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ABSTRACT

Unpaired point cloud completion explores methods for learning a completion map
from unpaired incomplete and complete point cloud data. In this paper, we propose
a novel approach for unpaired point cloud completion using the unbalanced optimal
transport map, called Unbalanced Optimal Transport Map for Unpaired Point
Cloud Completion (UOT-UPC). We demonstrate that the unpaired point cloud
completion can be naturally interpreted as the Optimal Transport (OT) problem and
introduce the Unbalanced Optimal Transport (UOT) approach to address the class
imbalance problem, which is prevalent in unpaired point cloud completion datasets.
Moreover, we analyze the appropriate cost function for unpaired completion tasks.
This analysis shows that the InfoCD cost function is particularly well-suited for
this task. Our model is the first attempt to leverage UOT for unpaired point cloud
completion, achieving competitive or superior results on both single-category and
multi-category datasets. In particular, our model is especially effective in scenarios
with class imbalance, where the proportions of categories are different between the
incomplete and complete point cloud datasets.

1 INTRODUCTION

The three-dimensional (3D) point cloud is a fundamental representation of 3D geometry processing
(Guo et al., 2020). However, obtaining complete point cloud data is challenging because of the
limitations of the scanning process (Yuan et al., 2018). In this respect, many methods have been
proposed for point cloud completion, which aims to recover a complete point cloud from incomplete
(partial) data (Yu et al., 2021; Wang et al., 2022; Tchapmi et al., 2019; Chen et al., 2020; Hong
et al., 2023). These previous approaches can be categorized into paired (supervised) and unpaired
(unsupervised) methods. In the paired approach, the completion model is trained using paired data,
which consists of incomplete point clouds and their corresponding completions (Yu et al., 2021;
Wang et al., 2022; Tchapmi et al., 2019; Xia et al., 2021; Zhou et al., 2021). However, acquiring this
paired training data is often difficult in practice. Therefore, the unpaired point cloud completion aims
to train a completion model from the independently sampled incomplete and complete point clouds,
leveraging shared semantic information, such as object class (Ma et al., 2023; Chen et al., 2020; Wen
et al., 2021), or through domain adaptation using paired synthetic data (Liu et al., 2024).. In this
regard, the unpaired point cloud completion is a challenging task of significant practical importance.

Optimal Transport problem (OT) problem (Villani et al., 2009; Peyré et al., 2017) investigates the
cost-minimizing transport map that bridges two probability distributions. Since the introduction of
WGAN (Arjovsky et al., 2017), the OT-based Wasserstein distance has been widely adopted as a loss
function in various machine learning tasks, including unpaired point cloud completion (Chen et al.,
2020; Wu et al., 2020). Recently, several works introduced alternative approaches based on OT (Rout
et al., 2022; Fan et al., 2022). Instead of estimating the Wasserstein distance, these works focus on
learning the optimal transport map (OT Map) from the source distribution to the target distribution
using neural networks. Intuitively, the optimal transport map T serves as a generator of the target
distributions which minimizes the given cost function. In this respect, this cost function plays a
crucial role for T , because it determines how each input x is transported to T (x).

In this paper, we introduce a novel unpaired point cloud completion model based on the unbalanced
optimal transport map. We refer to our model as the Unbalanced Optimal Transport Map for
Unpaird Point Cloud Completion (UOT-UPC). We formulate the unpaired point cloud completion
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task as the optimal transport problem and investigate the suitable cost function for this task. Note
that the completion model is required to generate the correct complete point cloud corresponding
to each incomplete point cloud, not an arbitrary complete one. Therefore, identifying the proper
cost function is crucial for UOT-UPC. Moreover, we demonstrate that the class imbalance problem
exists in unpaired point cloud completion. Then, we verify that the Unbalanced Optimal Transport
(UOT) framework presents favorable properties for addressing this class imbalance. Our experiments
demonstrate that UOT-UPC achieves state-of-the-art performance in unpaired point cloud completion
in both single-category and multi-category settings. Furthermore, UOT-UPC exhibits particularly
robust performance when handling the class imbalance. Our contributions are summarized as follows:

• To the best of our knowledge, UOT-UPC is the first unpaired point cloud completion model
based on the Unbalanced Optimal Transport map.

• We formulate unpaired point cloud completion as the task of finding the optimal transport
map (OT Map) and analyze the most suitable transport cost function for this task.

• UOT-UPC attains state-of-the-art performance in unpaired point cloud completion in both
single-category and multi-category settings.

• We demonstrate that UOT-UPC exhibits significant robustness to class imbalance. This
robustness is induced by its UOT formulation.

Notations and Assumptions Let X , Y be two compact complete metric spaces, µ and ν be
probability distributions on X and Y , respectively. µ and ν are assumed to be absolutely continuous
with respect to the Lebesgue measure. Throughout this paper, we denote the source distribution as µ
and the target distribution as ν. Since the focus of this paper is on point cloud completion, µ and
ν represent the distributions of the incomplete and complete point clouds, respectively. For a
measurable map T , T#µ represents the pushforward distribution of µ. Π(µ, ν) denote the set of
joint probability distributions on X × Y whose marginals are µ and ν, respectively. Additionally, f∗

indicates the convex conjugate of a function f , i.e., f∗(y) = supx∈R{⟨x, y⟩ − f(x)} for f : R →
[−∞,∞].

2 BACKGROUND

Optimal Transport The Optimal Transport (OT) problem investigates the task of transporting
the source distribution µ ∈ P(X ) to the target distribution ν ∈ P(Y). This problem was initially
formulated by Monge (1781) using a deterministic transport map T : X → Y such that T#µ = ν:

Cot(µ, ν) := inf
T#µ=ν

[∫
X
c(x, T (x))dµ(x)

]
. (1)

Intuitively, Monge’s OT problem explores the optimal transport map T ∗ that connects two distribu-
tions while minimizing the given cost function c(x, T (x)). Although Monge’s OT problem offers
an intuitive understanding, it has theoretical limitations: this formulation is non-convex and the
optimal transport map T ∗ may not exist depending on the conditions on µ and ν (Villani et al.,
2009). To overcome these issues, Kantorovich introduced a relaxed formulation of the OT problem
(Kantorovich, 1948). Formally, this Kantorovich formulation is expressed in terms of a coupling π
rather than a transport map T , as follows:

Cot(µ, ν) := inf
π∈Π(µ,ν)

[∫
X×Y

c(x, y)dπ(x, y)

]
. (2)

where c is a cost function and π ∈ Π(µ, ν) is a coupling of µ and ν. In contrast to the Monge
problem, the minimizer π⋆ of Eq 2 always exists under some mild assumptions on (X , µ), (Y, ν) and
the cost function c (Villani et al., 2009). Note that under our assumptions that µ and ν are absolutely
continuous with respect to the Lebesgue measure, the deterministic optimal transport map T ∗ exists
and the optimal coupling is given by π⋆ = (Id× T ⋆)#µ (Villani et al., 2009).

