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ABSTRACT

Learning a good transfer function to map the word vectors from two languages into
a shared cross-lingual word vector space plays a crucial role in cross-lingual NLP.
It is useful in translation tasks and important in allowing complex models built on
a high-resource language like English to be directly applied on an aligned low re-
source language. While Procrustes and other techniques can align language mod-
els with some success, it has recently been identified that structural differences
(for instance, due to differing word frequency) create different profiles for various
monolingual embedding. When these profiles differ across languages, it corre-
lates with how well languages can align and their performance on cross-lingual
downstream tasks. In this work, we develop a very general language embedding
normalization procedure, building and subsuming various previous approaches,
which removes these structural profiles across languages without destroying their
intrinsic meaning. We demonstrate that meaning is retained and alignment is im-
proved on similarity, translation, and cross-language classification tasks.

1 INTRODUCTION

The standard multilingual NLP approaches typically do not jointly learn a single embedding, since
words tend to cluster by language, and thus are not useful for translation and cross-lingual learning
tasks. Rather, after learning individual embeddings, the usual approach is to map word vectors from
multiple languages into a shared cross-lingual word vector space (Glavaš et al., 2019). This shared
space creates a cross-lingual word embedding (CLWE) (Karan et al., 2020; Wang et al., 2019).
These serve as a valuable tool for transferring data across different languages, understanding cross-
linguistic differences, and cross-lingual transfer for downstream tasks, such as direct translation
(Gouws et al., 2015; Heyman et al., 2017; Lample et al., 2018), cross-lingual information retrieval
(Vulic & Moens, 2015), cross-lingual document classification (Klementiev et al., 2012), and cross-
lingual dependency parsing (Guo et al., 2015; Ahmad et al., 2019).

A common element of almost all CLWE methods is the use of a rigid, orthogonal transformation
mapping one embedding onto another so they inhabit a shared linguistic space. An orthogonal
transformation is a special class of transformations that can be interpreted as the space of (in our
case, high-dimensional) rotations around the origin, and allowing a mirror flip. This family of
transformations preserves (a) linear and (b) angular properties. By linear properties, we mean that
the straight-line Euclidean distance between elements is preserved, as are more powerful properties
like analogies (e.g., Paris - France + Italy ≈ Rome). Angular properties refer to measuring angles
between pairs of points (from the origin), and as a result, cosine distance is preserved. Given a
correspondence between pairs of objects across two embeddings, the classic Procrustes method,
provides a closed-form solution which minimizes the sum of Euclidean distances. If the vectors are
all first normalized, then this also maximizes the sum of cosine similarities (Dev et al., 2021).

Under this framework, there has been a flurry of work significantly improving CLWE model perfor-
mance along with two directions. Semi-supervised and unsupervised models make these approaches
require less input, and more amenable to lower-resource languages. For example Bootstrap Pro-
crustes (PROC-B) (Glavaš et al., 2019; Vulić et al., 2019) is semi-supervised in that it starts with a
small pairwise correspondence (of 500-1000 words), aligns those to infer a larger correspondence,
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and repeats applying Procrustes alignment. Methods like MUSE (Conneau et al., 2018a) are unsu-
pervised, and use a GAN to estimate a correspondence before applying a Procrustes procedure.

The second direction is preprocessing the embeddings before applying the Procrustes alignment.
These involve methods like removing the mean, removing principal components, and vector length
normalization, discussed later. In principle, these methods aim to remove the geometry of data
intrinsic to particular languages (but not shared across languages) while preserving similarity prop-
erties as assured by orthogonal alignment. The space of transformations allowed under orthogonal
alignments is quite large, and we make the point that unless this data geometry is “normalized” it
inhibits the alignment from optimizing over the entirety of this large space.

Finally, we note that methods like Canonical Correlation Analysis (CCA) (Faruqui & Dyer, 2014),
Discriminative Latent Variable (DLV) (Ruder et al., 2018), and Ranking-based optimization (RC-
SLS) (Joulin et al., 2018) have also been applied towards finding an orthogonal alignment (or pair
of alignments) which minimizes a different optimization function – since the objective function may
not align with sums of squared Euclidean or cosine distance (Conneau et al., 2018a; Smith et al.,
2017). Unlike the others, the RCSLS method notably does not require a rigid transformation.

This paper is on embedding preprocessing, and is agnostic to the alignment used afterward.

Our contribution. This work proposes a new and general approach to preprocessing word embed-
dings, subsuming many previous approaches. The key is Spectral Normalization which regularizes
the spectral properties of monolingual embeddings by setting all of the top singular vectors to have
the same singular value. It leaves alone the smaller singular values; these capture important informa-
tion and cannot be zeroed out, but making them the same value as the top singular vectors introduces
too much noise. Spectral normalization already performs as well as the best previous approaches on
alignment and translation tasks, and since it applies a fairly uniform stretching to the embeddings it
does not distort monolingual similarity performance. Moreover, we show layering Spectral Normal-
ization within an iterative sequence with also centering and vector length normalization improves
results further. We demonstrate this improvement on the standard translation tasks, as well as on
downstream cross-lingual use cases of document classification and natural language inference.
We provide code at https://github.com/poaboagye/SpecNorm.

