), we obtain∫ 2

1

∫ 2

1

1

n2
E

[〈(
ũ⊤ũ∗ − E

[〈
ũ⊤ũ∗

〉
n,t

])2〉
n,t

]
dε1 dε2 ≤ 2C(M/sn)

2(1/
√
nsn +

√
ξun(sn)).

Corollary C.4 guarantees that ξun(sn) ≤ C
sn

√
n

for some C > 0 depending only on α,K,Ξ. By the

choice of sn, we can finally upper bound (up to a positive constant depending only on α,K,Ξ,M )
the RHS above by

1

s2n

(
1

√
nsn

+
1√
sn

√
n

)
≤ 1

s2.5n

· 2

n1/4
= 2 · n−11/64 ≤ 2 · n−1/8,

for all sufficiently large n, which completes the proof.

Recalling ⟨·⟩n,t defined in (C.6), let us identify E
[〈
ũ⊤ũ∗

〉
n,t

]
as a function of (t, q1, q2):

1

n
E
[〈
ũ⊤ũ∗

〉
n,t

]
= ∆(t, q1, q2). (C.44)

Note that ∆ is continuous, non-negative (by Nishimori identity) on [0, 1]× R2
≥0 and bounded by K2.

Its partial derivatives with respect to the second and third arguments are continuous and non-negative,
since the correlation between ũ∗ and ⟨ũ⟩n,t is a non-decreasing function of the SNRs q1, q2.

Lemma C.8 (Fundamental sum rule). In the setting of Lemma C.7, for (ε1, ε2) ∈ [1, 2]2, let
q1(t, ε1, ε2), q2(t, ε1, ε2) be the solution to (C.39) with R2 = ∆ defined in (C.44). Then we have

Fn =

∫ 2

1

∫ 2

1

∫ 1

0

ψΞ(αγq1(1, ε1, ε2)) + αψΣ(q2(1, ε1, ε2))−
α

2
q′1(t, ε1, ε2)q

′
2(t, ε1, ε2) dtdε1 dε2 + o(1).

Proof. Fix (ε1, ε2) ∈ [1, 2]2. By the choice R2 = ∆,

q′2(t, ε1, ε2) = ∆(t, q1(t, ε1, ε2), q2(t, ε1, ε2)) =
1

n
E
[〈
ũ⊤ũ∗

〉
n,t

]
.

Plugging this into (C.14), integrating over (ε1, ε2) ∈ [1, 2]2 and applying Lemma C.7, we have

f ′n(t) =
α

2
q′1(t)q

′
2(t) + o(1),

where o(1) → 0 as n→ ∞, uniformly over t. By Lemma C.1, we conclude

Fn =

∫ 2

1

∫ 2

1

fn(0) dε1 dε2 + o(1) =

∫ 2

1

∫ 2

1

(
fn(1)−

∫ 1

0

f ′n(t) dt

)
dε1 dε2 + o(1)

=

∫ 2

1

∫ 2

1

∫ 1

0

ψΞ(αγq1(1, ε1, ε2)) + αψΣ(q2(1, ε1, ε2))−
α

2
q′1(t, ε1, ε2)q

′
2(t, ε1, ε2) dtdε1 dε2 + o(1),

as desired. Here the first and last equalities are by (C.8) and (C.9), respectively.

Finally, we prove a pair of matching upper and lower bounds, completing the proof of Theorem 4.4.
Lemma C.9 (Lower bound). Let sn = n−1/32 and R2 = ∆. Then

lim inf
n→∞

Fn ≥ sup
qv≥0

inf
qu≥0

F(qu, qv).

Proof. Fix an arbitrary qv ≥ 0. Let R1 = qv . Then q1(t, ε1, ε2) = snε1 + tqv and Lemma C.8 gives

Fn =

∫ 2

1

∫ 2

1

∫ 1

0

ψΞ(αγ(snε1 + qv)) + αψΣ(q2(1, ε1, ε2))−
α

2
qvq

′
2(t, ε1, ε2) dtdε1 dε2 + o(1)

=

∫ 2

1

∫ 2

1

ψΞ(αγqv) + αψΣ(q2(1, ε1, ε2))−
α

2
qvq2(1, ε1, ε2) dε1 dε2 + o(1)

≥ inf
q2≥0

ψΞ(αγqv) + αψΣ(q2)−
α

2
qvq2 + o(1) = inf

qu≥0
F(qu, qv) + o(1),

where the second line holds since ψΞ is Lipschitz and q2(0, ε1, ε2) = snε2 = o(1). This completes
the proof since the above lower bound holds for all qv ≥ 0.
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Lemma C.10 (Upper bound). Let sn = n−1/32 and R2 = ∆. Then

lim sup
n→∞

Fn ≤ sup
qv≥0

inf
qu≥0

F(qu, qv).

Proof. We apply Lemma C.8 with

R1(t, q1, q2) = 2αψ′
Σ
(∆(t, q1, q2)). (C.45)

Since ψΞ is Lipschitz and convex,

ψΞ(αγq1(1, ε1, ε2)) = ψΞ(αγ(q1(1, ε1, ε2)− q1(0, ε1, ε2))) + o(1) = ψΞ

(
αγ

∫ 1

0

q′1(t, ε1, ε2) dt

)
+ o(1)

≤
∫ 1

0

ψΞ(αγq
′
1(t, ε1, ε2)) dt+ o(1),

and similarly

ψΣ(q2(1, ε1, ε2)) ≤
∫ 1

0

ψΣ(q
′
2(t, ε1, ε2)) dt+ o(1).

Now Lemma C.8 implies

Fn ≤
∫ 2

1

∫ 2

1

∫ 1

0

ψΞ(αγq
′
1(t, ε1, ε2)) + αψΣ(q

′
2(t, ε1, ε2))−

α

2
q′1(t, ε1, ε2)q

′
2(t, ε1, ε2) dtdε1 dε2 + o(1)

=

∫ 2

1

∫ 2

1

∫ 1

0

G(q′2(t, ε1, ε2), q′1(t, ε1, ε2)) dtdε1 dε2 + o(1),

where

G(qu, qv) := ψΞ(αγqv) + αψΣ(qu)−
α

2
quqv.

With the choice of R1 in (C.45) and R2 = ∆, the ODE in Lemma C.7 gives

q′1(t, ε1, ε2) = 2αψ′
Σ
(q′2(t, ε1, ε2)),

which corresponds to the criticality condition of G with respect to qu:

∂1G(q′2(t, ε1, ε2), q′1(t, ε1, ε2)) = 0.

Since ψΣ is convex and −α
2 quqv is linear in q2, we have that G is convex in qu. Therefore

G(q′2(t, ε1, ε2), q′1(t, ε1, ε2)) = inf
qu≥0

G(qu, q′1(t, ε1, ε2)) = inf
qu≥0

F(qu, q
′
1(t, ε1, ε2)) ≤ sup

qv≥0
inf
qu≥0

F(qu, qv),

which completes the proof.

D Proofs of Theorem 4.2 and Corollary 4.3

D.1 Proof of (4.7)

We compute the derivative of Fn(γ):

F ′
n(γ) =

1

n
E
[
Z ′

n(γ)

Zn(γ)

]
=

1

n
E
[〈

1

2
√
γn
ũ⊤Zṽ +

1

n
ũ⊤ũ∗ṽ⊤ṽ∗ − 1

2n
ũ⊤ũṽ⊤ṽ

〉
n

]
=

1

2n2
E
[〈
ũ⊤ũ∗ṽ⊤ṽ∗

〉
n

]
, (D.1)

where the last step follows similar calculations in (C.16). Since Fn(γ) → supqv infqu F(qu, qv) as
n→ ∞, we have F ′

n(γ) → ∂
∂γ supqv infqu F(qu, qv). To compute the RHS, note that

sup
qv≥0

inf
qu≥0

F(qu, qv) = sup
qv≥0

{
ψΞ(αγqv) + inf

qu≥0

{
αψΣ(γqu)−

α

2
γquqv

}}
,
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and the value of the infimum does not depend on γ. Therefore, we have

∂

∂γ
sup
qv≥0

inf
qu≥0

F(qu, qv) = ψ′
Ξ
(αγq∗v)αq

∗
v =

αq∗uq
∗
v

2
, (D.2)

where first equality is by the envelope theorem from [51, Corollary 4] and the last equality follows
since the extremizers q∗u, q

∗
v solve a pair of equations in (4.16).

On the other hand, we relate F ′
n(γ) to the MMSE (4.2) as follows:

MMSEn(γ) =
1

nd
E
[∥∥ũ∗(ṽ∗)⊤ −

〈
ũṽ⊤

〉
n

∥∥2
F

]
=

1

nd
E
[
∥ũ∗∥22∥ṽ

∗∥22 +
∥∥〈ũṽ⊤〉

n

∥∥2
F
− 2(ũ∗)⊤

〈
ũṽ⊤

〉
n
ṽ∗
]

=
Tr(Ξ−1)

n

Tr(Σ−1)

d
− 1

nd
E
[〈
ũ⊤ũ∗ṽ⊤ṽ∗

〉
n

]
, (D.3)

where the last step is by Nishimori identity (Proposition G.4). Combining the above with (D.1)
and (D.2), we conclude

MMSEn(γ) → E
[
Ξ
−1
]
E
[
Σ

−1
]
− q∗uq

∗
v ,

as claimed.

D.2 Proof of (4.8)

Recall Y from (4.1) and define for some γ′ ≥ 0,

Y ′ :=

√
γ′

n
u∗u∗⊤ + Ξ1/2Z ′Ξ1/2, (D.4)

where Z ′ ∈ Rn×n is a symmetric random matrix independent of u∗, v∗ with Z ′
i,i

i.i.d.∼ N (0, 2) and

Z ′
i,j

i.i.d.∼ N (0, 1) for all 1 ≤ i < j ≤ n. By similar derivations as before, the free energy associated
with (Y, Y ′) is given by

Fn(γ, γ
′) =

1

n
E

[
log

∫
Rd

∫
Rn

exp

(
Hn(Ξ

−1/2u,Σ−1/2v)

+
1

2

√
γ′

n
u⊤Ξ−1Y ′Ξ−1u− γ′

4n
(u⊤Ξ−1u)2

)
dP⊗n(u) dQ⊗n(v)

]
,

where Hn is given in (4.12). Denote by ⟪·⟫n the Gibbs bracket with respect to the corresponding
Hamiltonian. Let

F(γ, γ′) := sup
qu,qv≥0

γ′

4
q2u +

αγ

2
quqv − ψ∗

Ξ

(qu
2

)
− αψ∗

Σ

(qv
2

)
, (D.5)

where f∗ denotes the monotone conjugate of a convex non-decreasing function f : R≥0 → R; see
Definition G.1. Basic properties of monotone conjugate can be found in [67, §12].

The following lemma, proved in Appendix D.3, characterizes the high-dimensional limit of Fn(γ, γ
′).

Lemma D.1. For all γ, γ′ ≥ 0,

lim
n→∞

Fn(γ, γ
′) = F(γ, γ′),

Let us show how (4.8) can be derived from Lemma D.1.

Proof of (4.8). Let

MMSEu
n(γ, γ

′) :=
1

n2
E
[∥∥ũ∗(ũ∗)⊤ − E

[
ũ∗(ũ∗)⊤

∣∣Y, Y ′]∥∥2
F

]
.

Following similar derivations as in Appendix D.1, one can verify the following two identities:

∂2Fn(γ, γ
′) =

1

4n2
E
[
⟪(ũ⊤ũ∗)2⟫

n

]
, MMSEu

n(γ, γ
′) =

Tr(Ξ−1)2

n2
− 1

n2
E
[
⟪(ũ⊤ũ∗)2⟫

n

]
.

(D.6)
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Therefore, the MMSE in (4.3) can be written as

MMSEu
n(γ) = lim

γ′↓0
MMSEu

n(γ, γ
′) =

Tr(Ξ−1)2

n2
− 4 lim

γ′↓0
∂2Fn(γ, γ

′).

By Lemma D.1 and Proposition G.11,

lim sup
n→∞

lim
γ′↓0

∂2Fn(γ, γ
′) ≤ lim

γ′↓0
∂2F(γ, γ

′).

