
Under review as a conference paper at ICLR 2024

LEARNING RATE RE-SCHEDULING FOR ADAGRAD IN
TRAINING DEEP NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

The adaptive learning rate optimization algorithms have made a great improvement
in the training of Deep Neural Networks (DNNs). It has been proved that adaptive
learning rate methods can significantly improve training processing and can be
adopted into various tasks. AdaGrad, As the first adaptive learning rate optimizer,
usually performs worse than the following optimizers, such as Adam, RAdam,
Adabelief, etc. There are mainly two reasons: the first is that the stepsize for
these optimizers is bounded so that the training is more stable, and the second
is that they can use the decoupled weight decay regularization to improve their
generalization performance. However, for AdaGrad, the updating delta constantly
decreases to zero. Consequently, the weights will change very slowly with the
number of training iterations increasing. Meanwhile, it also makes the decoupled
weight decay regularization perform unfavorably in AdaGrad. We find that there is
a big mistake when using AdaGrad in training DNNs. For other optimizers (e.g.,
Adam), they prove the regret-bound theorem with learning rate schedule 1√

T
, but

in practice, they usually use more advanced learning rate schedule for training
DNNs, such as step-wise decay schedule and cosine decay schedule. However,
for AdaGrad, the algorithm implicitly contains a learning rate schedule 1√

T
, but

in practice, most people directly add another learning rate schedule for AdaGrad.
Such two learning rate schedules will largely drop its performance in training
DNNs. So in this work, we propose a Learning Rate Re-scheduling (LRR) method
for AdaGrad to drop the implicit learning rate 1√

T
, which can largely improve

AdaGrad and make decoupled weight decay regularization perform well. The
proposed LRR method can also be applied to other AdaGrad-type algorithms (i.e.,
Shampoo). Comprehensive experiments indicate the effectiveness of the proposed
LRR method. The source code will be made publicly available.

1 INTRODUCTION

As a basic optimization algorithm in deep learning, Stochastic gradient descent (SGD) Robbins &
Monro (1951) has achieved remarkable performance in training Deep Neural Networks (DNNs).
By using the back-propagation algorithm, the gradient of parameters in a Deep Neural Network
(DNN) can be easily obtained. SGD updates the weight along the opposite gradient direction in each
iteration. A significant improvement on SGD is to compute the momentum of gradient Qian (1999)
(SGDM) so that it can speed up SGD in the relevant direction and reduce oscillations. To achieve a
lower regret bound, et al. Duchi et al. (2011) proposed the famous AdaGrad algorithm. Instead of
using a uniform learning rate for all parameters, AdaGrad assigns an adaptive learning rate for each
parameter independently. Specifically, AdaGrad uses the sum of the historical second-order statistic
of the gradient to compute the adaptive learning rate, i.e., (

∑T
t=1 gt ⊙ gt)

⊙− 1
2 .

However, with the AdaGrad optimizer, the effective learning rate will decrease during training.
As a result, it usually does not perform well in many real applications. To solve this problem,
RMSProp Tieleman & Hinton (2012) suggested using the Exponential Moving Average (EMA) of
the second-order statistic of the gradient for computing the adaptive learning rate to replace the sum
in AdaGrad. Meanwhile, Adam Kingma & Ba (2014) further combines the adaptive learning rate
strategy of RMSProp with the momentum of the gradient. Other Adam-type optimizers are also
proposed in the following research, such as RAdam Liu et al. (2019a), Adabelief Zhuang et al. (2020),

1

Under review as a conference paper at ICLR 2024

Ranger Liu et al. (2019b); Zhang et al. (2019); Yong et al. (2020) and so on. More importantly, the
weight decoupled strategy Loshchilov & Hutter (2017), which modifies the weight decay approach
of Adam, can be adopted to improve the final generalization performance. The weight-decoupled
strategy has become the standard way to introduce weight decay in the Adam-type optimizers. It
has been widely verified in many works Loshchilov & Hutter (2017); Vaswani et al. (2017); He
et al. (2022); Li et al. (2022), that the decoupled weight decay strategy usually keeps a better final
generalization for Adam optimzer.

For AdaGrad, its unsatisfactory performance mainly comes from two reasons. The first is that
the effective learning rate decreases during training. And for some parameters, the responding
learning rate may decrease too fast so that they are not fully optimized. After several iterations, such
parameters would not change. The second reason is that there are no proper weight decay methods to
improve the generalization performance of AdaGrad. The original L2 regularization weight decay
method is usually used in AdaGrad, which has been proven ineffectiveness in Adaptive learning rate
methods Loshchilov & Hutter (2017). Nevertheless, the decoupled weight decay usually performs
very unfavorably in the AdaGrad-type optimizers. It has a negative impact on the optimization of the
loss function. The reason is that the effective learning rate decreases during training with AdaGrad
so that the decoupled weight decay will dominate the updating direction after certain iterations.
Consequently, the weights will be too small to lead to an unfavorable performance.

Actually, we find there is an incorrect way to utilize AdaGrad in training DNNs, which is the biggest
reason for the bad performance of AdaGrad. For the Adam-type optimizers (e.g., Adam, RAdam and
Adabelief), they prove the regret-bound theorem with learning rate schedule 1√

T
, but in practice, they

usually use more advanced learning rate schedules instead of it for training DNNs, such as step-wise
decay schedule, cosine decay schedule, and warm-up strategy. These learning rate schedules usually
keep better performance in training DNNs. However, for AdaGrad, people usually directly utilize
such learning rate schedules for training DNNs. There is a very big mistake in that the AdaGrad
algorithm implicitly contains a learning rate schedule 1√

T
. As a consequence, there will be two

learning rate schedules: One is the implicit learning rate schedule 1√
T

and the other is the practical
learning rate schedule we used, which can be step-wise decay schedule, cosine decay schedule and so
on. Such two learning rate schedules will make the learning rate decrease so fast that the effective
learning rate will be too small.