Beyond CLWE. This paper focuses on normalization for the alignment of word vector embed-
dings. This is for a couple of reasons. First, most relevant prior work does the same in the context
of language translation, and so it allows for direct comparison. Second, these contexts have gen-
erally the largest embeddings, are trained on the most data, and are easy to interpret. However, as
foundation models (Bommasani et al., 2021) become ubiquitous, many other settings induce similar
challenges. For instance, alignment of various models from different data sources allows for im-
proved ensemble embeddings (Dev et al., 2021), and this could extend to image (Frome et al., 2013;
Kiela & Bottou, 2014) or graph embeddings (Grover & Leskovec, 2016; Perozzi et al., 2014). Or in
aligning embeddings of spatial data (Jenkins et al., 2019) or of merchants (Wang et al., 2021), one
may want to align data from different geographic regions for tasks in transfer learning and domain
adaptation. As an example of generality, we demonstrate an improvement via our normalization
approaches in aligning genomic data embeddings (Demetci et al., 2020) in Appendix G.

2 EXISTING METHODS FOR ORTHOGONAL VECTOR SPACES ALIGNMENT

In an embedded representation of a set of n words, each ith word is associated with a vector ai ∈ Rd,
so A = {a1, . . . , an} is the set of n word vector representation. These vector representations
(derived by methods like word2vec (Mikolov et al., 2013a), GloVe (Pennington et al., 2014), or
FastText (Bojanowski et al., 2017)) are chosen so words with similar pairwise cosine similarity are
found in the similar local context in large text corpora on which they are trained. Higher-level linear
structure is shown to emerge, such as concept subspaces and analogies (Mikolov et al., 2013).

The focus of this paper is on aligning embeddings of two languages L1 and L2. Each embedding
AL1

and AL2
, is only designed to ensure pairwise relationships between its word vectors, but the

actual coordinates of those vectors do not have any explicit meaning. Yet, previous work has clearly
demonstrated that there exists significant overall structural similarity, and alignment seeks to make
correspondences between those structures for translation and joint understanding.
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2.1 PRE-PROCESSING EMBEDDINGS BEFORE ORTHOGONAL ALIGNMENT

It turns out directly aligning embeddings from two languages (even using the “optimal” Procrustes
solution) does not provide the best possible joint embedding for translation tasks. While word
meaning appears to hold a similar structure, languages have other properties such as differing word
frequency, and this for instance leads to more frequent words having longer vectors in embeddings.
This extra language-specific structure tends to interfere with alignment. As a result, a number of
techniques have been developed to “normalize” the embeddings before Procrustes (or other) align-
ment. This, in some sense, allows the word meaning to dominate the optimization tasks without
other confounding factors. We review the most common normalization approaches.

Mean Centering (C) subtracts the mean of all vectors in an embedding from each vector in that
embedding. The result is that the mean of all vectors is 0. This is a rigid transformation, and so does
not change the Euclidean distance between any pair of points in an embedding, and also preserves
any linear property like analogies (e.g., Paris - France + Italy ≈ Rome). Dev et al. (2021) points out
that this is the first step (followed by the Procrustes orthogonal transformation) to minimize the sum
of squared Euclidean distances among paired words, under any rigid transformation. However, this
does change the cosine distance between pairs of points.

Length Normalization (L) makes each vector have a 2-norm equal to 1, but retains its direction
from the origin (Artetxe et al., 2016; Xing et al., 2015). This preprocessing step does not change
the cosine distance between any pair of points in an embedding. But, it does change the Euclidean
distance between pairs of points.

Despite these contrasting goals, these two normalizations each turn out to be individually effective
in regularizing the geometry of the embeddings, and allow for better CLWE. Zhang et al. (2019),
realized doing both was even more effective, and showed that iterating these two steps achieves the
state-of-the-art way to preprocess, we denote as I-C+L. Iterative Normalization eventually trans-
forms monolingual word embeddings to have unit-length and zero-mean simultaneously (in practice
they terminate this iterative process after a few steps before it achieves these two goals exactly).

PCA Removal (PR) computes the principal component analysis (PCA) of an embedding, and then
projects away from the direction of the top principal component, removing it. Mu & Viswanath
(2018) observed these directions typically do not encode essential semantic relationships between
words but rather align strongly with word frequency; and PCA removal before alignment led to
improved performance on several tasks. Sachidananda et al. (2021) also showed this preprocessing
improved the BLI task.