The envelope theorem from [51, Corollary 4] allows us to compute the RHS:

lim
γ′↓0

∂2F(γ, γ
′) =

q∗u
2

4
,

where (q∗u, q
∗
v) are the maximizer of

sup
qu,qv≥0

α

2
γquqv − ψ∗

Ξ

(qu
2

)
− αψ∗

Σ

(qv
2

)
= sup

(qu,qv)∈C(γ,α)
ψΞ(αγqv) + αψΣ(γqu)−

αγ

2
quqv,

where the equality is by Proposition G.12. Putting the above together, we have

lim sup
n→∞

1

n2
E
[〈(

ũ⊤ũ∗
)2〉

n

]
= lim sup

n→∞
lim
γ′↓0

1

n2
E
[
⟪(ũ⊤ũ∗)2⟫

n

]
≤ q∗u

2,

lim inf
n→∞

MMSEu
n(γ) ≥ E

[
Ξ
−1
]2

− q∗u
2.

(D.7)

By a symmetric argument, we also have

lim sup
d→∞

lim
γ′↓0

1

d2
E
[〈(

ṽ⊤ṽ∗
)2〉

n

]
≤ q∗v

2. (D.8)

To find an upper bound on MMSEu
n(γ), note that by (4.7) and (D.3):

(q∗uq
∗
v)

2 = lim
n→∞

1

(nd)2
E
[〈
ũ⊤ũ∗ṽ⊤ṽ∗

〉
n

]2 ≤ lim inf
n→∞

(
1

n2
E
[〈(

ũ⊤ũ∗
)2〉

n

])( 1

d2
E
[〈(

ṽ⊤ṽ∗
)2〉

n

])
.

This combined with (D.7) and (D.8) implies

lim
n→∞

1

n2
E
[〈(

ũ⊤ũ∗
)2〉

n

]
= q∗u

2, lim
d→∞

1

d2
E
[〈(

ṽ⊤ṽ∗
)2〉

n

]
= q∗v

2,

which concludes the proof in view of the relation

MMSEu
n(γ) =

Tr(Ξ−1)2

n2
− 1

n2
E
[〈(

ũ⊤ũ∗
)2〉

n

]
.

D.3 Proof of Lemma D.1

We assume γ = γ′ = 1 by formally absorbing them into P,Q:∫
R
x2 dP (x) =

√
γ′,

∫
R
x2 dQ(x) =

γ√
γ′
,

so that we can drop the dependence on γ, γ′ in notation such as Fn,F. We then truncate P,Q at a
sufficiently large constant K > 0 so that they have bounded supports.

Recall Y from (4.1) and define for r ≥ 0, Y ′′ :=
√
ru∗ + Ξ1/2Z ′′ where Z ′′ ∼ N (0n, In) is

independent of everything else. The free energy F̃n associated with (Y, Y ′′) is

F̃n =
1

n
E
[
log

∫
Rd

∫
Rn

exp
(
Hn(Ξ

−1/2u,Σ−1/2v) + ru⊤Ξ−1u∗ +
√
ru⊤Ξ−1/2Z ′′ − r

2
u⊤Ξ−1u

)
dP⊗n(u) dQ⊗d(v)

]
,

where Hn is given in (4.12). A straightforward adaptation of the proof of Theorem 4.4 yields a
characterization of the limit of F̃n. Let

F̃(r) := sup
qv≥0

inf
qu≥0

ψΞ

(√
γ′(αqv + r)

)
+ αψΣ

(
γ√
γ′
qu

)
− α

2
quqv. (D.9)
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Lemma D.2. For all r ≥ 0,

lim
n→∞

F̃n(r) = F̃(r).

Proof. To obtain the result, we execute the interpolation argument as in the proof of Theorem 4.4 on
the Hamiltonian of the following interpolating models:

Yt =

√
1− t

n
u∗v∗⊤ + Ξ1/2ZΣ1/2,

Y u
t =

√
αq1(t)u

∗ + Ξ1/2Zu,

Y v
t =

√
q2(t)v

∗ +Σ1/2Zv,

Y ′′ =
√
ru∗ + Ξ1/2Z ′′.

All steps in the proof of Theorem 4.4 carry over.

The above lemma allows us to derive the following auxiliary characterization of Fn.

Lemma D.3.

lim
n→∞

Fn = sup
r≥0

F̃(r)− r2

4
. (D.10)

Proof. Let r : [0, 1] → R≥0 be a differentiable function. For t ∈ [0, 1], consider (Y, Y ′
t , Y

′′
t ) where

Y is given in (4.1) and Y ′
t , Y

′′
t are defined as

Y ′
t =

√
1− t

n
u∗u∗⊤ + Ξ1/2Z ′Ξ1/2, Y ′′

t =
√
r(t)u∗ + Ξ1/2Z ′′,

with Z ′′ ∼ N (0n, In) independent of everything else.

Similar to (C.5) and (C.6), denote by

fn(t) :=
1

n
E

[∫
Rd

∫
Rn

exp

(√
1

n
ũ⊤Zṽ +

1

n
ũ⊤ũ∗ṽ⊤ṽ∗ − 1

2n
∥ũ∥22∥ṽ∥

2
2

+
1

2

√
1− t

n
ũ⊤Z ′ũ+

1− t

2n
(ũ⊤ũ∗)2 − 1− t

4n
∥ũ∥42

+ r(t)ũ⊤ũ∗ +
√
r(t)ũ⊤Z ′′ − r(t)

2
∥ũ∥22

)
dP̃ (ũ) dQ̃(ṽ)

]
the free energy associated with (Y, Y ′

t , Y
′′
t ) and by ⟪·⟫n,t the conditional expectation with respect to

the corresponding Gibbs measure. The rest of the proof follows the skeleton of Theorem 4.4 and we
only highlight the differences.

Parallel to Lemma C.1, we have that if r(0) ≥ 0 and limn→∞ r(0) = 0, then

fn(0) = Fn +O(r(0)), fn(1) = F̃n(r(1)).

The analogue of Lemma C.2 gives

f ′n(t) = −1

4
E

[
⟪
(
ũ⊤ũ∗

n
− r′(t)

)2

⟫
n,t

]
+
r′(t)2

4
. (D.11)

We now show a pair of matching lower and upper bounds on Fn. First comes the lower bound. Using
(D.11) with r(t) = rt for a constant r ≥ 0, we have

Fn = fn(0) = fn(1)−
∫ 1

0

f ′n(t) dt ≥ F̃n(r)−
r2

4
.
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By Lemma D.2, this implies the lower bound

lim inf
n→∞

Fn ≥ sup
r≥0

F̃(r)− r2

4
.

Next we show a matching upper bound. Let ε ∈ [1, 2] and slightly abusing notation, denote by r(t; ε)
the solution to

r′(t) =
1

n
E
[
⟪ũ⊤ũ∗⟫

n,t

]
, r(0) = snε,

where sn = n−1/32. The analogue of Lemma C.7 gives∫ 2

1

1

n2
E
[
⟪
(
ũ⊤ũ∗ − E

[〈
ũ⊤ũ∗

〉
n,t

])2
⟫
n,t

]
dε ≤ C

n1/8
, (D.12)

for a constant C > 0 independent of n. Using (D.11) with r(t; ε), we have

Fn =

∫ 2

1

fn(0) dε+ o(1) =

∫ 2

1

(
F̃n(r(1, ε))−

∫ 1

0

r′(t, ε)2

4
dt

)
dε+ o(1)

≤
∫ 2

1

∫ 1

0

F̃n(r
′(t, ε))− r′(t, ε)2

4
dtdε+ o(1) ≤ sup

r≥0
F̃n(r)−

r2

4
+ o(1),

where the second equality is by (D.12) and the penultimate inequality holds since F̃n(·) is convex
and non-decreasing. Passing to the limit, we obtain the upper bound

lim sup
n→∞

Fn ≤ sup
r≥0

F̃(r)− r2

4
,

as desired.

To establish Lemma D.1, it remains to verify that the RHSs of (D.5) and (D.10) are equal. We need
the following lemma.
Lemma D.4. Let f, g : R≥0 → R be non-decreasing, lower semi-continuous, convex functions with
finite f(0), g(0) and monotone conjugates f∗, g∗ (see Definition G.1). Then

sup
r≥0

sup
q1≥0

inf
q2≥0

f(q1 + r) + g(q2)− q1q2 −
r2

2
= sup

q1,q2≥0

q22
2

+ q1q2 − f∗(q2)− g∗(q1).

Proof. Writing fr(x) = f(x+ r) and using Proposition G.12, we have

sup
q1≥0

inf
q2≥0

f(q1 + r) + g(q2)− q1q2 = sup
q1,q2≥0

q1q2 − f∗r (q2)− g∗(q1)

= sup
q1≥0

fr(q1)− g∗(q1) = sup
q1,q2≥0

q2(q1 + r)− f∗(q2)− g∗(q1),

where we have used the fact that f∗∗ = f . Therefore,

sup
r≥0

sup
q1≥0

inf
q2≥0

f(q1 + r) + g(q2)− q1q2 −
r2

2
= sup

q1,q2≥0

{
sup
r≥0

{
q2r −

r2

2

}
+ q1q2 − f∗(q2)− g∗(q1)

}
= sup

q1,q2≥0

q22
2

+ q1q2 − f∗(q2)− g∗(q1),

as claimed.

Applying Lemma D.4 immediately finishes the proof of Lemma D.1.

Proof of Lemma D.1. By Lemma D.4 and the definition (D.9),

sup
r≥0

F̃(r)− r2

4
= sup

qu,qv≥0

γ′

4
q2u +

α

2
γquqv − ψ∗

Ξ

(qu
2

)
− αψ∗

Σ

(qv
2

)
,

where we have used the fact that for a, b ≥ 0, the monotone conjugate of g(x) := bf(ax) is
g∗(x) = bf∗(x/(ab)).
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D.4 Proof of Corollary 4.3

Denote M := E
[
u∗v∗⊤

∣∣∣Y ]. By the Nishimori identity (Proposition G.4),

lim
n→∞

1

nd
E
[∥∥ũ∗(ṽ∗)⊤ − E

[
ũ∗(ṽ∗)⊤

∣∣Y ]∥∥2
F

]
= E

[
Ξ
−1
]
E
[
Σ

−1
]
− lim

n→∞

1

nd
E
[∥∥∥Ξ−1/2MΣ−1/2

∥∥∥2
F

]
,

(D.13)

lim
n→∞

1

nd
E
[∥∥∥u∗v∗⊤ − E

[
u∗v∗⊤

∣∣∣Y ]∥∥∥2
F

]
= 1− lim

n→∞

1

nd
E
[
∥M∥2F

]
. (D.14)

Theorem 4.2 and (D.13) imply that

lim
n→∞

1

nd
E
[∥∥∥Ξ−1/2MΣ−1/2

∥∥∥2
F

]
= q∗uq

∗
v , (D.15)

which, by Proposition 4.1, is positive if and only if (4.6) holds.

We first show (4.10) assuming (4.6). Using assumption (3.3), super-multiplicativity of σmin(·), and
the fact that ∥BC∥F ≥ ∥B∥Fσmin(C), we have

lim
n→∞

1

nd
E
[
∥M∥2F

]
≥ lim

n→∞

1

nd
σn(Ξ

1/2)2E
[∥∥∥Ξ−1/2MΣ−1/2

∥∥∥2
F

]
σd(Σ

1/2)2

= (inf supp(Ξ))(inf supp(Σ)) lim
n→∞

1

nd
E
[∥∥∥Ξ−1/2MΣ−1/2

∥∥∥2
F

]
,

which is positive by (D.15). This combined with (D.14) implies (4.10).