To address this problem in AdaGrad, we propose a very simple learning rate re-scheduling method in
training with AdaGrad. It multiplies a constant

√
T on the global learning rate to offset the original

implicit learning rate schedule and then adopts another learning rate schedule. With the proposed
learning rate re-scheduling (LRR) method, the performance of AdaGrad can largely improve in
training DNNs. Moreover, the decoupled weight decay can also be easily utilized in the modified
AdaGrad, which can further gain the final generalization performance. The main contributions of this
paper are highlighted as follows:

• We first point out the incorrect utilization of AdaGrad optimizer in training DNNs, which is
the two learning rate schedulers in practice. Such a mistake is the major reason that makes
AdaGrad an unsatisfactory performance.

• We propose a very simple and effective method, learning rate re-scheduling (LRR), to im-
prove AdaGrad, which can largely improve its optimization on DNNs. The decoupled weight
decay regularization is also introduced to further improve the generalization performance.

• We extend the proposed LRR method on another AdaGrad-type optimizer, Shampoo Gupta
et al. (2018), which also achieves a favorable performance gain.

Finally, we perform comprehensive experiments on image classification tasks on CIFAR100/CIFAR10
and ImageNet to show the effectiveness of the proposed learning rate re-scheduling for AdaGrad-type
optimizers on training DNNs.

2 RELATED WORKS

Adaptive Learning Rate Optimizers: In spite of a uniform learning rate for all parameters, Duchi
et al. (2011) first proposed the AdaGrad method, which adopts an adaptive learning rate for each
parameter. It can be proved that AdaGrad can achieve a lower regret bound than SGD. RMSProp

2

Under review as a conference paper at ICLR 2024

was proposed by Tieleman & Hinton (2012), which introduces the exponential moving average to
replace the second-order statistics of the gradient. Adam Kingma & Ba (2014) further uses the
momentum of the gradient to make training more stable. It can be shown that the updating value
of Adam can be bounded in each iteration. RAdam Liu et al. (2019a) improves the warm-up step
of Adam by controlling the variance of the adaptive learning rate. Adabelief Zhuang et al. (2020)
adjusts the learning rate by the variance in observed gradients. The adaptive learning rate methods
can outperform SGDM in many applications, including image low-level vision Zhang et al. (2017);
Zheng et al. (2021), natural language processing Li et al. (2022); Vaswani et al. (2017), and the
optimization of Transformer Backbones Vaswani et al. (2017); He et al. (2022).

Preconditioned Gradient Descent Methods: In order to achieve a lower regret-bound than AdaGrad,
Duchi et al. (2011) also provided a full-matrix preconditioned gradient descent (PGD) method that
uses the matrix HT = (

∑T
t=1 gtg

⊤
t)

1
2 to modify the gradient. The adaptive learning rate methods

only consider the diagonal elements of HT . Because of the high computation and memory costs for
this full-matrix preconditioned gradient descent, various works try to make it practical in training
DNNs. Agarwal et al. (2019) proposed to store only the gradients of recent iterations to efficiently
approach HT by low-rank computation tricks. Shampoo Gupta et al. (2018) and AdaBK Yong
et al. (2023) were proposed to utilize the Kronecker products to reduce the dimension of full-matrix
preconditioners and make it more efficient in the optimization of DNNs. However, these AdaGrad-
type optimizers also have the same drawbacks as AdaGrad, which lead to them not being widely
used.

Weight Regularization: L2 regularization weight decay Krogh & Hertz (1991) was proposed to
improve the generalization performance of SGD optimizers. It adds the gradient of L2 regulariza-
tion into the gradient of weight and then implements the optimizer updating step. However, for
the adaptive learning rate optimizers, this weight decay method usually performs unsatisfactorily.
Ilya et al. Loshchilov & Hutter (2017) proposed to use a decoupled weight decay to replace the L2
regularization weight decay. It directly adds a weight decay term into the finally updated weight in
the implementation of the optimizer step. It has been the most common choice of weight decay in
Adam-type optimizers, because of the large improvements in generalization. Other regularizations on
weight such as Weight normalization (WN) Salimans & Kingma (2016) and Weight standardization
(WS) Qiao et al. (2019) use hard constraints on weight, which can also boost the performance. Weight
decay remains the most simple and effective weight regularization method.

Learning Rate Scheduler: A constant learning rate commonly cannot achieve satisfactory perfor-
mance in training DNNs. then gradually reducing the learning rate in accordance with a scheduler
usually performs well. The most widely used Learning Rate scheduler is the step-wise decay sched-
uler, which reduces the learning rate by a certain amount every several epochs. It has been widely
use in many works He et al. (2016); Ren et al. (2015); Luong et al. (2015). Loshchilov & Hutter
(2016) proposed a cosine decay schedule by changing the learning rate with a Cosine function, which
can usually perform better than step-wise decay scheduler. Goyal et al. (2017) also constituted an
important ingredient in training deep networks, the warmup learning rate method, which involves
increasing the learning rate to a large value over a certain number of training iterations followed by
another learning rate scheduler. By the way, for the AdaGrad-type optimizers, there usually is an
implicit learning rate scheduler 1√

T
, which is usually ignored in practice.