Rout et al. (2022); Fan et al. (2022) proposed a method for learning the optimal transport map
T ⋆ using the semi-dual formulation of OT. This neural network-based approach for learning the
optimal transport map is referred to as Neural Optimal Transport (Neural OT). These works applied
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Neural OT to generative modeling and image-to-image translation tasks. In specific, these models
parametrize the potential function v and the transport map T as follows:

Lvϕ,Tθ
= sup

vϕ

[∫
X
inf
Tθ

[c (x, Tθ(x))− vϕ (Tθ(x))] dµ(x) +

∫
X
vϕ(y)dν(y)

]
. (3)

Unbalanced Optimal Transport The classical OT problem assumes an exact transport between
two distributions µ and ν, i.e., π0 = µ, π1 = ν. However, this exact matching constraint results in
sensitivity to outliers (Balaji et al., 2020; Séjourné et al., 2022) and vulnerability to class imbalance in
the classical OT problem (Eyring et al., 2024). To mitigate this issue, a new variation of the optimal
transport problem is introduced, called Unbalanced Optimal Transport (UOT) (Chizat et al., 2018;
Liero et al., 2018). Formally, the UOT problem is expressed as follows:

Cuot(µ, ν) = inf
π∈M+(X×Y)

[∫
X×Y

c(x, y)dπ(x, y) +DΨ1
(π0|µ) +DΨ2

(π1|ν)
]
, (4)

where M+(X × Y) denotes the set of positive Radon measures on X × Y . DΨ1
and DΨ2

rep-
resents two f -divergences generated by convex functions Ψi, and are defined as DΨi(πi|η) =∫
Ψi

(
dπi(x)
dη(x)

)
dη(x). These f -divergences penalize the discrepancies between the marginal distribu-

tions π0, π1 and µ, ν, respectively. Hence, in the UOT problem, the two marginal distributions
are softly matched to µ, ν, i.e., π0 ≈ µ and π1 ≈ ν. Intuitively, the UOT problem can be seen as
the OT problem between π0 ≈ µ and π1 ≈ ν, rather than between the exact distributions µ and ν
(Choi et al., 2023). This flexibility offers robustness to outliers (Balaji et al., 2020) and adaptability
to class imbalance problem between µ and ν (Eyring et al., 2024) to the UOT problem (See Sec
3.2 for details). We refer to the optimal transport map T ⋆ from π0 to π1 as the unbalanced optimal
transport map.

Choi et al. (2023) introduced a Neural OT model for the UOT problem into generative modeling,
called UOTM (See Sec 3.2 for details). In this paper, we introduce the unbalanced optimal transport
map to unpaired point cloud completion. Unlike generative modeling, in unpaired point cloud
completion, each incomplete source sample x should be transported to its corresponding complete
target sample y. Therefore, it is important to set an appropriate cost function c(x, y) in Eq 4, because
this cost determines how each x is transported to y in the optimal transport map. In Sec 3.1, we
investigate the optimal cost function for unpaired point cloud completion.

3 UNPAIRED POINT COMPLETION THROUGH UNBALANCED OPTIMAL
TRANSPORT MAP

In this paper, our key idea is to train our model to learn the unbalanced optimal transport map
from the incomplete point cloud distribution µ to the complete point cloud distribution ν. In Sec
3.1, we demonstrate that this optimal transport approach is appropriate for the unpaired point cloud
completion task. In particular, we investigate the most appropriate cost function for this application.
In Sec 3.2, we present our max-min learning objective. In Sec 3.3, we provide implementation details,
such as neural network parametrization and training algorithm.

3.1 MOTIVATION

Task Formulation as Optimal Transport Map We begin by formulating our target task: Unpaired
point cloud completion. Assume that we are given two sets of point cloud data: the incomplete point
cloud X = {xi | xi ∈ X , i = 1, · · · , N} and the complete point cloud Y = {yj | yj ∈ Y, j =
1, · · · ,M}. Note that X and Y are not paired, i.e., X and Y are independently sampled from the
incomplete point cloud distribution µ and the complete point cloud distribution ν, respectively. In
practice, obtaining complete point clouds for real-world scene data is often prohibitively expensive,
making this unsupervised approach essential (Ma et al., 2023). Formally, our goal is to train a point
completion model T using the unpaired datasets:

T : X → Y, x (Incomplete point cloud) 7→ T (x) (Point cloud completion). (5)

This point cloud completion model T must satisfy the following two conditions.
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Figure 1: Visualization of the incomplete point cloud x, the ground-truth completion ygt(x),
and the three complete point clouds yci (x) that minimize the cost c(x, yci (x) for two cost functions:
cdl2 and InfoCD, in the multi-category setting.

Table 1: Comparison between the cost-minimizer gc1(x) and the ground-truth completion ygt(x)
for each incomplete point cloud x across diverse cost function c(·, ·). We evaluate the optimality
of each cost function by measuring the L1 Chamfer distance cdl1×102(↓) between gc1(x) and ygt(x).

