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ABSTRACT

In stochastic minimax optimization, variance-reduction techniques have been
widely developed to mitigate the inherent variances introduced by stochastic gra-
dients. Most of these techniques employ carefully designed estimators and learn-
ing rates, successfully reducing variance. Although these approaches achieve
optimal theoretical convergence rates, they require the careful selection of nu-
merous hyperparameters, which heavily depend on problem-dependent param-
eters. This complexity makes them difficult to implement in practical model
training. To address this, our paper introduces Adaptive Filtered Momentum
(AdaFM), an adaptive variance-reduced algorithm for stochastic minimax opti-
mization. AdaFM adaptively adjusts hyperparameters based solely on historical
estimator information, eliminating the need for manual parameter tuning. The-
oretical results show that AdaFM can achieve a near-optimal sample complex-
ity of O(¢~3) to find an e-stationary point in non-convex-strongly-concave and
non-convex-Polyak-Lojasiewicz objectives, matching the performance of the best
existing non-parameter-free algorithms. Extensive experiments across various
applications validate the effectiveness and robustness of AdaFM.

1 INTRODUCTION

Typically, the stochastic minimax optimization problem Nouiehed et al.|(2019); Lin et al.[(2020); |Lu
et al.|(2020); [Huang et al.| (2022; 2023)) can be formulated as follows:
i s =E 'Y ) 1

nin max f(z,y) = Ecen[f (2, y,8)] o
where data sample ¢ is a random variable following an unknown distribution D. ) C R% is closed
and convex, and f : R% x R% — R is non-convex in . We call z the primal variable and y the
dual variable. Problem in equation [I]is widely used in many machine learning applications, e.g.,
adversarial training |Goodfellow et al.| (2014b); Miller et al.| (2020), Generative Adversarial Network
(GAN) |Arjovsky et al.| (2017); |Goodfellow et al.|(2014a), deep Area Under the Curve (AUC) |Yuan
et al.[(2021;2022)), and sharpness-aware minimization [Foret et al.|(2021)); Qu et al.|(2022).

Since stochastic gradients on both the primal and dual parameters inherently exhibit variance Johnson
& Zhang|(2013)); Dubey et al.[|(2016)), which slows down the convergence rate, recent studies have
focused on Variance-Reduction (VR) techniques [Reddi et al.| (2016); [Xu et al.| (2017); |Cutkosky &
Orabonal (2019)); Ward et al.| (2020); [Huang et al.| (2022); Xu et al.| (2023)); [Huang et al.| (2023); Liu
et al. (2023) to mitigate this variance, demonstrating the ability to achieve optimal sample complexity
of O(e™3) for finding an e-stationary point.

While the aforementioned VR-based algorithms have proven highly successful at the theoretical level,
they often perform poorly in actual model training Defazio & Bottou|(2019);|Arjevani (2017). One
significant reason is that VR techniques introduce numerous hyperparameters that must be carefully
selected in minimax optimization to ensure the effectiveness of the VR techniques. For instance, in
stochastic minimax optimization, the VR-based algorithms mentioned above do not always guarantee
convergence if the ratio of the learning rates for x and y is not selected appropriately [Yang et al.
(2022a). Moreover, the large number of hyperparameters makes the algorithm highly sensitive, such
that even small hyperparameter changes can prevent the algorithm from converging.

To verify the above issues, we conducted real model training, specifically using WGAN-GP Gulrajani
et al.|(2017), on CIFAR10 and CIFAR100 Krizhevsky et al.[(2009). From Figure we observe that
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(a) [0,0.1],[0,0.1] (b) [0,0.01], [0, 0.01] (©) [0,0.1],[0,0.1] () [0,0.01],[0,0.01]

Figure 1: The hyperparameter grid search of RSGDA on CIFAR10 and CIFAR100. Figures|lajand
[Tb]display the results of the search on CIFAR10 using two different hyperparameter grids. Similarly,
Figures [Ic]and [Id]show the results on CIFAR100. The grid search was performed in the range [0,
0.1] with a step size of 0.005 and in the range [0, 0.01] with a step size of 0.0002.

RSGDA faces several challenges. First, when we select the parameters from a large space, i.e., [0, 0.1]
of the two learning rates in Figures[Ta]and[Tc] we can see that most results are not desired enough. As
such, we need to compress the searching space. Consequently, the parameters are highly sensitive; for
example, as shown in Figure[Ib} when the learning rate of x is very small (i.e., less than 0.002), even
a slight change in the learning rate of y can directly prevent the algorithm from functioning properly,
particularly when the learning rate of y is around 0.002 or 0.001. Lastly, changes in the dataset
cause the space of effective parameters to shift dramatically, making it difficult to provide a default
combination of parameters for different datasets and tasks. This results in a highly computationally
laborious hyperparameter search for various tasks. Therefore, to enhance the practicality of VR-based
algorithms, it is necessary to address the issue of excessive hyperparameters.

In minimization problems, the parameter-free approach Kingma & Bal(2014);|Li & Orabonal (2019);
Ward et al.|(2020); [Levy et al.|(2021) offers an intuitive solution to enhance VR-based algorithms by
automatically adapting hyperparameters, thus avoiding manual tuning. However, implementing VR
techniques in a parameter-free manner for minimax problems remains highly challenging because
minimax problems require the simultaneous consideration of updates to both variables. As a result,
traditional VR-based algorithms for minimax problems involve nearly twice as many hyperparameters
compared to those used in minimization problems. specifically, VR techniques maintain gradient
estimators v; and w; for x and y, respectively, with the corresponding learning rates 7!, and 772
carefully designed based on v; and w;. Many hyperparameters in vy, wy, 1%, and 77; require knowledge
of problem-dependent parameters to be chosen properly, ensuring the effectiveness of VR-based
algorithms. These problem-dependent parameters, such as the smoothness constant L and the gradient
bound G, are difficult to determine during actual model training. This raises a natural question:

Can we design an adaptive VR-based algorithm to achieve the optimal convergence rate in
the minimax optimization problem?

In this paper, we introduce an adaptive VR-based algorithm named Adaptive Filtered Momentum
(AdaFM) for stochastic minimax optimization problems. Inspired by STORM [Cutkosky & Orabona
(2019), AdaFM incorporates variance reduction with momentum correction and features a novel
update method for both momentum parameters and learning rates, making them adaptive and simpli-
fying their computation, thus enhancing ease of use. Specifically, The momentum parameter only
decreases with the number of iterations, thus avoiding parameter tuning and improving the stability
of the algorithm. The learning rate takes multiple factors into full account. On one hand, the learning
rate decreases as the cumulative value of the estimator increases. On the other hand, the learning
rates of x and y interact with each other, ensuring that the step sizes of x and y adapt to the desired
ratio. The main contributions of this paper are summarized as follows:

* We introduce AdaFM, the first adaptive VR-based algorithm for stochastic minimax opti-
mizations. AdaFM is an adaptive method that achieves the near optimal convergence rate in
the minimax optimization problem. AdaFM dynamically adjusts the momentum parameters
according to the number of iterations and automatically adjusts the learning rate based on
the current momentum parameters and historical estimator information.

* We provide detailed analyses of AdaFM in both Non-Convex-Strongly-Concave (NC-SC)
and Non-Convex-Polyak-Lojasiewicz minimax (NC-PL) settings. Although the theoretical
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result in the NC-PL setting is worse than NC-SC due to the more complicated property, both
of them can achieve an e-stationary point with an optimal complexity of O(e~?) in short.
They match the best result among existing VR-based parametric algorithms.

* We evaluate our AdaFM across various learning tasks formulated by the stochastic minimax
optimization, including (1) two distinct test functions, (2) deep AUC Yuan et al.|(2021) on
an NC-SC objective, and (3) training Wasserstein-GANs |Arjovsky et al.|(2017) to validate
the NC-PL objective. Experimental results indicate that AdaFM exhibits greater robustness
than other traditional parametric VR-based algorithms and consistently outperforms TiAda.

2 RELATED WORK

Stochastic Minimax Optimization. Stochastic minimax optimization has gained significant traction
in various machine learning applications. The prevailing approach for solving minimax optimization
problems typically involves alternating between optimizing the minimization and maximization sub-
problems, which are typically addressed by stochastic gradient descent ascent (SGDA) Nouiehed et al.
(2019); ILin et al.[(2020); [Lu et al.| (2020). Notably, they can achieve a sample complexity of 0(6_4)
in stochastic settings [Nouiehed et al.|(2019); Lin et al.| (2020); Yang et al.| (2020). Subsequently, some
accelerated algorithms utilizing adaptive learning rates have been extended to minimax optimization,
both theoretically and practically. These include approaches for strongly-convex strongly-concave
problems |Antonakopoulos et al.|(2021), nonconvex-convex problems [Yang et al.| (2022a)); Huang
et al.|(2023), and nonconvex-PL problems Huang| (2023)); \Guo et al.|(2023). For example, |Guo et al.
(2023)) proposes PES to address the primal objective and duality gaps under the NC-PL setting.

VR Techniques. VR techniques have gained prominence in stochastic optimization, addressing the
inherent variance issue associated with stochastic gradients. Notable approaches include stochastic
variance reduced gradient Johnson & Zhang| (2013)); Reddi et al.[(2016), SPIDER |Fang et al.[(2018));
Liet al.|(2023b), and STORM |Cutkosky & Orabona|(2019);|Levy et al.[(2021)), which have accelerated
the convergence. SPIDER has led to the development of fast HAPG Shen et al.|(2019) and SVRPG Xu
et al.| (2020b). Momentum-based techniques such as ProxHSPGA [Pham et al.| (2020), SVMR |Jiang
et al.|(2022), and NSTORM [Liu et al.|(2023)) have emerged from STORM’s principles, addressing
various optimization scenarios. While VR-based algorithms have demonstrated efficient convergence
results, the challenge of reducing the search space for hyper-parameters remains under-explored.

Parameter-Free Algorithms. Parameter-free algorithms have significantly enhanced their utility
by adapting to various parameters without the need for extensive manual tuning. Some adaptive
optimizers that achieve this property include AdaGrad|Duchi et al.| (2011)), Adam Reddi et al.| (2016),
and STORM+ |Levy et al.| (2021). TiAda |[Li et al.| (2023a) extends this adaptivity to minimax
optimizations by separating the two timescales. Additionally, parameter-free algorithms have been
extensively developed in online learning. For instance, [Beygelzimer et al.|(2015) focuses on online
boosting, [Xu et al.| (2020a)) addresses online reinforcement learning, and Hanneke et al.| (2023)
explores multi-class online learning. In these contexts, the primary goal is for the learner to compete
with the performance of the best possible function f, thereby achieving minimal regret. Note that
online learning primarily addresses the cold data streaming problem, which is parallel to this paper.