3 METHODOLOGY

3.1 PROBLEMS IN THE ADAGRAD ALGORITHM

The motivation of the AdaGrad Algorithm is to use different learning rates for each parameter based
on iteration. The reason for the utilization of different learning rates is that the learning rate for sparse
feature parameters needs to be higher compared to the dense features parameter because the frequency
of occurrence of sparse features is lower. It can be explained by an online mirror descent with an
adaptive time-dependent regularization. Suppose we have obtained the gradient gT = ∇fT (wT)
in the T -th iteration, where wT ∈ Rd, then given a positive semidefinite (PSD) matrix HT , the
parameters are updated by optimizing the following problem on weight w:

wT = argmin
w

αg⊤
T w +

1

2
||w −wT−1||2HT

. (1)

3

Under review as a conference paper at ICLR 2024

The solution to the above problem is
wT = wT−1 − αH−1

T gT . (2)
which is a preconditioned gradient descent step, where α is the learning rate. Different choices of
HT lead to different optimization algorithms. Duchi et al. (2011) proposed to use a diagonal matrix,
which is

HT = Diag
(
h
⊙ 1

2

T

)
, hT =

∑T

t=1
gt ⊙ gt (3)

where A ⊙ B and A⊙α are the element-wise matrix product and element-wise power operation,
respectively. It can be shown that such a choice can provide a lower regret-bound than simple SGD.

However, it can be easy to prove that hi,T+1 ≥ hi,T , for any i. It accumulates the sum of past

gradients and current gradient, which leads to the effective learning rate h
− 1

2

i,T will monotonically
decrease during the training process. And for some parameters, the responding learning rate may
decrease too fast and very close to zero, so that they cannot be fully optimized. After several iterations,
such parameters would not change. This causes updates to stall early and training to end early.

Another serious problem is that there are no proper weight decay methods to improve the generaliza-
tion performance of AdaGrad. Loshchilov & Hutter (2017) found that the original L2 regularization
weight decay usually cannot work well in the adaptive learning rate methods. So they proposed
the decoupled weight decay to replace the L2 regularization weight decay, which directly adds a
weight decay term into the finally updated weight in the implementation of the optimizer step. It has
been proved that such a weight decay method can improve the generalization performance of many
adaptive learning rate methods, including Adam Kingma & Ba (2014); Loshchilov & Hutter (2017),
RAdam Liu et al. (2019a), Adabelief Zhuang et al. (2020), etc. Nevertheless, the decoupled weight
decay usually has a negative impact on the training process of AdaGrad. The updating formulations
of AdaGrad with L2 regularization weight decay and decoupled weight decay are

L2 regularization weight decay: ĝT = gT + λwT−1 ĥT =
∑T

t=1
ĝt ⊙ ĝt,

wT = wT−1 − αĥ
⊙− 1

2

T ⊙ ĝT ,

Decoupled weight decay: wT = wT−1 − α(h
⊙− 1

2

T ⊙ gT + λwT−1),

(4)

where λ is a hyper-parameter to control the strength of the weight decay. We can find that for the
decoupled weight decay, the updating step is controlled by two terms: the stepsize h

⊙− 1
2

T ⊙ gT of
AdaGard and the decoupled weight decay term λwT . Nevertheless, the first term may constantly
decrease during training because of the monotonically decreasing effective learning rate h

⊙− 1
2

T , and
the second term is usually stable in training. As a result, the decoupled weight decay term will
dominate the updating direction after certain iterations. Consequently, the weights will be too small to
lead to an unfavorable impact on the optimization of the original loss function. Therefore, in practice,
we find the training loss will be very large with decoupled weight decay in AdaGrad (as shown in
Figure 1).

3.2 IMPLICIT LEARNING RATE SCHEDULER IN ADAGRAD

As the most common theoretical tool, the online convex optimization framework Shalev-Shwartz et al.
(2012); Hazan et al. (2016) tries to minimize the regret to analyze the convergence of an optimization
algorithm. For a unknown sequence of convex loss functions f1(w),f2(w),...,fT (w), the regret on
T -th iteration is

R(T) =

T∑
t=1

(ft(wt)− ft(w
∗)) , (5)

where w∗ = argminw
∑T

t=1 ft(w). Stochastic convex optimization can be viewed as a special case
of online convex optimization.

Here we find the inconsistency between the learning rate schedulers in Regret-bound analysis and in
practice for Adam-type optimizers. For instance, for Adam, the Regret-bound analysis in the original
paper Kingma & Ba (2014) makes some mistakes. Reddi et al. (2019) finished the Regret-bound
Theorems with an AMSGrad operation for Adam. All the Regret-bound Theorems of Adam assume
the learning rate in t iteration is αt = α/

√
t, where α is the initial learning rate. However, in practice,

4

Under review as a conference paper at ICLR 2024

we do not use such a learning rate scheduler (i.e., α/
√
t). More advanced learning rate schedulers,

e.g., step-wise decay scheduler and Cosine decay scheduler, are chosen in the training process.
Similar settings for learning rate are also found in the Regret-bound analysis of other Adam-type
optimizers, such as RAdam Liu et al. (2019a), Adabelief Zhuang et al. (2020). People usually ignore
such inconsistency between the learning rate schedulers in Regret-bound analysis and in practice for
Adam-type optimizers, because of the large improvements in performance.