(a) Single-category

Cost Function AVG chair table trash bin TV cabinet bookshelf sofa lamp bed tub

USSPA 7.18 7.44 7.15 6.98 6.08 10.02 7.00 6.12 8.35 7.90 4.79

l2 14.88 11.21 12.52 22.37 8.29 20.46 17.87 8.69 11.57 19.55 7.07
cdl2 6.65 7.17 7.35 8.35 5.46 10.59 5.77 6.39 3.70 6.46 5.28

cdl2fwd 6.12 7.29 7.41 7.23 5.18 9.03 6.45 4.64 2.82 6.75 4.44
InfoCD 5.58 6.84 5.90 6.91 5.29 7.86 4.37 5.75 2.72 5.78 4.51

(b) Multi-category

Cost Function AVG chair table trash bin TV cabinet bookshelf sofa lamp bed tub

USSPA 8.64 7.40 8.88 9.13 8.70 11.48 7.61 6.52 10.01 8.72 8.30

l2 23.97 12.52 31.21 29.17 26.65 22.29 22.96 20.51 24.64 27.03 21.80
cdl2 9.78 8.07 7.69 14.00 5.91 18.86 7.88 7.34 6.23 8.76 7.07

cdl2fwd 8.87 9.48 8.62 9.38 7.80 10.55 7.73 5.63 14.59 10.32 7.28
InfoCD 8.46 7.43 6.41 11.69 5.69 17.35 6.52 6.25 2.70 6.91 4.92

(i) T should generate a complete point cloud sample, i.e., y = T (x) ∼ ν.

(ii) T should transport each incomplete point cloud to its corresponding complete point cloud y,
rather than to any arbitrary complete point cloud.

In this regard, the optimal transport map (Eq. 1) is suitable for the point completion model. By
definition, the optimal transport map T ⋆ is (1) a generator of the complete point cloud samples,
i.e., T (x) ∼ ν for x ∼ µ that (2) optimally minimizes the given cost function c(x, T (x)). Thus,
the first condition (i) is naturally satisfied. If we can identify a suitable cost function c(·, ·)) that
induces an explicit bias in T ⋆ to satisfy (ii), then T ⋆ can serve as the point cloud completion
model. Specifically, this suitable cost function c(·, ·) should assign a lower cost to c(x, T (x))
when T (x) is the correct completion of x and a higher cost to c(x, y) when y is not the correct
corresponding completion.

Cost Function Comparison We conducted the following experiments to evaluate whether the
cost-minimizing pair of each cost function is appropriate for the unpaired point cloud completion
tasks. We test various cost function candidates, including l2, L2-Chamfer distance (cdl2) (Fan et al.,
2017), one-directional L2-Chamfer distance (cdl2fwd), and InfoCD (Lin et al., 2024). Each cost
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Table 2: Class imbalance in the benchmark dataset from (Ma et al., 2023). The Incomplete and
Complete rows indicate the proportion of each class in the respective datasets. The Ratio represents
the proportion ratio (incomplete/complete). A Ratio ̸= 1 indicates the presence of class imbalance.

class chair table trash bin TV cabinet bookshelf sofa lamp bed tub

Incomplete 43% 21.3% 8.0% 6.4% 6.0% 6.1% 3.9% 1.1% 2.9% 1.2%
Complete 22.2% 22.2% 1.9% 6.1% 8.7% 2.5% 17.6% 12.9% 1.3% 4.7%

Ratio 1.94 0.96 4.21 1.05 0.69 2.44 0.22 0.09 2.23 0.26

function is defined as follows for an incomplete (partial) point cloud xi = {xim ∈ R3} and complete
point cloud yi = {yin ∈ R3}.

• l2(xi, yj) =
∑

m ∥xim − yim∥22.
• cdl2(xi, yj) =

∑
m minn ∥xim − yin∥22 +

∑
n minm ∥xim − yin∥22.

• cdl2fwd(xi, yj) =
∑

m minn ∥xim − yin∥22.
• InfoCD(xi, yj) = ℓInfoCD(xi, yj) + ℓInfoCD(yj , xi).

where ℓInfoCD (xi, yi) = − 1
|yi|
∑

n log

{
exp{− 1

τ′ minm d(xim,yin)}∑
n exp{− 1

τ minm d(xim,yin)}

}
For each partial point cloud x and a given cost function c(·, ·), we select k-nearest complete samples
yci (x) for 1 ≤ i ≤ k based on c(x, ·) on the target dataset. Then, we compare them with the
ground-truth completion ygt(x). Our goal is to evaluate each cost function by testing whether the
k-nearest neighbor yci (x) is indeed similar to the ground-truth completion ygt(x). If so, this suitable
cost function can be exploited to train our OT-based completion model via the optimal transport map.
The experiment is conducted on paired completion data from ShapeNet (Chang et al., 2015). In the
single-category setting, yci (x) is selected from the set of ground-truth completions within the same
category. In the multi-category setting, yci (x) is selected from a mixture of ground-truth completions
from the ten categories, such as chairs, tables, trash bins, etc. For comparison, we also trained and
evaluated the competitive USSPA model (Ma et al., 2023) on each dataset.

Fig. 1 visualize the incomplete point cloud x, the ground-truth completion ygt(x), and the 3-nearest
neighbor yc3(x) for the cdl2 and InfoCD cost functions. Fig. 1 show that selecting the cost-minimizing
pair based on InfoCD retrieves an appropriate yc3(x), which closely resembles ygt(x), in the multi-
category setting (See Appendix B for additional results for other cost functions and the single-category
setting). Table 1 presents similar results. Table 1 reports the L1 chamfer distance between ygt(x) and
the nearest neighbor yc1(x) for each cost function. The results indicate that the l2 cost performs the
worst. This result shows that l2 cost is unsuitable for the point cloud completion task. In contrast, the
InfoCD achieves competitive results, performing comparably or better than USSPA on the majority
of datasets. Therefore, in Sec 3.2, we propose an OT Map approach using the InfoCD cost
function for the point cloud completion task, based on our investigation of the most suitable cost
function. Furthermore, we conduct an ablation study on the cost function in Sec 5.3 to demonstrate
how this cost function comparison closely aligns with the completion performance of UOT-UPC.

Unbalanced Optimal Transport Map for Class Imbalance Problem In this paragraph, we clarify
the motivation for considering the unbalanced optimal transport map, instead of the classical optimal
transport map. Our goal in this paper is unpaired point cloud completion. Since the training data
X and Y are not given as pairs, there may be a class imbalance problem. For instance, consider
point cloud data consisting of ’Chair’ and ’Table’ classes. The ratio of these two classes may differ
between the incomplete point cloud distribution µ and the complete point cloud distribution ν. While
the incomplete point cloud data might consist of 50% ’Chair’ and 50% ’Table,’ the complete point
cloud data could be composed of 70% ’Chair’ and 30% ’Table.’