We then show (4.10) with < replaced with =, assuming that (4.6) is reversed. Using assumption
(3.3), sub-multiplicativity of spectral norm, and the fact that ∥BC∥F ≤ ∥B∥F∥C∥2, we have

lim
n→∞

1

nd
E
[
∥M∥2F

]
≤ lim

n→∞

1

nd

∥∥∥Ξ1/2
∥∥∥2
2
E
[∥∥∥Ξ−1/2MΣ−1/2

∥∥∥2
F

]∥∥∥Σ1/2
∥∥∥2
2

= (sup supp(Ξ))(sup supp(Σ)) lim
n→∞

1

nd
E
[∥∥∥Ξ−1/2MΣ−1/2

∥∥∥2
F

]
,

which is 0 by (D.15). This combined with (D.14) finishes the proof of the corollary for estimating
u∗v∗⊤. The proofs for estimating u∗u∗⊤, v∗v∗⊤ are similar and omitted.

E Analysis of the spectral estimator

E.1 Bayes-AMP

We propose an AMP algorithm that operates on Ξ−1AΣ−1 and maintains a pair of iterates ut ∈
Rn, vt+1 ∈ Rd for every t ≥ 0. Specifically, given for every t ≥ 0 a pair of denoising functions2

gt : Rn → Rn, ft+1 : Rd → Rd, the iterates are initialized at ũ−1 = 0n and some ṽ0 ∈ Rd of user’s
choice, and are updated for every t ≥ 0 according to the following rules:

ut = Ξ−1AΣ−1ṽt − btΞ
−1ũt−1, ũt = gt(u

t), ct =
1

n
Tr((∇gt(ut))Ξ−1),

vt+1 = Σ−1A⊤Ξ−1ũt − ctΣ
−1ṽt, ṽt+1 = ft+1(v

t+1), bt+1 =
1

n
Tr((∇ft+1(v

t+1))Σ−1),

(E.1)

where ∇gt(ut) ∈ Rn×n,∇ft+1(v
t+1) ∈ Rd×d denote the Jacobians of gt, ft+1 at ut, vt+1, respec-

tively. For any fixed t ≥ 0, the n, d → ∞ limit of the iterates ut, vt+1 can be described by a
deterministic recursion known as the state evolution. To define the latter, we need a sequence of
preliminary definitions.

2Strictly speaking, for every t ≥ 0, we are given two sequences of functions gt, ft+1 indexed by n, d
respectively. See Definition E.1 for a formal treatment of function sequences.
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First, define random vectors (U∗,WU,0,WU,1, · · · ,WU,t) ∈ (Rn)t+2 and
(V ∗,WV,1,WV,2, · · · ,WV,t+1) ∈ (Rd)t+2 with joint distributions specified below:

U∗

σ0WU,0

σ1WU,1

...
σtWU,t

 ∼ P⊗n ⊗N (0n(t+1),Φt ⊗ In),


V ∗

τ1WV,1

τ2WV,2

...
τt+1WV,t+1

 ∼ Q⊗d ⊗N (0d(t+1),Ψt+1 ⊗ Id),

(E.2)

where we recall that for A ∈ Rm×n, B ∈ Rp×q , their Kronecker product is

A⊗B =

A1,1B · · · A1,nB
...

. . .
...

Am,1B · · · Am,nB

 ∈ Rmp×nq.

The covariance matrices Φt = (Φr,s)0≤r,s≤t,Ψt+1 = (Ψr+1,s+1)0≤r,s≤t ∈ R(t+1)×(t+1) are
given by the (t + 1) × (t + 1) principal minors of two infinite-dimensional symmetric matrices
Φ := (Φr,s)r,s≥0,Ψ := (Ψr+1,s+1)r,s≥0 whose elements are in turn given recursively below:

Φ0,0 = p-lim
n→∞

1

n
(ṽ0)⊤Σ−1ṽ0,

Φ0,s = lim
n→∞

1

n
E
[
f0(V

∗)⊤Σ−1fs(Vs)
]
, s ≥ 1,

Φr,s = lim
n→∞

1

n
E
[
fr(Vr)

⊤Σ−1fs(Vs)
]
, r, s ≥ 1,

Ψr+1,s+1 = lim
n→∞

1

n
E
[
gr(Ur)

⊤Ξ−1gs(Us)
]
, r, s ≥ 0.

(E.3)

Furthermore, for t ≥ 0, σt, τt+1 > 0 are defined as

σ2
0 := Φ0,0 = p-lim

n→∞

1

n
(ṽ0)⊤Σ−1ṽ0,

σ2
t := Φt,t = lim

n→∞

1

n
E
[
ft(Vt)

⊤Σ−1ft(Vt)
]
, t ≥ 1,

τ2t+1 := Ψt+1,t+1 = lim
n→∞

1

n
E
[
gt(Ut)

⊤Ξ−1gt(Ut)
]
, t ≥ 0.

(E.4)

With the above definitions, note that each WU,t,WV,t+1 is marginally distributed as
N (0n, In),N (0d, Id), respectively.

Next, define two sequences of deterministic scalars (µt, νt+1)t≥0:

µ0 = lim
n→∞

λ

n
E
[〈
Σ−1V ∗, f0(V

∗)
〉]
,

µt = lim
n→∞

λ

n
E
[〈
Σ−1V ∗, ft(Vt)

〉]
, t ≥ 1,

νt+1 = lim
n→∞

λ

n
E
[〈
Ξ−1U∗, gt(Ut)

〉]
, t ≥ 0,

(E.5)

where f0 is determined by the initializer ṽ0; see Assumption (A1) below.

With these, for t ≥ 0, define random vectors
Ut = µtΞ

−1U∗ + σtΞ
−1/2WU,t, Vt+1 = νt+1Σ

−1V ∗ + τt+1Σ
−1/2WV,t+1. (E.6)

Finally, we need the notion of (uniformly) pseudo-Lipschitz functions.
Definition E.1 (Pseudo-Lipschitz functions). A function ϕ : Rk×m → Rℓ×m is called pseudo-
Lipschitz of order j ≥ 1 if there exists L > 0 such that

1√
ℓ
∥ϕ(x)− ϕ(y)∥F ≤ L√

k
∥x− y∥F

[
1 +

(
1√
k
∥x∥F

)j−1

+

(
1√
k
∥y∥F

)j−1
]
, (E.7)

for every x, y ∈ Rk×m.
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We will consider sequences of functions ϕi : Rki×m → Rℓi×m indexed by i→ ∞ though the index i
is often suppressed. A sequence of functions (ϕi : Rki×m → Rℓi×m)i≥1 (with increasing dimensions
(ki)i≥1, (ℓi)i≥1) is called uniformly pseudo-Lipschitz of order j if there exists a constant L such that
for every i ≥ 1, (E.7) holds.

The assumptions below are imposed on the initializer ṽ0 and denoising function (gt, ft+1)t≥0.

(A1) ṽ0 is independent of W̃ but may depend on v∗.3 Assume that

p-lim
d→∞

1

d

∥∥ṽ0∥∥2
2
, p-lim

d→∞

1

n
(ṽ0)⊤Σ−1ṽ0

exist and are finite. There exists a uniformly pseudo-Lipschitz function f0 : Rd → Rd of
order 1 such that

lim
d→∞

1

d
E[⟨f0(V ∗), f0(V

∗)⟩] ≤ p-lim
d→∞

1

d

∥∥ṽ0∥∥2
2

and for every uniformly pseudo-Lipschitz function ϕ : Rd → Rd of finite order, the following
two limits exist, are finite and equal:

p-lim
d→∞

1

d

〈
ṽ0, ϕ(V ∗)

〉
= lim

d→∞

1

d
E[⟨f0(V ∗), ϕ(V ∗)⟩].

Let ν̃ ∈ R, τ̃ ∈ R≥0. For any s ≥ 1,

lim
d→∞

1

d
E
[
f0(V

∗)⊤Σ−1fs(ν̃Σ
−1V ∗ + τ̃Σ−1/2WV )

]
exists and is finite, where WV ∼ N (0d, Id) is independent of V ∗.

(A2) Let ν̃ ∈ R, and T ∈ R2×2 be positive definite. For any r, s ≥ 1,

lim
n→∞

λ

n
E
[〈

Σ−1V ∗, fr(ν̃Σ
−1V ∗ +Σ−1/2N)

〉]
,

lim
d→∞

1

d
E
[
fr(ν̃Σ

−1V ∗ +Σ−1/2N)⊤Σ−1fs(ν̃Σ
−1V ∗ +Σ−1/2N ′)

]
exist and are finite, where (N,N ′) ∼ N (02d, T ⊗ Id) is independent of V ∗.
Let µ̃ ∈ R, and S ∈ R2×2 be positive definite. For any r, s ≥ 0,

lim
n→∞

λ

n
E
[〈

Ξ−1U∗, gr(µ̃Ξ
−1U∗ + Ξ−1/2M)

〉]
,

lim
d→∞

1

d
E
[
gr(µ̃Ξ

−1U∗ + Ξ−1/2M)⊤Ξ−1gs(µ̃Ξ
−1U∗ + Ξ−1/2M ′)

]
exist and are finite, where (M,M ′) ∼ N (02n, S ⊗ In) is independent of U∗.

We now give the state evolution result for the AMP in (E.1), which is proved in Appendix F.
Proposition E.1 (State evolution for AMP in (E.1)). For every t ≥ 0, let (gt : Rn → Rn)n≥1 and
(ft+1 : Rd → Rd)d≥1 be uniformly pseudo-Lipschitz of finite order subject to Assumption (A2).
Consider the AMP iteration in (E.1) defined by (gt, ft+1)t≥0 and initialized at ũ−1 = 0n and
some ṽ0 ∈ Rd subject to Assumption (A1). For any fixed t ≥ 0, let (ϕ : R(t+2)n → R)n≥1 and
(ψ : R(t+2)d → R)d≥1 be uniformly pseudo-Lipschitz of finite order. Then,

p-lim
n→∞

ϕ(u∗, u0, u1, · · · , ut)− E[ϕ(U∗, U0, U1, · · · , Ut)] = 0, (E.8a)

p-lim
d→∞

ψ(v∗, v1, v2, · · · , vt+1)− E[ψ(V ∗, V1, V2, · · · , Vt+1)] = 0, (E.8b)

where (Us, Vs+1)0≤s≤t are defined in (E.6).

3Practically one can think of the dependence of ṽ0 on v∗ being given by some side information. However,
here AMP is used solely as a proof technique, and we can consider initializers with impractical access to v∗.
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Given Ut, Vt+1, the Bayes-optimal (in terms of mean square error) choice of (gt, ft+1)t≥0 is given
by the conditional expectations. Specifically, for any t ≥ 0 and u ∈ Rn, v ∈ Rd,

g∗t (u) := E[U∗ |Ut = u], f∗t+1(v) := E[V ∗ |Vt+1 = v]. (E.9)
We call (E.1) with gt = g∗t , ft+1 = f∗t+1 the Bayes-AMP.

If P = Q = N (0, 1), by (E.2) and (E.6), (U∗, Ut) and (V ∗, Vt+1) are jointly Gaussian with mean
zero and covariance:[

In µtΞ
−1

µtΞ
−1 µ2

tΞ
−2 + σ2

tΞ
−1

]
∈ R2n×2n,

[
Id νt+1Σ

−1

νt+1Σ
−1 ν2t+1Σ

−2 + τ2t+1Σ
−1

]
∈ R2d×2d,

respectively. Therefore using Proposition G.5, g∗t , f
∗
t+1 admit the following explicit formulas:

g∗t (u) = µtΞ
−1(µ2

tΞ
−2 + σ2

tΞ
−1)−1u = µt(µ

2
tΞ

−1 + σ2
t In)

−1u,

f∗t+1(v) = τt+1Σ
−1(τ2t+1Σ

−2 + τ2t+1Σ
−1)−1v = νt+1(ν

2
t+1Σ

−1 + τ2t+1Id)
−1v.