2.2 SPECTRAL STATISTICS OF EMBEDDINGS

Dubossarsky et al. (2020) recently documented how cross-lingual alignment is strongly affected by
the spectral statistics of monolingual embeddings. We stack the embedded vectors ai ∈ Rd as rows
in a n× d matrix A ∈ Rn×d. The SVD decomposes A into UΣV ⊤ where U and V contain the left
and right singular vectors, and the singular values σ1 ≥ σ2 ≥ . . . ≥ σd ≥ 0 are on the diagonal of Σ.
The effective rank of A is a smoother analog to rank (when there is noise in low rank components),
defined er(A) = eH(Σ) where H(Σ) = −

∑d
i=1 σ̄i log σ̄i with σ̄i = σi/

∑d
i=1 σi. The effective

condition number κeff(A) = σ1/σer(A), which replaces the numerator (of condition number, σd)
with the more robust singular value at the effective rank. This is desired to be small in stable data
sets. The joint effective condition number measures the harmonic mean of the effective condition
number across two matrices A,A′ as ECOND-HM(A,A′) = 2κeff(A)κeff(A

′)
κeff(A)+κeff(A′) . The singular value

gap measures how similar the singular value sequences are between two matrices as SVG(A,A′) =∑d
i=1(log σi − log σ′

i)
2. These should both be smaller, for more comparable data sets.

Dubossarsky et al. (2020) applied these to monolingual embeddings and demonstrated that the per-
formances of several CLWE methods were closely tied to these spectral properties. Basically em-
beddings align better if they are better jointly conditioned, especially measured via joint effective
condition number and the singular value gap. Contextual embeddings have also been shown to suf-
fer from similar challenges (Ethayarajh, 2019; Xu & Koehn, 2021). Motivated by this idea, we
propose methods that spectrally normalize embeddings improving these statistics while retaining
intra-embedding meaning.
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Figure 1: Illustration on toy 2d data showing potential advantage of Spectral Normalization beyond
centering and length normalization. After center and length normalization all points are on the unit
circle, centered at the origin, but may have uneven clustering. The addition of Spectral Normaliza-
tion can disperse these clusters allowing improved alignment.

3 NEW METHOD: SPECTRAL NORMALIZATION

Unit-length and zero-mean normalization makes embedding vectors from a language lie on a hy-
persphere with the center of the hypersphere centered at the origin. However, this does not take
into account how the word embeddings vectors are clustered on the hypersphere. See example in
Figure 1 where despite centering and length normalization, words are grouped differently across
languages, and this prevents a close alignment. Approaches like PCA removal and mean centering
have the effect of reducing the top principal component or top singular vector. As a result, if the
spectral properties are extreme, it can help regularize them. However, this approach can be blunt.
PCA removal makes the top singular value exactly 0, so the condition number becomes infinite.

To this effect, we propose a new algorithm Spectral Normalization that more gently regularizes
the spectral properties of word embeddings; see Algorithm 1. We will then combine it with other
approaches to again ensure the embedding vectors lie on the unit sphere. In Figure 1, this approach
spreads out words on the unit sphere without reordering them, and allows for a closer alignment.

Algorithm 1 Spectral Normalization (SpecNorm(A, β))

1: Compute svd(A) = UΣV ⊤; Let D ∈ Rd×d be a diagonal matrix.
2: Compute η =

√
∥A∥2F /d, where d is the dimension of the word embedding

3: for i = 1, . . . , d do
4: if (Σii > βη) then Dii ← Σii/(βη)
5: else Dii = 1.
6: return AVD−1

This updates part of the spectral properties of embedding A as a whole, using a parameter β ≥ 0

(fixed later as β = 2 via cross-validation). Based on an average of singular values η =
√
∥A∥2F /d,

if a value is above β times that average, it adjusts it to βη. Hence, all of the top directions are given
the same singular value. Otherwise, if it is below βη, it is considered a minor effect (some are quite
small, and fairly noisy), and it is left alone. If these small ones are completely zeroed out, the critical
information within is destroyed. However, if these small ones are given the same value (i.e., βη)
then components which do not contribute to the most prevalent aspects of a vectors similarity are
given more importance, and we observe that the usefulness of the embedding decreases.

Iterative Spectral Normalization. Spectral normalization makes the most sense (see Appendix
J) in a setting where the vectors are already centered, and also unit length. While SpecNorm does
not change the center of the data, it does not maintain the length of individual vectors. As such, we
advocate combining these methods into a single iterative algorithm: I-C+SN+L as in Algorithm 2.

