Under review as a conference paper at ICLR 2025

UNSUPERVISED POINT CLOUD COMPLETION THROUGH
UNBALANCED OPTIMAL TRANSPORT

Anonymous authors
Paper under double-blind review

ABSTRACT

Unpaired point cloud completion explores methods for learning a completion map
from unpaired incomplete and complete point cloud data. In this paper, we propose
a novel approach for unpaired point cloud completion using the unbalanced optimal
transport map, called Unbalanced Optimal Transport Map for Unpaired Point
Cloud Completion (UOT-UPC). We demonstrate that the unpaired point cloud
completion can be naturally interpreted as the Optimal Transport (OT) problem and
introduce the Unbalanced Optimal Transport (UOT) approach to address the class
imbalance problem, which is prevalent in unpaired point cloud completion datasets.
Moreover, we analyze the appropriate cost function for unpaired completion tasks.
This analysis shows that the InfoCD cost function is particularly well-suited for
this task. Our model is the first attempt to leverage UOT for unpaired point cloud
completion, achieving competitive or superior results on both single-category and
multi-category datasets. In particular, our model is especially effective in scenarios
with class imbalance, where the proportions of categories are different between the
incomplete and complete point cloud datasets.

1 INTRODUCTION

The three-dimensional (3D) point cloud is a fundamental representation of 3D geometry processing
(Guo et al.l [2020). However, obtaining complete point cloud data is challenging because of the
limitations of the scanning process (Yuan et al., [2018). In this respect, many methods have been
proposed for point cloud completion, which aims to recover a complete point cloud from incomplete
(partial) data (Yu et al.l 2021} Wang et al.| 2022} Tchapmi et al.|, 2019; |Chen et al.l [2020; Hong
et al., 2023). These previous approaches can be categorized into paired (supervised) and unpaired
(unsupervised) methods. In the paired approach, the completion model is trained using paired data,
which consists of incomplete point clouds and their corresponding completions (Yu et al.l 2021}
Wang et al.,[2022; Tchapmi et al., [2019; [ Xia et al.,|2021} [Zhou et al.| 2021). However, acquiring this
paired training data is often difficult in practice. Therefore, the unpaired point cloud completion aims
to train a completion model from the independently sampled incomplete and complete point clouds,
leveraging shared semantic information, such as object class (Ma et al., 2023} |Chen et al., 2020; [Wen!
et al.l [2021)), or through domain adaptation using paired synthetic data (Liu et al.} [2024]).. In this
regard, the unpaired point cloud completion is a challenging task of significant practical importance.

Optimal Transport problem (OT) problem (Villani et al., |2009; [Peyré et al., 2017)) investigates the
cost-minimizing transport map that bridges two probability distributions. Since the introduction of
WGAN (Arjovsky et al., 2017), the OT-based Wasserstein distance has been widely adopted as a loss
function in various machine learning tasks, including unpaired point cloud completion (Chen et al.,
2020; /Wu et al.; 2020). Recently, several works introduced alternative approaches based on OT (Rout;
et al., 2022 |[Fan et al.,[2022). Instead of estimating the Wasserstein distance, these works focus on
learning the optimal transport map (OT Map) from the source distribution to the target distribution
using neural networks. Intuitively, the optimal transport map 7" serves as a generator of the target
distributions which minimizes the given cost function. In this respect, this cost function plays a
crucial role for T', because it determines how each input x is transported to 7'(x).

In this paper, we introduce a novel unpaired point cloud completion model based on the unbalanced
optimal transport map. We refer to our model as the Unbalanced Optimal Transport Map for
Unpaird Point Cloud Completion (UOT-UPC). We formulate the unpaired point cloud completion
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task as the optimal transport problem and investigate the suitable cost function for this task. Note
that the completion model is required to generate the correct complete point cloud corresponding
to each incomplete point cloud, not an arbitrary complete one. Therefore, identifying the proper
cost function is crucial for UOT-UPC. Moreover, we demonstrate that the class imbalance problem
exists in unpaired point cloud completion. Then, we verify that the Unbalanced Optimal Transport
(UOT) framework presents favorable properties for addressing this class imbalance. Our experiments
demonstrate that UOT-UPC achieves state-of-the-art performance in unpaired point cloud completion
in both single-category and multi-category settings. Furthermore, UOT-UPC exhibits particularly
robust performance when handling the class imbalance. Our contributions are summarized as follows:

* To the best of our knowledge, UOT-UPC is the first unpaired point cloud completion model
based on the Unbalanced Optimal Transport map.

* We formulate unpaired point cloud completion as the task of finding the optimal transport
map (OT Map) and analyze the most suitable transport cost function for this task.

» UOT-UPC attains state-of-the-art performance in unpaired point cloud completion in both
single-category and multi-category settings.

* We demonstrate that UOT-UPC exhibits significant robustness to class imbalance. This
robustness is induced by its UOT formulation.

Notations and Assumptions Let X, ) be two compact complete metric spaces, 4 and v be
probability distributions on X and ), respectively. p and v are assumed to be absolutely continuous
with respect to the Lebesgue measure. Throughout this paper, we denote the source distribution as
and the target distribution as v. Since the focus of this paper is on point cloud completion, 1+ and
v represent the distributions of the incomplete and complete point clouds, respectively. For a
measurable map 7', Ty represents the pushforward distribution of p. II(u,r) denote the set of
joint probability distributions on X’ x )’ whose marginals are y and v, respectively. Additionally, f*
indicates the convex conjugate of a function f, i.e., f*(y) = sup,cp{(z,y) — f(z)} for f : R —
[—00, ).