Unfortunately, the standard optimal transport problem (Eq. 1) is susceptible to this class imbalance
problem (Eyring et al., 2024). The standard optimal transport map transports each source sample
x ∼ µ to a target sample y ∼ ν without any rescaling. Consequently, in this class imbalance case,
20% of the ’Table’ incomplete point cloud data would be transported to 20% of the ’Chair’ complete
point cloud. This behavior is undesirable for a point cloud completion model. In practice, this
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Algorithm 1 Training algorithm of UOT-UPC

Require: The mixture of the incomplete and complete point cloud distribution µ. The complete
point cloud distribution ν. Ψ∗

i (x) = Softplus(x). Generator network Tθ and the discriminator
network vϕ. dl is density loss. Total iteration number K.

1: for k = 0, 1, 2, . . . ,K do
2: Sample a batch X ∼ µ, Y ∼ ν.
3: Lv,T = 1

|X|
∑

x∈X Ψ∗
1 (−c (x, Tθ(x)) + vϕ (Tθ(x)))+

1
|Y |
∑

y∈Y Ψ∗
2(−vϕ(y))−dl (Tθ(x))

4: Update θ by maximizing the loss Lv,T .
5: Update ϕ by minimizing the loss Lv,T .
6: end for

class imbalance problem occurs in the unpaired point cloud completion benchmark (Table
2). In the multi-category case, the proportion of some categories, e.g., ’lamp’ and ’trash bin’
classes, significantly differs by more than threefold between the incomplete and complete point cloud
distributions. To address this issue, we suggest the unbalanced optimal transport map as our point
cloud completion model. The robustness of UOT to class imbalance will be explained in Sec 3.2
and empirically demonstrated through experiments in Sec 5.2.

3.2 ESTIMATION OF UNBALANCED OPTIMAL TRANSPORT MAP

In this section, we propose our point cloud completion model, which is based on the unbalanced
optimal transport map, called UOT-UPC. Our goal is to learn the unbalanced optimal transport map
T ⋆ from the incomplete point cloud distribution µ to the complete point cloud distribution ν using a
neural network Tθ. To this end, we adopt the UOTM framework (Choi et al., 2023). This approach is
based on the following semi-dual formulation of the UOT problem (Eq. 4, Vacher & Vialard (2023)).

Cuot(µ, ν) = sup
v∈C

[∫
X
−Ψ∗

1 (−vc(x))) dµ(x) +

∫
Y
−Ψ∗

2(−v(y))dν(y)

]
, (6)

where the c-transform of v is defined as vc(x) = inf
y∈Y

(c(x, y)− v(y)). We refer to the optimal

maximizer v⋆ of Eq. 6 as the optimal potential function for the UOT problem. Following previous
approaches for learning the optimal maps (Korotin et al., 2021; Fan et al., 2022; Rout et al., 2022;
Choi et al., 2023), we introduce Tθ to approximate the unbalanced optimal transport map T ⋆ as
follows:

Tθ(x) ∈ arginf
y∈Y

[c(x, y)− v(y)] ⇔ vc(x) = c (x, Tθ(x))− v (Tθ(x)) , (7)

Note that the unbalanced optimal transport map T ∗ satisfies the above conditions (Eq. 7) with the
optimal potential v⋆ (Choi et al., 2023). By parametrizing the optimal potential v⋆ with a neural
network vϕ and substituting vc using the right-hand side of Eq. 6, we arrive at the following learning
objective Lvϕ,Tθ

:

Lvϕ,Tθ
= inf

vϕ

[∫
X
Ψ∗

1

(
− inf

Tθ

[c (x, Tθ(x))− vϕ (Tθ(x))]

)
dµ(x) +

∫
Y
Ψ∗

2 (−vϕ(y)) dν(y)

]
. (8)

Note that the learning objective Lvϕ,Tθ
becomes the standard optimal transport map when the

generator functions of f -divegence Ψi are the convex indicator function at {1}, which means that
its convex conjugate Ψ∗

i is the identity function. Moreover, when the optimal potential v⋆ is given,
the unbalanced optimal transport map can be interpreted as the optimal transport map between
π0(x) = Ψ∗

1
′(−v⋆c(x))µ(x) and π1(y) = Ψ∗

2
′(−v⋆(y))ν(y) (Choi et al., 2023). These rescaling

factors Ψ∗
i
′(·) offer the flexibility of the UOT map to handle the class imbalance problem

(Eyring et al., 2024). Our main contribution lies in formulating unpaired point cloud completion as
the optimal transport problem, investigating the optimal cost function for this task, and applying this
cost function within the UOTM framework.

3.3 IMPLEMENTATION DETAIL

As described in Algorithm 1, Lvϕ,Tθ
can be computed by the Monte Carlo approximation with

mini-batch samples from the incomplete point cloud x and the complete point cloud y. Intuitively,

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

our learning objective is similar to the adversarial training in GANs (Goodfellow et al., 2020).
Our potential vϕ and completion model Tθ play similar roles as the discriminator and generator in
GANs, respectively. This is because the minimization with respect to Tθ in Eq 8 is equivalent to the
maximization of Lvϕ,Tθ

1.

We parametrize the generator and discriminator using the similar backbone network as USSPA (Ma
et al., 2023) (See Appendix A for the implementation details). The InfoCD cost function InfoCD(·, ·)
(Lin et al., 2024) is adopted as the cost function c(·, ·) in the learning objective Lvϕ,Tθ

. Moreover, in
practice, we set the source distribution µ̃ as a mixture of the incomplete point cloud distribution µ
and complete point cloud distribution ν, with a mixing probability of 50%, i.e., µ̃ = 0.5µ + 0.5ν.
Then, we train the unbalanced optimal transport map between µ̃ and ν. This mixture trick helps our
generator to produce high-fidelity complete point clouds. We conducted ablation studies on the
mixture trick and the cost function in Sec 5.3.

