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ABSTRACT

Computational retrosynthesis prediction has the potential to reduce development
time for newly discovered drugs by automatically generating potential reactions
for a target product. Data-driven approaches commonly treat this as a sequence-to-
sequence generation task on SMILES strings. In this work, we construct ensembles
of discrete-time and continuous-time diffusion models for molecular generation and
incorporate guidance mechanisms for improved output diversity. We propose an
adaptation of particle guidance to SMILES sequence generation which significantly
improves the number of unique molecules generated by diffusion ensembles while
increasing top-k accuracy. These results further expand the efficacy of discrete
diffusion for SMILES generation, and our empirical analyses offer new insights
into the capabilities of diffusion models for chemical retrosynthesis.

1 INTRODUCTION

The goal of retrosynthesis is to construct reactant molecules that can be used to synthesize a target
product. Retrosynthesis prediction constitutes a pivotal step in the drug manufacturing pipeline.
Repeatedly applying single-step retrosynthesis models to a given problem can result in full synthetic
pathway discovery (Segler et al., 2018; Shen et al., 2021), further supporting pharmaceutical advance-
ment for new drug modalities. However, even single-step retrosynthesis prediction is difficult, in
part due to the diversity of reactant sets that might map to a single product. While forward synthesis
prediction is primarily considered a surjective process with a deterministic output, retrosynthesis
prediction is in many ways the opposite, with many possible outputs resulting from a single input. As
a result, researchers have taken a particular interest in deep learning methods that hasten the process
of retrosynthesis discovery by quickly and efficiently predicting multiple possible reactant sets from
a given product molecule.

Numerous methodologies have been developed, from template-based methods that use mined reaction
mechanisms to predict reactants to template-free approaches that directly predict string or graph
representations of reactant molecules conditioned on the target product. The most successful of
these template-free approaches use traditional transformer encoder-decoder architectures on SMILES
(Weininger, 1988) string representations of the molecules, effectively treating the problem as a
machine translation task (Zhong et al., 2022). A recent approach, DiffER (Current et al., 2024),
explored the usage of discrete diffusion models for the retrosynthesis task and provided evidence that
an ensemble of discrete-time diffusion models could be a practical approach for sampling from the
posterior distribution of reactants. Differ outperformed the state-of-the-art R-SMILES (Zhong et al.,
2022) at top-1 accuracy on the commonly used USPTO-50k dataset (Lowe, 2017), but suffered from
low output diversity due to the nature of posterior sampling.

In this work, we extend upon the work of DiffER (Current et al., 2024) by adapting their approach to
include continuous-time discrete diffusion models and applying classifier-based particle guidance
(Corso et al., 2023) to SMILES string generation. Both of these changes aim to improve the efficacy
and output diversity of models over the original DiffER. A visual overview of the DiffER2 ensemble
approach is presented in Figure 1. The main improvements on the original DiffER methodology are
as follows:

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Overview of the DiffER2 ensemble. The DiffER2 ensemble contains both continuous-time
(C-DiffER) and discrete-time (DiffER) models to leverage differing capabilities between the two
diffusion archetypes. Both normal sampling methods and SMILES adapted particle guidance are
used to generate output. Output SMILES are ranked according to frequency of the canonical form.
DiffERκ indicates the value of κ as described in Section 3.2.

1. We incorporate continuous-time discrete diffusion models into the DiffER ensemble to
leverage different capabilities of discrete-time and continuous-time diffusion.

2. We explore the efficacy of SMILES-adapted guidance mechanisms to further enhance the
diversity and accuracy of diffusion models for chemical retrosynthesis.

3. Finally, we offer an in-depth exploration into the differing performance capabilities of
auto-regressive and discrete-space diffusion models on the chemical retrosynthesis task.

By combining both continuous-time and discrete-time diffusion models with classifier-based particle
guidance (Corso et al., 2023), we significantly improve ensemble performance and reduce oversam-
pling of posterior peaks while maintaining or boosting top-k accuracy across the board. Our results
enhance the efficacy of diffusion ensembles for SMILES generation while providing an empirical
analysis of diffusion performance compared to auto-regressive approaches for sequence generation.