Algorithm 2 Iterative Spectral Normalization with C+L normalization (I-C+SN+L(A, #Iter))
1: for #Iter steps do
2: A← Center A
3: A← SpecNorm(A)
4: A← Unit length normalization of A
5: return A
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We observe in Figure 2 that this process significantly improves the spectral properties compared to
any other approach. Without preprocessing (None), the languages (EN: English, DE: German, HI:
Hindi, JA: Japanese shown) have large effective condition numbers – indicating that there is a large
disparity between meaningful singular values. Note the y-axis is in the log scale. Hence, aligning
these languages without normalization would likely restrict alignment among top singular vectors,
not allowing enough degree of freedom to align corresponding words.

In contrast, after preprocessing when these values are more uniform, rotations among the dimensions
containing the top principal components will not have an influence on the data distribution, and
can fully optimize the alignment between words. Moreover, Figure 2 shows that I-C+SN+L most
decreases the effective condition number, joint effective condition number, and singular value gap.
Further, these values are fairly uniform across languages, despite great variation beforehand (as
shown with None). In fact, I-C+SN+L is much more effective than other methods.

EN DE HI JA
Language

0

1

2

3

4

5

er
(lo

g)

Effective Rank

EN DE HI JA
Language

0

1

2

3

4

5

EC
ON

D
(lo

g)

Effective Condition Number

None
I-C+SN+L
PR
C+L
I-C+L
GeoMediaN

EN-DE EN-HI EN-JA
Language Pairs

0

1

2

3

EC
ON

D-
HM

(lo
g)

Joint Effective Condition Number

EN-DE EN-HI EN-JA
Language Pairs

0

1

2

3

4

5

6

SV
G

(lo
g)

Singular Value Gap

Figure 2: Spectral Measures of four (4) monolingual word embeddings, before (None) and after
applying various normalization methods.

Is Iteration Necessary? While alternating optimization is a common paradigm, is it necessary or
useful to achieve these normalization goals? There may be many solutions which achieve length,
center, and spectral normalization simultaneously. In fact, we observe that “centering” with the
geometric median (Chatelon et al., 1978; Eyster et al., 1973; Overton, 1983) and then length nor-
malizing vectors (we call this GeoMediaN, and detail it in Appendix A) achieves length and center
normalization without iteration. However, as we observe, it under-performs I-C+L.

4 EXPERIMENTAL ANALYSIS

We provide an evaluation of our proposed preprocessing methods using eight (8) language embed-
dings pre-trained on Wikipedia (Bojanowski et al., 2017) of each language: Croatian (HR), English
(EN), Finnish (FI), French (FR), German (DE), Italian (IT), Russian (RU), and Turkish (TR). We
use the 300-dimensional fastText (Bojanowski et al., 2017) embeddings, and all vocabularies are
trimmed to the 200K most frequent words.

Alignment evaluation tasks: BLI We evaluate and compare our proposed preprocessing methods
mostly on the Bilingual Lexicon Induction (BLI) task, a word translation task. BLI has become the
de facto evaluation task for CLWE models. For words in the source language, this task retrieves
the nearest neighbors in the target language after alignment to check if it contains the translation.
It reports the mean average precision (MAP) (Glavaš et al., 2019), which is equivalent to the mean
reciprocal rank (MRR), of the translation. Unless stated otherwise, reported values on baseline
methods are taken from (Glavaš et al., 2019), and use the Google Translate (GTrans) dictionary
from (Glavaš et al., 2019). We trained (aligned) using 1k, 3k and 5k source words and evaluated
(tested) on separate 2k source test queries, unless noted otherwise.

Alignment Algorithms. We evaluated and compared the result of several supervised rigid-
transformation CLWE models on the evaluation benchmarks using our proposed methods. All have
publicly available codes, links are found in the reference citation. These include Canonical Cor-
relation Analysis (CCA) (Faruqui & Dyer, 2014), Procrustes (PROC) (Artetxe et al., 2016; Smith
et al., 2017; Xing et al., 2015; Dev et al., 2021), Bootstrapping Procrustes (PROC-B) (Glavaš et al.,
2019), and Discriminative Latent-Variable (DLV) (Ruder et al., 2018), as discussed in Section 1.
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We also consider Ranking-Based Optimization (RCSLS) (Joulin et al., 2018) which is not a rigid
alignment. In a few places, we also compare with VECMAP (Artetxe et al., 2018) as an example
of an unsupervised alignment process. This should only use the geometry of the global embedding
structure, e.g., derived from the natural ontology, and our normalization method still helps.

4.1 HYPERPARAMETER TUNING

Our main proposed algorithm I-C+SN+L has a few simple parameters. To avoid overfitting, we
choose these through cross-validation on English (EN) and a held-out set of five (5) languages
Hindi (HI), Russian (RU), Chinese (ZH), Japanese (JA), Turkish (TR). Ten (10) Language pairs
of the form EN-X and X-EN were considered. The hyperparameters β ∈ {1, 2, 3, 4, 5} and
#Iter (number of iterations) ∈ {1, 2, 3, 4, 5} were fine-tuned for I-C+SN+L.