4 RELATED WORKS

Unpaired Point Completion Model Unpaired point completion models have developed following
recent advancements in unsupervised learning. Unpaired (Chen et al., 2020) is one of the first
approaches for unpaired point completion. This model introduces a GAN-based model that maps
the latent features of the incomplete point cloud to the latent features of the complete point cloud.
Wu et al. (2020) proposes a conditional GAN model that generates multiple plausible complete
point clouds conditioned on the incomplete point cloud. ShapeInv (Zhang et al., 2021) employs an
optimization-based GAN-inversion approach (Xia et al., 2022). ShapeInv finds the optimal generator
input noise to reconstruct the complete point cloud from the given incomplete point cloud. This
is conducted by minimizing the distance between the input incomplete point cloud, which is for
completion, and the partial point cloud, which is obtained by degrading the generator’s output. Cycle4
(Wen et al., 2021) proposes two simultaneous cyclic transformations between the latent spaces of
incomplete point cloud and complete one through missing region coding. USSPA (Ma et al., 2023)
proposes a symmetric shape-preserving method based on GAN. This method utilizes a two-part
generator. The first part is a coarse predictor with a symmetry learning module. The second part is an
autoencoder with local feature grouping and an upsampling module. In this paper, we propose an
unbalanced optimal transport approach for point cloud completion. To the best of our knowledge, this
is the first attempt to introduce the optimal transport map for the unpaired point cloud completion.

5 EXPERIMENTS

In this section, we evaluate our model from various perspectives. For implementation details of
experiments, please refer to Appendix A.

• In Sec 5.1, we evaluate our model on the unpaired point cloud completion benchmark,
considering both single-category and multi-category settings.

• In Sec 5.2, we demonstrate the advantages of the UOT framework over the standard OT
approach and the other point cloud completion model by testing under the class imbalance
problem.

• In Sec 5.3, we conduct various ablations studies to investigate the effects of different cost
functions, the source mixture trick, and the cost-intensity hyperparameters τ .

5.1 UNPAIRED POINT COMPLETION PERFORMANCE

Experimental Settings In this section, we present both qualitative and quantitative results for
unpaired point cloud completion using our model. We train and evaluate our model on the dataset
proposed in Ma et al. (2023), which comprises ten categories, including chairs, trash bins, lamps,
etc. To ensure a reliable and comprehensive comparison, we evaluate our model on (i) individual
categories (Single-category) and (ii) all categories combined (Multi-category). In the single-category
experiments, each model is trained and evaluated exclusively on data from a single class. In contrast,

1Since we assume Ψi to be convex and non-negative, its convex conjugate Ψ∗
i is an increasing function.
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Figure 2: Comparison of generated samples from UOT-UPC and USSPA in the single-category.

Table 3: Point cloud completion comparison in the single-category setting, assessed by L1
Chamfer Distance cdl1 × 102 (↓). The boldface denotes the best performance among unpaired
methods.

Method AVG chair table trash bin TV cabinet bookshelf sofa lamp bed tub

Paired
PoinTr (Yu et al., 2021) 14.37 13.65 12.52 15.26 12.69 17.32 13.99 12.36 17.05 15.13 13.77

Disp3D (Wang et al., 2022) 7.78 6.24 8.20 7.12 7.12 10.36 6.94 5.60 14.03 6.90 5.32
TopNet (Tchapmi et al., 2019) 7.07 6.39 5.79 7.40 6.26 8.37 7.02 5.94 8.50 7.81 7.25

Unpaired

ShapeInv (Zhang et al., 2021) 21.39 17.97 17.28 33.51 15.69 26.26 25.51 14.28 16.69 32.33 14.43
Unpaired (Chen et al., 2020) 10.47 8.41 7.52 12.08 6.72 17.45 9.95 6.92 19.36 10.04 6.22

Cycle4 (Wen et al., 2021) 11.53 9.11 11.35 11.93 8.40 15.47 12.51 10.63 12.25 15.73 7.92
USSPA (Ma et al., 2023) 8.56 8.22 7.68 10.36 7.66 10.77 7.84 6.14 11.93 8.20 6.75

UOT-UPC (Ours) 7.62 7.88 6.44 8.83 6.00 11.84 7.32 6.65 7.30 8.69 5.49

the multi-category experiments use data from all classes for both training and evaluation. The
multi-category setting is particularly challenging, as the model should learn to complete partial point
clouds from diverse categories. For quantitative evaluation, we utilize the L1 Chamfer distance (Fan
et al., 2017) (cdl1) and F-scores (Tatarchenko et al., 2019) (F 0.1%

score , F 1%
score). These scores evaluate our

completion results against the ground-truth completion on the test data. Further details on training
procedures and evaluation metrics are provided in Appendix A.

Single-category In the single-category setting, we compare our model against existing point
cloud completion models, including paired (supervised) and unpaired models. Fig. 2 illustrates the
generated samples and Table 3 presents the L1 Chamfer distance (cdl1) results (See Appendix B.2
for generated samples in the multi-category and Table 9 in the Appendix for results on the PCN
dataset). Our model outperforms other unpaired models in seven out of ten categories in terms of
cdl1. The average column (AVG) indicates the average cdl1 scores across all ten categories. In the
AVG column, our model surpasses the second-best unpaired approach, USSPA (Ma et al., 2023), by
more than 10% and even outperforms two paired approaches, PoinTr (Yu et al., 2021) and Disp3D
(Wang et al., 2022). In particular, our model outperforms all other models, including the supervised
ones, on TV and lamp datasets. Moreover, Table 4 reports the average of F-scores across all ten
categories, following the evaluation scheme of Ma et al. (2023). Our model attains F 0.1%

score and F 1%
score

scores of 19.55 and 76.83, respectively, surpassing all other unpaired methods. To sum up, our model
consistently outperforms other unpaired point cloud models on most of the single-category datasets.

Multi-category Table 4 presents the cdl1 and F-scores in the multi-category setting. Note that
since this setting considers the entire dataset at once, the reported scores can be understood as a
weighted sum of scores for each category, where the weights correspond to the ratio of training
data in Table 2. Our model achieves F 0.1%score of 17.84, outperforming all other unsupervised
benchmarks. Additionally, our model attains cdl1 = 8.96 and F 1%

score = 71.23, which are comparable
to the best-performing unpaired model, USSPA. In summary, our model shows comparable or better
performance than the state-of-the-art model in multi-category point cloud completion.
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Table 4: Point cloud completion comparison in the single-category setting and the multi-category
setting, assessed by L1 Chamfer Distance cdl1 × 102 (↓) and F-scores F 0.1%

score × 102, F 1%
score × 102 (↑).