2 RELATED WORK

2.1 RETROSYNTHESIS PREDICTION

Data-driven models for retrosynthesis prediction are commonly divided into three approaches:
template-based, semi-template, and template-free methods. Common template-based approaches
include GLN (Dai et al., 2019) and LocalRetro (Chen & Jung, 2021). These approaches primarily
focus on identifying locations in a molecule where reaction templates can be applied and ranking
the efficacy and feasibility of those templates on the target area. Semi-template methods include
the likes of GraphRetro (Somnath et al., 2021), G2Retro (Chen et al., 2023), and GDiffRetro (Sun
et al., 2025). These approaches generally work in a two-step manner: in the first step, a reaction
center is first predicted from the product molecule, and the molecule is subsequently split into
synthons. In the second step, each synthon is completed to construct a final reactant molecule.
Notably, GDiffRetro (Sun et al., 2025) uses discrete-time diffusion processes to complete predicted
synthons. Finally, template-free methods such as Chemformer (Irwin et al., 2022), MEGAN (Sacha
et al., 2021), R-Smiles (Zhong et al., 2022), and DiffER (Current et al., 2024) directly construct
reactant molecules from the product molecule. This is most often done in a sequence-to-sequence
manner using SMILES strings (Irwin et al., 2022; Zhong et al., 2022; Current et al., 2024), though
some approaches directly operate on graphs, such as the case of MEGAN (Sacha et al., 2021), which
iteratively builds the reactant molecule(s) through a series of edits. DiffER (Current et al., 2024) is
the first approach to use conditional discrete diffusion to accomplish the retrosynthesis prediction
task, although their methodology suffers from reduced output diversity and high computational cost
compared to auto-regressive decoding strategies. We primarily focus on template-free methods for
performance comparison.
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2.2 DISCRETE-SPACE DIFFUSION

Generative diffusion models have been a significant topic of research in recent years, and have
achieved significant success in the realms of image generation (Croitoru et al., 2023; Yang et al.,
2023) and signal processing (Yang et al., 2023). Though diffusion models traditionally operate in
the continuous regime (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Song et al., 2020; Ho
et al., 2020; Saharia et al., 2022; Gu et al., 2022; Zhang et al., 2023), significant effort has been made
extending diffusion models to discrete spaces (Hoogeboom et al., 2021; Austin et al., 2021; Gong
et al., 2022; 2023; He et al., 2022; Yuan et al., 2022; Dieleman et al., 2022; Ghazvininejad et al.,
2019). Discrete-space models have demonstrated remarkable performance for molecular generation
(Xu et al., 2022; Alakhdar et al., 2024; Hoogeboom et al., 2022; Xu et al., 2023; Schneuing et al.,
2024) and protein design (Gruver et al., 2023; Watson et al., 2022; Ni et al., 2023), but have struggled
to out-compete their auto-regressive counterparts on discrete sequence generation. Furthermore, most
work in this space has primarily focused on discrete-time diffusion. Only recently has discrete-space
diffusion been extended to continuous-time implementations (Campbell et al., 2022; Zhao et al.,
2024; Xu et al., 2024), which demonstrate improved modeling capabilities and sampling efficiency
compared to their discrete-time parallels. Furthermore, incorporating recent advances in guidance
mechanisms during diffusion sampling (Bansal et al., 2023; Liu et al., 2023; Epstein et al., 2023; Ho
& Salimans, 2022) remains a challenge, due to the difficulty of applying gradient-based approaches
on a discrete domain (Schiff et al., 2024; Gruver et al., 2023). Schiff et al. (2024) recently adapted
classifier-free and classifier-based guidance mechanisms for discrete diffusion and demonstrated
promising results on molecular generation tasks, though more work needs to be done constructing
and evaluating guidance mechanisms for discrete diffusion tasks.

3 METHODS

Following the original DiffER (Current et al., 2024), we treat retrosynthesis prediction as a discrete
sequence-to-sequence generation task, where the target product is a conditional input to the diffusion
generation akin to text-to-image models. We employ both discrete-time and continuous-time diffusion
models. Like DiffER, we incorporate length prediction strategies to improve diffusion sampling
as well as enable robust model ensembling. Finally, we adapt classifier-based particle guidance
(Corso et al., 2023) to SMILES sequence generation to improve output diversity and reduce over-
sampling of posterior peaks. By applying our techniques to SMILES generation, we are able to
offer direct comparisons to prior works, and more clearly demonstrate the effectiveness of our
diffusion ensembling and guidance methodologies. However, we recognize the existence of other
molecular string representations such as SELFIES (Krenn et al., 2019). We offer a comparison to a
SEFLIES-based implementation of our work in Appendix A.4.