We used the publicly available MUSE translation dictionary (Conneau et al., 2018a) for hyperpa-
rameter tuning. The Procrustes alignment algorithm was trained on 5k source words and evalu-
ated on 1.5k source test queries. We reported the mean average precision (MAP) in Table 1 for
β ∈ {1, 2, 3, 4, 5} and with #Iter ∈ {1, 2, 3, 4, 5}. We observe the value of β = 2 was consistently
the best threshold (although any β ≥ 2 performed similarly). However, the result did not change
much with respect to the number of iterations.

Table 1: Cross-Validation for Hyperparameter Tuning: MAP after Procrustes for 10 language pairs.
β #Iter=1 #Iter=2 #Iter=3 #Iter=4 #Iter=5

1 0.363 0.340 0.328 0.322 0.317
2 0.385 0.386 0.386 0.386 0.386
3 0.381 0.384 0.384 0.384 0.384
4 0.381 0.382 0.382 0.382 0.382
5 0.380 0.381 0.381 0.381 0.381

The tie between the #Iter hyperparameter was broken using their performance on 13 English word
similarity benchmarks; details in Appendix D. In Table 2 reports the average Spearman rank coef-
ficient score on the tasks (None means no normalization). (β, #Iter) = (2, 5) achieved the highest
score. So hereafter, we applying I-C+SN+L with the hyperparameter (β, #Iter) = (2, 5).

Table 2: Monolingual word similarity task; Average Spearman rank coefficient
None (β, #Iter) = (2, 2) (β, #Iter) = (2, 3) (β, #Iter) = (2, 4) (β, #Iter) = (2, 5)

0.651 0.67077 0.67101 0.67108 0.67111

Note that the proposed approach (I-C+SN+L) only increased this score for these similarity tasks,
so showed no signs of distorting inherent information. Although Spectral Normalization does not
exactly preserve the linear properties or angular properties (as centering and length normalization do,
one each, respectively), it does not suffer ill effects. We hypothesize this is because it is somewhat
uniformly stretching words along with the major modes of variation, and is effectively removing
information not relevant to meaning, like frequency. This benign effect is in contrast to other spectral
adjustments (removing small singular values, or setting all to the same value); see Appendix D.

4.2 BLI PERFORMANCE ACROSS NORMALIZATION AND ALIGNMENT ALGORITHMS

We compare and evaluate the BLI performance (MAP) of various normalization algorithms from
previous works to our proposed algorithms. Using the MUSE translation dictionary, we trained
CCA, PROC, PROC-B and RCSLS on 5k source words and evaluated on 1.5k source test queries.
The following normalization algorithms were used in the comparison analysis: PR (PCA Re-
moval) (Mu & Viswanath, 2018), GeoMediaN (Geometric Median Normalization), C+L (Mean
centering and Length normalization, 1 round), I-C+L (Iterative Mean centering and Length normal-
ization, 5 rounds) (Zhang et al., 2019), SN (Spectral Normalization, 1 round), C+SN+L (Mean cen-
tering, Spectral Normalization and Length normalization, 1 round), and I-C+SN+L (Iterative Mean
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centering, Spectral Normalization and Length normalization, 5 rounds). Specifically, we evaluated
18 language pairs, i.e., English (EN) from/to Bulgarian (BG), Catalan (CA), Czech (CS), German
(DE), Spanish (ES), Korean (KO), Thai (TH) and Chinese (ZH), separate from hyperparameter tun-
ing. The average is reported in Table 3, all results are in Appendix J. For almost all algorithms
I-C+SN+L achieves the best scores (and especially on XL−EN, often considerably better). The
only exceptions are on non-rigid RCSLS when C+SN+L (with no iteration) or just SN (without
C+L) performs slightly better. So, Spectral Normalization, and in particular I-C+SN+L, is shown as
the best way to normalize languages before alignment.

Table 3: BLI performance (MAP) on aligning EN−XL and XL−EN
Methods : EN−XL Methods : XL−EN

Normalization CCA PROC PROC-B RCSLS CCA PROC PROC-B RCSLS

None 0.358 0.365 0.377 0.394 0.398 0.399 0.405 0.428
PR 0.394 0.391 0.404 0.373 0.434 0.430 0.442 0.425
GeoMediaN 0.393 0.391 0.400 0.379 0.433 0.432 0.440 0.429
C+L 0.393 0.394 0.408 0.404 0.439 0.437 0.445 0.464
I-C+L 0.394 0.395 0.410 0.406 0.439 0.438 0.448 0.460
SN 0.391 0.394 0.408 0.405 0.440 0.438 0.451 0.468
C+SN+L 0.395 0.396 0.413 0.407 0.444 0.444 0.458 0.466
I-C+SN+L 0.396 0.398 0.414 0.406 0.445 0.446 0.461 0.466

We also compute the average BLI MAP score across all 28 language pairs for more direct com-
parison to prior work (Glavaš et al., 2019), summarized in Table 4 and Appendix E. All results are
in Appendix L. We compare I-C+SN+L (denoted with SN) against no normalization on various
dictionary sizes: 1k, 3k and 5k source words and evaluated on 2k source test queries. In all cases, I-
C+SN+L consistently improves over the baseline; see Appendix E. This includes improvement over
RCSLS which is non-rigid, so in principle could “learn” adjustments similar to our normalization
in the process of alignment. We also tested on VECMAP, an unsupervised approach; I-C+SN+L
preprocessing also improves this result from 0.375 to 0.410.