Method Single-category Multi-category

F 0.1%
score ↑ F 1%

score ↑ cdl1 ↓ F 0.1%
score ↑ F 1%

score ↑

Paired
PoinTr (Yu et al., 2021) - - 14.37 18.35 80.41

Disp3D (Wang et al., 2022) - - 7.78 30.29 78.26
TopNet (Tchapmi et al., 2019) - - 7.07 12.33 80.37

Unpaired

ShapeInv (Zhang et al., 2021) 15.58 66.53 19.35 16.98 69.66
Unpaired (Chen et al., 2020) 12.20 64.33 10.12 10.86 66.68

Cycle4 (Wen et al., 2021) 9.98 60.14 12.00 8.61 56.57
USSPA (Ma et al., 2023) 17.49 73.41 8.96 16.88 72.31

UOT-UPC (Ours) 19.55 76.83 8.96 17.84 71.23

5.2 ROBUSTNESS TO CLASS IMBALANCE OF UOT APPROACH

In this section, we explore the robustness of our model in class-imbalanced settings. As described
in Sec 3.2, a key advantage of the UOT framework is its robustness and stability in handling class
imbalance scenarios (Eyring et al., 2024). When the proportions of data classes between the source
and target distributions differ, UOT can rescale the mass to compensate for this imbalance, ensuring
that the learned transport map remains meaningful and accurate. Furthermore, note that this class
imbalance is neither an unusual nor a contrived scenario. As we observed in Table 2, this class
imbalance exists in even our multi-category experiment in Sec. 5.1.

Experimental Settings To explore the effects of class imbalance, we observe how the performance
of existing point cloud completion models changes with different class imbalance ratios. To be more
specific, we select two categories of datasets: Data1 (category: TV) and Data2 (category: Table).
These categories are selected because of their relatively abundant training samples and the distinct
differences in their shape. For the incomplete point cloud samples, we use the entire training data
for both Data 1 and Data2, maintaining their ratio of 6.4 : 21.3 in Table 2. For the complete point
cloud samples, we manipulate the imbalance ratio r, i.e., Data1 and Data2 are sampled at a ratio of
6.4 : 21.3× r. Then, each model is evaluated across diverse values of r to explore the effects of class
imbalance. We compare our model to (i) the standard OT counterpart of our model (OT-UPC) and
(ii) USSPA, the state-of-the-art method for unpaired point cloud completion. Note that, as discussed
in Sec. 3.2, our model corresponds to the standard OT counterpart when Ψ∗

i = Id. For detailed
hyperparameter settings, please refer to Appendix A.

Discussion As shown in Table 5, our model outperforms the two alternative models across various
class imbalance settings. (See Table 8 in the Appendix for results on other class combinations.) Note
that we tested r ≤ 1, because Data2 has a significantly larger total number of training samples, more
than three times that of Data1 (Table 2). Hence, setting r > 1 would result in discarding too many
training data samples. Our model consistently demonstrates stable performance, ranging between
6.65 and 6.78 across various class imbalance ratios r, while USSPA shows considerably greater
variance. In contrast, the standard OT generally performs poorly, with its best result appearing in the
balanced case (1:1 ratio). We hypothesize that this phenomenon occurs due to the unstable training
dynamics of the standard OT. The stable training dynamics in learning the transport map is also
another advantage of the UOT over OT (Choi et al., 2024). In summary, these results indicate that our
UOT-UPC offers strong robustness to class imbalance problem.

5.3 ABLATION STUDY

Effect of Appropriate Cost Functional We validate our motivation experiments (Table 1) for
selecting InfoCD (Lin et al., 2024) as the cost function. In the (unbalanced) optimal transport
map approach, the cost function c(·, ·) in Eq. 8 determines how each input x is transported to the
y = T ⋆(x) by the optimal transport map T ⋆. Thus, setting an appropriate cost function is crucial.
In this regard, as a reminder, we assessed various cost function options to determine whether their
cost-minimizing pairs are suitable for the point cloud completion in Sec 3.1. Here, we conduct an
ablation study by modifying the cost function c(·, ·) in our model (Eq. 8). Each model is evaluated
on the multi-category setting and the single-category settings for the ’trash bin’ and ’TV’ classes.
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Table 5: Comparison of class imbalance ro-
bustness (cdl1 × 102 (↓)) on (Data1, Data2) =
(TV, Table).

r 0.3 0.5 0.7 1

USSPA 7.60 6.97 8.08 7.97
OT-UPC 25.12 25.72 24.30 21.49

Ours 6.71 6.65 6.70 6.78

Table 6: Ablation study on the cost function
c(·, ·) (cdl1 × 102 (↓)).

Cost function Multi-category trash bin TV

l2 23.80 39.22 19.19
cdl2 10.05 10.57 6.37

cdl2fwd 13.19 10.05 7.23

InfoCD 8.96 8.83 6.00

Table 7: Ablation study on the source mixture
trick, i.e., the complete input.

Category Complete Input cdl1 ↓ F 0.1%
score ↑ F 1%

score ↑

Single 7.90 17.40 74.11
✓ 7.62 19.55 76.83

Multi 9.00 16.66 70.86
✓ 8.96 17.84 71.23

Figure 3: Ablation study on the cost intensity
τ (cdl1 × 102 (↓)).

Table 6 demonstrates that our model achieves the best performance using the InfoCD cost function,
followed by (cd2fwd, cd2), and l2. (See Table 10 for the cost ablation results on the PCN dataset.)
Note that this ranking closely aligns with the results of our cost function investigation in Table 1.
This consistency suggests a strong correlation between our motivation experiments and actual model
performance. Furthermore, these findings suggest that further exploration of alternative cost functions
could potentially enhance our model’s performance. We leave this exploration for future work.