3.1 PRELIMINARIES

Following the notation of Zhao et al. (2024), let x0 ∼ pdata(x0) be a categorical random variable
representing the observed data with discrete distribution pdata(x0;K). Let xt ∼ q(xt) be the latent
variable at time t ∈ [0, 1] (continuous-time, max time T = 1) or t ∈ {1, ..., T} (discrete-time) and
xt|s ∼ q(xt|xs) be the conditional random variable. Let x1:Lx

t ∈ {0, 1}Lx×K be a sequence of
length Lx at time t, and let x[ℓ]

t be the sequence indexed at position ℓ. We assume each discrete
random variable is governed by a categorical distribution C with probability distribution p ∈ [0, 1]K ,
where ||p||1 = 1, such that xt ∼ C(xt; p). Furthermore, let Qt|s ∈ [0, 1]K×K represent the transition
matrix between times s and t, such that [Qt|s]ij = q(xt = ei|xs = ej), where ei, ej ∈ {0, 1}K are
one-hot encoded vectors.

In the forward diffusion process, noise is added to observed data until it is indistinguishable from a
stationary noise distribution. Zhao et al. (2024) show that the forward diffusion process for discrete-
time and continuous-time diffusion can be unified into a single forward diffusion process defined by
the accumulated transition matrix Q̄t|s, with t > s:

Q̄t|s = ᾱt|sI + (1− ᾱt|s)1m
⊤, (1)

where m is a known probability distribution vector such that xT ∼ C(xT ;m), 1 is vector of 1s, and
ᾱt|s is the accumulated noise schedule between time t and time s.
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In the backward diffusion process, diffusion models aim to generate samples from pθ(xs|xt) for
some 0 < s < t ≤ T . This is commonly accomplished by taking pθ(xs|xt) ≈ q(xs|xt, x0), where
q(xs|xt, x0) is the s-step posterior distribution (Hoogeboom et al., 2021; Austin et al., 2021). Because
x0 is unknown, it is approximated by training a neural network model fθ

t such that pθ(x0|xt) =
C(x0; f

θ
t (xt)). Thus, pθ(xs|xt) can be estimated by sampling xs ∼ q

(
xs|xt, f

θ
t (xt)

)
. Analytically,

this can be calculated as

q
(
xs|xt, f

θ
t (xt)

)
= C

(
xs;

Q̄t|sxt ⊙ Q̄⊤
s f

θ
t (xt)

x⊤
t Q̄

⊤
t f

θ
t (xt)

)
. (2)

This posterior calculation can be further reduced to simplify computation (Zhao et al., 2024), which
we follow in our work as well. We refer readers to Zhao et al. (2024) for a more detailed overview of
the unified diffusion methodology.

The primary point of difference between discrete-time and continuous-time diffusion models now
lies in the loss functions. We train both continuous-time and discrete-time diffusion models using
the simplified variational lower bound loss functions provided by Zhao et al. (2024) alongside a
cross-entropy loss.

3.2 DIFFER ADAPTED UNIFIED DIFFUSION

DiffER (Current et al., 2024) incorporates the target product as an additional constraint to the diffusion
generation process, akin to text-to-image generative diffusion models. Let y1:Ly

0 ∈ {0, 1}Ly×K be
the target product sequence associated with the reactant sequence x1:Lx

0 . Here, both y0 and x0 are
SMILES strings representing molecular structures, with x0 containing one or more concatenated
reactant SMILES. Because the target product is known in retrosynthesis prediction, The diffusion
problem can be parameterized such that

pθ(x0|xt, y0) = C(x0; f
θ
t (xt, y0)). (3)

This formulation guides the diffusion process by incorporating the target product as an additional
input to the model. Here, fθ

t usually takes the form of an encoder-decoder model, where the encoder
processes y0 and the decoder acts as the diffusion component on xt.