(E.10)

Under the above choice, the state evolution recursion for µt, σt, νt+1, τt+1 in (E.4) and (E.5) becomes:
for all t ≥ 1,

µt = lim
n→∞

λ

n
E
[〈
Σ−1V ∗, νt(ν

2
tΣ

−1 + τ2t Id)
−1Vt

〉]
=
λ

δ
E

[
ν2tΣ

−2

ν2tΣ
−1

+ τ2t

]
, (E.11a)

νt+1 = lim
n→∞

λ

n
E
[〈
Ξ−1U∗, µt(µ

2
tΞ

−1 + σ2
t In)

−1Ut

〉]
= λE

[
µ2
tΞ

−2

µ2
tΞ

−1
+ σ2

t

]
, (E.11b)

σ2
t = lim

n→∞

1

n
E
[
V ⊤
t (ν2tΣ

−1 + τ2t Id)
−1νtΣ

−1νt(ν
2
tΣ

−1 + τ2t Id)
−1Vt

]
=

1

δ
E

[
ν4tΣ

−3

(ν2tΣ
−1

+ τ2t )
2

]
+

1

δ
E

[
ν2t τ

2
t Σ

−2

(ν2tΣ
−1

+ τ2t )
2

]

=
1

δ
E

[
ν2tΣ

−2

ν2tΣ
−1

+ τ2t

]
,

(E.11c)

τ2t+1 = lim
n→∞

1

n
E
[
U⊤
t (µ2

tΞ
−1 + σ2

t In)
−1µtΞ

−1µt(µ
2
tΞ

−1 + σ2
t In)

−1Ut

]
= E

[
µ4
tΞ

−3

(µ2
tΞ

−1
+ σ2

t )
2

]
+ E

[
µ2
tσ

2
tΞ

−2

(µ2
tΞ

−1
+ σ2

t )
2

]

= E

[
µ2
tΞ

−2

µ2
tΞ

−1
+ σ2

t

]
,

(E.11d)

where we have used the definitions (E.6) of Ut, Vt+1, the joint distribution (E.2) of
(U∗,WU,t), (V

∗, Vt+1), the convergence of the empirical spectral distributions of Σ,Ξ, and Proposi-
tion G.2.

Inspecting the expressions, we realize that
µt = λσ2

t , νt+1 = λτ2t . (E.12)
This allows us to only track the recursion of µt, νt+1:

µt =
λ

δ
E

[
λνtΣ

−2

λνtΣ
−1

+ 1

]
, νt+1 = λE

[
λµtΞ

−2

λµtΞ
−1

+ 1

]
.

Thus, the fixed point (µ∗, ν∗) of the above recursion must satisfy:

µ∗ =
λ

δ
E

[
λν∗Σ

−2

λν∗Σ
−1

+ 1

]
, ν∗ = λE

[
λµ∗Ξ

−2

λµ∗Ξ
−1

+ 1

]
. (E.13)

Note that upon a change of variable

qu :=
ν∗

λ
, qv :=

δµ∗

λ
, (E.14)

the fixed point equation (E.13) coincides with that in the characterization of the free energy; see (4.5).
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E.2 Spectral estimator from Bayes-AMP

Under Gaussian priors, the Bayes-AMP algorithm specified by (E.1) and (E.10) naturally suggests a
spectral estimator with respect to a matrix which is a non-trivial transformation of A. In what follows,
we provide a heuristic derivation of this spectral estimator. Its performance guarantee (Theorem 5.1)
will be proved in Appendix E.4.

Suppose, informally, that µt, σt, νt+1, τt+1, ut, vt+1, ct, bt+1 converge (under the sequential limits
n→ ∞, t→ ∞) to µ∗, σ∗, ν∗, τ∗, u, v, c∗, b∗, respectively, in the sense that, e.g.,

lim
t→∞

p-lim
n→∞

1√
n

∥∥ut − u
∥∥
2
= 0.

Recall that (µ∗, ν∗) solves the fixed point equation (E.13), and from (E.12), the following relation
holds:

µ∗ = λσ∗2, ν∗ = λτ∗2. (E.15)
So denoting

G := λ(λµ∗Ξ−1 + In)
−1 ∈ Rn×n, F := λ(λν∗Σ−1 + Id)

−1 ∈ Rd×d, (E.16)

by the design of g∗t , f
∗
t+1 in (E.10), we have that ũt, ṽt+1 converge to

ũ = µ∗
(
µ∗2Ξ−1 + σ∗2In

)−1

u = Gu, ṽ = ν∗
(
ν∗2Σ−1 + τ∗2Id

)−1

v = Fv,

respectively, and the limiting Onsager coefficients b∗, c∗ are given by:

b∗ = lim
n→∞

1

n
Tr(FΣ−1) =

1

δ
E
[

λ

λν∗ +Σ

]
, c∗ = lim

n→∞

1

n
Tr(GΞ−1) = E

[
λ

λµ∗ + Ξ

]
. (E.17)

At the fixed point of (E.1), we have

u = Ξ−1AΣ−1ṽ − b∗Ξ−1ũ = Ξ−1AΣ−1Fv − b∗Ξ−1Gu,

v = Σ−1A⊤Ξ−1ũ− c∗Σ−1ṽ = Σ−1A⊤Ξ−1Gu− c∗Σ−1Fv.
(E.18)

Upon rearrangement, (E.18) is equivalent to

Ĝu = Ξ−1AΣ−1Fv, F̂ v = Σ−1A⊤Ξ−1Gu, (E.19)
where

Ĝ := In + b∗Ξ−1G ∈ Rn×n, F̂ := Id + c∗Σ−1F ∈ Rd×d. (E.20)
We further introduce the notation:

G̃ := ĜG−1 ∈ Rn×n, F̃ := F̂F−1 ∈ Rd×d, (E.21)
so that (E.19) can be rewritten as

G̃Gu = Ξ−1AΣ−1Fv, F̃Fv = Σ−1A⊤Ξ−1Gu,

or
G̃1/2Gu = G̃−1/2Ξ−1AΣ−1F̃−1/2 · F̃ 1/2Fv, F̃ 1/2Fv = F̃−1/2Σ−1A⊤Ξ−1G̃−1/2 · G̃1/2Gu.

The key observation is that this is a pair of singular vector equations for the matrix

A∗ := G̃−1/2Ξ−1AΣ−1F̃−1/2 ∈ Rn×d (E.22)
with respect to left/right singular vectors (up to rescaling)

G̃1/2Gu ∈ Rn, F̃ 1/2Fv ∈ Rd

and singular value 1. Using the definitions (E.16), (E.20) and (E.21), we verify that the two expressions
of A∗ in (5.3) and (E.22) are equal.

By the state evolution result (Proposition E.1), u, v behave (in the sense of (E.8)) as

µ∗Ξ−1u∗ + σ∗Ξ−1/2WU , ν∗Σ−1v∗ + τ∗Σ−1/2WV ,

for WU ∼ N (0n, Id),WV ∼ N (0d, Id) independent of each other and of u∗, v∗. This suggests that

Ξ(G̃1/2G)−1u1(A
∗), Σ(F̃ 1/2F )−1v1(A

∗) (E.23)
are effective estimates of u∗, v∗. Simple algebra reveals that the above vectors, upon suitable rescaling,
are precisely û, v̂ in (5.4).
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E.3 Right edge of the bulk

Before proceeding with the proof of Theorem 5.1, we provide a characterization of σ2(A∗), i.e., the
right edge of the bulk of the spectrum of A∗. This bulk is related to the spectrum of the non-spiked
random matrix

W ∗ := λ(λ(µ∗ + b∗)In + Ξ)
−1/2

W̃ (λ(ν∗ + c∗)Id +Σ)
−1/2

. (E.24)
We first present a characterization of σ1(W ∗) and then relate it to σ2(A∗). Define random variables:

Ξ
∗
:=

λ

λ(µ∗ + b∗) + Ξ
, Σ

∗
:=

λ

λ(ν∗ + c∗) + Σ
. (E.25)

Define functions c, s : (sup supp(Ξ
∗
),∞) → (0,∞) as

c(α) = E

[
Ξ
∗

α− Ξ
∗

]
, s(α) = sup supp(Σ

∗
)c(α).

Define the implicit function β : (sup supp(Ξ
∗
),∞) → (0,∞) as, for any α ∈ (sup supp(Ξ

∗
),∞),

the unique solution in (s(α),∞) to

1 =
1

δ
E

[
Σ

∗

β − c(α)Σ
∗

]
.

(The existence and uniqueness of the solution is easy to see.) Next, define ψ : (sup supp(Ξ
∗
),∞) →

(0,∞) as ψ(α) = αβ(α). It is known that ψ is differentiable and the set of its critical points is a
nonempty finite set [79]. Let α◦ ∈ (sup supp(Ξ

∗
),∞) be the largest critical point, i.e.,

1 =
1

δ
E

[
Σ

∗2

(β(α)− c(α)Σ
∗
)2

]
E

[
Ξ
∗2

(α− Ξ
∗
)2

]
Finally, denote

σ∗
2 :=

√
ψ(α◦). (E.26)

The characterization of σ1(W ∗) requires an extra technical assumption on the random variables Ξ,Σ,
which is the same as in [79].

(A3) For any c > 0,

lim
β↓s

E

[
Σ

∗

β − cΣ
∗

]
= lim

β↓s
E

( Σ
∗

β − cΣ
∗

)2
 = ∞.

where s := c · sup supp(Σ∗
). Furthermore,

lim
α↓sup supp(Ξ

∗
)
E

[
Ξ
∗

α− Ξ
∗

]
= ∞.

Lemma E.2. Let Assumption (A3) hold. Consider W ∗ defined in (E.24). Then, we have
p-lim
n→∞

σ1(W
∗) = σ∗

2 .

Proof. Note that W ∗W ∗⊤ is a separable covariance matrix. Its largest eigenvalue is characterized in
[25]. The explicit formulas we need are due to [79]. To apply their results, one simply observes that
the covariances (as in the context of separable covariance matrices) of W ∗ are

Ξ∗ :=
√
λ(λ(µ∗ + b∗)In + Ξ)

−1/2
, Σ∗ :=

√
λ(λ(ν∗ + c∗)Id +Σ)

−1/2
,

whose limiting spectral distributions are given by the distributions of Ξ
∗
,Σ

∗
in (E.25).

Lemma E.3. Consider A∗ defined in (5.3). Then
p-lim
n→∞

σ2(A
∗) = σ∗

2 .

Proof. By Weyl’s inequality, σ3(W ∗) ≤ σ1(A
∗) ≤ σ1(W

∗). We have already shown in Lemma E.2
that σ1(W ∗) converges to σ∗

2 . The almost sure weak convergence of the empirical spectral distribution
of W ∗ [78, Theorem 1.2.1] implies that σ3(W ∗) (and indeed σk(W ∗) for any constant k relative to
n, d) must also converge to the same limit σ∗

2 .
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E.4 Proof of Theorem 5.1

We suppose throughout the proof that the condition (5.1) holds. Then, by Proposition 4.1 and
the change of variable (E.14), the fixed point equation (E.13) admits a unique non-trivial solution
(µ∗, ν∗) ∈ R2

>0. Construct matrices F,G as in (E.16) using such µ∗, ν∗. Define also the random
variables

G :=
λ

λµ∗Ξ
−1

+ 1
, F :=

λ

λν∗Σ
−1

+ 1

whose distributions are the limiting spectral distributions of G,F , respectively.

Now consider the denoising functions:

ft+1(v
t+1) = Fvt+1, gt(u

t) = Gut.

With this choice, the AMP iteration (E.1) becomes

ut = Ξ−1AΣ−1Fvt − bΞ−1Gut−1, vt+1 = Σ−1A⊤Ξ−1Gut − cΣ−1Fvt, (E.27)

where

b =
1

n
Tr(FΣ−1), c =

1

n
Tr(GΞ−1).

Note that as n→ ∞, b, c converge to b∗, c∗ in (E.17).