3 THE PROPOSED ALGORITHM

To achieve the adaptive method, we introduce the parameter-free algorithm, called Adaptive Filtered
Momentum (AdaFM), to solve the minimax optimization problem in equation[I} which is illustrated
in Algorithm [T} Specifically, we leverage similar VR estimators for the primal variable 2 and the dual
variable y, denoted as v; and w; inspired by STORM |Cutkosky & Orabona| (2019). In each iteration
t, the two estimators v; and w; can be calculated as follows:

v = Vaf(e,y68) + (1= Be)(vi—1 — Vo f (Te1,9e-1; ), 2
Wy = Vyf(fﬂt,yt;ff) + (1 = B)(wg—1 — vyf(l'tfla y:%l%&z?))' 3

However, if the original momentum parameter update method is directly used, it has been proven
by Huang et al.|(2023); Huang & Gao|(2023)); [Liu et al.[(2023)) that designing different momentum
parameters 37 and 3/ for the two variables z and y is required. This inevitably introduces more
additional hyperparameters. To address this problem, we simplify the momentum parameters for both
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Algorithm 1 Learning procedure of AdaFM.

Initialization: (z1,y1), v, A > 0, % >0 >0;
1: fort =1to T do
2:  sample & and &,

3: ift =1 then

4: v = Vo f (e, ye: &), we = Vy f (x4, y1: 6 )s

5:  else

6: Update the estimators v; and w, via equation [2}equation 3}
7:  endif

8:  Update the momentum parameter 3;,; = 1/t%/3;

9:  Update o and o} via equation
10:  Update learning rates ny and ; via equation
1 @1 =2 — 070, Yerr = Py(ye + 1 we)
12: end for

variables by setting 3,11 = 1/ t2/3_ This means that 3, only changes with the number of iterations,
making it tuning-free. Such a simplification is made possible by our careful design of the learning
rates. Below, we describe how to update the learning rates 7¢ and 7Y for the two variables:

z v y A
p— = 7’ 4
" maxag,afy 7 (@) @
where , .
odl* s |*
of = , o = . 5)
K 12:; Bit1 K ; Bit1

It seems that there are three extra hyperparameters appearing in learning rates 5 and 77 in equation@
v, A, and 9§, require manual tuning. In particular, we will delve into these hyperparameters later
and demonstrate that convergence can be achieved even without manual adjustments. Now we
explain why we choose the momentum parameters and learning rates this way. Our choices are
inspired by the analysis of dynamic errors in both variables, denoted as €} := v; — V. f(z¢, y¢) and
e/ := wy — V, f(x+, y¢). Dynamic error reflects the error between the current estimator and the true
gradient on each iteration ¢. More specifically, based on the update rule of v; and w; in our proposed
AdaFM algorithm, the error dynamics can be obtained as follows:

e =1 —=Boei_1+ (1= B)Z + Be(Vaf(xe, y: &) — Vaf(ze,ut))s (6)
e =1 =Bel_1+ (1= B)Z + Bi(Vyf(@e, yi: &) — Vi f (xe, ur)), @)

where

Zta: :(sz(xt,yt,ff) - vxf(xtflvytfl;gf)) - (vxf(xt; yt) - vﬂ?f(mtflvytfl))v
Zty :(Vyf(%yyt; fiy) - vyf(xtfla yt—l;fg)) - (Vyf(mhyt) - Vyf(ftfh ytfl))'

The third term on the RHS of equation [6fequation [7, namely V, f(z, y:; &) — Vo f (@4, y:) and
Vyf(xe, ye; &) — Vy f (@, y1), represents the error between the stochastic gradient and the true
gradient. This error is generally controlled by choosing a decreasing value for the momentum
parameter 3;. For instance, in STORM |Cutkosky & Orabonal (2019), the momentum parameter
is defined as 8,1 = cn?, where n; = 6/(w + t)'/3. However, the three hyperparameters 6,
w, and ¢, which are linked to L and G, necessitate configurations that are dictated by problem-
dependent parameters. To fulfill our objectives, we streamlined the momentum parameters, setting
Biy1 = 1/t*/3 for both x and y. As iterations increase, the momentum parameter gradually
approaches zero. This ensures that in early iterations, it remains large enough to leverage the
acceleration effect of momentum, while in later iterations, it decreases, dissipating the accumulated
"momentum potential energy." As a result, the algorithm transitions to Simple SGD, allowing it to
converge near the stationary point.

Then, we prepare the choice of learning rate n¥ and 7} to afford the parameter-free manner. For
the error dynamics, while we have addressed the last terms V. f(x4,y1;&F) — Vo f (24, y:) and
Vo f(xe, ye; &) — Vo f(xt, yt), there are still elements ZF and Z} that require attention. These
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elements reflect the differences in model weights before and after each update. Our analysis suggests
that Z¢ and Z{ can be upper-bounded as follows: || Z¢ |2 < 8L2((nF_1)2lvi—1]1?+(n7_ ;)2 lwi—1]|?)
and || Z}||* < 8L2((n¥_1)2lve—1]* + (n7_1)?||ws—1]|?). It is worth noting that these bounds are
closely related to the learning rates with the smooth property of the functions. Therefore, in order
to achieve adaptivity and at the same time fulfill the above requirements, a natural idea is to relate
the learning rates to historical estimators’ information. Inspired by Adagrad Duchi et al.[(2011])),
we let the learning rates decrease as the historical estimators values accumulate, that is 1 =

O/t wil»)V/3+8 and Y = O(1/ 3ok, |lwil|?)Y/3~%, where & is an arbitrarily small value.

However, relying solely on historical estimator information makes it difficult to ensure a strictly
monotonically decreasing learning rate due to the inherent variance of stochastic gradients. This
assurance is crucial. For instance, when the algorithm approaches a stationary point after only a few
iterations, the cumulative estimator values Y.'_, ||v;]|2 are still quite small, which can lead to a high
learning rate i that is hard to reduce further. This can easily result in oscillations near the stationary
point, making it difficult to achieve stability accurately. Therefore, we combine the learning rate with
the momentum parameter to ensure a strictly monotonic decrease in the learning rate. Specifically,
1 1 1 1/3—
we define 1jf = Oy ;) /* 7 and o = O/

Moreover, minimax optimizations bring additional challenges in determining the learning rates for
both variables. A consensus [Lin et al.| (2020); L1 et al| (2023a) suggests updating y at a higher
learning rate than x to ensure that y reaches optimal first. Therefore, = should be updated cautiously
if the inner maximization sub-problem is unresolved. Based on these principles, it becomes clear that
discussing the learning rates of = and y separately is insufficient. Consequently, when updating x, we
also consider the learning rate of y by setting n¥ = O(1/ max{a¥,a}})'/3+9. This ensures that if
the inner maximization sub-problem has not yet been accurately solved, the update of x is always
slowed. The final strategy is shown in equation ] Through this method, we use only information
about the number of iterations and the cumulative estimator values to achieve adaptive learning rates.

Finally, we discuss the three parameters: 7, A, and §. The purpose of -y and A is to enable AdaFM
to adapt more quickly to various application scenarios. In our proof, we will show that even if we
simply set v = A = 1, our theorems still hold. Regarding J, it reflects the degree of scale adjustment
of the learning rates for x and y. In our proof, we demonstrate that in complex settings, where ¢§
takes an arbitrarily small value, we can ensure that the convergence rate remains close to O(T‘l/ 3),
as explained in the next section. Therefore, adjusting these three parameters presents no difficulty,
which is consistent with our claim that AdaFM is adaptive.

4 THEORETICAL ANALYSIS

In this section, we present the convergence result and sample complexity of our AdaFM algorithm
under Non-Convex-Strongly-Concave (NC-SC) and Non-Convex-Polyak-Lojasiewicz (NC-PL) ob-
jectives, respectively. We define (x,y) as an e-stationary point if both E||V, f(z,y)|| < € and
E||V,f(z,y)|| < e, where the expectation accounts for all algorithmic randomness. As shown
in [Yang et al.| (2022ajb); Huang et al. (2023)); Huang & Gaol (2023)); Xu et al.| (2023)), this def-
inition of stationary can be conveniently translated to the near-stationary of the primal function
®(x) = maxycy f(z,y). Before presenting the theoretical results, we set 6, = 1/3 + J and
d, = 1/3 — ¢ to simplify the notation in the following sections. We then state some useful assump-
tions to facilitate our analysis.

Assumption 1 (Smoothness). There exists a constant L > 0, such that

va(mhylag) - Vf(5527927§)|| < L||(331>y1) - (x25y2)||7

where x1, x5 € R™ and y1,y, € V.
Assumption 2 (Bounded Gradient). For any x € R% andy € ), there exists a constant G such that

Ve (2, y: 89l < G and ||V F(2,y; )| < G-
It is worth noting that the problem-dependent in these assumptions are only presented to facilitate our

proof; we do not need the information from these assumptions for the implementation of the algorithm.
In equation we represent y*(z) := arg max,cy f(x,y) as the solution of the inner maximization
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sub-problem. We use Py, () as projection operator onto set ). x = L/ is the condition number. In
addition, we aim to find a near-stationary point for the minimax problem. Accordingly, we introduce
an additional assumption as follows:

Assumption 3. (Bounded Primal Function Value) There exists a constant @, such that for any
x € RN, &(x) is upper bounded by ®..

Remark 1. Assumptions[I}2]are used in numerous studies involving adaptive algorithms and minimax
optimizations such as|Carmon et al.|(2019)); Yang et al.| (2020); Levy et al.|(2021)); Kavis et al.| (2022);
Huang et al| (2023); |Liu et al.|(2023). Particularly noteworthy is Assumption [3| which signifies
the bounded nature of the domain of y-a condition also considered in AdaGrad |Levy|(2017); Levy
et al|(2018). In neural networks featuring rectified activations, the scale-invariance property |Dinh
et al.| (2017) renders the imposition of boundedness on y compatible with expressive modeling.
Additionally, Wasserstein GANs |Arjovsky et al.|(2017) utilize critic projections to confine weights
within a small cube centered around the origin.

4.1 ANALYSIS OF THE NC-SC SETTING

We use the following assumption to show the strong concavity property in the dual parameter y.