Nevertheless, for the AdaGrad-type optimizers, the Regret-bound analysis usually does not assume
such a learning rate scheduler (i.e., α/

√
t). For example

Theorem 1 Duchi et al. (2011); Gupta et al. (2018). Let {wt}Tt=1 and {ht}Tt=1 be the sequences
obtained from AdaGrad algorithm, Which follows

hT =
∑T

t=1
gt ⊙ gt, wT = wT−1 − αh

⊙− 1
2

T ⊙ gT , T = 1, 2, 3..., (6)

and α is the learning rate, if we further assume D = maxt≤T ||wt −w∗||2, then we have the following
bound on the regret

R(T) ≤ (
D2

2α
+ α)

∑d

i=1
||g1:T,i||2. (7)

However, although there is no assumption on the learning rate schedule of the Regret-bound Theorem
for AdaGrad, the effective learning rate also reduces monotonically. That is because there is an
implicit learning rate schedule in AdaGrad, which is also the same as Adam, i.e., αt = α/

√
t. Since

we can rewrite Theorem 1 as follows:

Theorem 2 Let {wt}Tt=1 and {h′
t}Tt=1 be the sequences obtained from

h′
T =

1

T

∑T

t=1
gt ⊙ gt, wT = wT−1 − αTh

′⊙− 1
2

T ⊙ gT , T = 1, 2, 3..., (8)

where αT = α/
√
T is the learning rate and α is the initial learning rate, if we further assume

D = maxt≤T ||wt −w∗||2, then we have the following bound on the regret

R(T) ≤ (
D2

2α
+ α)

∑d

i=1
||g1:T,i||2. (9)

We can see that the updating formula in Theorem 1 and Theorem 2 is equivalent, so they have the
same regret bound. In Theorem 2, we can find that h′

T is the average of the second-order statistic
of gradients, therefore, its amplitude is stable in training, unlike hT in Theorem 1 which increases
monotonically. Because if assume ||g⊙2

t ||∞ ≤ D∞ for any t = 1, 2, ..., T , where || · ||∞ is the infinite

norm, we have ||h′
T ||∞ ≤ D∞, then h

′− 1
2

i,T ≥ 1√
D∞

for any i = 1, 2, ..., d. The effective learning

rate h
′⊙− 1

2

T has a low-bound and will not decrease to zero. Hence, with the rewriting formulation in

Eq. (8), we can separate out the stable updates which are h
′⊙− 1

2

T ⊙ gT and an explicit learning rate
schedule αT = α/

√
T .

From the above observation, we investigate that AdaGrad implicitly adopts a learning rate schedule
αT = α/

√
T , which is the same as the assumption on the learning rate of Adam in its Regret-bound

analysis. However, in practice, when we utilize AdaGrad optimizer, we usually directly introduce an
additional learning rate scheduler (e.g., step-wise decay scheduler and Cosine decay scheduler). This
means there are usually two learning rate schedulers with AdaGrad optimizers, Such two learning
rate schedulers will make the learning rate decrease so fast that the effective learning rate will be too
small. That is the reason why AdaGrad usually performs very badly in many tasks. In contrast, Adam
usually removes the learning rate schedule αT = α/

√
T in theoretical analysis and only applies one

advanced learning rate scheduler for training in real applications. Therefore, compared with Adam, it
is not fair for AdaGrad with two learning rate schedulers in practice. We think the most common
utilization of AdaGrad in training DNNs is improper and it largely limits its potential performance.

3.3 LEARNING RATE RE-SCHEDULING FOR THE ADAGRAD

Because there are two learning rate schedulers when using AdaGrad for training DNNs, we need
to remove one of them to avoid the effective learning decreasing so fast. Similar to Adam, we also
attempt to eliminate the learning rate schedule αT = α/

√
T and only adopt one advanced learning

rate scheduler (e.g., step-wise decay scheduler or Cosine decay scheduler). We name the proposed

5

Under review as a conference paper at ICLR 2024

Algorithm 1: AdaGrad
Input: w0, ϵ, h0 = ϵ1, α, λ, f(α, ·)
Output: wT

1 for t=1:T do
2 Receive gt by backward propagation;
3 Add weight decay: ĝt = gt + λwt−1;
4 Update statistic:
5 ht = ht−1 + ĝt ⊙ ĝt;
6 Compute learning rate:
7 αt = f(α, t);
8 Update weight:

9 wt = wt−1 − αth
⊙− 1

2
t ⊙ gt ;

10 end

Algorithm 2: AdaGradW (Ours)
Input: w0, ϵ, h0 = ϵ1, α, λ, f(α, ·)
Output: wT

1 for t=1:T do
2 Receive gt by backward propagation;
3 Update statistic:
4 ht = ht−1 + gt ⊙ gt;
5 Compute learning rate:
6 αt = f(α, t);
7 Update weight and add weight decay:

wt = wt−1−αt(
√
th

⊙− 1
2

t ⊙gt+λwt−1);

8 end

optimizer as Learning Rate Re-scheduling (LRR), whose formulation is

wT = wT−1 −
√
TαTh

⊙− 1
2

T ⊙ gT , (10)
Where αT is the learning rate of the T -th iteration with a learning rate scheduler, hT is defined in Eq.
(3). We only change is the learning rate in the formulation of AdaGrad from αT to

√
TαT , so the

proposed method is very simple and very easy to implement in the algorithm. The additional learning
rate multiplier

√
T is used for eliminating the implicit learning rate schedule in AdaGrad.