Notably, one issue remains in that the length of the reactant sequence Lx is unknown a priori,
which is necessary to properly instantiate xT ∼ C(xT ;m). Inspired by MaskPredict (Ghazvininejad
et al., 2019), DiffER (Current et al., 2024) incorporates a length prediction component into the
encoder half of fθ

t , such that Lx can be estimated using some model fϕ
ℓ : {0, 1}L×K → RL, so

that Lx ≈ argmax fϕ
ℓ (y0), where, L is an arbitrary maximum sequence length such that Lx < L

and Ly < L for all x0, y0 in the data distribution. For the chemical retrosynthesis task, Lx and Ly

are often highly correlated: thus, to encourage active learning, fϕ
ℓ is instead trained to predict the

difference between Lx and Ly , i.e.,

Lx = Ly + (argmax fϕ
ℓ (y0)− Γ), (4)

where Γ < L is a sufficiently large constant allowing fϕ
ℓ to effectively predict negative length changes.

In practice, we set Γ = L
2 , noting that the change in length will never be larger than half of the

product sequence.

Current et al. (2024) show experimentally that if fϕ
ℓ is a perfect length-prediction model, then discrete-

time diffusion outperforms all other methodologies for top-1 predictions by a significant margin,
exhibiting that sequence length information can be highly informative when predicting reactant
SMILES. However, the authors note that in practice, fϕ

ℓ cannot be sufficiently trained to accomplish
such a notable performance increase due to 1.) the distribution of (Lx − Ly) is heavily biased, 2.)
the SMILES encoding of a molecule can produce sequences of varying length, forcing fϕ

ℓ (y0) to
learn a one-to-many mapping, and 3.) accurate length prediction requires complex understanding of
chemical reagents, molecular reactivity, and molecular structure, and is itself a nontrivial problem.

To remedy problems 1. and 2., DiffER (Current et al., 2024) randomly appends Lp ∼ U{1, κ}
padding tokens to the SMILES representations of reactants, where κ is a set hyperparameter. This
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padding procedure smooths the distribution of (Lx − Ly) and allows flexibility in the output size of
generated reactants. A detailed overview of this procedure is provided in Appendix A.1. To reduce
reliance on the choice of κ, DiffER trains multiple diffusion models fθκ

t with different κ, producing
an ensemble of models which generate possible reactants. This approach provides better coverage
of the posterior distribution than a single model. We follow this same approach, but additionally
incorporate continuous-time models and classifier-based guidance sampling into the ensemble.

3.3 SMILES ADAPTED PARTICLE GUIDANCE FOR CHEMICAL GENERATION

Aside from the incorporation of continuous-time diffusion models into the DiffER methodology and
the formalization of said methodology, our other primary motivation of this work is to explore the
usage of classifier-based guidance mechanisms on the DiffER ensemble models to improve output
diversity. Classifier-based guidance steers diffusion sampling toward a specific classification c by
sampling from a tempered distribution pγ(xs|c, xt) ∝ p(c|xs)

γpθ(xs|xt), where pθ(xs|xt) is the
diffusion model, p(c|xs) is a classifier, and γ is the temperature parameter (Schiff et al., 2024):

log pγ(xs|c, xt) = γ log p(c|xs, xt) + log p(xs|xt). (5)
Schiff et al. (2024) formalize classifier-based guidance for discrete-space diffusion specifically, with
the assumption that pγ(xs|c, xt) factorizes independently across tokens. We follow their work to
apply classifier-based guidance to our models.

3.3.1 SMILES ADAPTED PARTICLE GUIDANCE

One of the primary limitations of employing diffusion models for highly conditioned molecular
generation tasks lies in the over-sampling of posterior peaks (Current et al., 2024; Sun et al., 2025),
resulting in reduced diversity and number of unique generated molecules. To this end, we take
inspiration from Corso et al. (2023) to encourage greater output diversity during sampling through
guidance. Corso et al. apply the gradient of a potential function log Φt(x

(1)
t , x

(2)
t , ..., x

(n)
t ) to

encourage greater output diversity, where x
(i)
t are independent samples from the diffusion model at

time t. The potential function is constructed such that higher scores are given to distant point pairs:

log Φt(x
(1)
t , x

(2)
t , ..., x

(n)
t ) =

ᾱt

2

∑
i,j

K(x(i)
t , x

(j)
t ), (6)

where K is a pairwise similarity kernel. Furthermore, the potential function is weighted by the
noise schedule ᾱt such that the guidance effect is stronger at earlier timesteps rather than later
ones. Unfortunately, it is non-trivial to construct a differentiable similarity kernel between noised
SMILES strings due to the non-singular nature of SMILES representations: the same molecule may
be represented by many different SMILES sequences of various atom orderings.