Assumption 4 (Strongly Concave in y). Function f(x,y) is u-strongly-concave (p > 0) in y, that is,
for any x € R and yy,ys € ), we have

f(‘rayl) Z f(ﬂ%yZ) + <vyf (xayl) Y1 — y2> + % ||y1 - y2||2 .

Theorem 1 (Convergence, NC-SC). Under Assumptions[I\d] after T training epochs, AdaFM in
Algorithm|[I]satisfies

5455, 125y
ZHV f xtyyt HQ"‘ZHVyf xt;yt)”2 ( 2+ 351, T 3y 4 gT-6z 5 T3(1 e ))

t=1
K4'5
0 (T1/3+6) :

Our proof of the NC-SC setting can be categorized into four cases based on the magnitude of the
cumulative error terms, E Zf 1 l€7]|? and E ZtT 1 €711, as well as the cumulative value of the
gradients, E Zt Ve f(xe, )| and E Zt LIV f (@, y¢)||. When the cumulative error term is
relatively large it acts as an upper bound for the cumulative gradient. However, when the accumulated
error term is small, we may not establish an upper bound for the cumulative gradient based solely
on the error term. In these situations, we can provide additional information to determine the upper
bound for the cumulative gradient.

Then according to the setting of 0, and 6,, we can get

T T
1
7 [ED_IVaf @yl + EY_IVyf (e )
t=1 t=1

Remark 2. If we aim to achieve the e-stationary point by AdaFM in the NC-SC setting, under
the setting that ¢ is close to 0, the total number of training epochs should satisfy that the iteration
T is arbitrarily close O(e~?). In addition, because AdaFM only needs two samples, i.e., O(1), to
compute estimators and gradients in each training epoch, the total sample complexity can arbitrarily
achieve O(e~3). According to the analysis, Theoremalso holds by simply setting both v and A to
1. It is worth noting that the sample complexity of AdaFM is infinitely close to the optimal sample
complexity of parametric algorithms|Luo et al.| (2020); Huang & Gao| (2023);|Huang et al.| (2023);
Xu et al.|(2023) in stochastic minimax optimizations. In contrast, as far as we know, Tiada|Li et al.
(2023al)), the only remaining parameter-free algorithm in minimax optimization based on SGDA
Nouiehed et al.[(2019); [Lin et al.[(2020), can only achieve the near sample complexity of O(e~%),
which is worse than our proposed AdaFM algorithm.

Remark 3. We detail a comparison between AdaFM and VRAdaGDA |Huang et al.|(2023). Both
algorithms employ similar estimators, but VRAdaGDA requires unique momentum parameters and
learning rates for each variable. Spemﬁcally, VRAdaGDA sets 37 = c1(n¥)? for z and Bf = co(n})?

for y, with n? = kvy/(m + t)'/% and ! = kX\/(m + t)'/3. It is crucial to note that the settings of
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c1,¢2, k,v, A, and m are all dependent on problem-dependent parameters, and the precise settings of
these parameters are vital for the algorithm’s convergence. This dependency significantly restricts the
algorithm’s practical application. We will further explore the algorithm’s sensitivity to these parameter
settings and the challenges of identifying the optimal parameter combination in experiments.

4.2 ANALYSIS OF THE NC-PL SETTING

The PL condition appears to relax the strongly convex or concave setting. Strongly Concave requires
that the second derivative of the function (Hessian matrix) is negative definite over the entire domain,
which is a strict assumption, while PL does not require the existence or nature of the second derivative.
This kind of setting is often more common in machine learning Nouiehed et al.| (2019); Huang
et al.|(2023)); Huang| (2023)); [Lei et al.|(2017). Under the PL conditions, the variable y may also be
non-concave. Accordingly, we leverage the following assumption to indicate the PL condition and
then present the corresponding convergence result.

Assumption 5 (PL condition in y). Assume function f(x,y) satisfies j,-PL condition in variable y
for any fixed x € R and y € Y, such that

IVyf(@,y)|* > 2”7;(%%)(.]0(1’7 y*) — f(x, y))-

Theorem 2 (Convergence of NC-PL). Under Assumptions[I}3|and[3] after T training epochs, AdaFM
in Algorithm/[l| satisfies

T T 1-25
EY " IVaf @)+ E Y1V, o) = O (TH + KT ) |

t=1 t=1

Then according to the setting of 6, and 6,, we can get
5
~0 (“ ) :
T1/3+6

I?

T T
1
T ]E;Hfo(xt,yt)H +E;||Vyf(xt,yt)||

In this setting, obtaining a direct upper bound for E ZtT:l IV f(xe, yy)||? proves challenging due to
the absence of the strong concavity condition. However, by leveraging the smoothness properties

of both variables and the p,,-PL condition, we can establish an upper bound for E Zthl [D(x) —

f(zt,y:)]. Furthermore, we can transform this into E ZtT:1 [V f (¢, y4)||?] using the quadratic
growth condition [Karimi et al.| (2016)), which is the condition is interchangeable with the s, -PL
condition. It allows us to derive the final result. Therefore, modifying this setting solely affects the

upper bound of E S/ [|V,, f (2, y2)]|%.

Remark 4. In Theorem AdaFM achieves a convergence rate close to O(x°/T'/39) with the total
number of training epochs required such that the iteration 7" is arbitrarily close to O(1/e~3) under
the setting that ¢ is close to 0. Although the NC-PL setting is more strict than NC-SC, we can see
that AdaFM’s performance is only slightly below the rate of O(x*®/T"/3+9) in the NC-SC setting,
demonstrating its effectiveness under the NC-PL setting. This highlights the scalability of AdaFM
and affords many different machine learning scenarios. The slight performance drop occurs because
we use the PL condition to deduce E Z;T:l [®(xt) — f(2¢,y:)] from E Z;T:l [V f (24, y¢)||?] rather
than directly obtaining its upper bound from the strongly-concave condition. To the best of our
knowledge, AdaFM is the first algorithm to achieve parameter-free optimization under the NC-PL
setting while also nearing the optimal convergence rate Huang| (2023).

5 EXPERIMENTS

In this section, we evaluate the performance of our proposed AdaFM algorithm compared to RSGDA
Huang & Gaol(2023), VRAdaGDA |Huang et al.| (2023), and TiAda Li et al.[(2023a) under three
different learning tasks: (1) a test function with synthetic datasets, (2) optimizing the deep AUC loss
(an NC-SC objective) in|Yuan et al.[(2021)), and (3) training the NC-PL objective on Wasserstein-GAN
with Gradient Penalty (WGAN-GP) |Sinha et al.[(2018)). In this paper, we uniformly denote the initial
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Figure 2: Numerical results on the test function f(z,y) = 3y* + Lzy — L;xz, where L = 2.
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Figure 3: Convergence curves of deep AUC with an imbalance ratio of 5% and 10%.

learning rates for variables = and y as v and A respectively, for the aforementioned algorithms, to
ensure clarity. It is worth noting that setting the initial learning rate does not imply that the learning
rate will remain unchanged during the iteration. Additional experimental setups and results will be
deferred to Appendix [A]in detail.

5.1 TEST FUNCTIONS

We use the example f(z,y) = %yz + Lzy — %21:2, proposed in TiAda (2023a), to evaluate
=5,L =2, and

the four algorithms. We adopt the same setting as in TiAda, i.e., v/ introduce a
small amount of noise into the gradient. We set = 0.1 in all toy examples. We select the initial
point as (0.1,0). As Figuredepicts, both TiAda and AdaFM manage this poor initial stepsize ratio
effectively, while VRAdaGDA and RSGDA struggle to converge. Figure [2b]illustrates that, both
TiAda and AdaFM are able to adaptively adjust the stepsize to the desired ratio, i.e., 1/x, and it can
be seen that AdaFM adjusts the stepsize ratio more quickly. In contrast, RSGDA and VRAdaGDA
do not inherently have the ability to dynamically adjust the stepsize ratio. Moreover, as can be seen
in Figure[2c| AdaFM approaches the stationary points more quickly after a relatively large initial
divergence. However, TiAda approaches the stationary points at a very slow rate, even though it can
adaptively adjust the learning rate. In addition, RSGDA and VRAdaGDA exhibit divergences.

5.2 DEEp AUC

An impactful application of the minimax problem is to optimize margin-based min-max surrogate
losses, which can be considered as deep AUC maximization. In situations where imbalanced datasets
can skew a model’s performance metrics, the optimization of AUC scores has paramount significance.

The the AUC margin Loss (2021) is formulated as follows:

e A f(z,a,b,y) == Ee[F(x,a,b,y;€)]. ®)
The experimental results shown in Figure 3] were conducted on the CIFAR10 and CIFAR100 datasets
with an imbalance ratio of 5% and 10%. It can be observed that under more challenging conditions,
specifically when the imbalance ratio is 5%, TiAda performs very poorly on both CIFAR10 and
CIFAR100. Compared to the best-performing algorithm, TiAda’s AUC on the two datasets was
5% and 2% lower, respectively. Notably, RSGDA is highly unstable during the training process,
experiencing severe drops in performance across all four scenarios. Although hyperparameter
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Figure 4: Inception score and visualization from WGAN-GP on CIFAR10.
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Figure 5: The hyperparameter grid search of AdaFM.

searches were conducted on the learning rates of all four algorithms using the same step size, and
an additional hyperparameter search was performed for the momentum parameters in the case of
RSGDA and VRAdaGDA, AdaFM consistently outperforms the others in almost cases.

5.3 WGAN-GP

Generative Adversarial Networks (GANs), as elucidated in [Arjovsky et al.| (2017), exemplify the
efficacy of minimax optimization in the realm of machine learning. Conventionally, a discriminator
network discerns whether an image originates from the authentic dataset, while a generator crafts
images that are virtually indistinguishable from genuine dataset images, effectively "deceiving’ the
discriminator. We employed the WGAN-GP loss proposed by Sinha et al. (2017) on the CIFAR10
dataset to enhance discriminator performance. Further findings on CIFAR100 utilizing the WGAN-
GP approach are expounded in Appendix [A] showcasing its efficacy across various datasets.

Figure [da] display inception scores on WGAN-GP. At the start of training, the inception score drops,
likely due to updating the discriminator once per iteration, weakening its early discriminatory ability.
However, as training continues, the discriminator improves, enhancing the generator’s performance
and leading to a rise in the inception score. Notably, AdaFM not only outperforms these algorithms
but also achieves higher scores more rapidly and consistently as it converges. In contrast, TiAda’s
inception score is approximately 0.5 points lower than those of the other algorithms. Besides,
Figures [Ablfdc| present a set of real samples from CIFAR10 alongside samples generated by AdaFM,
showecasing its effectiveness in generating high-quality images.