2 BACKGROUND

Optimal Transport The Optimal Transport (OT) problem investigates the task of transporting
the source distribution i € P(X) to the target distribution v € P()’). This problem was initially
formulated by [Monge|(1781)) using a deterministic transport map 1" : X — ) such that T p1 = v:

Typ=v

Cot(p,v) :== inf {/Xc(x,T(x))d,u(x) . )

Intuitively, Monge’s OT problem explores the optimal transport map 7™ that connects two distribu-
tions while minimizing the given cost function ¢(z, T'(x)). Although Monge’s OT problem offers
an intuitive understanding, it has theoretical limitations: this formulation is non-convex and the
optimal transport map 7" may not exist depending on the conditions on p and v (Villani et al.
2009). To overcome these issues, Kantorovich introduced a relaxed formulation of the OT problem
(Kantorovich, [1948). Formally, this Kantorovich formulation is expressed in terms of a coupling 7
rather than a transport map 7', as follows:

Cot(p,v) ;== inf [/ c(x,y)dm(z,y)| . )
X XY

mell(p,v)

where c is a cost function and 7= € II(u,v) is a coupling of p and v. In contrast to the Monge
problem, the minimizer 7* of Eq[2]always exists under some mild assumptions on (X, 1), (¥, v) and
the cost function ¢ (Villani et al.| |2009). Note that under our assumptions that ; and v are absolutely
continuous with respect to the Lebesgue measure, the deterministic optimal transport map 7™ exists
and the optimal coupling is given by 7% = (Id x T™*)4u (Villani et al., 2009).

Rout et al.| (2022)); [Fan et al| (2022) proposed a method for learning the optimal transport map
T™ using the semi-dual formulation of OT. This neural network-based approach for learning the
optimal transport map is referred to as Neural Optimal Transport (Neural OT). These works applied
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Neural OT to generative modeling and image-to-image translation tasks. In specific, these models
parametrize the potential function v and the transport map 7" as follows:

Lo, 7, =sup [ /X inf e (2, Ty () — v (To(x))] dpu(z) + /X %(y)dl’(y)} 3

Vg 0

Unbalanced Optimal Transport The classical OT problem assumes an exact transport between
two distributions p and v, i.e., mg = p, ™1 = v. However, this exact matching constraint results in
sensitivity to outliers (Balaji et al.,|2020; |S€journé et al.,|2022)) and vulnerability to class imbalance in
the classical OT problem (Eyring et al., 2024)). To mitigate this issue, a new variation of the optimal
transport problem is introduced, called Unbalanced Optimal Transport (UOT) (Chizat et al., 2018}
Liero et al.,|2018). Formally, the UOT problem is expressed as follows:

Cuntinr) =i, N[ cwapan(os) + Do (o) + Dustml)| . @

where M (X X ) denotes the set of positive Radon measures on X x Y. Dy, and Dy, rep-
resents two f-divergences generated by convex functions ¥;, and are defined as Dy, (m;|n) =

dn()

tions mg, 1 and p, v, respectively. Hence, in the UOT problem, the two marginal distributions
are softly matched to i, v, i.e., 1o =~ p and m; ~ v. Intuitively, the UOT problem can be seen as
the OT problem between 7y ~ p and ™ =~ v, rather than between the exact distributions y and v
(Choi et al.} 2023)). This flexibility offers robustness to outliers (Balaji et al.,[2020) and adaptability
to class imbalance problem between p and v (Eyring et al., 2024) to the UOT problem (See Sec
[3.2]for details). We refer to the optimal transport map 7™ from 7 to 7 as the unbalanced optimal
transport map.

/e, (dm(m)) dn(z). These f-divergences penalize the discrepancies between the marginal distribu-

Choi et al.[(2023) introduced a Neural OT model for the UOT problem into generative modeling,
called UOTM (See Sec[3.2]for details). In this paper, we introduce the unbalanced optimal transport
map to unpaired point cloud completion. Unlike generative modeling, in unpaired point cloud
completion, each incomplete source sample = should be transported to its corresponding complete
target sample y. Therefore, it is important to set an appropriate cost function ¢(z, y) in Eq E], because
this cost determines how each z is transported to y in the optimal transport map. In Sec[3.1] we
investigate the optimal cost function for unpaired point cloud completion.

3  UNPAIRED POINT COMPLETION THROUGH UNBALANCED OPTIMAL
TRANSPORT MAP

In this paper, our key idea is to train our model to learn the unbalanced optimal transport map
from the incomplete point cloud distribution . to the complete point cloud distribution v. In Sec
[3.1] we demonstrate that this optimal transport approach is appropriate for the unpaired point cloud
completion task. In particular, we investigate the most appropriate cost function for this application.
In Sec[3.2] we present our max-min learning objective. In Sec[3.3] we provide implementation details,
such as neural network parametrization and training algorithm.

3.1 MOTIVATION

Task Formulation as Optimal Transport Map We begin by formulating our target task: Unpaired
point cloud completion. Assume that we are given two sets of point cloud data: the incomplete point
cloud X = {z; | ; € X,i =1,---,N} and the complete point cloud Y = {y; | y; € V,j =
1,---,M}. Note that X and Y are not paired, i.e., X and Y are independently sampled from the
incomplete point cloud distribution x4 and the complete point cloud distribution v, respectively. In
practice, obtaining complete point clouds for real-world scene data is often prohibitively expensive,
making this unsupervised approach essential (Ma et al., 2023)). Formally, our goal is to train a point
completion model T using the unpaired datasets:

T:X — ), =z (Incomplete point cloud) — T'(x) (Point cloud completion). 5)

This point cloud completion model 7" must satisfy the following two conditions.
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Incomplete GT cd”? InfoCD

Figure 1: Visualization of the incomplete point cloud x, the ground-truth completion y9'(z),
and the three complete point clouds y¢ () that minimize the cost c¢(z, y§(x) for two cost functions:
cd'? and InfoCD, in the multi-category setting.

Table 1: Comparison between the cost-minimizer ¢§ () and the ground-truth completion y9° ()
for each incomplete point cloud x across diverse cost function c(-, -). We evaluate the optimality
of each cost function by measuring the L1 Chamfer distance cd'! x 10%(].) between g§(x) and y9¢(z).