Add Complete Sample to Source As described in Sec 3.3, we introduced the source mixture trick
to our model, i.e., the source distribution is given as a mixture of incomplete and complete point
cloud data with a mixing probability of 50%. Here, we conduct an ablation study to evaluate the
effect of this source mixture trick. The results are presented in Table 7. In both single-category and
multi-category experiments, our model exhibits consistent improvements in both cdl1 and F scores
with the source mixture trick. The purpose of this source mixture trick is to assist our transport
map in generating the target distribution better. For input complete data, the optimal transport map
should ideally learn the identity mapping, which is relatively easier compared to completing the input
incomplete point cloud. We hypothesize this property encourages the training process, enabling the
model to generate complete point clouds more efficiently. Therefore, we empirically observed an
improvement in the fidelity of the point cloud completion when using this source mixture trick.

τ Robustness For the last ablation study, we evaluate the robustness of our model with respect
to the cost-intensity hyperparameter τ , defined as c(x, y) = τ × InfoCD(x, y). Specifically, we
tested our model on the multi-category setting and the single-category settings of the ’bookshelf’ and
’lamp’ classes, while changing τ ∈ {0.02, 0.025, 0.05, 0.1, 0.25}. Note that we impose challenging
conditions by setting the maximum τ to τmax = 0.25 and the minimum τ to τmin = 0.02, resulting
in a ratio of τmax/τmin > 10. As depicted in Fig. 3, our model shows moderate performance
across various τ values. In particular, the sweet spot of τ lies roughly between 0.05 and 0.1. The
performance deteriorates by approximately 10% when τ is either too large (τmax) or too small (τmin).

6 CONCLUSION

In this paper, we introduce UOT-UPC, an unpaired point cloud completion model based on the UOT
map. To the best of our knowledge, our work is the first attempt to introduce the unbalanced optimal
transport map to the point cloud completion task. We formulated the unpaired point cloud completion
task as an (unbalanced) optimal transport problem and investigated the optimal cost function for
this task. Our experiments demonstrated a strong correlation between cost function selection and
the model’s point cloud completion performance. When combined with the InfoCD cost function,
our UOT-UPC attains competitive performance compared to both unpaired and paired point cloud
completion models. Moreover, our experiments showed that UOT-UPC presents robustness to the
class imbalance problem, which is prevalent in the unpaired point cloud completion tasks.
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A IMPLEMENTATION DETAILS

Unless otherwise stated, our implementation follows the experimental settings and hyperparameters
of USSPA Ma et al. (2023).

A.1 NETWORK

We adopt the generator and discriminator architectures from the USSPA framework as completion
model Tθ and potential vϕ. For the potential vϕ, the final sigmoid layer of the discriminator is omitted
to allow for the parameterization of the potential function, enabling outputs to assume any real values.
Additionally, we remove the feature discriminator to streamline the architecture. In the potential
vϕ, we implement the encoder proposed by Yuan et al. (2018) in their Point Cloud Networks (PCN).
Following the encoder, we employ an MLPConv layer specified as MLPConv(Cin, [C1, . . . , Cn]) =
MLPConv(1024, [256, 256, 128, 128, 1]), which indicates that the output y is computed as follows:

y = Conv1DC4=128,C5=1(ReLU(. . .ReLU(Conv1DCin=1024,C1=256(x)) . . .)) (9)

Here, Conv1DCin,Cout represents a 1D convolutional layer with Cin input channels and Cout output
channels.

The completion model Tθ receives as input a concatenation of the incomplete point cloud
and a complete point cloud. These inputs are processed independently to generate distinct complete
point cloud samples. The completion model Tθ follows an Encoder-Decoder architecture, augmented
by an upsampling refinement module (upsampling module) in sequence. The upsampling module is
implemented using a 4-layer MLPConv network, where the final MLPConv layer is responsible for
refining and adding detailed structures to the output (Ma et al., 2023). Specifically, the inputs to the
last MLPConv layer are composed of the skeleton point cloud produced by the Encoder-Decoder
structure and the features extracted from the third MLPConv layer.

A.2 IMPLEMENTATION DETAIL

Motivation - Optimal Cost Function The incomplete and complete point clouds utilized in the
optimal cost function outlined in Sec 3.1 are sourced from the dataset proposed by Ma et al. (2023).
This dataset consists of paired incomplete and complete point clouds. For a fair comparison, we
shuffle the complete point clouds to create an unpaired setting. We then use these shuffled point
clouds as artificial complete data to train the USSPA model.

Training Concerning the loss function Lv,T . We employ Infocd as the cost function c with a
coordinate value of τ = 0.05. For the hyperparameters of InfoCD, we set τinfocd to 2 and λInfoCD

to 1.0 × 10−7. The functions Ψ∗
1 and Ψ∗

2 are defined using the Softplus activation, SP(x) =
2 log(1+ ex)− 2 log 2.2 As a regularization term, we incorporate the density loss dl proposed by Ma
et al. (2023), and we designate a coordinate value of 10.5 for dl. The objective of Potential vϕ is to
assign high value to target sample y while assigning lower values to generated sample ŷ. We utilize
the Adam optimizer with β1 = 0.95, β2 = 0.999 and learning rates of 2.0× 10−5, 1.0× 10−5 for
the potential vϕ and completion model Tθ, respectively. The training is conducted with a batch size 4.
The maximum epoch of training is 480. We report the final results based on the epoch that yields the
best performance.

Ablation study - Effect of Appropriate Cost Functional We set cost function coordinate value
τ = 100 for cost function cdl2fwd, cd

l2 and l2. All other parameters and settings, unless otherwise
specified, are consistent with those used in our UOT-UPC model.

2The softplus function is translated and scaled to satisfy SP(0) = 0 and SP′(0) = 1.
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Evaluation Metrics

• L1-Chamfer Distance cdl1 (Fan et al., 2017)

cdl1(xi, yj) =
1

2

(
1

|xi|
∑
m

min
n

∥xim − yjn∥2 +
1

|yj |
∑
n

min
m

∥xim − yjn∥2.

)
(10)

where each of xi, yj is point cloud

• F score Fα
score (Tatarchenko et al., 2019)

Fα
score =

2× P (α)×R(α)

P (α) +R(α)
(11)

where P (α) =
|{xim∈xi|minn(∥xim−yjn∥2)<α}|

|xi| measures the accuracy of xi,

and R(α) =
|{yjn∈yj |minm(∥xim−yjn∥2)<α}|

|yj | measures the completeness of xi.