In addition, we compared the hyperparameter grid search results of RSGDA and AdaFM within the
same intervals. The hyperparameter grid search was performed in the range [0, 0.1] with a step size
of 0.005, as shown in Figure[5] It can be observed that within this parameter space, AdaFM performs
well for the vast majority of parameter combinations, while RSGDA struggles to train the model.
Additionally, AdaFM’s inception score significantly exceeds that of RSGDA.
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6 CONCLUSION

In this paper, we present AdaFM, an adaptive variance-reduced algorithm that eliminates the need for
manual hyper-parameter tuning, improving the practical application of variance-reduction techniques
in stochastic minimax optimizations. AdaFM uniquely adjusts momentum parameters based on
iteration count and adaptively modifies learning rates using historical estimator information combined
with momentum parameters. Although the theoretical result in the NC-PL setting is O(x°T~1/3),
which is worse than the NC-SC setting’s O(x*°T~1/3) due to the more complex properties, both
achieve an e-stationary point with an optimal complexity of O(e~2), which align the best results
among existing parametric algorithms. Extensive experimental evidence validates the effectiveness
and robustness of AdaFM across various scenarios. In the future, we aim to develop parameter-
free algorithms for more complex scenarios, e.g., minimax optimization without projection and
compositional minimax optimizations, and relax conditions, e.g., non-convex non-concave settings.
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A  ADDITIONAL EXPERIMENTAL

A.1 RESULTS OF ADDITIONAL TEST FUNCTIONS

In addition to the test functions presented in Sections [5] we have incorporated one additional
test results to further validate the robustness and versatility of our AdaFM algorithm. To emulate
stochastic gradient behavior, we introduced Gaussian noise with a mean of 0 and a variance of 0.1 to
the function gradients of both the primal variable x and the dual variable y. r = ~/X is the initial
stepsize ratio. We chose the » = 1/0.01, r = 1/0.03 and r = 1/0.05 settings aligned with TiAda. It
can be observed that AdaFM performs best across all three learning rate ratios, whereas TiAda only
adapts its learning rate very slowly, approaching the optimal point at a sluggish pace. It is also worth
noting that with less appropriate learning rate ratios, such as r = 1/0.05, RSGDA and VRAdaGDA
exhibit worse performance at the beginning of the iteration due to their inability to adjust the learning
rate ratios adaptively, as shown in Figure
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Figure 6: Results on McCormick function f(x,y) = sin(z + y) + (x — y)? — 1.5z + 2.5y + 1.

A.2 EXPERIMENTAL SETUPS

A.2.1 SETUPS OF DEEP AUC

To generate imbalanced data, we utilized the approach described by Yuan et al.| (2021). In particular,
we divided the training data into two equal portions based on class ID, designating them as positive
and negative classes. We then randomly eliminated certain samples from the positive class to create
the imbalance, while the testing set remained unchanged. Our experiments were conducted using
ResNet20, and we examined imbalance ratios of 5%, 10%, and 30%. For AdaFM, we set § to 0.001.
For TiAda, we set « and 5 to 0.5 + 0.001 and 0.5 — 0.001. To further demonstrate AdaFM’s ease of
implementation, we limited the hyperparameter search to a narrow range for both TiAda and AdaFM.

13



Under review as a conference paper at ICLR 2025

Specifically, we searched for the initial learning rate v within [0.1, 0.5] using a step size of 0.1, and
for A within [0.6, 1.0] with the same step size. For RSGDA and AdaFM, the search range for both
~ and A was [0.1, 1] with a finer step size of 0.05. Additionally, we searched within [0.05,0.95] in
increments of 0.05 for both their 3, and 3,. The decay rate was applied at 50% and 75% of the total
training duration, consistent with the settings in|Yuan et al.|(2022)). The batch size was standardized at
128 for all datasets, and a weight decay of le-4 was uniformly implemented across all methodologies.

A.2.2 SETUPS OF W-GAN

In this section, we adapted the code from L1 et al.|(2023a) for our experiments. For the implemen-
tation, we used a four-layer CNN for the discriminator and another four-layer CNN with transpose
convolution layers for the generator, following the architecture specified in Daskalakis et al.|(2018).
We set the batch size to 512, the dimension of the latent variable to 50, and assigned a weight
of 10~* for the gradient penalty term. To compute the inception score, we utilized a pre-trained
inception network, processing 8,000 synthesized samples. Since all the optimizers mentioned above
are one-loop algorithms, we updated the discriminator only once for each generator to ensure a fair
comparison. On CIFAR10 and CIFAR100, we performed 40,000 iterations on both the discriminators
and generators. For AdaFM, we set § to 0.001, while for TiAda, we set a and 3 to 0.5 + 0.001 and
0.5 — 0.001, respectively. For several algorithms, we selected different hyperparameter search ranges.
Specifically, we performed a hyperparameter search for RSGDA and VRAdaGDA’s learning rates
for both = and y, using a step size of 0.0002 within the range of 0 to 0.01, while the hyperparameter
search for 3, and 3, ranged from 0.5 to 0.9 in steps of 0.1. Figure|I|in section|I| shows the case of
Bz = By = 0.9 after 10,000 iterations. Similarly, Figure shows the inception score after 10,000
iteration, swith the hyperparameters search for v and A ranging from O to 0.1 in steps of 0.005 for
AdaFM.

A.3 ADDITIONAL RESULTS ON REALISTIC MACHINE LEARNING SCENARIOS AND DATASETS
A.3.1 ADDITIONAL DEEP AUC RESULTS

We conducted another experiment on both CIFAR-10 and CIFAR-100 with a 30% imbalance ratio, as
shown in Figure[7] It can be noticed from Figure [7a] that both RSGDA and VRAdaGDA are very
unstable during the training process, with large fluctuations in the training curves. In addition, due
to the 30% imbalance ratio at this time, the task is relatively simple, and the four algorithms do not
differ significantly in performance.

075
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Figure 7: Convergence curves of deep AUC on CIFAR10 with an imbalance ratio of 30%.

A.3.2 ADDITIONAL WGAN-GP RESULTS

We similarly tested the performance of the four algorithms on CIFAR100. It can be observed that
AdaFM achieves the highest inception score in this case as well, while TiAda performs significantly
worse than the other three algorithms, as shown in[8a] Figures[8band [8c|show a set of real images
from CIFAR100 and a set of images generated by AdaFM training, respectively.
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Figure 9: Ablation Study on the test function

A.4 ABLATION STUDY ON §

In this section, we demonstrate the effect of § on the algorithm. From the settings of ¥ and 7/, it can
be observed that an increase in the value of § further reduces the learning rate of « while increasing
the learning rate of y. This adjustment causes the learning rates of = and y to reach the desired ratio
more quickly in some scenarios. However, due to the rapid decrease in the learning rate of x, it may
also slow down the overall convergence rate.

We use the same test function as shown in Figure 2] which helps us visualize the role of 4. It can
be observed that AdaFM fails to converge at § = 0, as shown in Figure [9a] and loses the ability
to adaptively control the stepsize ratio, as shown in Figure [9b] As ¢ increases, AdaFM adjusts
more effectively, and the trajectory curve approaches the stationary points with greater curvature.
Meanwhile, the stepsize ratio reaches the desired value more quickly. However, this also causes the
learning rate of z to decrease more rapidly, as illustrated in Figure 0d]

In addition, we show the effect of § under a complex task, i.e., training WGAN-GP. By simply
choosing v = A = 0.005, and varying ¢ in the range of [0.1, 0.2, 0.3], as shown in Figure[I0] We can
find that in this case, the smaller the value of 4, the better inception socre.
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Figure 10: Ablation study on WGAN-GP
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B USEFUL LEMMAS

Lemma 1. (Lemma A.2 in|Yang et al.|(2022b)) Let x1, - - - , xT be a sequence of non-negative real
numbers, a € (0, 1), then we have:

(éxt)la st; (Zk ﬂk) - < 1ia (ixt>la.

Lemma 2. (Lemma A.5 in|Nouiehed et al.|(2019)) Under Assumptions[l|and[5] we have
|\V<I>(a:1) - V(I)(Jig)n < L@Hl‘l - JUQH, Vxl,xg

where Lo = L + %

C ANALYSIS OF THEOREM 1

In this section, we reiterate our primary goal of pinpointing a near-stationary point for the minimax
problem, represented by E[||V, f(z,y)|]] < € and E[||V,f(z,y)||] < e. Here, the expectation
incorporates every element of algorithmic randomness, ensuring a comprehensive and nuanced
understanding of the system’s behavior amidst varying conditions and inputs.

C.1 INTERMEDIATE LEMMAS OF THEOREM 1

we first consider the detailed proof of the term €7 .

Lemma 3. Under Assumptions the error dynamic ]E[Zle |l€2|1?] can be upper-bounded as
follows:

T T-1

24~% oo 43 24\
|2 2 1 25,
E E llef )] < 24G T3-|- %, T (E g |lve H +

t=1 t=1

12(5

Proof of Lemma[3] According to equation [6] we can get
& =1 =Be_1+ (1= B)Z + Be(Vaf(x,y:6) — Vaf (@1, yr)),
where Zi = (Vo f (21, 15 &) — Vo f (@i-1,y-1:§F)) — (Vaf (@6, 9) — Vaf (T1-1,9:-1))-

Taking the square of the above equation, we have:
E [l 1]
<(1-B)%E [Hef,lm + (1= Be) ZF + B (Vaof (@, 9 67) — Vo f (ze,y:))]I°
< (=B B[l a]*] +2(1 = 807 127 I + 287 [I Ve f (00,913 68) = Vo (w0, 00)|F ]

< (1= B E [l |*] +8L2E [(n1)” v llP] + 8L2E [ (n_1)* e ] + 487G2.