Recall from (E.15) the definition of σ∗, τ∗. We initialize (E.27) with

ũ−1 = 0n, ṽ0 = F (ν∗Σ−1v∗ + τ∗Σ−1/2w),

where w ∼ N (0d, Id) is independent of everything else. Accordingly, one can take f0 in Assump-
tion (A1) to be f0(v) = ν∗FΣ−1v. Under the above AMP initializer, the state evolution initializers
in (E.3) and (E.5) specialize to

µ0 = lim
n→∞

λ

n
E
[
V ∗⊤Σ−1FΣ−1V ∗

]
ν∗ =

λ

δ
E
[
FΣ

−2
]
ν∗ = µ∗,

σ2
0 = p-lim

n→∞

ν∗2

n
v∗⊤Σ−1FΣ−1FΣ−1v∗ +

τ∗2

n
w⊤Σ−1/2FΣ−1FΣ−1/2w

=
1

δ
E
[
F

2
Σ

−3
]
ν∗2 +

1

δ
E
[
F

2
Σ

−2
]
τ∗2 = σ∗2,

where the last equalities for both chains of computation are by (E.11). Since the parameters µt, σt
are initialized at the non-trivial fixed point (µ0, σ0) = (µ∗, σ∗), the state evolution recursion (E.11)
will stay at the fixed point (µt, σt, νt+1, τt+1) = (µ∗, σ∗, ν∗, τ∗) across all t ≥ 0.
Lemma E.4. Let

ût := G̃1/2Gut, v̂t+1 := F̃ 1/2Fvt+1, (E.28)

where F̃ , G̃ are defined in (E.21). Suppose the condition (5.1) holds. Then

lim
t→∞

p-lim
n→∞

|⟨ût, u1(A∗)⟩|
∥ût∥2

= lim
t→∞

p-lim
n→∞

∣∣〈v̂t+1, v1(A
∗)
〉∣∣

∥v̂t+1∥2
= 1 (E.29)

and

p-lim
n→∞

σ1(A
∗) = 1, (E.30)

where A∗ is defined in (E.22).

Proof. Denoting

et1 := ut − ut−1, et+1
2 := vt+1 − vt, (E.31)

for any t ≥ 1 and using the notation F̂ , Ĝ in (E.20), we have from (E.27) that

Ĝut = Ξ−1AΣ−1Fvt + b∗Ξ−1Get1 + (b∗ − b)Ξ−1Gut−1,
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F̂ vt+1 = Σ−1A⊤Ξ−1Gut + c∗Σ−1Fet+1
2 + (c∗ − c)Σ−1Fvt.

Recalling the notation F̃ , G̃ from (E.21) and multiplying G̃−1/2 (resp. F̃−1/2) on both sides of the
first (resp. second) equation above, we arrive at

G̃1/2Gut = A∗ · F̃ 1/2Fvt + b∗G̃−1/2Ξ−1Get1 + (b∗ − b)G̃−1/2Ξ−1Gut−1,

F̃ 1/2Fvt+1 = A∗⊤ · G̃1/2Gut + c∗F̃−1/2Σ−1Fet+1
2 + (c∗ − c)F̃−1/2Σ−1Fvt.

Using the definition of ût, v̂t+1 in (E.28), we rewrite the above as

ût = A∗v̂t + etu, v̂t+1 = A∗⊤ût + et+1
v , (E.32)

where

etu := bG̃−1/2Ξ−1Get1 + (b∗ − b)G̃−1/2Ξ−1Gut−1,

et+1
v := cF̃−1/2Σ−1Fet+1

2 + (c∗ − c)F̃−1/2Σ−1Fvt.
(E.33)

Let us focus on ût and only prove the first equality in (E.29). The proof of the second one is similar
and will be omitted. Eliminating v̂t from (E.32) gives

ût = A∗A∗⊤ût−1 +A∗etv + etu.

Unrolling this recursion for s steps, we get:

ût+s =
(
A∗A∗⊤

)s
ût + êt,su , (E.34)

where

êt,su :=

s∑
r=1

(
A∗A∗⊤

)s−r

(A∗et+r
v + et+r

u ). (E.35)

Taking 1
n∥·∥

2
2 on both sides of (E.34) and take the sequential limits of n→ ∞, t→ ∞, s→ ∞, we

have the left hand side:

lim
s→∞

lim
t→∞

p-lim
n→∞

1

n

∥∥ût+s
∥∥2
2
= lim

t→∞
p-lim
n→∞

1

n

∥∥ût∥∥2
2

= lim
t→∞

p-lim
n→∞

1

n

∥∥∥G̃1/2Gut
∥∥∥2
2

= lim
t→∞

p-lim
n→∞

1

n

∥∥∥Ĝ1/2G1/2ut
∥∥∥2
2

= lim
t→∞

µ2
tE
[
Ξ
−2

(1 + b∗Ξ
−1
G)G

]
+ σ2

tE
[
Ξ
−1

(1 + b∗Ξ
−1
G)G

]
= µ∗2E

[
Ξ
−2

(1 + b∗Ξ
−1
G)G

]
+
µ∗

λ
E
[
Ξ
−1

(1 + b∗Ξ
−1
G)G

]
= λµ∗2E

[
λ(µ∗ + b∗) + Ξ

Ξ
(
λµ∗ + Ξ

)2
]
+ µ∗E

[
λ(µ∗ + b∗) + Ξ(
λµ∗ + Ξ

)2
]
∈ (0,∞).

(E.36)

Next, we have that

lim
t→∞

p-lim
n→∞

1

n

∥∥et1∥∥22 = lim
t→∞

p-lim
d→∞

1

d

∥∥et+1
2

∥∥2
2
= 0. (E.37)

To prove the first statement on et1, the strategy is to write the LHS of (E.37) in terms of the state
evolution parameters and prove that the latter quantities converge. We start with

p-lim
n→∞

1

n

∥∥ut − ut−1
∥∥2
2
=
(
µ2
tE
[
Σ

−2
]
+ σ2

tE
[
Σ

−1
])

+
(
µ2
t−1E

[
Σ

−2
]
+ σ2

t−1E
[
Σ

−1
])

− 2
(
µtµt−1E

[
Σ

−2
]
+Φt,t−1E

[
Σ

−1
])
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= 2σ∗2E
[
Σ

−1
]
− 2Φt,t−1E

[
Σ

−1
]
,

where the first equality is by Proposition G.3 and the joint distribution of WU,t,WU,t−1 in (E.2), and
the second one holds since the state evolution parameters stay at the fixed point upon initialization.
So it remains to verify that Φt,t−1 → σ∗2 as t → ∞. To see this, note that according to the state
evolution recursion (E.3),

Φt,t−1 = lim
n→∞

1

n
E
[
V ⊤
t F

⊤Σ−1FVt−1

]
=
ν∗2

δ
E
[
F

2
Σ

−3
]
+

Ψt,t−1

δ
E
[
F

2
Σ

−2
]
,

Ψt+1,t = lim
n→∞

1

n
E
[
U⊤
t G

⊤Ξ−1GUt−1

]
= µ∗2E

[
G

2
Ξ
−3
]
+Φt,t−1E

[
G

2
Ξ
−2
]
.

Eliminating Ψt,t−1 from the first equation, we arrive at

Φt,t−1 =
ν∗2

δ
E
[
F

2
Σ

−3
]
+

1

δ
E
[
F

2
Σ

−2
](
µ∗2E

[
G

2
Ξ
−3
]
+Φt−1,t−2E

[
G

2
Ξ
−2
])

=
1

δ
E

[
λ2Σ

−3

(λν∗Σ
−1

+ 1)2

]
ν∗2 +

1

δ
E

[
λ2Σ

−2

(λν∗Σ
−1

+ 1)2

]

×

(
E

[
λ2Ξ

−3

(λµ∗Ξ
−1

+ 1)2

]
µ∗2 + E

[
λ2Ξ

−2

(λµ∗Ξ
−1

+ 1)2

]
Φt−1,t−2

)
,

whose only fixed point is σ∗2 by the relations in (E.11). This concludes the proof of the first equality
in (E.37). The proof of the second equality is analogous and, hence, omitted.

By using (E.37) and the fact that b→ b∗, c→ c∗ as n→ ∞ (see (E.17)), we obtain

lim
t→∞

p-lim
n→∞

1

n

∥∥etu∥∥22 = lim
t→∞

p-lim
d→∞

1

d

∥∥et+1
v

∥∥2
2
= 0. (E.38)

Note that the operator norm of A∗ is almost surely bounded uniformly in n by Weyl’s inequality, sub-
multiplicativity of matrix norms and the Bai–Yin law [3]. This together with the triangle inequality
of the ℓ2-norm and (E.38) implies that

lim
s→∞

lim
t→∞

p-lim
n→∞

1

n

∥∥êt,su

∥∥2
2
= 0, (E.39)

From this, it follows that the right hand side of (E.34) (upon taken the rescaled squared norm and the
sequential limits) equals

lim
s→∞

lim
t→∞

p-lim
n→∞

1

n

∥∥∥(A∗A∗⊤
)s
ût
∥∥∥2
2
.

We then compute the above term by taking the SVD of A∗. Define two spectral projectors that are
orthogonal to each other:

Π := u1(A
∗)u1(A

∗)⊤, Π⊥ := In −Π.

We have
1

n

∥∥∥(A∗A∗⊤
)s
ût
∥∥∥2
2
=

1

n

∥∥∥(A∗A∗⊤
)s

Πût
∥∥∥2
2
+

1

n

∥∥∥(A∗A∗⊤
)s

Π⊥ût
∥∥∥2
2
. (E.40)

Using the spectral decomposition(
A∗A∗⊤

)s
=

n∑
i=1

σi(A
∗)2sui(A

∗)ui(A
∗)⊤,

we can write the first term in (E.40) as

1

n

∥∥∥(A∗A∗⊤
)s

Πût
∥∥∥2
2
=

1

n

∥∥∥∥∥
n∑

i=1

σi(A
∗)2sui(A

∗)ui(A
∗)⊤u1(A

∗)u1(A
∗)⊤ût

∥∥∥∥∥
2

2

= σ1(A
∗)4s

⟨u1(A∗), ût⟩2

n
.

(E.41)
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For the second term in (E.40), we have

1

n

∥∥∥(A∗A∗⊤
)s

Π⊥ût
∥∥∥2
2
=

1

n

∥∥∥(A∗A∗⊤Π⊥
)s
ût
∥∥∥2
2

≤
∥ût∥22
n

max
u∈Sn−1

∥∥∥(A∗A∗⊤Π⊥
)s
u
∥∥∥2
2

=
∥ût∥22
n

σ1

((
A∗A∗⊤Π⊥

)s)2
=

∥ût∥22
n

σ1

(
A∗A∗⊤Π⊥

)2s
=

∥ût∥22
n

σ2

(
A∗A∗⊤

)2s
=

∥ût∥22
n

σ2(A
∗)

4s
,

where penultimate line follows since

A∗A∗⊤Π⊥ =

n∑
i=2

σi(A
∗)2ui(A

∗)ui(A
∗)⊤.

From Lemma E.3 and the assumption that σ∗
2 < 1, we know

p-lim
n→∞

σ2(A
∗) = σ∗

2 < 1.

This implies:

lim
s→∞

lim
t→∞

p-limsup
n→∞

1

n

∥∥∥(A∗A∗⊤
)s

Π⊥ût
∥∥∥2
2
≤ lim

s→∞
lim
t→∞

p-limsup
n→∞

∥ût∥22
n

σ2(A
∗)

4s

≤

(
lim
t→∞

p-limsup
n→∞

∥ût∥22
n

)(
lim
s→∞

p-limsup
n→∞

σ2(A
∗)

4s

)
= 0, (E.42)

where the last equality holds since the limit in the first parentheses is finite by (E.36).

Now (E.40) to (E.42) jointly show

lim
s→∞

lim
t→∞

p-lim
n→∞

1

n

∥∥∥(A∗A∗⊤
)s
ût
∥∥∥2
2
= lim

s→∞
lim
t→∞

p-lim
n→∞

σ1(A
∗)4s

⟨u1(A∗), ût⟩2

n

=

(
lim
s→∞

p-lim
n→∞

σ1(A
∗)4s

)(
lim
t→∞

p-lim
n→∞

⟨u1(A∗), ût⟩2

n

)
.

Combining this with (E.36) brings us to the following identity:

1 =

(
lim
s→∞

p-lim
n→∞

σ1(A
∗)4s

)(
lim
t→∞

p-lim
n→∞

⟨u1(A∗), ût⟩2

∥ût∥22

)
,

which necessarily implies

p-lim
n→∞

σ1(A
∗) = 1, lim

t→∞
p-lim
n→∞

⟨u1(A∗), ût⟩2

∥ût∥22
= 1,

as desired.