(a) Single-category

Cost Function AVG  chair table trashbin TV  cabinet bookshelf sofa lamp  bed tub
USSPA 718 744 1715 6.98 6.08  10.02 7.00 6.12 835 790 4.79

Iy 1488 1121 1252 2237 829 2046 17.87 8.69 11.57 19.55 17.07
cd? 6.65 717 1735 8.35 546  10.59 5.77 639 370 646 5.28
ed? fyq 6.12 729 741 7.23 518  9.03 6.45 464 282 675 4.44

InfoCD 558 6.84 5.90 6.91 5.29 7.86 4.37 575 272 578 451
(b) Multi-category

Cost Function AVG  chair table trashbin TV  cabinet bookshelf sofa lamp  bed tub

USSPA 8.64 740 888 9.13 8.70 11.48 7.61 6.52 10.01 872 830
Iy 2397 1252 31.21 29.17 26.65 22.29 22.96 20.51 24.64 27.03 21.80
cd"? 9.78 8.07 7.69 14.00 591 18.86 7.88 734 623 876 7.07

cd opa 8.87 948  8.62 9.38 7.80 10.55 7.73 563 1459 1032 7.28
InfoCD 846 743 6.41 11.69 5.69 17.35 6.52 625 270 691 4.92

(i) T should generate a complete point cloud sample, i.e., y = T(x) ~ v.

(ii) T should transport each incomplete point cloud to its corresponding complete point cloud y,
rather than to any arbitrary complete point cloud.

In this regard, the optimal transport map (Eq. [I) is suitable for the point completion model. By
definition, the optimal transport map 7™ is (1) a generator of the complete point cloud samples,
i.e.,, T(x) ~ v for x ~ p that (2) optimally minimizes the given cost function ¢(z, T (x)). Thus,
the first condition (i) is naturally satisfied. If we can identify a suitable cost function c(-, -)) that
induces an explicit bias in 7™ to satisfy (ii), then 7 can serve as the point cloud completion
model. Specifically, this suitable cost function c(-, -) should assign a lower cost to c(x,T(z))
when T'(z) is the correct completion of 2 and a higher cost to c(x, y) when y is not the correct
corresponding completion.

Cost Function Comparison We conducted the following experiments to evaluate whether the
cost-minimizing pair of each cost function is appropriate for the unpaired point cloud completion
tasks. We test various cost function candidates, including [, L2-Chamfer distance (cd*?) (Fan et al.|
2017), one-directional L2-Chamfer distance (cdl]?w 4)» and InfoCD (Lin et al., 2024). Each cost

4
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Table 2: Class imbalance in the benchmark dataset from (Ma et al., 2023). The Incomplete and
Complete rows indicate the proportion of each class in the respective datasets. The Ratio represents
the proportion ratio (incomplete/complete). A Ratio # 1 indicates the presence of class imbalance.

class chair table trashbin TV  cabinet bookshelf sofa lamp bed tub

Incomplete  43%  21.3% 8.0% 64%  6.0% 6.1% 3.9% 1.1% 29% 12%
Complete  222% 22.2% 1.9% 6.1%  8.7% 2.5% 17.6% 129% 13% 4.7%

Ratio 1.94 0.96 421 1.05 0.69 2.44 0.22 009 223 0.26

function is defined as follows for an incomplete (partial) point cloud x; = {z;,, € R3} and complete
point cloud y; = {y;n, € R3}.

© b(wiy5) = 2 1Tim — Yim 13-

o cd”(z;, Yj) = 2, ming ||z, — Yinll3 + 2o MiNy, [|Tim — Yinl3-

* Cdlf2wd(xi7 y]) = ZnL Ininn szm - y’LnH%

* InfoCD(z;, ;) = lintocd (T4, Yj) + Lintocd (Y5, Ti)-

EXP{*% ming, d(wim,ym)}
En exp{— % ming, d(rzmﬂhn)}

where linfocp (24, Yi) = _ﬁ 22 log

For each partial point cloud = and a given cost function ¢(-, -), we select k-nearest complete samples
y$(x) for 1 < ¢ < k based on c(z,-) on the target dataset. Then, we compare them with the
ground-truth completion y9%(x). Our goal is to evaluate each cost function by testing whether the
k-nearest neighbor y¢(z) is indeed similar to the ground-truth completion y9*(z). If so, this suitable
cost function can be exploited to train our OT-based completion model via the optimal transport map.
The experiment is conducted on paired completion data from ShapeNet (Chang et al.,2015). In the
single-category setting, y¢ () is selected from the set of ground-truth completions within the same
category. In the multi-category setting, y¢(z) is selected from a mixture of ground-truth completions
from the ten categories, such as chairs, tables, trash bins, etc. For comparison, we also trained and
evaluated the competitive USSPA model (Ma et al., 2023) on each dataset.

Fig. Visualize the incomplete point cloud z, the ground-truth completion y9*(z), and the 3-nearest
neighbor 5 (z) for the cd*? and InfoCD cost functions. Fig. [1|show that selecting the cost-minimizing
pair based on InfoCD retrieves an appropriate y5(z), which closely resembles y9*(z), in the multi-
category setting (See Appendix [B|for additional results for other cost functions and the single-category
setting). Tablepresents similar results. Table reports the L1 chamfer distance between 9t (z) and
the nearest neighbor y$(x) for each cost function. The results indicate that the {2 cost performs the
worst. This result shows that o cost is unsuitable for the point cloud completion task. In contrast, the
InfoCD achieves competitive results, performing comparably or better than USSPA on the majority
of datasets. Therefore, in Sec[3.2] we propose an OT Map approach using the InfoCD cost
function for the point cloud completion task, based on our investigation of the most suitable cost
function. Furthermore, we conduct an ablation study on the cost function in Sec5.3|to demonstrate
how this cost function comparison closely aligns with the completion performance of UOT-UPC.