Dividing above inequality by 3;, and re-arranging implies:

T
Bl < -2l T” +Z( 5 ) Ellal ety
t=1 . , Pt

t=1
(1)
(ii) (iii)
T T

2 2
+8L2 Z 7715 l ||Ut 1|| +8L2 Z Tlt 1 ||wt 1” } )
t=1 t=1

(iv)

BtJrl

©)

Then we bound the term on the RHS of above inequality.
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Bounding the term (i). Since S < 1, we can get —%ﬁ”z] < —E[ler|?]-

Bounding the term (ii). Note that g(a) = 2%/ is a concave function in R . Thus we can get for
any ay,as > 0, (a1 + a2)2/3 — a?/:} < %a;1/3a2. Therefore, for any ¢ > 2, we can get

1 1 2
t—1)"13 < 2,
Bis1 Bt (t=1) -3

= (-1 <

[SSI )

Then we can get (ii) < %E[||et||2]
Bounding the term (iii). According to the definition of /3, we can get

T—1
_ 1 1/3 1/3
ﬁt71+ZW§1+ST < ATY3,
t=1

M-

where the first inequality holds by Lemma 3 in |[Levy et al|(2021), i.e., let by,--- , b, € (0, b] be
a sequence of non-negative real numbers for some positive real number b,by > 0 and p € (0,1] a
rational number, then,

1-p
n bi b 2 n 4
D S

Bounding the term (iv). According to the definition of 7y, we can get

(77_1) |vf 2] d lve—1]1%/ B
z:: ] *’Y?E [Z (Z;—l 5 )25m] =1 _25

P |’Uv'|| /Bit1

||vt||
Z 5t+1 ]

126

<
_1—26

Similarly, we can get

T T T—1
. Z(ng~f_1)2|wt_1||2] e [Z -1 P/ 1< \ El(z el 125,
= = sznzwzm 1-20, | Bn
)L=28y
- 1 —25
Plugging above bounds into equation[9] we can get
T T-1
2442 oo 15, 24
x )2 2 1-25, )L=28y
EY |lefl* < 48GT5 +1 6T B llvel?) o5 .
t=1 t=1
This complete the proof. O

Since the error bounds in proving E "/, [|€7[|> and E 3"/, [|€||? are highly similar, we only need
to give proof of one of them.

Lemma 4. Under Assumptions the error dynamic E[Zf:l ll€?||?] can be upper-bounded as
follows:

24 . A2 241,
EZIIG%’H2<48G2T +2 ” Ean 7)1 =2 Ean [2)1-2%,

t=1

Next we give the bound of 37, [V f (z¢, y:)||>-

17
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Lemma 5. Under Assumptions,term Zthl |V f (e, y:)||? can be upper-bounded as follows:

T
ZIIV flaey)|” < leefl\ +4P. (1/Br11)™ ZIIth Hlwel|?)° Z )i

t=1 t=1

Proof. From Assumption We know that f(x,y) is smooth with respect to x, so we have:

z\2
Flarerw) — e u) < (Ve (o). ve) + 200

o]
< I f e )P~ i {V F ). )+ 2 2

nx nw . L ,,71 2

< 1T, flan )l + ey + 2O 2,
2 2 2

Define Ay = f(z1,y1) and Vt > 2,

A, — { e ye—1) + f@ey), fleny) 2 f(@ep—),
! f(@e ye), f@e,ye) < [z, yea)-

From Assumption[3|we can get A, < ||®(z¢)|| + [|®(x¢—1)| < 2®.. Re-arranging the above, and
summing over ¢, we have:

T
D Ve gl
t=1

T D) T T
< Z = (f@eye) = F@ernyo) + D ef P+ Lafllod?

t=1 t=1
T T
1 1 2A7111 N .
<2y (= A —— +leet\|2+ZLm lve | (10)
= nt 1 "I t=1
- oel?
x t
< el + Z
t=1 >iz llvil? )%=
T T
<D e l? + 4@, (1/Bria) Z [[ve ] + flewe 1) (Z [
t=1 Oa t=1
where the last second inequality holds by 8; < 1. This complete the proof. O

Before bounding the term E Zthl |V f(zt,y:) )%, we first provide some useful lemmas.
Lemma 6. Given Assumptions[l|tol] if fort = to to t1 — 1 and any Ay > 0, Sy,

lyer1 = g ll® < (14 M) lyear — w7 12 + S,
then we have:

E llz: (f (w6, 97) — f(mta?/t»]

t=to

t1—1 9 ny'u ) 2
< E 775 * 12 s o )
=~ [t_§1 ( 477%1 Hyt Y || 277%/ (1 + )\t) Hyt-‘rl yt_HH

t1—1 n? t1—1 g -l
+E 2w E — | +E —[leZ1?] -
t;c) 5 Il ;2n5(1+kt) t;{ju\ltll

18
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Proof. For any value of \; > 0, we have:

Hyt+1 *y§+1||2

< T+ M)y — v 1P + S

= (1 4+ X)|IPy (v + nfwe) —yi || + St

< (1 +A)lye + nfwe — yi |12+ S,

< (1 20) (Il = 7 12 + G2 lwnll® + 208 (wes g — i) + i allye = w7 12 = n¥wllye = v 12) + S

Rearranging the terms, we have:

* lu’ *
<wt7yt —Yt) — 5\\% - ||2

1 — pn .2 1 S AT St
< - - - — + L we + -

Then we can get

* :u *
<vyf(-rt7yt)7yt - yt> - §||yt - ||2

1 — pmy 2 1 . o2, M 2 Sy
< _ _ It
S lye — i 17 = ni’(1+>\t)Hyt+1 Y™+ S llwel” + (L)
+ <Vyf(xtvyt) — Wy, y;‘ - yt>
1- /-“71? %12 1 * 2 U 2 St
< _ _ _ It
. 4
+ v — yell* + —le? H2

Using strongly concave we can get

(V@) v = u) = Sl = v 12 = Flan ) = o w).

Telescoping from ¢ = ¢, to ¢t — 1, and taking the expectation we complete the proof. O

Lemma 7. Given Assumptions[I|to[2] we have:

T

Z”‘ne?ﬂ

t=1 K

+E

(B e =i = s I vl
ny (24 ) T

1-4,

A T K2y T 1-6,
_ 2 2
55 (EZHthI ) M ErATe=> <Et§_:1||vt| )
/\2g25 —26, <Ezvt”2>

Proof. By Young’s inequality, we have:

2
*
— Yy

1
[ yt+1” (L4 A lyers — w7 1> + (1 + )\t)

19
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Then letting \; = £ 7273 and by Lemma@ we have:
T
E
-1

2 1
<E [ ”*“nyf y:|2—H||yt+1—yz‘+1||2)]

(f (%ay:) - f (thyyt))]

ni (24 pn

Lo (L4 520)
nt 2 2 pun * * 12
E\) S lwl”|+E |} —[e|| +E i — v ll7 ] -
% | 2 [ i
(1+ . 7) * (|12
We bound the term E Zt IW lyrer — v 7]

T T 2
E|Y e ‘““) flli —vilP| < any:l vyl
nd (2+ pnf) " 2n¢ *

E[ i( sy AF]
[ P + S ) ||vt||2]

2

T
> ) ey, ||2] = W°E
}
>3

IN
=

K2E

t=1

w2y ) ,

S N1 = 8,)(al)P 0 (EZ||”t| ) +m <Ezvtll )

2 1—-6,

R™Y :‘i ,-Y )

E v + E v
N1 = 3, (wr )= ( 2l ) N(un PP ( 2l )
1-6,

522’7 9 9

= N1 — 0,) G202 =5, (E; [loel + /\2G4(5 =53 IEZ Nlvell® | s

t=1

Combining the above two inequalities, we complete the proof.
Lemma 8. Given Assumptions|[I|to[2] we have

> (S = = gy e =)
t=1 4n/ ‘ 2+ pnf) T o

G3 G2
<= -5]llvw-wI*+—.
(2/\ ) O T Pl

Proof. . ,
tz::l (2 ;ﬂzf a llye — y?Hz - 777? (2 41_ l“?ty) ||yt+1 - y:ﬂHz)
< (; ’;) o — vl + ;Tg (7)o
< (; g) o — vl + Z;Tz_j (7= o) IWud el
< (‘; - g) lvo — w5 + CZT_ (ni - )
< (C; g) o = 3517+ 557
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where the second inequality holds by Assumption[d] This completes the proof. O

Lemma 9. Based on Lemmasﬂand we can upper-bound E {ZtT:l Vo f (xe,y:) ||2} as follows:

T
E Z IVy f (xt,yt)”z}
t=1

Z T T 1-6y
LrG3 X ALK
< (252 ) it S+ 225 (3l
t=1 v P—
31 T 1-5, 3p2
k5 Ly ) K3 Ly ,
* )\(1 - 51)G2(5175u) (EZ ”th > )\2G4(5 —dy) (EZ ||Ut|| )
L G T25 /3( ant” )
Proof. Combining Lemma([7]and 8] we have:
Z (¢, yf) (xt7yt))]
G3 G2 T
e LR R Ee Ry o BT
( 2 2) 2# TIT P 1
\ T 1-5, ) - 1-6,
- ]E 2 K FY ]E 2
* 2(1 - dy) ( Z e ) + 2X(1 — 0,)G20a=0y) ( ; o
2
/\2G4 6 —4, <EZ [[ve ] >
According to the p strongly concave in Assumption EL we have:
E Z ”Vyf (Inyt)nz < L?E Z ||yt _ y:||2] < 2LkKE [Z xt,yf (It,yt))]
t=1 Py —~

Then we have:

T
E ZHVyf(xt,yt)HZ]
=1
LKG§ * d
< ( 3 —uLF»> Y0 — yo 1> + 8+°E lZ#”Q

t=1

AL (EZ | ) -

1-6 (11
KLy d o w3 L?
2 2
* )\(1 — 5x)G2(51'_5y) (EZ ”UtH > )\204(6 —dy) (EZ ||Ut|| )
+ 5 Tza /3(E Z||wt|| )
This completes the proof. 0

C.2 PROOF OF THEOREM 1

Now, we come to the proof of Theorem 1.
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Proof. Due to the definition, we have |[v¢||? < 2||Vauf(xs,y)]|® + 2[[€F]|*> and |Jwy]?

2|V, f (e, ye)||* + 2||€7]|*>. We divide the final part of the proof into four subcases. Introduce
a constant S and we will give the detailed definition later.

Case 1: Assume B3, [Vaf(wep)llP < SEX [lef|* and EX [1Vyf (e y)l* <
SE 23:1 |le7 ||?. Using the condition of this subcase implies

T T
EY (loel* +wel®) < @ +25)EY (I ? + I} ]1%).

t=1
According to Lemma [3|and 4 we have:
T
1 487 2 45,
E x |2 Y12 <96G2Té E 1 26,
;(Ilet 17+ lef]17) < t1 Z lvel|)
1
@ (12)
48)\? e
oo Eann )20
(In
According to Young’s inequality, for any a,b > 0, and p,q > 1 : zl) + é = 1 we have ab < %p + %.