With Lemma E.4, we can complete the proof of Theorem 5.1.

Proof of Theorem 5.1. The characterization (5.7) of the top two singular values have been obtained
in Lemmas E.3 and E.4. It remains to compute the overlaps which can be done using Lemma E.4 and
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the state evolution (Proposition E.1). Recall the estimators û, v̂ in (5.4) and their heuristic derivation
in (E.23). Then

p-lim
n→∞

⟨û, u∗⟩2

∥û∥22∥u∗∥
2
2

= p-lim
t→∞

p-lim
n→∞

⟨Ξut, u∗⟩2

∥Ξut∥22∥u∗∥
2
2

=
λµ∗

λµ∗ + 1
= η2u,

establishing the first equality in (5.8). The second equality in (5.8) and other quantities in (5.9)
and (5.10) can be similarly obtained. The proof is completed.

F Proof of Proposition E.1

Recall ũ∗, ṽ∗ from (C.7) and let

Ã := Ξ−1/2AΣ−1/2 =
λ

n
ũ∗(ṽ∗)⊤ + W̃ . (F.1)

F.1 Auxiliary AMP and its state evolution

For (ğt : Rn → Rn, f̆t+1 : Rd → Rd)t≥0, the iterates of the auxiliary AMP, initialized at ů−1 = 0d
and some v̊0 ∈ Rd, are updated according to the following rules for every t ≥ 0:

ŭt = Ãv̊t − b̆tů
t−1, ůt = ğt(ŭ

t), c̆t =
1

n

n∑
i=1

∂iğt(ŭ
t)i,

v̆t+1 = Ã⊤ůt − c̆tv̊
t, v̊t+1 = f̆t+1(v̆

t+1), b̆t+1 =
1

n

d∑
i=1

∂if̆t+1(v̆
t+1)i.

(F.2)

The state evolution result associated with the above auxiliary AMP iteration asserts that the distri-
butions of (ŭ0, ŭ1, · · · , ŭt), (v̆1, v̆2, · · · , v̆t+1) converge (in the sense of (F.16)) respectively to the
laws of the random vectors (Ŭ0, Ŭ1, · · · , Ŭt), (V̆1, V̆2, · · · V̆t+1) defined below:

Ŭt = µ̆tŨ
∗ + σ̆tW̆U,t ∈ Rn, V̆t+1 = ν̆t+1Ṽ

∗ + τ̆t+1W̆V,t+1 ∈ Rd, (F.3)

where
U∗

σ̆0W̆U,0

σ̆1W̆U,1

...

σ̆tW̆U,t

 ∼ P⊗n ⊗N (0n(t+1), Φ̆t ⊗ In),


V ∗

τ̆1W̆V,1

τ̆2W̆V,2

...

τ̆t+1W̆V,t+1

 ∼ Q⊗d ⊗N (0d(t+1), Ψ̆t+1 ⊗ Id),

(F.4)

Ũ∗ := Ξ−1/2U∗ ∈ Rn, Ṽ ∗ := Σ−1/2V ∗ ∈ Rd. (F.5)

The parameters µ̆t, ν̆t+1 ∈ R, Φ̆t = (Φ̆r,s)0≤r,s≤t, Ψ̆t+1 = (Ψ̆r+1,s+1)0≤r,s≤t ∈ R(t+1)×(t+1) are
defined recursively through the following state evolution equations:

µ̆0 = λ lim
d→∞

1

n
E
[〈
Ṽ ∗, f̆0(Ṽ

∗)
〉]
, (F.6)

µ̆t = λ lim
d→∞

1

n
E
[〈
Ṽ ∗, f̆t(V̆t)

〉]
, t ≥ 1, (F.7)

ν̆t+1 = λ lim
n→∞

1

n
E
[〈
Ũ∗, ğt(Ŭt)

〉]
, t ≥ 0, (F.8)

Φ̆0,0 = p-lim
n→∞

1

n

∥∥̊v0∥∥2
2
, (F.9)

Φ̆0,s = lim
n→∞

1

n
E
[〈
f̆0(Ṽ

∗), f̆s(V̆s)
〉]
, 1 ≤ s ≤ t, (F.10)

Φ̆r,s = lim
n→∞

1

n
E
[〈
f̆r(V̆r), f̆s(V̆s)

〉]
, 1 ≤ r, s ≤ t, (F.11)
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Ψ̆r+1,s+1 = lim
n→∞

1

n
E
[〈
ğr(Ŭr), ğs(Ŭs)

〉]
, 0 ≤ r, s ≤ t, (F.12)

where f̆0 is determined by v̊0 through Assumption (A4) below. In particular,

σ̆2
0 = p-lim

n→∞

1

n

∥∥̊v0∥∥2
2
, (F.13)

σ̆2
t = lim

n→∞

1

n
E
[〈
f̆t(V̆t), f̆t(V̆t)

〉]
, t ≥ 1, (F.14)

τ̆2t+1 = lim
n→∞

1

n
E
[〈
ğt(Ŭt), ğt(Ŭt)

〉]
, t ≥ 0. (F.15)

We require the following assumptions to guarantee the existence and finiteness of the state evolution
parameters defined above.

(A4) v̊0 is independent of W̃ but may depend on ṽ∗. Assume that

p-lim
d→∞

1

d

∥∥̊v0∥∥2
2

exists and is finite. There exists a uniformly pseudo-Lipschitz function f̆0 : Rd → Rd of
order 1 such that

lim
d→∞

1

d
E
[〈
f̆0(Ṽ

∗), f̆0(Ṽ
∗)
〉]

≤ p-lim
d→∞

1

d

∥∥̊v0∥∥2
2

and for every uniformly pseudo-Lipschitz function ϕ : Rd → Rd of finite order, the following
two limits exist, are finite and equal:

p-lim
d→∞

1

d

〈̊
v0, ϕ(ṽ∗)

〉
= lim

d→∞

1

d
E
[〈
f̆0(Ṽ

∗), ϕ(Ṽ ∗)
〉]
.

Let ν̃ ∈ R, τ̃ ∈ R≥0. For any s ≥ 1,

lim
d→∞

1

d
E
[
f̆0(Ṽ

∗)⊤f̆s(ν̃Ṽ
∗ + τ̃WV )

]
exists and is finite, where WV ∼ N (0d, Id) is independent of Ṽ ∗.

(A5) Let ν̃ ∈ R, and T ∈ R2×2 be positive definite. For any r, s ≥ 1,

lim
n→∞

λ

n
E
[〈
Ṽ ∗, f̆r(ν̃Ṽ

∗ +N)
〉]
, lim

d→∞

1

d
E
[
f̆r(ν̃Ṽ

∗ +N)⊤f̆s(ν̃Ṽ
∗ +N ′)

]
exist and are finite, where (N,N ′) ∼ N (02d, T ⊗ Id) is independent of ṽ∗.
Let µ̃ ∈ R, and S ∈ R2×2 be positive definite. For any r, s ≥ 0,

lim
n→∞

λ

n
E
[〈
Ũ∗, ğr(µ̃Ũ

∗ +M)
〉]
, lim

d→∞

1

d
E
[
ğr(µ̃Ũ

∗ +M)⊤ğs(µ̃Ũ
∗ +M ′)

]
exist and are finite, where (M,M ′) ∼ N (02n, S ⊗ In) is independent of Ũ∗.

Proposition F.1 (State evolution for auxiliary AMP (F.2)). For every t ≥ 0, let (ğt : Rn → Rn)n≥1

and (f̆t+1 : Rd → Rd)d≥1 be uniformly pseudo-Lipschitz of finite order subject to Assumption (A5).
Consider the auxiliary AMP iteration in (F.2) defined by (ğt, f̆t+1)t≥0 and initialized at ů−1 = 0n
and some v̊0 ∈ Rd subject to Assumption (A4). For any fixed t ≥ 0, let (ϕ : R(t+2)n → R)n≥1 and
(ψ : R(t+2)d → R)n≥1 be uniformly pseudo-Lipschitz functions of finite order. Then,

p-lim
n→∞

ϕ(ũ∗, ŭ0, ŭ1, · · · , ŭt)− E
[
ϕ(Ũ∗, Ŭ0, Ŭ1, · · · , Ŭt)

]
= 0, (F.16a)

p-lim
d→∞

ψ(ṽ∗, v̆1, v̆2, · · · , v̆t+1)− E
[
ψ(Ṽ ∗, V̆1, V̆2, · · · , V̆t+1)

]
= 0, (F.16b)

where (Ŭs, V̆s+1)0≤s≤t are defined in (F.3).
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Proof of Proposition F.1. By definitions of the auxiliary AMP (F.2) and the matrix Ã in (F.1), we
have that for every t ≥ 0,

ŭt = Ãv̊t − b̆tů
t−1 =

λ

n

〈
ṽ∗, v̊t

〉
ũ∗ + W̃ v̊t − b̆tů

t−1,

v̆t+1 = Ã⊤ůt − c̆tv̊
t =

λ

n

〈
ũ∗, ůt

〉
ṽ∗ + W̃⊤ůt − c̆tv̊

t.

For every t ≥ 0, let us consider a pair of related iterates pt, qt+1 with initialization

p̃−1 = 0n, q̃0 = v̊0 (F.17)

and update rules:

pt = W̃ q̃t − ℓtp̃
t−1, p̃t = ğt(p

t + µ̆tũ
∗), mt =

1

n

n∑
i=1

∂iğt(p
t + µ̆tũ

∗)i,

qt+1 = W̃⊤p̃t −mtq̃
t, q̃t+1 = f̆t+1(q

t+1 + ν̆t+1ṽ
∗), ℓt+1 =

1

n

d∑
i=1

∂if̆t+1(q
t+1 + ν̆t+1ṽ

∗)i,

(F.18)

where µ̆t, ν̆t+1 are as in (F.6) to (F.8).

Informally, the above iterates are related to ŭt, v̆t+1 via

pt ‘=’ ŭt − µ̆tũ
∗, qt+1 ‘=’ v̆t+1 − ν̆t+1ṽ

∗, (F.19)

where the ‘equalities’ hold only in the large n limit. These relations will be made formal in the rest
of the proof.

The algorithm (F.18) takes the form of a standard AMP iteration with non-separable denoising
functions as in [13, 34] for which the following state evolution result applies. For any t ≥ 0 and
uniformly pseudo-Lipschitz functions ϕ, ψ of finite order, it holds that

p-lim
n→∞

ϕ(ũ∗, p0, · · · , pt)− E
[
ϕ(Ũ∗, σ̆0W̆U,0, · · · , σ̆tW̆U,t)

]
= 0,

p-lim
n→∞

ψ(ṽ∗, q1, · · · , qt+1)− E
[
ψ(Ṽ ∗, τ̆1W̆V,1, · · · , τ̆t+1W̆V,t+1)

]
= 0,

(F.20)

where (Ũ∗, σ̆0W̆U,0, · · · , σ̆tW̆U,t) and (Ṽ ∗, τ̆1W̆V,1, · · · , τ̆t+1W̆V,t+1) are defined in (F.4) and (F.5).
Note that [34] allows additional randomness independent of W̃ that goes into the denoising functions.
So the asymptotic guarantee in (F.20) holds for the joint tuple involving Ũ∗, Ṽ ∗ as well.

(F.20) immediately implies

p-lim
n→∞

ϕ(u∗, p0 + µ̆0ũ
∗, · · · , pt + µ̆tũ

∗)− E
[
ϕ(U∗, Ŭ0, · · · , Ŭt)

]
= 0,

p-lim
n→∞

ψ(v∗, q1 + ν̆1ṽ
∗, · · · , qt+1 + ν̆t+1ṽ

∗)− E
[
ψ(V ∗, V̆1, · · · , V̆t+1)

]
= 0,

(F.21)

where we recall the definition of Ŭt, V̆t+1 in (F.3). We will show that

p-lim
n→∞

ϕ(u∗, p0 + µ̆0ũ
∗, · · · , pt + µ̆tũ

∗)− ϕ(u∗, ŭ0, · · · , ŭt) = 0,

p-lim
n→∞

ψ(v∗, q1 + ν̆1ṽ
∗, · · · , qt+1 + ν̆t+1ṽ

∗)− ψ(v∗, v̆1, · · · , v̆t+1) = 0,
(F.22)

which, when combined with (F.21), concludes the proof of Proposition F.1.