To remedy this, we construct the potential function such that it maximizes the probability that
Xt = {x(1)

t , x
(2)
t , ..., x

(n)
t } are noisy variants of different molecules,. Let m(i)

0 be the molecular form
of the denoised sequence x

(i)
0 . Then we aim to maximize the probability⋃

i̸=j

p(m
(i)
0 ̸= m

(j)
0 |x

(i)
t , x

(j)
t ) =

∏
i̸=j

p(m
(i)
0 ̸= m

(j)
0 |x

(i)
t , x

(j)
t ), (7)

Which factors as a result of the independence of generated SMILES. Taking the log, we can construct
the potential function as

log Φt(Xt) =
∑
i̸=j

log p(m
(i)
0 ̸= m

(j)
0 |x

(i)
t , x

(j)
t ). (8)

We train a classifier to estimate p(m
(i)
0 ̸= m

(j)
0 |x

(i)
t , x

(j)
t ). Recognizing that the parameterized

diffusion model fθ
t is already trained to produce an estimate of the de-noised sequences, we train an

additional classifier fΦ
K to detect if x̂(i)

0,t = fθ
t (x

(i)
t ) and x̂

(j)
0,t = fθ

t (x
(j)
t ) represent the same denoised

molecular structure, i.e.,

p(m
(i)
0 ̸= m

(j)
0 |x

(i)
t , x

(j)
t ) = fΦ

K (x̂
(i)
0,t, x̂

(j)
0,t) = (fΦ

K ◦ fθ
t )(x

(i)
t , x

(j)
t ). (9)

This parameterization results in the final potential function

log Φt(Xt) =
∑
i̸=j

log
(
(fΦ

K ◦ fθ
t )(x

(i)
t , x

(j)
t )
)
. (10)
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3.3.2 APPLYING POTENTIAL FUNCTIONS VIA CLASSIFIER-BASED GUIDANCE

Rather than using this potential function directly, we instead construct a classifier on x
(i)
t alone,

recognizing that applying the classifier individually for all x(i)
t ∈ Xt reproduces the potential

function:

log pΦ(I[m̂(i)
0,t /∈ M̂t/{m̂(i)

0,t}]|x
(i)
t , Xt) =

∑
j ̸=i

log
(
(fΦ

K ◦ fθ
t )(x

(i)
t , x

(j)
t )
)
. (11)

Here, m̂(i)
0,t is the molecular form of x̂(i)

0,t, M̂t is the set of molecules {m̂(1)
0,t , ..., m̂

(n)
0,t } associated with

Xt, and I is the indicator function. For the sake of clarity, we will refer to I[m̂(i)
0,t /∈ M̂t/{m̂(i)

0,t}] as

the guidance class c. We add the further stipulation that if x̂(i)
0,t is not a valid SMILES string or if m̂(i)

0,t
is not a valid molecule, then the indicator function defaults to False.

We finalize our guidance strategy by follow the approach of Schiff et al. (2024) to apply classifier
guidance to discrete sequences. This results in the posterior estimate

log pγΦ,θ(xs|c, xt) =

L∑
ℓ=1

log

(
pΦ(c|x̃)γpθ(x[ℓ]

s |xt)∑
x̃ pΦ(c|x̃)γpθ(x

[ℓ]
s |xt)

)
, (12)

where x̃ = [x1:ℓ−1
t , xℓ

s, x
ℓ+1:L
t ] is the sequence such that x̃ and xt are equal at all positions ℓ′ ̸= ℓ and

x̃ and xs are equal at position ℓ. We set γ = ᾱt to weight the guidance effect similarly to Equation 6.
Finally, we use the first-order Taylor approximation of log pΦ to efficiently compute the classifier
pΦ(c|x̃) using only a single forward pass (Schiff et al., 2024):

log pΦ(c|x̃) = (x̃− xt)
⊤∇xt log pΦ(c|xt) + log pΦ(c|xt). (13)

We refer readers to Schiff et al. (2024) for detailed proofs of this result.