Unbalanced Optimal Transport Map for Class Imbalance Problem In this paragraph, we clarify
the motivation for considering the unbalanced optimal transport map, instead of the classical optimal
transport map. Our goal in this paper is unpaired point cloud completion. Since the training data
X and Y are not given as pairs, there may be a class imbalance problem. For instance, consider
point cloud data consisting of *Chair’ and *Table’ classes. The ratio of these two classes may differ
between the incomplete point cloud distribution x4 and the complete point cloud distribution . While
the incomplete point cloud data might consist of 50% ’*Chair’ and 50% ’Table,” the complete point
cloud data could be composed of 70% ’Chair’ and 30% ’Table.’

Unfortunately, the standard optimal transport problem (Eq. [I) is susceptible to this class imbalance
problem (Eyring et al.,|2024). The standard optimal transport map transports each source sample
x ~ i to a target sample y ~ v without any rescaling. Consequently, in this class imbalance case,
20% of the *Table’ incomplete point cloud data would be transported to 20% of the *Chair’ complete
point cloud. This behavior is undesirable for a point cloud completion model. In practice, this
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Algorithm 1 Training algorithm of UOT-UPC

Require: The mixture of the incomplete and complete point cloud distribution p. The complete
point cloud distribution v. U} (x) = Softplus(z). Generator network Ty and the discriminator
network vg. dl is density loss. Total iteration number K.

1: fork=0,1,2,..., K do

2: Sample a batch X ~ p, Y ~ v.

3 Lot = 15 Lwex Vi (e (@, To(2)) + vg (To(2))) + 1377 Lyey P(—vo(y)) —dl (Ty(x))
4: Update 6 by maximizing the loss L,, 7.

5: Update ¢ by minimizing the loss £, 7.

6: end for

class imbalance problem occurs in the unpaired point cloud completion benchmark (Table
). In the multi-category case, the proportion of some categories, e.g., "lamp’ and ’trash bin’
classes, significantly differs by more than threefold between the incomplete and complete point cloud
distributions. To address this issue, we suggest the unbalanced optimal transport map as our point
cloud completion model. The robustness of UOT to class imbalance will be explained in Sec[3.2]
and empirically demonstrated through experiments in Sec

3.2 ESTIMATION OF UNBALANCED OPTIMAL TRANSPORT MAP

In this section, we propose our point cloud completion model, which is based on the unbalanced
optimal transport map, called UOT-UPC. Our goal is to learn the unbalanced optimal transport map
T from the incomplete point cloud distribution u to the complete point cloud distribution v using a
neural network Tp. To this end, we adopt the UOTM framework (Choi et al.,[2023)). This approach is
based on the following semi-dual formulation of the UOT problem (Eq. |4} |Vacher & Vialard| (2023))).

Cuot(11, ) = sup [ /X S0 (—0f(2)) dula) + / W (—u(y))du(y)| . ©)

vel Yy
where the c-transform of v is defined as v°(z) = ing (c(z,y) — v(y)). We refer to the optimal
ye

maximizer v* of Eq. [6]as the optimal potential function for the UOT problem. Following previous
approaches for learning the optimal maps (Korotin et al., 2021; |[Fan et al.,[2022; Rout et al., [2022;
Choi et al.| [2023)), we introduce Tj to approximate the unbalanced optimal transport map 7™ as
follows:

Ty(x) € arginf [c(z,y) —v(y)] &  v°(2) = c(x, To(z)) — v (Th(z)), Q)

yey

Note that the unbalanced optimal transport map 7™ satisfies the above conditions (Eq. [/)) with the
optimal potential v* (Choi et al., 2023). By parametrizing the optimal potential v* with a neural
network v and substituting v using the right-hand side of Eq. [6} we arrive at the following learning
objective L, 0. T"

Lo =it | [ 9 (= ipfle(e. Do) = v (o)) ) o)+ [ 05 (=0t )] ®

Note that the learning objective £, 7, becomes the standard optimal transport map when the
generator functions of f-divegence ¥, are the convex indicator function at {1}, which means that
its convex conjugate W} is the identity function. Moreover, when the optimal potential v* is given,
the unbalanced optimal transport map can be interpreted as the optimal transport map between
mo(x) = Ui’ (—v*“(z))u(z) and 71 (y) = ¥3'(—v*(y))v(y) (Choi et al., 2023). These rescaling
factors U:'(-) offer the flexibility of the UOT map to handle the class imbalance problem
(Eyring et al., 2024). Our main contribution lies in formulating unpaired point cloud completion as
the optimal transport problem, investigating the optimal cost function for this task, and applying this
cost function within the UOTM framework.

3.3 IMPLEMENTATION DETAIL

As described in Algorithm 1} £,, 1, can be computed by the Monte Carlo approximation with
mini-batch samples from the incomplete point cloud = and the complete point cloud y. Intuitively,
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our learning objective is similar to the adversarial training in GANs (Goodfellow et al.| [2020).
Our potential v4 and completion model Tj play similar roles as the discriminator and generator in
GANSs, respectively. This is because the minimization with respect to Ty in Eq[§]is equivalent to the
maximization of £, T,

We parametrize the generator and discriminator using the similar backbone network as USSPA (Ma
et al.,2023) (See Appendixfor the implementation details). The InfoCD cost function InfoCD(-, -)
(Lin et al.L[2024) is adopted as the cost function ¢(-, -) in the learning objective L, +,Ty- Moreover, in
practice, we set the source distribution [ as a mixture of the incomplete point cloud distribution p
and complete point cloud distribution v, with a mixing probability of 50%, i.e., i = 0.5u + 0.5v.
Then, we train the unbalanced optimal transport map between [ and v. This mixture trick helps our
generator to produce high-fidelity complete point clouds. We conducted ablation studies on the
mixture trick and the cost function in Sec