Setting p = 5, ¢ = 7—55—, we have

g 45 5 2—48, b 1-26,
3
a 2-45g bl 20, — (ap2745,,) .

pl 26,
. (2=dba)p b (1=20z)q
B (apm) . pre== (13)
o p q
(1 —20,)b

1—26, 1
— 25Ia735$ p25$ 4+ .
pm
It is also important to observe that the aforementioned inequality remains valid when substituting d,.
with d,, i.e.
Yo B

bl 20, < 2 alggzjypzéy + (1_%61/)()

Py

Setting p = (9672(2 + 25))'~2% for Term (I) and p = (96A2(2 + 25))' 2% for Term (II) we
have:

T
EY (lefl® +letl?)
=1
21 2 2
< 96G°TH + ; EZHWH 2”5 JEZHth
96 2(530 _25, 96)\25 1-26 1-248,
+ 1j25 (96 (2+25)) HETIERE -2, Y (961%(2 + 25)) T

96 5 1-20z 96225 2 1220y .
Denote C; = max{ 7~ 7 = (96 2(2+29)) =, T554(96A%(2+25)) *% }, according to 1/2 >
0z > 6y > 0, we have
T

EY (efl® + el 1)

t=1

T T
1 1 1-25y
<96G2T%+7E§ 2—1—71535 220,777 .
- 2(2+29) P el 2(2+29) P el !
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Then we can get:

1— 25
fEZ l€F 12 + e ]1%) < 96G2TS + 20T v

t=1

Above implies,

T T
EY Vel (@ny)l? +EY IV f @yl

t=1 t=1

1—-25y

T
<2SES (e ]” + /%) = O (GQSTS + ST T )
t=1

1—26

Moreover, according to 1/2 > §, > §,, > 0, we have C; = O(S 2 ). Then we can get

o L 1— 25
ES Ve (@ey)l* +ES [V, e y)l? = O(G2STS + ST T 55 "),

t=1 t=1

This complete the proof.

Case 2: Assume EX1 | [V f(zn,y)|? < SEX;, [|€f]|? and EY1, [V f (s, u)]?> >

SE EL |l€7 ||, Using the condition of this subcase implies

IElevt\l2 (2 +25) EZII@?H2 ]EZIthHQ EZHV eyl

.. . . 2 ~4(55—8y)
Combining LemmaandEl, setting Cy = min{ 5 AG 2

m, ].} we have:

T T
EY Nefl? + CoEY [V, (e yo)l?

t=1 t=1

G3
<(C < - > lyo — yolI? + 8K*CE

T
20 2 z; I +

1-0,
C’ ALk
2Lt (23 )
Yy

t=1

t=
O

1—
Czl‘igL’Y a 9 Cor® Lfy T )
+ )\(1 — 5x)G2(61_6‘J) EZ HUt” + W E; ”UtH
T—

K2G2Co 26,/3 (R K 21 249° 7= 4% )1 26
H T ( antll) FAUGTY + T Zuvn .

24/\

)= 26,
+ )
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Using Case 2, we can get

T T
EY Nefl? +CEY [IVyf(ae,yo)l”
t=1 t=1

<0 (Z ) 1o+ LRSI, fan )+ SES )
< Co o\ B) Yo — Yo S yJ (T, Yt 16 2 €t

t=1
. 1-6, P 1-6,
CoALk 9 Cyr3 Ly 9
+ E ) lwll + E) vl
KQGQCQ ) Sy 24’}/2 2—-46 =
T25y/3<E 2) 22 g 2\1-24,
+ > lul?) "+ g T E R )
(111) v)
242 2—48y = 1
+t1 o5 T (B [lwe]|?)! 2% +24G2T'5.
v t=1
V)

Setting .S > 16k2, then we can get

15 & Oy &
. 2
EEZ lleFII” + 7]EZ IVy f (@, y0)||?
t=1 t=1

1-5,
G% I 9 Cy)\Lk d 2
< —_— = = -y E
_02<2A 2>||yo sl + T2 ( 5 o]

t=1
Cor3 Ly < T 10 220 T s
2 2 72 28,/3 2\ % (14)
i EZ%II) + 720/3 (£ )
_ 2(05—0, 3
A1 — 6,)GX ) — A2 2
(111)
24 2 a5, T-1 24)\2 245, T-1 )
+ TR Y [ulP) 4 ST E Y ) +246PT,
v t=1 y py
(V) %)
According to Young’s inequality, for any a,b > 0, and p,q > 1: % + % = 1 we have ab < %p + %.
Setting p = ﬁ7 q= %, we have
é
26y x
ang bgl _ (ap%i 3 ( bl )
pi=
282p dzq
(%) () (1s)
< + 2=
p q
S 1 5:Eb
=(1- 5m)a3<12ﬂ5m>p1—76m + -
po=

22
According to equation setting p = (%ﬁ“%))% for Term (IIT), we have:

1—6,)62G2C, 8x2G26,(2+ 2) 6y 28y C T
( y)\)z"L 2 OR /\22 S))l—fsy T30-5) 4 ;EZ ||th2 (16)

I <
8(2+ %) =

24
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According to equation setting p = (28872(2 + 25))1 2% for Term (IV) we can get

T
2472 1-25, )
IV < 288 2 2S 25L T 352 ) 17
< Ty 22+ 28)° e B ul (17)
According to equation (13} setting p = (TS) v for Term (V) we can get
24)\2 192)\2(2 + 2) 128y 1725y
V < S 25, T 35y _ 2 R 2 18
—1—25y( o )T % ;1Hwt|| (18)

Then plugging equation[I6]- equation [I8]into equation[T4] we can get

13 Oy &
= 2
EEZ lef|I” + ZEZ Vg f (e, y0)|?
t=1 t=1

1-6,
G3 > CaMLr ' -
<G (M—2> lvo = wal" + 75 (EantH) +24G2T5
_6w
Cyr® Ly ) (1—6,)K2G2Cy 8K2G25,(2+ 2) 25,
+ A1 = 6,)G2(5:—6,) EZ”UtH + Qj\% ( Ny )1 éuTs(l 50
24~* Las, 2402 1920224 2) 126y 1-25,
288v“(2 + 2S5 261 T 36z S 35, T 85y
T, (882 O LTS s —

Then we can get

T

1 x

aE D eE 1P + 19y f (e yo) 1)
t=1

1-6,
G , ALk 2 < ) 24G?,
<= _-£ - 2+ 2)ED T

af T 1-4,
kL x||2
N1 =0,)G20 o) ((2+25)EZ ez )
22 2,72 2
L, (L=8)w°G? 882G 5,(2+ S)) P
Ap A p
24~* 5 126y 125, 2402 192X\2(2+ 2) 12y 12,
———(288~4°(2 + 25)) 25« T 3% 3, T 85y
t T (B8 2+ 29) 12,0 P ’
Then we can get
T
EY (Il + IV f (e yo)1%)
t=1
G (HG)1 Ty SRS s 1, 12y
=0(—= T + T30=55) ay> 4 T3 +——5T % )
02 ﬂl 5,, 2 c 35;4
2

Moreover, according to Case 2, we can get

T
]EZ IVaf (e, y)|I? + IV f (@, 9e)1P) < 2+ 29)E Y (1 + 11V f (20 yo)l1P)
t=1

t=1

2
G2S9 S(KG)TH 2y STa s, S 1%
=0( T%Jr (K 2 T30=5y) 5 + = T1352j + 1+5yT 35y ),

Cy =) 2
o y 35y
Gy
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This complete the proof.

Case 3: Assume EY/ [V, /(2 90)|? = SEX,_, llef ]| and EY,, [V, f(aey0)? <
SE Zthl |l€7]|?.Using the condition of this subcase implies

T T
2
EZ loell* < (2 + g)EZ IV f (e, o) 1%,
EZ lwe* < (2 +28) EZ le? 11

=1
Following Lemma 5] we have.
T
> Vet (e, m)l®
t=
T
< YOI 42 (1/Br ) vatnunw 2+ o va = a9)
=1
T L 25 d On
<SP + =55 (3 )2 + 40,77 (Z(W + )
t=1 T o=1 t=1
Combining Lemma @] and equation [T9] we have:
T
EZ“Vif(‘rtvyt)‘|2+ZHet”z
=1
<ascPrh 4 2 g EZHv 212 2 Ean 12120
- 1—25 7 1-—
= (20)

(2) (b)

T

6m

+Z||ef||2 — va 12) 720 4 42, 755 (S (ol + )
t=1

()
According to equation setting p = (9672(2 + %))17251 for Term (a) we have:

24"}/2 2 2 1-25g 2
< ———96v°(2+ —=)) % x E E 21
According to equation setting p = (96A%(2 + 25))*~2% for Term (b) we have:
2472 128, 1 d
b< " (96A%(2+28)) =y TU200)/30 .~ R E 2, 22

According to equation setting p = (166, P, (2 + 25))% for Term (c) we have:
T
67) 1
< 4D, (166,P,(2 +28))Tsa T20=/30-0=) 4~ 2y 2. (@23
Using Case 3, plugging equation [21] equation [22]and equation [23]into equation 20} we have:
T T
5
SOMNMEEAEINEP
t=1

za,

§4802T% + T(l 204)/304

e Zuv 25+ e+ 2

242

+ m(96A2(2 + 25))Twy TU=200)/30 4 4, (166, D, (2 + 28)) 75w T20=/3(1=0x),
- Yy
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It implies that:

T T
EZ IVaf(@e,yo)ll> +EDVyf (e v
t=1

T
<2+ 29EY " (I/1? + IVaf(ze,yo))
t=1

125y

— O(G2STY/3 + §* 3= T30 4 ST T o, 4 ST 5057 ).

This complete the proof.