To show (F.22), suppose that ϕ, ψ are uniformly L-pseudo-Lipschitz of order k. Then by the triangle
inequality,∣∣ϕ(u∗, p0 + µ̆0ũ

∗, · · · , pt + µ̆tũ
∗)− ϕ(u∗, ŭ0, · · · , ŭt)

∣∣
≤ L

(
t∑

s=0

1√
n
∥ps + µ̆sũ

∗ − ŭs∥2

)
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×

1 +( 1√
n
∥u∗∥2 +

t∑
s=0

1√
n
∥ps + µ̆sũ

∗∥2

)k−1

+

(
1√
n
∥u∗∥2 +

t∑
s=0

1√
n
∥ŭs∥2

)k−1


≤ L′

(
t∑

s=0

1√
n
∥ps + µ̆sũ

∗ − ŭs∥2

)

×

[
1 +

(
1√
n
∥u∗∥2

)k−1

+

t∑
s=0

(
1√
n
∥ps + µ̆sũ

∗∥2

)k−1

+

t∑
s=0

(
1√
n
∥ŭs∥2

)k−1
]
,

for some L′ depending only on t, k, L. Similar manipulation gives∣∣ψ(v∗, q1 + ν̆1ṽ
∗, · · · , qt+1 + ν̆t+1ṽ

∗)− ψ(v∗, v̆1, · · · , v̆t+1)
∣∣

≤ L′

(
t+1∑
s=1

1√
d
∥qs + ν̆sṽ

∗ − v̆s∥2

)

×

[
1 +

(
1√
d
∥v∗∥2

)k−1

+

t+1∑
s=1

(
1√
d
∥qs + ν̆sṽ

∗∥2

)k−1

+

t+1∑
s=1

(
1√
d
∥v̆s∥2

)k−1
]
.

Clearly, (F.22) holds if for every t ≥ 0,

p-lim
n→∞

1√
n

∥∥pt + µ̆tũ
∗∥∥

2
<∞, (F.23)

p-lim
n→∞

1√
n

∥∥ŭt∥∥
2
<∞, (F.24)

p-lim
n→∞

1

n

∥∥ŭt − (pt + µ̆tũ
∗)
∥∥2
2
= 0, (F.25)

p-lim
d→∞

1√
d

∥∥qt+1 + ν̆t+1ṽ
∗∥∥

2
<∞, (F.26)

p-lim
d→∞

1√
d

∥∥v̆t+1
∥∥
2
<∞, (F.27)

p-lim
d→∞

1

d

∥∥v̆t+1 − (qt+1 + ν̆t+1ṽ
∗)
∥∥2
2
= 0, (F.28)

which, together with the following statements

µ̆t <∞, σ̆t <∞, (F.29)
ν̆t+1 <∞, τ̆t+1 <∞, (F.30)

will be shown in the sequel by induction on t ≥ 0.

Base case. Consider t = 0. From (F.21),

p-lim
n→∞

1

n

∥∥p0 + µ̆0ũ
∗∥∥2

2
= p-lim

n→∞

1

n
E
[∥∥∥Ŭ0

∥∥∥2
2

]
= σ̆2

0 + µ̆2
0E
[
Ξ
−1
]
, (F.31)

where the last equality is by (F.3). Due to (F.13) and Assumption (A4), both µ̆0 and σ̆0 are finite, so
(F.29) holds for t = 0. Consequently, (F.23) also holds for t = 0.

Since by (F.17),

(p0 + µ̆0ũ
∗)− ŭ0 = µ̆0ũ

∗ − λ

n

〈
ṽ∗, v̊0

〉
ũ∗,

therefore (F.25) for t = 0 follows from (F.6) and Assumption (A4). This in turn implies, when
combined with the finiteness of (F.31), that

p-lim
n→∞

1√
n

∥∥ŭ0∥∥
2
<∞, (F.32)
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verifying (F.24) for t = 0. Since ğ0 is uniformly pseudo-Lipschitz of finite order, so is the function
1
n

∑n
i=1 ∂iğ0(·)i. (F.23) to (F.25) (for t = 0) together imply

p-lim
n→∞

|m0| <∞, p-lim
n→∞

|m0 − c̆0| = 0. (F.33)

Using the the pseudo-Lipschitzness of ğ0 again,

p-lim
n→∞

1√
n

∥∥p̃0 − ů0
∥∥
2
= p-lim

n→∞

1√
n

∥∥ğ0(p0 + µ̆0ũ
∗)− ğ0(ŭ

0)
∥∥
2

≤ p-lim
n→∞

L

∥∥(p0 + µ̆0ũ
∗)− ŭ0

∥∥
2√

n

1 +(∥∥p0 + µ̆0ũ
∗
∥∥
2√

n

)k−1

+

(∥∥ŭ0∥∥
2√

n

)k−1


= 0. (F.34)

The last equality holds because of (F.25) (for t = 0) and the finiteness of (F.31) and (F.32).

To show (F.28) for t = 0, we use (F.2), (F.17) and (F.18) to write

(q1 + ν̆1ṽ
∗)− v̆1 = W̃⊤(p̃0 − ů0)︸ ︷︷ ︸

T1

+

(
ν̆1 −

λ

n

〈
ů0, ũ∗

〉)
︸ ︷︷ ︸

T2

ṽ∗ − (m0 − c̆0)︸ ︷︷ ︸
T3

v̊0.

By (F.34) and the Bai–Yin law [3],

p-lim
d→∞

1

d
∥T1∥22 = 0. (F.35)

Using (F.34) again,

p-lim
n→∞

λ

n

〈
ů0, ũ∗

〉
= p-lim

n→∞

λ

n

〈
p̃0, ũ∗

〉
= p-lim

n→∞

λ

n

〈
ğ0(p

0 + µ̆0ũ
∗), ũ∗

〉
= lim

n→∞

λ

n
E
[〈
ğ0(Ŭ0), ũ

∗
〉]

= ν̆1, (F.36)

where in the second line, the first equality is by (F.22) and the pseudo-Lipschitzness of ğ0, and the
second equality is by the definition (F.8). We further show the finiteness of ν̆1. Note that

ν̆1 ≤ lim
n→∞

λE
[
1

n

∥∥∥ğ0(Ŭ0)
∥∥∥2
2

]1/2
E
[
1

n

∥∥∥Ũ∗
∥∥∥2
2

]1/2
.

The first term can be bounded as

p-lim
n→∞

1

n
E
[∥∥∥ğ0(Ŭ0)

∥∥∥2
2

]
≤ p-lim

n→∞
L′E

(1 + ( 1√
n

∥∥∥Ŭ0

∥∥∥
2

)k
)2
 ≤ p-lim

n→∞
2L′

(
1 + E

[(
1

n

∥∥∥Ŭ0

∥∥∥2
2

)k
])

,

(F.37)

where the last step is the elementary inequality (a+ b)2 ≤ 2(a2 + b2). The RHS above is finite since

1

n

∥∥∥Ŭ0

∥∥∥2
2
=
µ̆2
0

n

∥∥∥Ũ∗
∥∥∥2
2
+
σ̆2
0

n

∥∥∥W̆V,0

∥∥∥2
2

(F.38)

whose all moments are finite by finiteness of µ̆0, σ̆0. This shows the first bound in (F.30) for t = 0.
Recalling (F.36), we then have

p-lim
n→∞

|T2| = 0. (F.39)

By (F.33),

p-lim
n→∞

|T3| = 0. (F.40)

Therefore, (F.35), (F.39) and (F.40) altogether verify (F.28) for t = 0.
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We then show (F.26) for t = 0. Since ν̆1 < ∞, it suffices to only consider q1. According to (F.17)
and (F.18),

q1 = W̃⊤p̃0 −m0v̊
0.

Pseudo-Lipschitzness of ğ0, finiteness (F.23) (for t = 0) and finiteness (F.33) jointly imply

p-lim
n→∞

1√
n

∥∥q1∥∥
2
<∞,

from which (F.26) follows. This combined with (F.28) (for t = 0) also implies (F.27) (for t = 0).

Finally, we are left with the second inequality in (F.30). From the definition (F.15),

τ̆21 = lim
n→∞

1

n
E
[∥∥∥ğ0(Ŭ0)

∥∥∥2
2

]
which has already been shown to be finite; see (F.37). So the base case is finished.

Induction step. Assume that (F.23) to (F.28) all hold up to the t-th step (for an arbitrary t ≥ 1). We
now show that they hold for t+ 1. The idea is similar to the base case. We briefly lay down the key
steps for (F.23) to (F.25) and (F.29), and omit the verification of (F.26) to (F.28) and (F.30).

Using (F.3) and (F.21),

p-lim
n→∞

1

n

∥∥pt+1 + µ̆t+1ũ
∗∥∥2

2
= σ̆2

t+1 + µ̆2
t+1E

[
Ξ
−1
]
. (F.41)

Using the definition (F.14) and the pseudo-Lipschitzness of f̆t+1,

σ̆2
t+1 = lim

n→∞

1

n
E
[∥∥∥f̆t+1(V̆t+1)

∥∥∥2
2

]
≤ lim

n→∞
2L′

(
1 + E

[(
1

n

∥∥∥V̆t+1

∥∥∥2
2

)k
])

,

for some L′ depending only on k, L. The inequality is obtained in a similar way to (F.37). By
induction hypothesis (F.30) and the compactness of supp(Σ), all moments of

1

n

∥∥∥V̆t+1

∥∥∥2
2
=
ν̆2t+1

n

∥∥∥Ṽ ∗
∥∥∥2
2
+
τ̆2t+1

n

∥∥∥W̆V,t+1

∥∥∥2
2

are finite. Therefore σ̆2
t+1 < ∞, giving the second bound in (F.29). Similarly, using the definition

(F.7) and Cauchy–Schwarz,

µ̆t+1 = lim
d→∞

λ

n
E
[〈
Ṽ ∗, f̆t+1(V̆t+1)

〉]
≤ lim

d→∞

L′λ√
n
E

[∥∥∥Ṽ ∗
∥∥∥
2

(
1 +

(
1√
n

∥∥∥V̆t+1

∥∥∥
2

)k
)]

≤ lim
d→∞

L′λE
[
1

n

∥∥∥Ṽ ∗
∥∥∥2
2

]1/2(
2E

[
1 +

(
1

n

∥∥∥V̆t+1

∥∥∥2
2

)k
])1/2

,

which is again finite for the same reason as σ̆t+1, giving the first bound in (F.29). Therefore (F.41) is
also finite, verifying (F.23) for t+ 1.

We then show (F.25) for t+ 1. Using the recursions (F.2) and (F.18),

pt+1 + µ̆t+1ũ
∗ − ŭt+1 = W̃ (q̃t+1 − v̊t+1)︸ ︷︷ ︸

T ′
1

+

(
µ̆t+1 −

λ

n

〈
ṽ∗, v̊t+1

〉)
︸ ︷︷ ︸

T ′
2

ũ∗ − (ℓt+1p̃
t − b̆t+1ů

t)︸ ︷︷ ︸
T ′
3

.

Consider T ′
1. Since (F.26) to (F.28) are assumed to hold, by pseudo-Lipschitzness of f̆t+1,

p-lim
n→∞

1√
d

∥∥q̃t+1 − v̊t+1
∥∥
2
= 0. (F.42)

This with the Bai-Yin law [3] gives

p-lim
n→∞

1

n
∥T ′

1∥
2
2 = 0, (F.43)
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Consider T ′
2. Recall that µ̆t+1 < ∞. Using (F.7), (F.21) and (F.42) and following the argument

leading to (F.36), we have

p-lim
n→∞

|T ′
2| = 0. (F.44)

Consider T ′
3. By the triangle inequality,∥∥∥ℓt+1p̃

t − b̆t+1ů
t
∥∥∥
2
≤
∣∣∣ℓt+1 − b̆t+1

∣∣∣∥∥p̃t∥∥
2
+
∣∣∣b̆t+1

∣∣∣∥∥p̃t − ůt
∥∥
2
.