4 RELATED WORKS

Unpaired Point Completion Model Unpaired point completion models have developed following
recent advancements in unsupervised learning. Unpaired (Chen et al., 2020) is one of the first
approaches for unpaired point completion. This model introduces a GAN-based model that maps
the latent features of the incomplete point cloud to the latent features of the complete point cloud.
Wu et al.| (2020) proposes a conditional GAN model that generates multiple plausible complete
point clouds conditioned on the incomplete point cloud. Shapelnv (Zhang et al.l 2021)) employs an
optimization-based GAN-inversion approach (Xia et al.,2022). Shapelnv finds the optimal generator
input noise to reconstruct the complete point cloud from the given incomplete point cloud. This
is conducted by minimizing the distance between the input incomplete point cloud, which is for
completion, and the partial point cloud, which is obtained by degrading the generator’s output. Cycle4
(Wen et al.||2021)) proposes two simultaneous cyclic transformations between the latent spaces of
incomplete point cloud and complete one through missing region coding. USSPA (Ma et al., 2023)
proposes a symmetric shape-preserving method based on GAN. This method utilizes a two-part
generator. The first part is a coarse predictor with a symmetry learning module. The second part is an
autoencoder with local feature grouping and an upsampling module. In this paper, we propose an
unbalanced optimal transport approach for point cloud completion. To the best of our knowledge, this
is the first attempt to introduce the optimal transport map for the unpaired point cloud completion.

5 EXPERIMENTS

In this section, we evaluate our model from various perspectives. For implementation details of
experiments, please refer to Appendix

* In Sec[5.I] we evaluate our model on the unpaired point cloud completion benchmark,
considering both single-category and multi-category settings.

* In Sec[5.2] we demonstrate the advantages of the UOT framework over the standard OT
approach and the other point cloud completion model by testing under the class imbalance
problem.

* In Sec[5.3] we conduct various ablations studies to investigate the effects of different cost
functions, the source mixture trick, and the cost-intensity hyperparameters 7.

5.1 UNPAIRED POINT COMPLETION PERFORMANCE

Experimental Settings In this section, we present both qualitative and quantitative results for
unpaired point cloud completion using our model. We train and evaluate our model on the dataset
proposed in|Ma et al.| (2023)), which comprises ten categories, including chairs, trash bins, lamps,
etc. To ensure a reliable and comprehensive comparison, we evaluate our model on (i) individual
categories (Single-category) and (ii) all categories combined (Multi-category). In the single-category
experiments, each model is trained and evaluated exclusively on data from a single class. In contrast,

'Since we assume ¥; to be convex and non-negative, its convex conjugate W is an increasing function.
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Figure 2: Comparison of generated samples from UOT-UPC and USSPA in the single-category.

Table 3: Point cloud completion comparison in the single-category setting, assessed by L1
Chamfer Distance cd'' x 10% (]). The boldface denotes the best performance among unpaired
methods.

Method AVG chair table trashbin TV  cabinet bookshelf sofa lamp  bed tub
PoinTr (Yu et al.||2021) 1437 13.65 12.52 15.26 12.69 17.32 13.99 1236 17.05 15.13 13.77
Paired Disp3D (Wang et al.[[2022) 778 624 820 7.12 7.12 10.36 6.94 5.60 1403 690 532
TopNet (Tchapmi et al.|2019)  7.07  6.39  5.79 7.40 6.26 8.37 7.02 594 850 7.81 725
Shapelnv (Zhang et al.|[2021)  21.39 17.97 17.28 33.51 1569 2626 25.51 1428 16.69 3233 1443
Unpaired (Chen et al.[2020) 1047 841  7.52 12.08 6.72 17.45 9.95 692 1936 10.04 6.22
Unpaired Cycle4 (Wen et al.[[2021) 1153 9.11  11.35 11.93 8.40 15.47 12.51 10.63 1225 1573 792
USSPA (Ma et al.[2023) 856 822 7.68 10.36 7.66  10.77 7.84 614 1193 820 6.75
UOT-UPC (Ours) 762 788 6.44 8.83 6.00 11.84 7.32 6.65 730 8.69 549

the multi-category experiments use data from all classes for both training and evaluation. The
multi-category setting is particularly challenging, as the model should learn to complete partial point
clouds from diverse categories. For quantitative evaluation, we utilize the L1 Chamfer distance (Fan
et al};2017) (cd'") and F-scores (Tatarchenko et al., 2019) (F.1%, FL% ). These scores evaluate our
completion results against the ground-truth completion on the test data. Further details on training

procedures and evaluation metrics are provided in Appendix [A]

Single-category In the single-category setting, we compare our model against existing point
cloud completion models, including paired (supervised) and unpaired models. Fig. 2] illustrates the
generated samples and Table presents the L1 Chamfer distance (cd'!) results (See Appendix
for generated samples in the multi-category and Table 0] in the Appendix for results on the PCN
dataset). Our model outperforms other unpaired models in seven out of ten categories in terms of
cd''. The average column (AVG) indicates the average cd!! scores across all ten categories. In the
AVG column, our model surpasses the second-best unpaired approach, USSPA (Ma et al.,|2023)), by
more than 10% and even outperforms two paired approaches, PoinTr (Yu et al.,[2021) and Disp3D
(Wang et al.||2022)). In particular, our model outperforms all other models, including the supervised
ones, on TV and lamp datasets. Moreover, Table [ reports the average of F-scores across all ten
categories, following the evaluation scheme of Ma et al.| (2023). Our model attains F2:1% and F1%.
scores of 19.55 and 76.83, respectively, surpassing all other unpaired methods. To sum up, our model
consistently outperforms other unpaired point cloud models on most of the single-category datasets.