Table 4: Summary of BLI performance (MAP), average scores for all 28 language pairs.
No normalization results from (Glavaš et al., 2019), against I-C+SN+L (denoted SN).
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1k .289 .314 .299 .326 .379 .407 .289 .332 .331 .331
3k .378 .401 .384 .408 .398 .415 .381 .429 .415 .427
5k .400 .423 .405 .429 – – .403 .452 .437 .460

Table 5: BLI performance (MAP) on aligning Cross-lingual Contextual Embedding, EN−XL

Embedding Normalization EN-AR EN-DE EN-NL Avg

FastText None 0.256 0.357 0.477 0.363
Type-level None 0.501 0.441 0.540 0.494

FastText I-C+L 0.284 0.372 0.493 0.383
Type-level I-C+L 0.510 0.449 0.543 0.501

FastText I-C+SN+L 0.280 0.375 0.499 0.385
Type-level I-C+SN+L 0.525 0.450 0.544 0.506
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Normalizing contextual type-level embeddings. Table 5 compares the impact of Iterative Nor-
malization and Spectral Normalization on the BLI performance on aligning Cross-lingual Contextual
Embedding. We follow the implementation details from Xu & Koehn (2021) for learning representa-
tives within BERT (see Appendix C for more details). Then the learned normalization can be viewed
as a composition to the functional embedding, so is compatible with downstream uses. Our pro-
posed normalization algorithm, Iterative Spectral Normalization (I-C+SN+L), clearly outperforms
Iterative Normalization (I-C+L) on the BLI task for aligning Contextual Embeddings.

This buttresses the claim made by Xu & Koehn (2021) that improving the degree of isomorphism
between contextual embeddings spaces enhances the quality of learned alignment and subsequently
a better performance on the BLI task.

4.3 DOWNSTREAM TASKS

We conclude by demonstrating that Spectral Normalization not only improves in direct translation
tasks, but also captures an important global structure that generalizes from a high resource language
(i.e., English, EN) to lower resource languages. In both examples, a powerful classifier is trained
on the EN embedding (after normalization), and then we demonstrate that after a lower resource
language (e.g., German, DE) has been normalized and aligned the analysis task can be directly
applied to that language. In particular, adding our normalization (I-C+SN+L) dramatically improves
the results over not doing that step, and typically improves on I-C+L normalization.

Cross-lingual Document Classification (CLDC). The CLDC task builds a topic classification
using a language model on a high resource language (in our case English EN) across 15 topics. The
TED CLDC corpus assembled by Hermann & Blunsom (2014) was used for training and evaluation.
Following Glavaš et al. (2019), a simple CNN was used to train. Table 6 summarizes the average
F1-score for all topic classifiers on 5 language pairs. The CLWEs induced by PROCSN, PROC-BSN,
DLVSN, and RCSLSSN (using I-C+SN+L) outperformed the baseline result (with no normalization)
on the CLDC task, greatly improving the best average score from 0.421 to 0.461, and improving
over I-C+SN+L for all alignments except RCSLS. Glavaš et al. (2019) used only 12 of 15 topics,
but could not confirm which, so we re-ran all baselines using all 15 topics.

Table 6: CLDC performance (micro-averaged F1 scores). Cross-lingual transfer EN–X
Model Dict EN-DE EN-FR EN-IT EN-RU EN-TR Avg

PROC 5k .366 .258 .338 .288 .278 .306
PROCI-C+L 5k .452 .325 .427 .521 .479 .440
PROCI-C+SN+L 5k .436 .366 .427 .517 .511 .451
PROC-B 3k .364 .304 .299 .336 .317 .324
PROC-BI-C+L 3k .478 .341 .403 .527 .506 .451
PROC-BI-C+SN+L 3k .448 .396 .423 .522 .517 .461
DLV 5k .419 .336 .397 .493 .458 .421
DLVI-C+L 5k .434 .313 .377 .464 .489 .415
DLVI-C+SN+L 5k .433 .323 .406 .499 .472 .427
RCSLS 5k .466 .397 .403 .403 .406 .415
RCSLSI-C+L 5k .445 .514 .529 .443 .443 .474
RCSLSI-C+SN+L 5k .468 .500 .443 .488 .394 .459