A.3 OT-UPC

For the completion model Tθ, we implement MLPConv(512, [128, 128, 1]) following the PCN en-
coder (Yuan et al., 2018). We incorporate R1 regularization (Roth et al., 2017) and R2 regularization
(Mescheder et al., 2018) to the loss function Lv,T . Both regularization terms are assigned coordinate
values r1 = r2 = 0.2. The density loss dl is excluded from the Lv,T . A gradient clipping value of 1.0
is applied. We use Adam optimizer with β1 = 0.9, β2 = 0.999 and a learning rate lrTθ

= 5.0×10−5

for the completion model Tθ. In addition, we use Adam optimizer with β1 = 0.9, β2 = 0.999 and
learning rate lrvϕ = 1.0 × 10−7 for the potential vϕ. All other settings not explicitly mentioned
follow those of our model, UOT-UPC.

B ADDITIONAL RESULTS

B.1 ADDITIONAL VISUALIZATION OF THE THREE-NEAREST NEIGHBOR OF VARIOUS COST
FUNCTIONS FROM SEC. 3.1
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Figure 4: Visualization of the incomplete point cloud x, the ground-truth completion ygt(x),
and the three complete point clouds yci (x) that minimize the cost c(x, yci (x) for two cost functions:
cdl2 and InfoCD, in the single-category setting.
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Figure 5: Visualization of the incomplete point cloud x, the ground-truth completion ygt(x), and
the three complete point clouds yci (x) that minimize the cost c(x, yci (x)) for two cost functions:
cdl2fwd and l2, in the multi-category setting.
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Figure 6: Visualization of the incomplete point cloud x, the ground-truth completion ygt(x), and
the three complete point clouds yci (x) that minimize the cost c(x, yci (x)) for two cost functions:
cdl2fwd and l2, in the single-category setting.
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B.2 ADDITIONAL QUALITATIVE RESULTS
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Figure 7: Comparison of generated samples from our UOT-UPC and USSPA in the single-category
setting.
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Figure 8: Comparison of generated samples from our UOT-UPC and USSPA in the single-category
setting.
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Figure 9: Comparison of generated samples from our UOT-UPC and USSPA in the multi-category
setting.
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Figure 10: Comparison of generated samples from our UOT-UPC and USSPA in the multi-category
setting.
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B.3 QUALITATIVE COMPARISON BETWEEN OUR UOT-UPC AND EXISTING METHODS ON THE
KITTI DATASET.

Input

UOT-UPC

Input

UOT-UPC

Figure 11: Point cloud completion results of the UOT-UPC model on the KITTI dataset (Geiger
et al., 2012). The model is trained on the ShapeNet dataset under the car category and tested on
partial point clouds from the KITTI dataset without fine-tuning. From the qualitative comparison with
previous approaches (Fig 12), our UOT-UPC model achieves higher-fidelity point cloud completion,
demonstrating better global structure and more evenly distributed points.

K
IT
TI

Input ShapeInv. OptDE ACL-SPC Input ShapeInv. OptDE ACL-SPC

Figure 12: Point cloud completion results of previous models on the KITTI dataset Geiger
et al. (2012). The generated samples are taken from ACL-SPC (Hong et al., 2023), which is a
self-supervised model. The others are unsupervised approaches: ShapeInv (Zhang et al., 2021) and
OptDE (Gong et al., 2022).
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B.4 COMPARISON OF CLASS IMBALANCE ROBUSTNESS FOR DIVERSE CLASS COMBINATIONS.

Table 8: Comparison of class imbalance robustness (cdl1 × 102 (↓)) between UOT-UPC (ours),
USSPA, and OT-UPC on diverse class combinations (Data1, Data2). Our UOT-UPC consistently
outperforms other models across a wide range of class imbalance ratios in both additional class
settings.

(a) (Data1, Data2) = (Lamp, Trash bin) with sample count = (1.1 : 8.0 * r).

r 0.3 0.5 0.7 1

USSPA 10.16 9.49 10.21 10.21
OT 22.03 21.37 21.07 29.43

Ours 9.24 9.01 9.39 9.41

(b) (Data1, Data2) = (Lamp, Bed) with sample count = (1.1 : 2.9 * r).

r 0.3 0.5 0.7 1

USSPA 9.64 9.78 9.27 9.79
OT 22.68 20.18 22.91 22.75

Ours 8.65 8.83 8.87 9.04

B.5 ADDITIONAL EXPERIMENTAL RESULTS ON THE PCN DATASET

Table 9: Point cloud completion comparison on the PCN dataset in the single-category setting,
assessed by L1 Chamfer Distance cdl1 × 102 (↓). All unpaired models are trained with ScanNet. The
boldface denotes the best performance among unpaired methods. Our UOT-UPC outperforms all
other unpaired point cloud completion models.

Method AVG chair table cabinet sofa lamp

Paired
PoinTr (Yu et al., 2021) 5.49 5.61 5.68 6.08 5.67 4.44

Disp3D (Wang et al., 2022) 2.51 2.42 2.30 2.38 2.44 3.00
TopNet (Tchapmi et al., 2019) 5.92 6.34 5.45 6.06 5.80 5.95

Unpaired

ShapeInv (Zhang et al., 2021) 19.05 23.18 15.66 17.14 22.85 16.40
Unpaired (Chen et al., 2020) 14.87 12.87 8.14 14.30 18.23 20.82

Cycle4 (Wen et al., 2021) 17.60 14.25 15.73 21.06 21.54 15.40
USSPA (Ma et al., 2023) 12.63 13.52 9.66 8.89 15.51 15.57

UOT-UPC (Ours) 7.92 10.22 8.11 6.41 8.08 6.79

Table 10: Ablation study on the cost function c(·, ·) on the PCN dataset (cdl1 × 102 (↓)). The
results are consistent with Table 6. InfoCD achieved the best performance, while the L2 distance
yielded the worst results.

Cost function cabinet sofa lamp

l2 19.38 17.92 17.27
cdl2 8.52 8.33 7.23

cdl2fwd 14.28 11.70 11.76

InfoCD 6.41 8.08 6.79
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