Meanwhile, as mentioned in Section 3.1 it is difficult for the original AdaGrad to introduce a proper
weight decay method. Therefore, the generalization performance of AdaGrad is usually unfavorable,
when compared with Adam-type optimizers. Fortunately, with the proposed LRR for AdaGrad, the
decoupled weight decay can be easily introduced into the optimizers, and the formulation is

wT = wT−1 − αT (
√
Th

⊙− 1
2

T ⊙ gT + λwT−1). (11)

Importantly, the efficient updating term
√
Th

⊙− 1
2

T ⊙ gT is usually more stable. Unlike the primitive
AdaGrad algorithm, its amplitude is relatively fixed, compared with the second term λwT . As a result,
the decoupled weight decay can perform well with the proposed LRR operation on AdaGrad. The final
generalization performance can be largely improved by this decoupled weight decay regularization.

The proposed optimizer is termed AdaGradW. Algorithm 1 and Algorithm 2 show the implementa-
tion of the original AdaGrad algorithm and the proposed AdaGradW algorithm. We use f(α, ·) to
denote a learning rate scheduler with initial learning rate α, and f(α, t) is the learning rate obtained by
the learning rate scheduler in t-th iteration. The AdaGradW algorithm adopts the proposed learning
rate re-scheduling operation and the decoupled weight decay regularization.

3.4 EXTENSION ON MORE ADAGRAD-TYPE OPTIMIZERS

In order to achieve a lower regret-bound, Duchi et al. (2011) also proposed a full-matrix precon-
ditioned gradient descent (PGD) method that uses the matrix HT = (

∑T
t=1 gtg

⊤
t)

1
2 to modify the

gradient. However, such formulation of the full matrix requires very high computation and memory
costs, which makes it very difficult to use for training DNNs due to high dimension parameter space.
Shampoo Gupta et al. (2018) and AdaBK Yong et al. (2023) were proposed to apply the Kronecker
factorization on full matrix HT to reduce its dimension. However, directly adopting such algorithms
usually does not perform well. Because they are also AdaGrad-type optimizers, they also suffer from
the two learning rate schedulers problem like AdaGrad. Yong et al. (2023) proposed a series of
tricks to make AdaBK perform favorably, including gradient norm recovery, adaptive dampening,
momentum for statistics, and embedding it into SGDM and Adam. such tricks make the proposed
optimizers far from the theoretically derived optimization algorithms. Meanwhile, for Shampoo
optimizer, as far as we know, there is no previous research that makes it perform comparable with
Adam-type optimizers. Most of them can only outperform the original AdaGrad optimizers. Anil
et al. (2020) proposed to use a norm recovery operation to change the update stepsize of shampoo
to the AdaGrad. But its performance is also unsatisfactory. Here we also introduce the proposed
learning rate re-scheduling operation into the Shampoo optimization algorithm. And we find that
it can also boost the final performance with a large improvement. Algorithm 3 and Algorithm 4
summary the original Shampoo optimizer and the proposed ShampooW optimizer.

6

Under review as a conference paper at ICLR 2024

Algorithm 3: Shampoo
Input: W0 ∈ RCout×Cin , ϵ, L0 = ϵICout ,

R0 = ϵICin , α, λ, f(α, ·), Ts, Tir

Output: WT

1 for t=1:T do
2 Receive Gt by backward propagation;
3 Add weight decay: Ĝt = Gt + λWt−1;
4 if t%Ts = 0 then
5 Lt = Lt−1 + ĜtĜt

⊤
;

6 Rt = Rt−1 + Ĝt
⊤
Ĝt;

7 else
8 Lt = Lt−1,Rt = Rt−1;
9 end

10 if t%Tir = 0 then
11 U1Σ1U1 = Lt, L̂t = U1Σ

− 1
4

1 U1

12 U2Σ2U2 = Rt, R̂t = U2Σ
− 1

4
2 U2

13 else
14 L̂t = L̂t−1 and R̂t = L̂t−1;
15 end
16 Compute learning rate:
17 αt = f(α, t);
18 Update weight: Wt = Wt−1 −αtL̂tĜtR̂t;
19 end

Algorithm 4: ShampooW (Ours)
Input: W0 ∈ RCout×Cin , ϵ, L0 = ϵICout ,

R0 = ϵICin , α, λ, f(α, ·), Ts, Tir

Output: WT

1 for t=1:T do
2 Receive Gt by backward propagation;
3 if t%Ts = 0 then
4 Lt = Lt−1 +GtG

⊤
t ;

5 Rt = Rt−1 +G⊤
t G

;
t

6 else
7 Lt = Lt−1,Rt = Rt−1;
8 end
9 if t%Tir = 0 then

10 U1Σ1U1 = Lt, L̂t = U1Σ
− 1

4
1 U1

11 U2Σ2U2 = Rt, R̂t = U2Σ
− 1

4
2 U2

12 else
13 L̂t = L̂t−1 and R̂t = L̂t−1;
14 end
15 Compute learning rate:
16 αt = f(α, t);
17 Update weight and add weight decay:

Wt = Wt−1−αt(
√
tL̂tGtR̂t+λWt−1);

18 end

4 EXPERIMENTAL RESULTS

We evaluate the proposed AdaGradW and ShampooW optimizers on classical computer vision tasks,
including image classification (on CIFAR100/CIFAR10 Krizhevsky et al. (2009) and ImageNet Rus-
sakovsky et al. (2015)). All experiments are conducted under the Pytorch 1.18 framework with
NVIDIA GeForce RTX 2080Ti and 3090 Ti GPUs. For the hyper-parameters of AdaGrad and
AdaGradW, ϵ is set to be 1e−10, and for the Shampoo and ShampooW, we set ϵ = 1e−4, Ts = 10,
Tir = 500, throughout the experiments if not specified. Other hyper-parameters (i.e., learning
rate and weight decay) are reported in the supplementary materials. For all tables, the best and
second-best results are highlighted in bold and italic fonts, respectively.