Training and implementation details for fΦ
K are provided in Appendix A.2. During inference, fΦ

K is
incorporated in a manner reminiscent of reinforcement learning, allowing the model to learn and
adapt throughout the diffusion process.

4 EXPERIMENTS

Experimental Setup. We train and test our models on the USPTO-50K dataset (Lowe, 2017), a
commonly used set of patented reactions that provides SMILES strings for both reactants and products
and widely regarded as the benchmark dataset for retrosynthesis prediction. Reaction solvents are
not included in the retrosynthesis task. Each pair of products and reactants is augmented 20 times
according to Zhong et al. (2022), producing a final dataset of 1M root-aligned SMILES pairs. We use
the augmented train, validation, and test sets provided by Zhong et al.1

The DiffER2 ensemble contains eight individually trained diffusion models, depicted in Figure 1.
Each model shares the same network architecture, differentiated only by the diffusion parameters
and padding augmentation described in Section 3.2. Four of the diffusion models follow the original
DiffER training (Current et al., 2024) with losses adjusted according to Zhao et al. (2024): these
models operate in discrete-time with padding parameter κ ∈ {20, 40, 60, 80}. The remaining four
models operate in continuous-time, each paralleling their discrete-time counterparts with a padding
parameter κ ∈ {20, 40, 60, 80}. Further details on model architecture are provided in Appendix A.3.
Models which include particle guidance described in Section 3.3 are denoted DiffER2PG and
DiffER2PG+. In DiffER2PG, guidance sampling is run instead of the standard sampling procedure.
In DiffER2PG+, guidance sampling is run alongside standard sampling procedures, resulting in an
output distribution that combines DiffER2 and DiffER2PG.

Evaluation Metrics. We evaluate our models using standard top-k accuracy metrics. The DiffER2

ensemble is run on each product in the test set and generated reactants are ranked by frequency,
with the most generated reactant having the highest ranking. The top-k accuracy is defined as the
proportion of reactions in which the ground-truth reactant is in the top-k ranks. Top-k accuracy is

1https://github.com/otori-bird/retrosynthesis
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reported for k ∈ {1, 3, 5, 10}. We compare the DiffER2 ensemble with a wide range of template-
based, semi-template, and template-free methods for retrosynthesis prediction. However, we primarily
focus on comparing performance against other template-free methods. In addition to top-k accuracy,
we include results for round-trip accuracy using a forward synthesis model in Appendix ?? and
provide a case study on a ring-forming reaction in the main results and three other reactions in
Appendix A.8.

Property-Specific Performance Analysis. We additionally analyze how model performance com-
pares against various structural properties of the SMILES sequences to better understand model
performance. These properties include the target length difference between product and reactant
SMILES, the edit distance between product and reactant SMILES, if the target reaction is ring
adding/ring removing, and the number of branches in the target SMILES, each detailed in Ap-
pendixA.7. For each property, we calculate the slope and significance of a regression between the
property statistic and the top-k accuracy. In addition to these results, we report the performance of
DiffER2PG across different reaction types in Appendix A.6. We analyze how different molecular
structures correlate with model performance in Appendix A.9. Finally, we analyze the attention maps
for a non-ensemble diffusion model in Appendix A.10.