T T |z T
Case 4: Assume EX-,_, [|Vof(ze, y)lI” > SEX,_, [lf|* and EXS,_, [V fae,y)|? =
SE 23:1 |leZ||>. Using the condition of this subcase implies

T T
2
EZ lvelI* < (2 + g)EZ IV f (e ye) I

EZIthll2 EZIIV F@n )l

Following Lemmaand Lemma@ letting C's = min{ %, 1}, we have:
E

Z IV f (e, )2 + Csz IV f (e, ye) |12

= =1
- )2 L 23125 250 [ 9 91} %=
<2l +ﬁ(z Joul12)1725 + 42,75 (S (oell? + flwn %))
t=1 T o4 —1
LG5 o C: )\L o
kG3 . F
+C3 < b\ —NL/{> ||yo—yo||2+8/<;2C3E 263”21 3 <Z|U/t )
t=1
C3k3L ) o Ca k3 L2
sh L7 2 3k Ly )
* A1 = 6,)G2(0==0y) (EZ el ) + \2GAG.—5,) (EZ [[oe | )

Cglﬁl G

e T antn )"

Using Case 4, we can get

T
ZHV f ztayt H2 ?BZ |vyf xtayt

L ) 25 l [
< o (O el 2 42, 5 (3 (o2 + )
T =1 t=1

(d)

2 16y
LrG3 . C’ )\Lli
+Cs < N ML&> lyo — w31 + = (Z [[we ] >

1-6,
C3/£3L’Y ) 2 03/4, G 257//3 T 9 Oy
+ M1 = 6,)G20:—5,) E; [lve]] t . ——T ( Z [|we || )

t=1

(24)

(e)
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According to equation setting p = (%)% for Term (d), then we have

32(2 + 2)4,®, 26, Cs d
0 < Ad, (1 — 5,22 8005 S0 b — 3 EBS (o + w2, 25)
( )t . ) 52+ 2) ;(H tll” 4 llwel%)
Similarly, setting p = (W)‘sy for Term (e), then we have:
C3k2G? B(2+ 2)6,K2G? by 25y )
e < 1=38y T'3(1=0y) —|— ——F wy (26)
e = ;H .

Plugging equation [25]and equation [26]into equation [24] using Case 4 implies:

T
Z”V f(@e, ye) ||2 fz IV y f(e,ye) |

L 32(2+ 2)6, .

< (3 ey + 41— )
T ot=1

Sz __ 28y
) T—6g ['3(1—6x)

Cs
LkG3 C )\L B
KRG 3 H
+Cs ( N ML’€> llyo — w3 lI* + == (Z [[we] )
1—6,
Csk3Ly R C3k2G? 8(2 + 2)5,k°G?
E 1— 5yT3(1 Jz)_

+ )\(1 — 533)G2(61'_6y) ; Hvt” + )\2/14 ( )\2 )

It then implies that:

T T
S Vet @oy)l” + Y IV f (v 12

t=1 t=1
(HG) T— (Sy
W 1*51;

— O(C’;?lTs(ﬁfm + i =r al))

This complete the proof.

Then concluding the above four cases, we can get

va Flaeyo)? +Z||v Flae )l

t=1
Y 2 ,Qy y %
O(G2ST3 +525yT1352; G ST% n S(KG)II s TS(%&J) N Sz Tl 25
Co ‘ul_‘sy Cy

1-26y

+ fré T 559 +G2ST1/3—|—SQ 25zT 3% —|-S25yT 35, 4 STos, 5mT3(1 5o
C,Qaay

1 25
+ 03514 T3(1—gfsm) + K

. A2 GA(5a —5y) 2G5 —by) 9 .
where 02 = mln{m 1} Cg = mln{m,l} and S Z 16K~. ACCOrdlng to

0z > 0y, then we can get
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T T
Z IVaf (e, y0) II” + Z IV f (e, y2) I
t=1 t=1

2 1
120y G2S 1 S(KJG)lﬂS?/ 20y S25:  1-25,

O(GQSTB + 5257,’_'[1 36y T3 4+ - T30=5) 4 = T 385,
Cg W% Cy
S 123y 1-28y 1 264 1 265,
+ 17%{2" 36y + 52 251 351 Szay 3y 4 §T-6; T30-62) + C?:im—l Tis(l,gz))'
0235yy

Moreover, according to 0.5 > J, > d,, we can get the following dominant term

T T
o IVaf e y)lP + DIV, f @yl
t=1 t=1
S 128y 1—25y 1 26, P 254
=0 2T F ST 4 ST TR+ OF T
C,Qs&y

Then according to the setting of Cs, C'3 and S, we can get

5458, 1-26 5
ZHV fl@e, ) HQ"‘ZHvyf (z6,90)[> =0 (Ii2+ Wy Ty +l€13‘51T3<125r>).

t=1

Then setting §,, = % +dandd, = % — 6, we can get
T T
1
SOIVa )24+ 30 IV, )2 < 0 (£T5)).
t=1 t=1
Utilizing the Cauchy-Schwarz inequality, we can readily derive

T T
]EZ [Vaf(@e, ye) | + ]EZ ||vyf(xtvyt)||]
t=1 t=1

NG} T T (A5
< — E 2 E 2| <
< [\ BRIVl + B 19000l | < Olg)

This completes the proof. O

D ANALYSIS OF THEOREM 2

In this section, we will replace Assumption 4 with Assumption[5] We present a revised upper bound
for E 23:1 |V f(ze,y:)||, taking into account the p1,-PL condition.

D.1 INTERMEDIATE LEMMA OF THEOREM 2

Lemma 10. Under Assumption|[I] P|and[5] we have

ZT , (08 LF 4 26LLo + 25800 Z N
E IV f(ze,ye)” < T (oAl
=1

1-26

sz /\2 ! 4mLA
(Z ||wt||2> G2/3EZ||G%H2
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Proof. Using the smoothness of f(z,-) we have:

L
F@e1,9e) < F(@eg1,ye01) — 0 (Vo f (@11, 90), we) + §||2Ut+1 — sl
For the term —n} (V, f (2411, yt), wt), we have

- 773‘/<Vyf(33t+1»yt)awt>

Yy
< —%t (IVy f@es1, ylI? 4+ well® = (Vo f (@es1, ) — Vi f (e, ye) + Vi f (@, ye) — wel|?)

Yy Yy
n U
f?tHVyf(xtH,yt)Hz - ?tHwt”2 + 0 L ||weqr — ml|” + 0|V f (e, 4) — we|

IN

IN

Yy
n
—nf iy (®(ze41) = f(@eg1,91)) — ththQ + 0 L?(|zi1 — o>+ 0f [V f (e, ye) — wel?,

where the last inequality holds by f,-PL condition. Then we have
Y
i
f@een, ) < F(@eg1, Yer) — 0y (D(e41) — f(@e41, 1)) — %Hth2

L
+ 0 L || w1 — 2ol + 0 IV f (e, ) — wel® + §||yt+1 — el
Rearranging the above, we have:

D(xeq1) — f(@eg1,Yet1)
Y
. n
< (1= pynd) (@(2e41) — f(@e41,90)) — ?tH’LUtH2 0 L |[wesr — @ 27

L
+ 0} (| Vy (e, ye) — wel|” + §|Iyt+1 -yl

Next, using smoothness of f(-,y), we have:

L
f@e, ye) + (Vo f (@0, ye), T — 2) — §||517t+1 - ItH2 < f@eg1,yt)-
Then we have
f(fft,yt) - f(xt+1a yt)

L
< Vo f (@, ye), T — ) + §Hﬂ%+1 — zy|?
L
=08 (Vaf (@, 50) = VO(@t), ve) = (VO(@e), 241 — @) + |41 — |
T T 2L L(n* 2
< ol VOe) = VS (o )P+ o2+ @) — B(z0) + LLEL o2 ZL o 2
< Pl = 67 2+ 2 o+ ®(20) = @) + La (o ol
< 2R g UATAENE: o Lo () [0 |2
< 2L @(a2) — S ) + T + B(on) = Blors) + La(ap) ol

where the second inequality holds by smoothness of ®(z;) and the last two inequality holds by
L < Lg. The parameter w; will be determined later. Then we have
P(we41) = f(@er1, ) = P(@e41) — B(@e) + P(@e) — flae, ye) + f(2e,ye) — f(@es1,9e)
2L%wn? e o (28)
< (L4 =—5) (@) — [z, 00)) + ~l[ve)* + Lo (nf)?||ve)?
oy Wt
Plugging equation 28] into equation[27] we have

P(wir1) = f(Teg1,Yer1)

2L%wen?
< (1= pynf)(1+ ———%

) (1) = o)+ S 2

L) —1
(= Lo+ 220) (Pl + (522 ) P + et P
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It n) > ﬁfort:1,~- ,t = to, then we have

to+1

E Z [(@(z¢) — flze, y0))]

to

ﬂt 77t 2 LGt - 2 2
<1EZ vl +]EZ e wdl® +E nllef]|.

t=1
Now we consider t = tg, - -- ,T'. Rearranging the above and summing up, we also have:
d 1
B S0 (il +2rat (= 1)) (@)~ Flor)

t=to+1

n x
<E Z(l - uyni’)(wfz + Lo (n})?)|lve]?

t=to

T yra/ z\2 T 2,9 T
ny L*(n}) Loy —1
ey B o+ B3 ()t +E Y sl

t=to t=to t=to

m’ we have /~”7?+2L2Wt77f(77;5y_%) > 3 and (1—pyn!) (2= + Ly (n})?) <
(4kL + Lo)(n?¥)? for t > to. Then we have

Setting w; =

L) N
SE Z F ey £ AL+ Lo+ =R S (7))
t=to+1 t=to
T T
L?ny —1
+EY (B2 atlhad? + B atle
t=to t=to
Summing above two cases, we have
T
EY [®(x:) — f(x1,01)]
t=1
T T
< (86L +2Lg + L*n)E Y _(7)?[|vel|® + L2E > ()2 |we||* + 2n} EZ le1?
t=1 t=1

25 1-25
(SKZL +2Ls + %)’)/2 T 1 =20, 12)2 T y 9\ T
< as E 2 E 2 E ks
< =T ; v T ; [ + G ; el

From [Karimi et al.| (2016)), we know a function is L-smooth and satisfies PL conditions with constant
Iy, it also satisfies the quadratic growth (QG) condition. Using QG we have:

IVy (e, ye)I? < L2Nly; — well® < 26L(@(2e) — f (2, 90))-

Then we have

d ) (16k?L* + 2k LLg +2ng)7 T , 1-26,
EY IVyf (e yo)l® < : EZIIMI

P 1— 26,

-25,
2/£L‘3)\2 4nLA
(EZwﬂ) 2By
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D.2 PROOF OF THEOREM 2

If we change the Assumption from strongly concave to p-PL condition, this will only affect the upper

bound of E 23:1 |V f(ze,y:)]|?. We need to reclassify four cases. Introduce constant P and we
will give the detailed definition later.