4.1 IMAGE CLASSIFICATION ON CIFAR100/CIFAR10

4.1.1 EFFECTIVENESS OF LEARNING RATE RE-SCHEDULING

We first testify to the effectiveness of learning rate re-scheduling for AdaGrad. In this experiment, we
adopt AdaGrad to train ResNet18, ResNet50 He et al. (2016) on CIFAR100. The four methods are
varied: the original AdaGrad with L2 regularization weight decay (L2WD), AdaGrad with decoupled
weight decay (DWD), AdaGrad with L2WD and the proposed learning rate rescheduling (LRR),
AdaGrad with DWD and LRR. All the DNN models are trained for 200 epochs with batch size 128 on
one GPU. The learning rate schedule is step-wise decay, which multiplies 0.1 on the learning rate for
every 60 epochs. The experiments are repeated 4 times and the results are reported in a “mean±std”
format in Table 1. Meanwhile, Figure 1 shows the training loss curves and test accuracy curves of
AdaGrad on CIFAR100 with the ResNet18 model. From the table, we know that decoupled weight
decay can improve the generalization performance of AdaGrad largely, with about 3.68% and 2.78%
improvements on ResNet18 and ResNet50, respectively. However, from Figure 1, we know that the
model has not been fully trained with decoupled weight decay in AdaGrad. The reason is that because
of the implicit learning rate schedule in AdaGrad (i.e., αt = α/

√
t), the decoupled weight decay

term will dominate the stepsize in certain iterations, which limits the optimization of the loss function.
It can be seen from Figure 1 that the loss even increases after 150 epochs for DWD. Moreover, with
the proposed learning rate rescheduling, the performance can further gain 2.59% and 4.47% over
AdaGrad with DWD on ResNet18 and ResNet50, respectively. Meanwhile, the training loss can be

7

Under review as a conference paper at ICLR 2024

Table 1: Test accuracy (%) on CIFAR100
with ResNet18 and ResNet50. All models
are trained with AdaGrad optimizer. L2WD:
L2 regularization weight decay; DWD: de-
coupled weight decay; LRR: learning rate
rescheduling.

Methods ResNet18 ResNet50
L2WD 71.55± .25 72.20± .15
DWD 75.23 ± .39 74.98 ± .28

LRR+L2WD 72.85± .17 73.28± .23
LRR+DWD 77.82± .10 79.45± .32

0 50 100 150 200

epoch

0

0.5

1

1.5

T
ra

in
in

g
 L

o
s
s

ResNet18 on CIFAR100

L2WD

DWD

LRR+L2WD

LRR+DWD

0 50 100 150 200

epoch

0.6

0.65

0.7

0.75

0.8

T
e

s
t

A
c
c
u

ra
c
y
(%

)

ResNet18 on CIFAR100

L2WD

DWD

LRR+L2WD

LRR+DWD

Figure 1: Training loss curves (left) and Test accu-
racy curves (right) of AdaGrad on CIFAR100 with
ResNet18 model.

Table 2: Test accuracy (%) on CIFAR100 with different learning rate schedulers, such as Step-wise
LR decay and Cosine LR decay.

Step-wise LR decay Cosine LR decay
Methods R18 R50 V11 V19 D121 R18 R50 V11 V19 D121
AdaGrad 71.55± .25 72.20± .15 67.70± .18 63.30± .58 71.27± .79 71.57± .53 72.20± .63 67.90± .30 64.32± .54 71.15± .93

AdaGradW 77.82 ± .10 79.45 ± .32 71.45 ± .16 71.40 ± .36 78.95 ± .21 78.67 ± .22 80.47 ± .19 72.45 ± .32 72.90 ± .45 79.47 ± .12
Shampoo 71.81± .40 71.31± .53 63.56± .44 65.62± .56 74.95± .42 72.87± .75 72.87± .70 68.22± .34 65.22± .42 71.15± .77

ShampooW 79.30± .27 81.25± .08 73.02± .24 74.80± .21 80.72± .13 79.95± .15 81.85± .05 73.72± .35 75.75± .07 81.07± .23

fully optimized with LLR as shown in Figure 1. It can significantly illustrate the effectiveness of the
proposed learning rate re-scheduling method.