5 RESULTS

Top-K accuracies for the DiffER2 ensemble are reported in Table 1. DiffER2PG+ achieves the best
top-1, top-3, and top-5 (statistically tied with R-SMILES) among template-free models and the
second-best top-10 accuracy behind R-SMILES (Zhong et al., 2022). R-SMILES achieves the best
top-5 and top-10 performance, but lags behind DiffER2PG+ for k = 1, 3. DiffER2PG+ may better
estimate posterior peaks for SMILES sequences than R-SMILES, but it still struggles to sample from
lower probability regions in the posterior. This result is paralleled in GDiffRetro (Sun et al., 2025), a
semi-template method that utilizes diffusion sampling techniques. GDiffRetro achieves remarkable
k = 1 accuracy, the highest of all baseline models, but struggles to produce strong results for higher
values of k compared to other methods. Sun et al. (2025) suggest this may be due to the oversampling
of posterior peaks, which is also observed in our models. By employing an ensemble of diffusion
models and incorporating SMILES-adapted particle guidance, DiffER2PG+ can mitigate some of
this bias and provide greater coverage of the posterior, as evidenced by our stronger performance for
k > 1 compared to GDiffRetro. Compared to the original DiffER (Current et al., 2024), the DiffER2

ensembles all achieve stronger results than the discrete-time only ensemble, particularly for higher
values of k. This suggests that including continuous-time models greatly improves the diversity of
output reactants. Notably, there is minimal difference between all DiffER methodologies for top-1
accuracy, indicating that the location of posterior peaks for the various ensembles may be similar,
but that the shape of the distribution for lower probability samples is different. Interestingly, the
top-k performances of DiffER2 and DiffER2PG are remarkably similar despite the latter ensemble
producing more reactants.

Figure 2 shows box plots of the unique reactants generated by each ensemble for products in
the test set. The greater number of unique molecules produced by DiffER2PG indicates that the

Figure 2: Box plot showing the number of unique molecules produced by the various DiffER2

ensembles. "K=1 is False" indicates reactions that do not have an accurate top-1 reactant. "K=1 is
True" indicates reactions that do have an accurate top-1 reactant. "Overall" includes all reactions.
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Table 1: Top-K accuracy for a select set of baseline models. A full table of results can be found
in Appendix A.4. The best performing model in each category is bolded, while the second-best
performing model is underlined. A † indicates results that are statistically significant from DiffER at
the 95% level.

Category Model K=1 3 5 10

Template-based GLN (Dai et al., 2019) 52.5 69.0 75.6 83.7
LocalRetro (Chen & Jung, 2021) 53.4 77.5 85.9 92.4

Semi-template
RetroPrime (Wang et al., 2021) 51.4 70.8 74.0 76.1
G2Retro (Chen et al., 2023) 53.9 74.6 80.7 86.6
GDiffRetro (Sun et al., 2025) 58.9 79.1 81.9 -

Template-free

MEGAN (Sacha et al., 2021) 48.1 70.7 78.4 86.1
R-SMILES (Zhong et al., 2022) 56.3 79.2 86.2 91.0
DiffER (Current et al., 2024) 57.6 79.0 84.1 87.4

DiffER2 57.6 79.5 85.3† 88.2
DiffER2PG 57.4 79.4 85.4† 88.6†

DiffER2PG+ 57.7 79.8 86.1† 89.9†

SMILES-adapted particle guidance methodology does result in greater output diversity and reduced
sampling of posterior peaks. The combined result of DiffER2PG+ has an even greater number of
unique molecules, indicating that the difference between sample sets generated from DiffER2 and
DiffER2PG is substantial. Notably, this result may be impacted by the limited number of samples
taken from each model in the ensemble, which may not reflect the full posterior distribution for
each model. Regardless, DiffER2PG is an effective approach to improving output diversity while
maintaining comparable performance to DiffER2. This is desirable because multiple reactants could
produce the same product, thus validating accuracy, and output diversity is critical. Like Current et al.
(2024), we observe that fewer molecules are sampled when the top-1 result is accurate, indicating
that the models still over-sample from posterior peaks to the deficit of output diversity. However,
these effects are lessened compared to DiffER.

Case Study. A case study on an N-heterocyclization reaction with dihalides for the DiffER2PG+
ensemble is presented in Figure 3. Additional case studies are presented in Appendix A.8. The target
reaction is a reaction of a primary amine with a dihalide in an alkaline aqueous medium to form a
heterocyclic ring (Ju & Varma, 2006). While the ensemble model predicts this reaction, it is only
predicted 4% of the time, making it the third most frequently predicted reaction. The top-ranked
predicted reaction is a Borch reductive amination (Borch, 2003) in which a carbonyl group is reacted
with a secondary amine in the presence of a reducing agent to produce a tertiary amine. Unfortunately,
due to the presence of multiple carbonyl groups in the predicted reactant, this reaction will likely
produce unwanted byproducts. The second-ranked reaction is a substitution reaction with a mesylate
ester and a secondary amide nucleophile. Again, this reaction does produce the desired product, but
may produce byproducts due to the electrophilicity of the carbamate group, which may react with the
amine nucleophile.