Since (F.26) to (F.28) are assumed to hold, by pseudo-Lipschitzness of 1
n

∑d
i=1 ∂if̆t+1(·)i,

p-lim
n→∞

∣∣∣b̆t+1

∣∣∣ <∞, p-lim
n→∞

∣∣∣ℓt+1 − b̆t+1

∣∣∣ = 0. (F.45)

Similarly, pseudo-Lipschitzness of ğt and the hypothesis (F.23) to (F.25) ensures

p-lim
n→∞

1√
n

∥∥p̃t∥∥
2
<∞, p-lim

n→∞

1√
n

∥∥p̃t − ůt
∥∥
2
= 0, (F.46)

So combining (F.45) and (F.46), we have

p-lim
n→∞

1

n
∥T ′

3∥
2
2 = 0. (F.47)

(F.43), (F.44) and (F.47) altogether verify (F.25) for t+ 1, and therefore also (F.24) by (F.23).

The verification of (F.26) to (F.28) and (F.30) for t+ 1 is completely analogous and we do not repeat
similar arguments. The proof is finally completed.

F.2 Proof of Proposition E.1

We will prove Proposition E.1 by reducing the AMP iteration (E.1) (and its associated state evolution
(E.2) to (E.6)) to the auxiliary AMP (F.2) (and its associated state evolution (F.3) to (F.12), (F.14)
and (F.15)).

Under the following change of variables

ut := Ξ−1/2ŭt, vt+1 := Σ−1/2v̆t+1, (F.48)

ft+1(v
t+1) := Σ1/2f̆t+1(Σ

1/2vt+1), gt(u
t) := Ξ1/2ğt(Ξ

1/2ut), (F.49)

(F.2) becomes

ut = Ξ−1AΣ−1ṽt − btΞ
−1ũt, ũt = gt(u

t),

vt+1 = Σ−1A⊤Ξ−1ũt − cbΣ
−1ṽt, ṽt+1 = ft+1(v

t+1),

where bt+1, ct are equal to b̆t+1, c̆t, respectively, but are expressed using the derivatives of ft+1, gt.
Specifically,

ct =
1

n

n∑
i=1

∂

∂ŭti
ğt(ŭ

t)i =
1

n

n∑
i=1

∂

∂ŭti

(
Ξ−1/2gt(Ξ

−1/2ŭt)
)
i

=
1

n

n∑
i=1

n∑
j=1

n∑
k=1

(Ξ−1/2)i,j(Ξ
−1/2)k,i

∂gt(u
t)j

∂utk
=

1

n
Tr((∇gt)Ξ−1).

The second equality follows since by (F.49),

ğt(ŭ
t) = Ξ−1/2gt(Ξ

−1/2ŭt).

The third equality is by the chain rule for derivatives (Proposition G.6). A similar computation gives

bt+1 =
1

n
Tr((∇ft+1)Σ

−1).

We now see that under the change of variables (F.48) and (F.49), the AMP iteration (E.1) can be cast
as (F.2). Therefore, applying the same change of variables to the state evolution of (F.2) will produce
the state evolution of (E.1). We describe the required modifications below.
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The state evolution result in Proposition F.1 for the AMP in (F.2) says that the iterates
v∗, v̆1, v̆2, · · · , v̆t+1 ∈ Rd and u∗, ŭ0, ŭ1, · · · , ŭt ∈ Rn converge (in the sense of (F.16a) and (F.16b))
respectively to V ∗, V̆1, V̆2, · · · , V̆t+1 ∈ Rd and U∗, Ŭ1, Ŭ2, · · · , Ŭt ∈ Rn. Recall that AMPs (E.1)
and (F.2) operate on the following matrices respectively:

Ã =
λ

n
(Ξ−1/2u∗)(Σ−1/2v∗)⊤ + W̃ , Ξ−1AΣ−1 =

λ

n
(Ξ−1u∗)(Σ−1v∗)⊤ + Ξ−1/2W̃Σ−1/2.

In view of (F.48), to obtain the analogous state evolution result for the AMP in (E.1), the definition
(F.3) of Ŭt, V̆t+1 should be multiplied by Ξ−1/2,Σ−1/2 respectively. This gives the new definition of
Ut, Vt+1 in (E.6). By the relation (F.49), the parameters µ̆t, ν̆t+1 in Ŭt, V̆t+1 should be modified as fol-
lows: replace f̆t(V̆t), ğt(Ŭt) in the recursive equations (F.6) to (F.8) with Σ−1/2ft(Vt),Ξ

−1/2gt(Ut).
This gives the new definition of µt, νt in (E.5). Similar operations map equations (F.9) to (F.12),
(F.14) and (F.15) to equations (E.3) and (E.4). Finally, under the new definition of Ut, Vt+1, the
convergence result (F.16a) and (F.16b) translates to (E.8a) and (E.8b), which completes the proof.

G Auxiliary lemmas

Proposition G.1 (Gaussian integral). Let A ∈ Rd×d be a positive-definite matrix and b ∈ Rd. Then∫
Rd

exp

(
−1

2
x⊤Ax+ b⊤x

)
dx =

√
(2π)d

det(A)
exp

(
1

2
b⊤A−1b

)
.

Proposition G.2. Let V ∼ Q⊗d where Q is a fixed distribution on R with mean 0. Let B ∈ Rd×d

denote a sequence (indexed by d) of deterministic matrices such that the empirical spectral distribution
of 1

dB converges to the law of a random variable B. Then

lim
d→∞

1

d
E
[
V ⊤BV

]
= E

[
V

2
]
E
[
B
]

where V ∼ Q.
Proposition G.3. Let

(W1,W2) ∼ N
([

0d
0d

]
,

[
σ2
1 ρ
ρ σ2

2

]
⊗ Id

)
.

Let B ∈ Rd×d denote a sequence (indexed by d) of deterministic matrices such that the empirical
spectral distribution of 1

dB converges to the law of a random variable B. Then

lim
d→∞

1

d
E
[
W⊤

1 BW2

]
= ρE

[
B
]
.

Proposition G.4 (Nishimori identity). Let (X,Y ) be two random variables. Let k ≥ 1 and
X1, · · · , Xk be k i.i.d. samples (given Y ) from the distribution law(X |Y ). Denote by ⟨·⟩,E[·]
the expectations with respect to law(X |Y ) and law(X,Y ), respectively. Then for all continuous
bounded function f , it holds that

E[⟨f(Y,X1, · · · , Xk)⟩] = E[⟨f(Y,X1, · · · , Xk−1, X)⟩].

Proposition G.5 (Conditional distribution of Gaussians). Let d ≥ 2 and 1 ≤ p ≤ d− 1 be integers.
Let [

G1

G2

]
∼ N

([
µ1

µ2

]
,

[
Σ1,1 Σ1,2

Σ⊤
1,2 Σ2,2

])
be a d-dimensional Gaussian random vector, where G1 ∈ Rp, G2 ∈ Rd−p, µ1 ∈ Rp, µ2 ∈
Rd−p,Σ1,1 ∈ Rp×p,Σ1,2 ∈ Rp×(d−p),Σ2,2 ∈ R(d−p)×(d−p). Then for any g2 ∈ Rd−p, the
distribution of G1 conditioned on G2 = g2 is given by G1 | {G2 = g2} ∼ N (µ′

1,Σ
′
1) where

µ′
1 = µ1 +Σ1,2Σ

−1
2,2(g2 − µ2) ∈ Rp, Σ′

1 = Σ1,1 − Σ1,2Σ
−1
2,2Σ

⊤
1,2 ∈ Rp×p

and Σ−1
2,2 denotes the generalized inverse of Σ2,2.
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Proposition G.6 (Chain rule of derivatives). Let A ∈ Rn×n and f : Rn → Rn. Let x ∈ Rn and
x̃ := Ax. Then for any i, j ∈ [n],

∂

∂xi
(Af(Ax))i =

n∑
j=1

n∑
k=1

Ai,jAk,i
∂f(x̃)j
∂x̃k

,

where f(x̃)j ∈ R denotes the j-th (j ∈ [n]) output of f(x̃) ∈ Rn.

Proof. The proof follows from elementary applications of the chain rule for derivatives. Writing
A = [a1 · · · an]

⊤ and f = [f1 · · · fn]
⊤, we have

∂

∂xi
fj(Ax) =

∂

∂xi
fj(⟨a1, x⟩, · · · , ⟨an, x⟩) =

n∑
k=1

∂kfj(Ax)
∂⟨ak, x⟩
∂xi

=

n∑
k=1

Ak,i∂kfj(x̃),

where ∂kfj denotes the partial derivative of fj : Rn → R with respect to its k-th argument. Then,

∂

∂xi
(Af(Ax))i =

n∑
j=1

Ai,j
∂

∂xi
fj(Ax) =

n∑
j=1

n∑
k=1

Ai,jAk,i∂kfj(x̃),

as claimed.

Proposition G.7 (Stein’s lemma [68]). Let W ∼ N (0, σ2) and let f : R → R be such that both
expectations below exist. Then E[Wf(W )] = σ2E[f ′(W )].
Proposition G.8 (Gaussian Poincaré inequality [16, Theorem 3.20]). Let X ∼ N (0n, In) and
f : Rn → R a differentiable function. Then

Var[f(X)] ≤ E
[
∥∇f(X)∥22

]
.

Proposition G.9 (Bounded difference inequality [16, Corollary 3.2]). Let U ⊂ R and f : Un → R a
function such that there exist c = (c1, · · · , cn) ∈ Rn

≥0 satisfying for all i ∈ [n],

sup
(x1,··· ,xn,x′

i)∈Un+1

|f(x1, · · · , xi−1, xi, xi+1, · · · , xn)− f(x1, · · · , xi−1, x
′
i, xi+1, · · · , xn)| ≤ ci.

Then if X ∈ Un is a random vector consisting of independent elements, we have Var[f(X)] ≤
∥c∥22/4.
Proposition G.10 ([62, Lemma 3.2]). If f, g are differentiable convex functions, then for any a ∈ R
and a′ > 0,

|f ′(a)− g′(a)| ≤ g′(a+ a′)− g′(a− a′) +B/a′,

where

B := |f(a+ a′)− g(a+ a′)|+ |f(a− a′)− g(a− a′)|+ |f(a)− g(a)|.
Definition G.1 (Monotone conjugate). Let f : R≥0 → R be a non-decreasing convex function. Its
monotone conjugate f∗ is defined as

f∗(x) = sup
y≥0

xy − f(y).

Proposition G.11 ([53, Proposition C.1]). Let I ⊂ R be an interval and (fn : I → R)n be a
sequence of convex functions converging pointwise to f . Then for all t ∈ I such that the following
quantities exist,

lim
s↑t

f ′(s) ≤ lim inf
n→∞

lim
s↑t

f ′n(s) ≤ lim sup
n→∞

lim
s↓t

f ′n(s) ≤ lim
s↓t

f ′(s).

Proposition G.12 ([53, Proposition C.6]). Let f, g : R≥0 → R be strictly convex differentiable
functions and

C :=
{
(q1, q2) ∈ R2

≥0 : q2 = f ′(q1), q1 = g′(q2)
}
.

Then

sup
(q1,q2)∈C

f(q1) + g(q2)− q1q2 = sup
q1,q2≥0

q1q2 − f∗(q2)− g∗(q1) = sup
q1≥0

inf
q2≥0

f(q1) + g(q2)− q1q2,

and sup(q1,q2)∈C and supq1,q2≥0 are achieved at the same (q∗1 , q
∗
2).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims match theoretical and experimental results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Global assumptions are given in Section 3 and all theoretical results are
formally stated and proved.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: All experiments use synthetic data and can be reproduced given the instructions
in Section 5. Data and code are not released.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See Figures 1 to 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: All experiments are synthetic and can be run efficiently on standard personal
computers.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read the NeurIPS Code of Ethics and confirm that this research
conforms to it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This research is purely theoretical and has no obvious societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This research is purely theoretical and has no risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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