4.1.2 RESULTS ON DIFFERENT LEARNING RATE SCHEDULERS

To testify that the proposed AdaGradW and ShampooW can perform well on different learning rate
schedule methods. In this experiment, we adopt AdaGrad, AdaGradW, Shampoo, and ShampooW
to train various DNN models on CIFAR100. The DNN models include ResNet18 (R18), ResNet50
(R50) He et al. (2016), VGG11 (V11) VGG19 (V19) Simonyan & Zisserman (2014) and DenseNet-
121 (D121) Huang et al. (2017) 1. Two common learning rate schedule methods are used in this
experiment, which are step-wise LR decay scheduler and Cosine LR decay scheduler. For the
step-wise LR decay scheduler, we multiply 0.1 on the learning rate for every 60 epochs; while for
the Cosine LR decay scheduler, the hyperparameters Tmax = 200 and etamin = 0.001 ∗ α, where
α is the initial learning rate. The experiments are repeated 4 times and the results are reported in a
“mean±std” format in Table 2. It can be seen from the figure that the Cosine LR decay scheduler
usually outperforms the Step-wise LR decay scheduler, and the proposed AdaGradW and ShampooW
significantly outperform AdaGrad and Shampoo on these two learning rate schedulers, respectively.
It demonstrates that the proposed AdaGradW and ShampooW can work consistently well on different
learning rate schedule methods.

4.1.3 COMPARISON WITH DIFFERENT OPTIMIZERS

we compare the proposed AdaGradW and ShampooW with some representative DNN optimizers,
including including SGDM, AdamW Loshchilov & Hutter (2017), Adagrad Duchi et al. (2011),
RAdam Liu et al. (2019b)2, and Adabelief Zhuang et al. (2020)3, Shampoo Gupta et al. (2018)4.
The DNN models also include ResNet18 (R18), ResNet50 (R50) VGG11 (V11) VGG19 (V19) and
DenseNet-121 (D121). All the DNN models are trained for 200 epochs with batch size 128 on one
GPU. The learning rate schedule is step-wise decay, which multiplies 0.1 on the learning rate for
every 60 epochs. The experiments are repeated 4 times and the results are reported in a “mean±std”
format in Table 3. We can see that AdaGradW and ShampooW achieve significant improvements
over AdaGrad and Shampoo, which are 3.75% ∼ 8.1% and 7.49% ∼ 9.94% on CIFAR100, and
2.2% ∼ 2.85% and 1.48% ∼ 3.89% on CIFAR10, respectively. They also outperform other
compared optimizers for most of the used DNN models.

1The model can be downloaded at https://github.com/weiaicunzai/pytorch-cifar100.
2
https://github.com/LiyuanLucasLiu/RAdam

3
https://github.com/juntang-zhuang/Adabelief-Optimizer

4
https://github.com/moskomule/shampoo.pytorch

8

https://github.com/weiaicunzai/pytorch-cifar100
https://github.com/LiyuanLucasLiu/RAdam
https://github.com/juntang-zhuang/Adabelief-Optimizer
https://github.com/moskomule/shampoo.pytorch

Under review as a conference paper at ICLR 2024

Table 3: Testing accuracies (%) on CIFAR100/CIFAR10 with various optimizers.
CIFAR100

Optimizer SGDM AdamW RAdam Adabelief AdaGrad Shampoo AdaGradW ShampooW
ResNet18 77.20± .30 77.23± .10 77.05± .15 77.43± .36 71.55± .25 71.81± .40 77.82 ± .10 79.30± .27
ResNet50 77.78± .43 78.10± .17 78.20± .15 79.08± .23 72.20± .15 71.31± .53 79.45 ± .32 81.25± .08
VGG11 70.80± .29 71.20± .29 71.08± .24 72.45 ± .16 67.70± .18 63.56± .44 71.45± .16 73.02± .24
VGG19 70.94± .32 70.26± .23 73.01 ± .20 72.39± .27 63.30± .58 65.62± .56 71.40± .36 74.80± .21

DenseNet121 79.53± .19 78.05± .26 78.65± .05 79.88 ± .08 71.27± .79 74.95± .42 78.95± .21 80.72± .13
CIFAR10

ResNet18 95.10± .07 94.80± .10 94.70± .18 95.12± .14 92.83± .12 92.94± .27 95.17 ± .12 95.50± .13
ResNet50 94.75± .30 94.72± .10 94.72± .10 95.35± .05 92.55± .39 92.61± .27 95.40 ± .07 95.82± .09
VGG11 92.17± .19 92.02± .08 92.00± .18 92.45 ± .18 90.25± .25 89.01± .29 92.45 ± .11 92.90± .17
VGG19 93.61± .06 93.40± .04 93.57± .11 93.58± .12 91.28± .14 90.62± .32 93.82 ± .10 94.12± .14

DenseNet121 95.37 ± .17 94.80± .07 95.02± .08 95.37 ± .04 92.95± .23 94.37± .36 95.17± .10 95.85± .11

Table 4: Top 1 accuracy (%) of various optimizers on the validation set of ImageNet-1k.
Optimizer SGDM AdamW RAdam Adabelief AdaGrad Shampoo AdaGradW ShampooW
ResNet18 70.49 70.01 69.92 70.08 62.22 64.45 70.26 71.32
ResNet50 76.31 76.02 76.12 76.22 69.38 70.11 76.52 77.02

4.2 IMAGE CLASSIFICATION ON IMAGENET1K

We also evaluate AdaGradW and ShampooW on ImageNet-1kRussakovsky et al. (2015) to testify
that the proposed LRR can also perform well on large-scale datasets. It contains 1000 categories with
1.28 million images for training and 50K images for validation. ResNet18 and ResNet50 are selected
as the DNN models with training batch size 256 on 4 GPUs, and the training settings follow the
work in Chen et al. (2018); Zhuang et al. (2020); Yong et al. (2023). Step-wise LR decay scheduler
is used by multiplying 0.1 on the learning rate for every 30 epochs. The top 1 accuracies on the
validation set are reported in Table 4. One can see that AdaGradW and ShampooW achieve favorable
performance and considerable improvements over AdaGrad and Shampoo, about 7.14% ∼ 8.04%
and 6.87% ∼ 6.91%. respectively.