Cross-lingual Natural Language Inference (XNLI). We evaluated the CLWE on a cross-lingual
natural language inference (XNLI) task. We used a multi-lingual XNLI corpus created by Conneau
et al. (2018b), which is a collection of sentence pairs from the English MultiNLI corpus (Williams
et al., 2018) translated into 14 languages. The MultiNLI corpus contains 433k sentence pairs with
the labels entailment, contradiction, and neutral. The intersection between XNLI languages and BLI
languages results in four XNLI evaluation pairs: EN-DE, EN-FR, EN-TR, and EN-RU. We use the
training setup in Glavaš et al. (2019) with the Enhanced Sequential Inference Model (Chen et al.,
2017) on English after normalization. First, we aligned normalized versions of each language onto
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the normalized EN embedding to obtain the shared cross-lingual embedding. Then we used the
5k test pairs from the XNLI corpus to evaluate each language alignment. Table 7 shows the result
for PROC, PROC-B, and RCSLS alignments (DLV and VECMAP transform the EN embedding
in the process, so were omitted). We compare I-C+L and our I-C+SN+L normalization against
the same procedure without normalization from Glavaš et al. (2019). As in other experiments, our
normalization improves the average test accuracy with each alignment approach.

Table 7: XNLI performance (test set accuracy)
Model Dict EN-DE EN-FR EN-TR EN-RU Avg

PROC 5k .607 .534 .568 .585 .574
PROCI-C+L 5k .589 .608 .536 .581 .579
PROCI-C+SN+L 5k .611 .638 .542 .596 .597
PROC-B 3k .615 .532 .573 .599 .580
PROC-BI-C+L 5k .602 .636 .537 .595 .593
PROC-BI-C+SN+L 3k .624 .638 .548 .601 .603
RCSLS 5k .390 .363 .387 .399 .385
RCSLSI-C+L 5k .514 .490 .490 .526 .505
RCSLSI-C+SN+L 5k .499 .482 .504 .556 .510

5 CONCLUSION & DISCUSSION

We introduce a new way to normalize embeddings, based on spectral normalization, for use in
creating cross-lingual word embeddings. Our approach generalizes previous approaches, and when
used to individually preprocess monolingual embeddings, it allows alignment procedures to find
better alignments: resulting in improved performance on direct translation tasks as well as cross-
lingual topic classification and natural language inference tasks. Moreover, we demonstrate this
improvement is very broadly useful; it holds in contextual embeddings as well as on embeddings of
non-language data (on genomic data in Appendix G).

Limitations. Our proposed preprocessing method heavily relies on the approximately isomorphic
assumption of the two monolingual embedding spaces to be aligned (Mikolov et al., 2013b; Ruder
et al., 2019). Under this condition, it is easier to learn a robust linear map between two monolingual
embedding spaces that are approximately isomorphic than spaces that are not. Recent, lines of
work (Søgaard et al., 2018; Nakashole & Flauger, 2018; Patra et al., 2018) have questioned this
approximately isomorphic assumption and have shown that it does not hold in general. Also, it
hinders the performance of some CLWE methods. The goal of our proposed preprocessing method
is to canonically preprocess the two monolingual embedding spaces to improve their isomorphism,
and we show it is generally effective.

CLWE methods such as Joint CLWE methods (Wang et al., 2019) and Cross-lingual Anchoring
(Ormazabal et al., 2021) departs from the approximately isomorphic assumption. They learn new
embeddings from scratch, using a different objective function that encourages the alignment of rep-
resentations or the vector embeddings of the words. As such our proposed preprocessing method
does not apply. These methods, however, are less flexible and portable than alignment-based ap-
proaches, since they need to learn a new embedding for each pair of languages, and would need to
re-train if only one is updated or a different or multiple pairs are considered. We have a preliminary
comparison with Ormazabal et al. (2021) in Appendix F and show our methods are competitive.
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6 ETHICS STATEMENT

The vast majority of NLP research and cutting-edge advancements are in English. This disadvan-
tages those who primarily operate in other languages, with less developed models, or less data to
train models. As large language models are the cornerstone of most NLP research and development
in English, one of this work’s main goals is to inexpensively port these advances to other languages,
and those who use them. This will help unlock this technology to many around the world. As with
most models, this accuracy and improvement may vary across tasks and languages.

While language models have many positive use cases including improving accessibility, better rec-
ommendations, and increased automation, they have some negative effects as well. These include
requiring potentially large computational and hence environmental costs, encoding and exacerbating
bias, and aiding in automatically generating fake or deceitful content. While this paper is unlikely
to change the desire to use embeddings, it aims to reduce the burden of use and increase the ef-
fectiveness in lower-resource settings. And in particular to port models trained in English to other
languages. This would reduce the cost of retraining in other languages if the English model can
be reused, easing environmental costs. We support the maturing efforts in attenuating bias in all
such embeddings. And while we acknowledge the possibility of this work aiding in the creation of
deceitful content and the harm it can cause, we believe the many benefits outweigh the harms.