Multi-category Table 4| presents the cd'! and F-scores in the multi-category setting. Note that
since this setting considers the entire dataset at once, the reported scores can be understood as a
weighted sum of scores for each category, where the weights correspond to the ratio of training
data in Table [2l Our model achieves F%'%score of 17.84, outperforming all other unsupervised
benchmarks. Additionally, our model attains cd'* = 8.96 and F.L%, = 71.23, which are comparable

to the best-performing unpaired model, USSPA. In summary, our model shows comparable or better
performance than the state-of-the-art model in multi-category point cloud completion.
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Table 4: Point cloud completion comparison in the single-category setting and the multi-category
setting, assessed by L1 Chamfer Distance cd'! x 102 (]) and F-scores FO;1% x 102, F.1%_ x 102 (1).

score score

Method Single-category Multi-category
Foal 1 Foge b cdy FGRET Fif t
PoinTr (Yu et al.|[2021) - - 14.37 18.35 80.41
Paired Disp3D (Wang et al.||2022) - - 7.78 30.29 78.26
TopNet (Tchapmi et al.[[2019) - - 7.07 12.33 80.37

Shapelnv (Zhang et al.|2021) 15.58 66.53 19.35 16.98 69.66
Unpaired (Chen et al.||2020) 12.20 64.33 10.12 10.86 66.68

Unpaired Cycle4 (Wen et al.|[2021) 9.98 60.14 12.00 8.61 56.57
USSPA (Ma et al.|[2023) 17.49 73.41 8.96 16.88 72.31
UOT-UPC (Ours) 19.55 76.83 8.96 17.84 71.23

5.2 ROBUSTNESS TO CLASS IMBALANCE OF UOT APPROACH

In this section, we explore the robustness of our model in class-imbalanced settings. As described
in Sec[3.2] a key advantage of the UOT framework is its robustness and stability in handling class
imbalance scenarios (Eyring et al.,|2024). When the proportions of data classes between the source
and target distributions differ, UOT can rescale the mass to compensate for this imbalance, ensuring
that the learned transport map remains meaningful and accurate. Furthermore, note that this class
imbalance is neither an unusual nor a contrived scenario. As we observed in Table 2] this class
imbalance exists in even our multi-category experiment in Sec. [5.1]

Experimental Settings To explore the effects of class imbalance, we observe how the performance
of existing point cloud completion models changes with different class imbalance ratios. To be more
specific, we select two categories of datasets: Datal (category: TV) and Data2 (category: Table).
These categories are selected because of their relatively abundant training samples and the distinct
differences in their shape. For the incomplete point cloud samples, we use the entire training data
for both Data 1 and Data2, maintaining their ratio of 6.4 : 21.3 in Table[2] For the complete point
cloud samples, we manipulate the imbalance ratio r, i.e., Datal and Data2 are sampled at a ratio of
6.4 : 21.3 x r. Then, each model is evaluated across diverse values of 7 to explore the effects of class
imbalance. We compare our model to (i) the standard OT counterpart of our model (OT-UPC) and
(i1) USSPA, the state-of-the-art method for unpaired point cloud completion. Note that, as discussed
in Sec. our model corresponds to the standard OT counterpart when U} = Id. For detailed
hyperparameter settings, please refer to Appendix [A]

Discussion As shown in Table 5] our model outperforms the two alternative models across various
class imbalance settings. (See Table[§]in the Appendix for results on other class combinations.) Note
that we tested < 1, because Data2 has a significantly larger total number of training samples, more
than three times that of Datal (Table[2)). Hence, setting » > 1 would result in discarding too many
training data samples. Our model consistently demonstrates stable performance, ranging between
6.65 and 6.78 across various class imbalance ratios r, while USSPA shows considerably greater
variance. In contrast, the standard OT generally performs poorly, with its best result appearing in the
balanced case (1:1 ratio). We hypothesize that this phenomenon occurs due to the unstable training
dynamics of the standard OT. The stable training dynamics in learning the transport map is also
another advantage of the UOT over OT (Choi et al., 2024). In summary, these results indicate that our
UOT-UPC offers strong robustness to class imbalance problem.

5.3 ABLATION STUDY

Effect of Appropriate Cost Functional We validate our motivation experiments (Table |1} for
selecting InfoCD (Lin et al., 2024} as the cost function. In the (unbalanced) optimal transport
map approach, the cost function c(+, -) in Eq. [8|determines how each input z is transported to the
y = T*(x) by the optimal transport map T*. Thus, setting an appropriate cost function is crucial.
In this regard, as a reminder, we assessed various cost function options to determine whether their
cost-minimizing pairs are suitable for the point cloud completion in Sec[3.1] Here, we conduct an
ablation study by modifying the cost function c(-, ) in our model (Eq. [8). Each model is evaluated
on the multi-category setting and the single-category settings for the ’trash bin’ and TV’ classes.
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Table 5: Comparison of class imbalance ro- Table 6: Ablation study on the cost function
bustness (cd'' x 102 (})) on (Datal, Data2) =  ¢(-,-) (cd"* x 10% (})).

(TV, Table).
03 03 07 N Cost function ~Multi-category trashbin TV
i : ; : I 23.80 3922 19.19
USSPA 7.60 6.97 8.08 7.97 cd? 10.05 10.57 6.37
OT-UPC 25.12 25.72 2430 21.49 Cdlszd 13.19 10.05 7.23
Ours 6.71 6.65 6.70 6.78 InfoCD 8.96 8.83 6.00
10.0
Table 7: Ablation study on the source mixture 93
trick, i.e., the complete input. - 9.0
2 85 —e— Multi-category
i 0.1% 1% 8 bookshelf
Category Complete Input  cd'* |  Fou 1T Feb. T 8.0 —e— lamp
Sinel 7.90 17.40 74.11 7.5
mngle v 762 1955  76.83 .
Multi 9.00 16.66 70.86 0.02 0025 0.5 0.1 0.25
v 8.96 17.84 71.23 T

Figure 3: Ablation study on the cost intensity
T (cd™ x 102 ().

Table [6] demonstrates that our model achieves the best performance using the InfoCD cost function,
followed by (cdfcwd, cd?), and [2. (See Tablefor the cost ablation results on the PCN dataset.)
Note that this ranking closely aligns with the results of our cost function investigation in Table
This consistency suggests a strong correlation between our motivation experiments and actual model
performance. Furthermore, these findings suggest that further exploration of alternative cost functions
could potentially enhance our model’s performance. We leave this exploration for future work.