To recap, all three top-ranked reactions could be used to form the target product, but only the 3rd
reaction, which matches the ground truth, would limit the creation of byproducts. Notably, this
reactant is not produced by the original DiffER ensemble (Current et al., 2024), demonstrating that
DiffER2PG+ significantly improves output diversity to benefit performance. In this case study, as
well as those presented in Appendix A.8, DiffER2PG+ demonstrates significant capability to predict
reactants that could be used to produce the desired product, though some reactions may be suboptimal
due to the possibility of undesirable side products. Thus, while the models can learn appropriate
reaction mechanisms and patterns, the predicted forward reaction’s purity may not be considered by
the models. Future work should consider approaches that include reducing the possibility of side
products as an objective. Furthermore, ambiguity in the optimality of reactants could be mitigated by
providing additional guidance to the model in a human-in-the-loop setting.
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Figure 3: Case study on a N-heterocyclization reaction with dihalides. From left to right: the
source product, the ground-truth reactant(s), and the top-3 predicted reactant(s) for the DiffER2PG+
ensemble. Red highlighting indicates differences between the source product and the reactants. The
value in parentheses indicates the rate at which the reactant(s) are produced by the ensemble.

Property Results. Figure 4 shows the results of the property-specific performance analysis de-
scribed in Section 4 for top-1 accuracy, with additional results available in Appendix A.7. These re-
sults highlight substantial differences in the capabilities of DiffER2PG+ and R-SMILES. DiffER2PG+
is significantly more capable at predicting reactant SMILES with a larger increase in sequence length
than the auto-regressive model. This result also helps explain the increased capability of diffusion
models to predict ring-removing reactions, as these are often reactions with a high increase in se-
quence length. This difference in capability can be understood via the attention maps for the diffusion
models: rather than building up the sequence token-by-token like an auto-regressive model, the
diffusion models work backward, attending to the full-sequence length in early layers then decreasing
the attended length as the model goes deeper (see Appendix A.10). Thus, diffusion models may be
"less inclined" to produce shorter sequences.

In contrast, diffusion models seem less capable of modeling ring-adding reactions than auto-regressive
models, though this difference is only significant for k > 1. Both models have a negative association
with the edit distance between product and reactant SMILES, except for top-1 accuracy, in which
DiffER2PG+ has no significant relationship with the edit distance. This suggests that some reactions
with large edits remain "easy" for DiffER2PG+ to predict. Both models struggle to generate sequences
with highly non-sequential behavior, as evidenced by the negative relationship between performance
and branch count. Overall, DiffER2PG+ outperforms R-SMILES conditioned on all properties except
for ring-adding reactions.

Figure 4: Lines of best fit between top-k accuracy and reactant properties for the DiffER2PG+ and
R-SMILES (Zhong et al., 2022) models. All slopes are significantly different from 0 (p < 0.01)
except Edit Distance.

6 CONCLUSION

In this work, we introduce SMILES-adapted particle guidance to encourage output diversity in
diffusion models for SMILES generation on the chemical retrosynthesis task. Combining this
guidance mechanism with the ensemble approach of DiffER (Current et al., 2024), we can significantly
increase the number of unique molecules generated while improving top-k accuracy metrics on
benchmark datasets. Furthermore, we offer an in-depth empirical analysis on the capabilities and
limitations of discrete diffusion for SMILES generation compared to traditional auto-regressive
approaches. In future work, we aim to investigate additional guidance methods for SMILES diffusion
models to reduce byproducts and explore applications of rectified linear flows for SMILES generation.
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REPRODUCIBILITY

We detail all model architectures and hyperparameters used to produce DiffER2 in Appendix A.3.
We follow the methods outlined in Section 3 and Appendix A.2 alongside the experimental setup in
Section 4 to train and evaluate our models. All code used to produce the results of DiffER2 will be
made publicly available.
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