Table 5: Top 1 accuracy (%) on the
validation set of ImageNet-1k with Swin-
transformer backbone.

Optimizer AdamW AdaGradW
Swin-T 81.18 81.19
Swin-B 83.02 83.00

Finally, we compare AdaGradW with the default optimizer
AdamW on Swin-transformer Liu et al. (2021) backbone.
The configurations follow the settings of the official mm-
pretrain toolbox5. The results are shown in Table 5 give
the result. AdaGradW can also achieve comparable per-
formance over AdamW.

5 CONCLUSION

This work points out the problems of the well-known optimization algorithm AdaGrad in training
DNNs. The first problem is the effective learning rate decreases during all the training, which
makes the weights change very slowly after certain iterations. Another problem is the decoupled
weight decay regularization will have a negative impact on the optimization of the loss function.
The reason for such problems of AdaGrad in training DNNs is the incorrect usage in practice.
People usually ignore the implicit learning rate schedule in AdaGrad. However, an explicit learning
rate scheduler and such implicit learning rate scheduler at the same time for AdaGrad will lead to
an unfavorable performance in training DNNs. We propose a learning rate re-scheduling (LRR)
method to address this problem by eliminating the implicit learning rate scheduler in AdaGrad.
Meanwhile, the decoupled weight decay can also be perfectly added to the AdaGrad optimizer with
LRR. Moreover, the proposed LRR can also be introduced into other AdaGrad-type optimizers, such
as Shampoo. The proposed optimizers are named AdaGradW and ShampooW, and their effectiveness
is illustrated by sufficient experimental results on image classification tasks.

5
https://github.com/open-mmlab/mmpretrain/tree/master/configs/swin_transformer

9

https://github.com/open-mmlab/mmpretrain/tree/master/configs/swin_transformer

Under review as a conference paper at ICLR 2024

REFERENCES

Naman Agarwal, Brian Bullins, Xinyi Chen, Elad Hazan, Karan Singh, Cyril Zhang, and Yi Zhang.
Efficient full-matrix adaptive regularization. In International Conference on Machine Learning,
pp. 102–110. PMLR, 2019.

Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Second order optimization
made practical. arXiv preprint arXiv:2002.09018, 2020.

Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. Closing the
generalization gap of adaptive gradient methods in training deep neural networks. arXiv preprint
arXiv:1806.06763, 2018.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor optimiza-
tion. In International Conference on Machine Learning, pp. 1842–1850. PMLR, 2018.

Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends® in Optimiza-
tion, 2(3-4):157–325, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Anders Krogh and John Hertz. A simple weight decay can improve generalization. Advances in
neural information processing systems, 4, 1991.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International Conference on
Machine Learning, pp. 12888–12900. PMLR, 2022.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265,
2019a.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265,
2019b.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 10012–10022, 2021.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

10

Under review as a conference paper at ICLR 2024

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-based
neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

Ning Qian. On the momentum term in gradient descent learning algorithms. Neural networks, 12(1):
145–151, 1999.

Siyuan Qiao, Huiyu Wang, Chenxi Liu, Wei Shen, and Alan Yuille. Micro-batch training with
batch-channel normalization and weight standardization. arXiv preprint arXiv:1903.10520, 2019.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. arXiv
preprint arXiv:1904.09237, 2019.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. Advances in neural information processing systems, 28,
2015.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pp. 400–407, 1951.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115(3):211–252, 2015.

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. In Advances in Neural Information Processing Systems, pp.
901–909, 2016.

Shai Shalev-Shwartz et al. Online learning and online convex optimization. Foundations and Trends®
in Machine Learning, 4(2):107–194, 2012.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4:26–31,
2012.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Hongwei Yong, Jianqiang Huang, Xiansheng Hua, and Lei Zhang. Gradient centralization: A new
optimization technique for deep neural networks. In European Conference on Computer Vision,
pp. 635–652. Springer, 2020.

Hongwei Yong, Ying Sun, and Lei Zhang. A general regret bound of preconditioned gradient method
for dnn training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 7866–7875, 2023.

Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond a gaussian denoiser:
Residual learning of deep cnn for image denoising. IEEE transactions on image processing, 26(7):
3142–3155, 2017.

Michael R Zhang, James Lucas, Geoffrey Hinton, and Jimmy Ba. Lookahead optimizer: k steps
forward, 1 step back. arXiv preprint arXiv:1907.08610, 2019.

Hongyi Zheng, Hongwei Yong, and Lei Zhang. Deep convolutional dictionary learning for image
denoising. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 630–641, 2021.

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James S Duncan. Adabelief optimizer: Adapting stepsizes by the belief in
observed gradients. arXiv preprint arXiv:2010.07468, 2020.

11

	Introduction
	Related Works
	Methodology
	Problems in the AdaGrad Algorithm
	Implicit Learning Rate Scheduler in AdaGrad
	Learning Rate Re-scheduling for the AdaGrad
	Extension on More AdaGrad-type Optimizers

	Experimental Results
	Image Classification on CIFAR100/CIFAR10
	Effectiveness of Learning Rate Re-scheduling
	Results on Different Learning Rate Schedulers
	Comparison with Different Optimizers

	Image Classification on ImageNet1K

	Conclusion