Add Complete Sample to Source As described in Sec[3.3] we introduced the source mixture trick
to our model, i.e., the source distribution is given as a mixture of incomplete and complete point
cloud data with a mixing probability of 50%. Here, we conduct an ablation study to evaluate the
effect of this source mixture trick. The results are presented in Table[/} In both single-category and
multi-category experiments, our model exhibits consistent improvements in both cd'! and F scores
with the source mixture trick. The purpose of this source mixture trick is to assist our transport
map in generating the target distribution better. For input complete data, the optimal transport map
should ideally learn the identity mapping, which is relatively easier compared to completing the input
incomplete point cloud. We hypothesize this property encourages the training process, enabling the
model to generate complete point clouds more efficiently. Therefore, we empirically observed an
improvement in the fidelity of the point cloud completion when using this source mixture trick.

7 Robustness For the last ablation study, we evaluate the robustness of our model with respect
to the cost-intensity hyperparameter 7, defined as ¢(z,y) = 7 x InfoCD(z,y). Specifically, we
tested our model on the multi-category setting and the single-category settings of the *bookshelf” and
’lamp’ classes, while changing 7 € {0.02,0.025, 0.05,0.1,0.25}. Note that we impose challenging
conditions by setting the maximum 7 to Ty,ax = 0.25 and the minimum 7 to 7,5, = 0.02, resulting
in a ratio of Tyax/Tmin > 10. As depicted in Fig. our model shows moderate performance
across various 7 values. In particular, the sweet spot of 7 lies roughly between 0.05 and 0.1. The
performance deteriorates by approximately 10% when 7 is either too large (Tyax) or too small (Tyin)-

6 CONCLUSION

In this paper, we introduce UOT-UPC, an unpaired point cloud completion model based on the UOT
map. To the best of our knowledge, our work is the first attempt to introduce the unbalanced optimal
transport map to the point cloud completion task. We formulated the unpaired point cloud completion
task as an (unbalanced) optimal transport problem and investigated the optimal cost function for
this task. Our experiments demonstrated a strong correlation between cost function selection and
the model’s point cloud completion performance. When combined with the InfoCD cost function,
our UOT-UPC attains competitive performance compared to both unpaired and paired point cloud
completion models. Moreover, our experiments showed that UOT-UPC presents robustness to the
class imbalance problem, which is prevalent in the unpaired point cloud completion tasks.

10
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ETHICS STATEMENT

The point cloud completion research contributes positively to various fields, including autonomous
driving, robotics and virtual/augmented reality. Also, it is applicable to urban planning and cultural
heritage preservation. Our research does not involve personal data or human subjects, and we have
carefully addressed potential data bias issues. We also ensure that there are no risks related to illegal
surveillance or privacy violations. As a result, we believe that this research is conducted ethically and
poses no social or ethical concerns.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we submitted the anonymized source in the supplementary
material and included the implementation and experiment details in Appendix
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A IMPLEMENTATION DETAILS

Unless otherwise stated, our implementation follows the experimental settings and hyperparameters
of USSPA Ma et al| (2023).

A.1 NETWORK

We adopt the generator and discriminator architectures from the USSPA framework as completion
model Ty and potential v4. For the potential vy, the final sigmoid layer of the discriminator is omitted
to allow for the parameterization of the potential function, enabling outputs to assume any real values.
Additionally, we remove the feature discriminator to streamline the architecture. In the potential
v4, we implement the encoder proposed by |Yuan et al.|(2018) in their Point Cloud Networks (PCN).
Following the encoder, we employ an MLPConv layer specified as MLPConv(Cj,,, [C1,...,Cy]) =
MLPConv(1024, [256, 256, 128, 128, 1]), which indicates that the output y is computed as follows:

Yy = COHVIDC4:128705:1(RCLU(. . RGLU(COHV1Dcm:1024_’c’1:256 (ZL’)) . )) (9)

Here, ConvlD¢, ¢, represents a 1D convolutional layer with Cj, input channels and Cl, output
channels.

The completion model Ty receives as input a concatenation of the incomplete point cloud
and a complete point cloud. These inputs are processed independently to generate distinct complete
point cloud samples. The completion model 7y follows an Encoder-Decoder architecture, augmented
by an upsampling refinement module (upsampling module) in sequence. The upsampling module is
implemented using a 4-layer MLPConv network, where the final MLPConv layer is responsible for
refining and adding detailed structures to the output (Ma et al., [2023)). Specifically, the inputs to the
last MLPConv layer are composed of the skeleton point cloud produced by the Encoder-Decoder
structure and the features extracted from the third MLPConv layer.

A.2 IMPLEMENTATION DETAIL

Motivation - Optimal Cost Function The incomplete and complete point clouds utilized in the
optimal cost function outlined in Sec[3.1]are sourced from the dataset proposed by [Ma et al.| (2023).
This dataset consists of paired incomplete and complete point clouds. For a fair comparison, we
shuffle the complete point clouds to create an unpaired setting. We then use these shuffled point
clouds as artificial complete data to train the USSPA model.

Training Concerning the loss function L, 7. We employ Infocd as the cost function ¢ with a
coordinate value of 7 = 0.05. For the hyperparameters of InfoCD, we set Tinfocq to 2 and ArntocD
to 1.0 x 1077, The functions ¥} and W3 are defined using the Softplus activation, SP(x) =
2log(1+e*) —2log QEI As a regularization term, we incorporate the density loss dl proposed by Ma
et al.|(2023)), and we designate a coordinate value of 10.5 for dl. The objective of Potential vy is to
assign high value to target sample y while assigning lower values to generated sample §. We utilize
the Adam optimizer with 3; = 0.95, 2 = 0.999 and learning rates of 2.0 x 107°,1.0 x 10~° for
the potential vy and completion model Tp, respectively. The training is conducted with a batch size 4.
The maximum epoch of training is 480. We report the final results based on the epoch that yields the
best performance.

Ablation study - Effect of Appropriate Cost Functional We set cost function coordinate value
7 = 100 for cost function cd"? fwd cd'? and [2. All other parameters and settings, unless otherwise
specified, are consistent with those used in our UOT-UPC model.

The softplus function is translated and scaled to satisfy SP(0) = 0 and SP’(0) = 1.