Case 1: Assume EY/ Vo f(zy)|? < PES, [lefl|? and EXSC, [V, f (e, 0)? <

PE Zthl ll€?|%. Using the condition of this subcase implies

T T
EY (loel® +well?) < @ +2P)EY (llef|* + e IP)-
t=1

t=1

Similarly, the inequality equation [I2] obtained by combining Lemma 3] and ] does not change when
SC is replaced with PL. Then we can get

1 48")/ z 461
]EZ e ]1? + ||/ ]1?) < 96G2T's + - EZ [ vg||?)1 2%

@ (29)

48)\?

125
—|—1_

(ID)

Setting p = (967%(2 + 2P))' 2% for Term (I) and p = (96A2(2 + 2P))'~%% for Term (II) we
have:

T
E> (1 + I€11)
t=1
1
< 96G2T' 71@ 24 2
3+ 22+ 2P) ZH%” 2+2P lewtll
2 _2s,, 1-25,  1-25y
+ 3672‘;” (9672(2 + 2P)) 70T 55" %(96%(2%1))) IRl el

_2s,, 2 1-25,
Denote P; = max{%(%*yz@ +2P)) =N , %‘2‘2(?; (96A2(2+2P)) v }, according to 1/2 >
0z > 6y > 0, we have

T
EY (efl® + el 1)
t=1

T T
1 1 1-28y
< 96G2T's ————E> ol + 5 ED 2 op Ty
< +2(2+2P) 2 [lol +2(2+2p) 2 lwe])* + 2P Y

Then we can get:
T 1-26y

1
SED (1P + 1<t 1P) < 96G2TH + 2P, 7"

Above implies,

T T
EY Ve f@oy)? +ED IV, f (vl
t=1 t=1

T 1— 25,
<2PEY (|2 + |¢f]1?) = 0(G*PTH + PLPT 70",
t=1
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1-25,

Moreover, according to 1/2 > 6, > §,, > 0, we have P, = O(P 2 ). Then we can get

a r 1— 2(5
EN Vo @y +EY [V, f(ae,0)|? = O(G2STH + P& T 55",
t=1 t=1

This complete the proof.
Case 2: Assume EZthl IVaf(xe,ye)|)? < PEZtT—1 l€f[|* and EZtT—1 [Vyf(ze,y)|* >

PE 23:1 ll€7||?. Using the condition of this subcase implies

EE:HMII2 (2+2pP EZIIE?\P EZIthII2 IEZIIV Flae vl

Combining Lemma [3|and Lemma [I0] we have

24~2 4%
EZHef||2+EZHv Fleeyo)|? < 24677 + —1 T EZHv [2)1 -2
t=1

24A "y (16/@2L2+2/1LL +2*”v“)7 A
+ ZH'UtH

E 1 268,
= Z e |*) + 2.
1-24,

2/{[/ )\2 4/£L)\
(ZW) G2/3EZII I

0/3 .
Setting P > max{%7 4}, using Case 2 we can get

T—1
24’)/ 245£
E )2 IE 2 < 24G2Ts T (E Y120
E e [I” + E |V f (e, ye)ll G ey %, E l[vell®)

(111)

2712 QRL)\ 1-26,
2UNZ  2as, L1 - (165°L* + 2kLLg + )’y
T (B lwel®)' 2 + T }:Hth?
t=
()

1-24,,

2,%L3/\2
(Z ||wt||2>

According to equation setting p = (727%(2 + 2P))'~2% for Term (III) we can get

1-25,

242 z 9
11 < 272(2 + 2P)) T T 30
< 1o (™ (2 2P) T 2+2P Z”“” 30)

According to equation [13] setting p = (96A2(2 + 2))1~2% for Term (IV) we can get
g q gp P g

24)\2 9 9 1-28y 1725,/ 9
IV < 9N (2+ —=)) v T — K 31
< 19y G2+ ) % ;nwtn GD)
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Then we can get

T T
EY llefl® + EZ IV f (e o) 2
t=1 =

(16/<:2L2 +2kLLe + 2*’@)7 1-25,
21 ,
S HETTE A =T Z el

1-26,,
2 L )\2 24 2 126p  1-28g
e (Z ||U)t||2> + 17’;5 (72 (2+2P)) Tt pigaes

24>\2 9 1-28y  1-28y
96A2(2 + =)) =6 T 30y |

+

It then follows that

1-268y

T T i -
ES (12 +ES IV, f (2 w)|® = O(GPTS + P37 4 7750,
t=1

Moreover, according to Case 2, we can get

T T T T
EZ IV f (@, ye)I* + EZ IVyf (e y)l® < 2 +2P)EY [l I> +ED [V, (@ 50)lI7)
— = t=1 t=1
1-26y
= O(G2PT?% + P77 50" + PT %),
This complete the proof.

Case 3: Assume ES/_ ||V, f(z,y:)[? > PEY, l€f]? and ES[_, IV, f (e, 50) | <

PE Zthl |l€?||2.Using the condition of this subcase implies

T
EY vl < ( EZIIfo e yo)|1%, EZIthHZ (2+2P) EZIIE?IIQ
t=1

t=1

Combinning equation[I9/and Lemmafd] using Case 3 we have

T T
3
Z]EZ IVaf (e, y)lI> +ED [lef|l?
t=1

T T
5a L
=2 a0, 75 (S (ol + ) s
t=1 t=1
(a)
2472 2o a5y = 1-25, , 24X 1-25,
+ g TR E Y o) + o Eann
t=1

(b) (c)
According to equation [13] setting p = (16®.,4,(2 + 2P))% for Term (a), we have

T
S 26, 1
< 4P, (16®,0,(2 + 2P))T=0= T30-60) 4 —— § 2

According to equation setting p = (96v%(2 4+ 3))*~2% for Term (b) we have

b < 24~* (9672(2 + 2 )1_25.77T1—25.1: n 1 E o 2
= 6, 36, - .
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According to equation [13] setting p = (96X%(2 + 2P))' =2 for Term (c) we have

24\2 5 1-25,  1-28y 1 T )
< 96A“(2+2P)) % T 3% 4+ ——FK .
¢S 15y (90N (24 2P)) + i ap s

Then we can conclude

1< 1«
1 Z IV f (e, 90)|1” + ZEZ le? 117
t=1 t=1

T
L 1-26 2 i
* +48G*T 40,(169.0,(2 + 2P)) 1=z T'30=52)
< T (Ol 4867 4 4. (160.6,(2 + 2P)
24’}/2 9 2 1-28,  1-25, 24)\2 9 1-26y  1-25y
9672(2 4 ) oo T 5 96A2(2 1 2P)) T T w5
+1_25z( 72+ 5)) 1_2%( (2+2P)) v

It implies that:

1-26y  1-28y

T T
vaxf(xtvyt)HQ+EZ||€%H2 = GQT‘i + PT=5 51T3(1 ) _|_T 351 + Py Ty ),
= =1

Then according to Case 3, we can get

EZHV [, ye) HQ‘FEZHV f@e,y0)|? < (2+2P) ZHV f(@e ye ||2+]EZHQ
t=1
1— 25

= O(G2PT§ +PWT‘3<71$I) + PT 15 + Py T, ).

This complete the proof.

Case 4: Assume EY[ | [ Vo f(zy)|? = PEY, [lef||* and EYSC, [V, f (e, o)1
PE thl ll€?||%. Using the condition of this subcase implies

T T
2
EZ loell* < (2 + p)EZ IV f (e o) 17,

II*3Z:||wt||2 EZ:IIVyf e, ye)|I°.

V

Following Lemma [5]and Lemma[I0] we have:

T T
EZ IV f (e, ye) |1* + EZ IV f (e, yo)lI?

t=1 t=1

T

61

<Z||ei”||2 25 Zuv 12725 + 4, 75 (S (ol + ] 2))
t=1

1-26

(16/-;2L2 +2kLLg + MA) ) T o Ls A )
+ 1% Z [ +7 Z [l

4HLA
G2/3E2|| P,

According to Case 4, we can get
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T T
SN IV f oyl +E Y IV, w)?)

t=1 t=1
T

T
L - 26z 2
(O ol =25 + 42,755 (S (el + )

<
= 1-25, v

(d)

272 2nL,\ 1-26, 1-26,
(16xk*L* + 2kLLg + ) ) 2% L3 )\ )
+ Z [[oe] +7 Z [[we| :

1— 25,

According to equation setting p = (165, ®..(2 + 2))°, we can get
4.< 48, (165,22 + ) T 4 EZ Joull + e 2),
> * x Ex P i 4(2+ (%7 Wt
Then we can get
;I T
5(1[*32 IV f (e, y) | +ED IV f (@, ye)]1%)
t=1 t=1

(16%2L2+25LL =+ QKL)\) (Z , 1—25,
[[oe]]

L
< 2\1—-26,,
S1-2, (thl o775 1- 25,
5)2 1-25,
2kL 2. o 255
E 2 49, (160, P, (2 + —)) T o T30 -52) .
125, (;_1 e ) +40,( 2+35)

It implies that:
— O(T5 ).

T T
EY Ve f@oy)> +ED IV f (vl
t=1 t=1

Then we conclude above four cases. We can get

T T
EZ IV f (e, ye) |* + EZ IV f@e, yo)lI?

12(5 125

= O(G®PT?% + P,PT ™ + G2PT% + Po: T 5" + PT %5

1-25,

+ GEPTH + P 505 4 PT 50" + PTy T %y 4 057 ),

1-264 1-26y
where Py = max{$250:(96,2(2 + 2P))"3", P00 (96022 + 2P)) ), P >

20/3 . .
max %, 4} and % > 05 > d,. Then we can get the following dominant term

T T
EZ IV f (e, y0) II” + EZ IV f (e, ye) ||
t=1 =

1-25, 1-26y

:O(PlpT 3y 4 P15, 51T3(1 50 _|_P25yT T35, )

Then it follows that

T T 1 1— 251,
B IVef ooy |> +ED 190 (w0 p)|* = O ( TE T 45T )
=1 t=1
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setting 0, = 3 + 0 and 6, = 3 — &, we can get

T T
EY IVef(@ey) |2 +EY IV, f(zew)l? < O(k0T5).
t=1 t=1

Utilizing the Cauchy-Schwarz inequality, we can readily derive

—

T T
7 [ED_IVaf@eun)| +E D I1Vyf (2,0
t=1 t=1

KD

V2 | ey s BY .
t=1 t=1

=T

This completes the proof.
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