14



Under review as a conference paper at ICLR 2025

Evaluation Metrics

+ L1-Chamfer Distance cd'! (Fan et al., 2017)

Jzi]

1 1 . 1 .
cd(2,y5) = 3 ( Zm;n [Zim — Yjnll2 + Tl Zr%n |Zim — yjn||2~> (10)

where each of x;, y; is point cloud

» F score . .. (Tatarchenko et al.,[2019)

Fo _2x P(a) x R(«a)
score — P(a) + R(a)
where P(a) = \{wim@nilminnwz‘im—ynuz)mn

_ Hyjn€yjlming ([#im =y nll2) <o}l
and R(«) = 7]

Y

measures the accuracy of x;,

measures the completeness of x;.

A.3 OT-UPC

For the completion model Ty, we implement MLPConv(512, [128, 128, 1]) following the PCN en-

coder (Yuan et al., 2018). We incorporate R1 regularization (Roth et al.| and R2 regularization
(Mescheder et al., 2018)) to the loss function L,, 7. Both regularization terms are assigned coordinate

values r1 = r2 = 0.2. The density loss dl is excluded from the L, 7. A gradient clipping value of 1.0
is applied. We use Adam optimizer with 3; = 0.9, B2 = 0.999 and a learning rate lr7, = 5.0 x 10~°
for the completion model Ty. In addition, we use Adam optimizer with 5; = 0.9, 82 = 0.999 and
learning rate Ir,, = 1.0 X 10~7 for the potential vg. All other settings not explicitly mentioned
follow those of our model, UOT-UPC.

B ADDITIONAL RESULTS

B.1 ADDITIONAL VISUALIZATION OF THE THREE-NEAREST NEIGHBOR OF VARIOUS COST
FUNCTIONS FROM SEC. 3.1

bookshelf

chair

trash bin

Figure 4: Visualization of the incomplete point cloud z, the ground-truth completion 39t (z),
and the three complete point clouds y¢ () that minimize the cost ¢(z, y$(x) for two cost functions:
cd'? and InfoCD, in the single-category setting.
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Figure 5: Visualization of the incomplete point cloud z, the ground-truth completion 49 (), and
the three complete point clouds y§(x) that minimize the cost ¢(z, y{(z)) for two cost functions:
cd?? fwd and [2, in the multi-category setting.
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Figure 6: Visualization of the incomplete point cloud z, the ground-truth completion y9 (), and
the three complete point clouds yS(x) that minimize the cost c(z, y§(x)) for two cost functlons:
cd? fwd and [2, in the single-category setting.
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B.3 QUALITATIVE COMPARISON BETWEEN OUR UOT-UPC AND EXISTING METHODS ON THE
KITTI DATASET.

Input

UOT-UPC

Input

UOT-UPC

Figure 11: Point cloud completion results of the UOT-UPC model on the KITTI dataset
2012). The model is trained on the ShapeNet dataset under the car category and tested on
partial point clouds from the KITTI dataset without fine-tuning. From the qualitative comparison with
previous approaches (Fig[T2), our UOT-UPC model achieves higher-fidelity point cloud completion,
demonstrating better global structure and more evenly distributed points.

KITTI

Input Shapelnv.  OptDE ACL-SPC Input Shapelnv. OptDE ACL-SPC

Figure 12: Point cloud completion results of previous models on the KITTI dataset

(2012). The generated samples are taken from ACL-SPC (Hong et al] 2023), which is a
self-supervised model. The others are unsupervised approaches: Shapelnv (Zhang et al]] 202T)) and

OptDE (Gong ct al} 2022).

21



Under review as a conference paper at ICLR 2025

B.4 COMPARISON OF CLASS IMBALANCE ROBUSTNESS FOR DIVERSE CLASS COMBINATIONS.

Table 8: Comparison of class imbalance robustness (cd'' x 102 (])) between UOT-UPC (ours),
USSPA, and OT-UPC on diverse class combinations (Datal, Data2). Our UOT-UPC consistently
outperforms other models across a wide range of class imbalance ratios in both additional class
settings.

(a) (Datal, Data2) = (Lamp, Trash bin) with sample count = (1.1 : 8.0 * r).

T 0.3 0.5 0.7 1

USSPA 10.16 949 1021 10.21
oT 22.03 2137 21.07 2943

Ours 924 901 939 941

(b) (Datal, Data2) = (Lamp, Bed) with sample count = (1.1 : 2.9 * ).

T 0.3 0.5 0.7 1

USSPA  9.64 9.78 927 9.79
oT 22.68 20.18 2291 2275

Ours 8.65 8.83 887 9.04

B.5 ADDITIONAL EXPERIMENTAL RESULTS ON THE PCN DATASET

Table 9: Point cloud completion comparison on the PCN dataset in the single-category setting,
assessed by L1 Chamfer Distance cd'' x 10% (). All unpaired models are trained with ScanNet. The
boldface denotes the best performance among unpaired methods. Our UOT-UPC outperforms all
other unpaired point cloud completion models.

Method AVG  chair table cabinet sofa lamp

PoinTr (Yu et al | 2021 549 561 568 608 567 444

Paired Disp3D (Wang et al. 2 2.51 242 230 2.38 244  3.00
TopNet (Tchapmi et al[2019) 592 634 545 6.06 580 595

19.05 23.18 15.66 17.14 2285 1640
14.87 12.87 8.14 1430 18.23 20.82
17.60 1425 1573 21.06 21.54 1540
12.63 13.52  9.66 8.89 15.51 15.57

Unpaired

7.92 1022 8.11 6.41 8.08 6.79

Table 10: Ablation study on the cost function c(-, -) on the PCN dataset (cd™ x 10% (})). The
results are consistent with Table |§l InfoCD achieved the best performance, while the L2 distance
yielded the worst results.

Cost function cabinet sofa  lamp

ly 1938 17.92 17.27
cd®? 852 833 723
cd f 1428 1170 11.76
InfoCD 6.41 8.08 6.79
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