7 REPRODUCIBILITY STATEMENT

All existing methods are compared with publicly available codes with publicly available data, with
links above or in references. The exception is code for CLDC and XNLI is shared by Glavaš
et al. (2019). Everything was run with default parameters; the exception is RCSLS, where we
follow the suggested hyperparameter selection strategy (Joulin et al., 2018) (with learning rate in
{1, 10, 25, 50} and epoch number in {10, 20}). Our new code for SpecNorm is in Appendix H and
here https://github.com/poaboagye/SpecNorm.
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APPENDIX

A GEOMETRIC MEDIAN NORMALIZATION

Iterative Normalization converges towards individual word embeddings having a unit length and
each monolingual embedding having a zero mean. Zhang et al. (2019) showed that iterating solu-
tions for these distinct goals will eventually converge to a solution which satisfies both.

In this paper, we observe that both goals can be done in one shot without iterating – by solving
the Fermat-Weber problem (Maxwell, 1966; Love et al., 1988). This dates to the 17th century, and
corresponds with identifying the geometric median of a point set. Formally, the goal is a point
x∗ ∈ Rd that minimizes the sum of distances from n anchor points {a1, . . . , an} ⊂ Rd which are
not colinear:

x∗ = min
x

n∑
i=1

∥ai − x|. (1)

Several methods (Chatelon et al., 1978; Eyster et al., 1973; Overton, 1983) have been proposed; the
most popular is the Weiszfeld’s algorithm (Weiszfeld, see below for details). It is folklore that the
solution x∗ satisfies that 0 =

∑n
i=1

ai−x∗

∥ai−x∗∥ ; we do not know of a written proof, so we prove this
for completeness.
Theorem A.1. If x ∈ Rd is distinct from all the given anchor points, ai, then x is the geometric
median is true if and only if (⇐⇒)

0 =

n∑
i=1

ai − x

∥ai − x∥
(2)

Proof. (⇒) Suppose x ∈ Rd is distinct from all the given anchor points, ai and x is the geometric
median such that x = T̃ (x) (see A.1) then

∇f (x) =

n∑
i=1

ai − x

∥ai − x∥
= 0.

(⇐) Suppose x ∈ Rd is distinct from all the given anchor points, ai and x is the unique optimal
solution of equation 1 such that ∇f (x) = 0 then solving for x while ignoring the dependency x in∥∥ai − x

∥∥ yields:

x =

n∑
i=1

∥∥ai − x
∥∥−1

ai

n∑
i=1

∥ai − x∥−1

which is the geometric median.

Using this characteristic of the geometric median, we can simultaneously enforce monolingual word
embeddings to have unit-length and zero-mean in just one step. This can be done using the Geomet-
ric Median normalization (GeoMediaN) algorithm (as Algorithm 3). Given a monolingual word
embedding A, we compute the geometric median x∗, and ”center” the data on this point, and unit
length normalizes the centered embedding.

Algorithm 3 Geometric Median Normalization: GeoMediaN(A)
1: x∗ ←Weiszfeld(A)

2: for all ai ∈ A do ai← ai−x∗

∥ai−x∗∥
3: return A

After these steps, all vectors are unit length, and because of the folklore property (Theorem A.1),
the mean of those points is also 0. As a result, we can state the following property.
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Theorem A.2. The output of GeoMediaN(A) is centered and length normalized.

Despite the Geometric Median Normalization algorithm’s ability to enforce unit-length and zero-
mean in just one step, we observe that it does not perform especially well on the BLI task. Both
GeoMediaN and I-C+L achieve one of many solutions which achieve these joint goals.

A.1 WEISZFELD ALGORITHM

The Weiszfeld algorithm is an iterative method for finding the geometric median of a set of points
in Euclidean space based on the reformulation of a stationary point that satisfies∇f (x) = 0.

If iteration function T : Rd → Rd is defined by:

T (x) =


T̃ (x) =

n∑
i=1
∥ai−x∥−1

ai

n∑
i=1

∥ai−x∥−1
if x /∈

{
a1, . . . an

}
ai if x = ai , i = 1, . . . , n

(3)

then the Weiszfeld algorithm is:

xk+1 = T
(
xk

)
, k ∈ N (4)

where x0 ∈ Rd is a starting point. When the current iterate, xk /∈
{
a1, . . . an

}
, T

(
xk

)
= T̃

(
xk

)
;

else, if xk = ai, then T
(
xk

)
= ai.

The Weiszfeld algorithm is presented in Algorithm 4 below:

Algorithm 4 Weiszfeld algorithm (WA)

Input: Anchor points,
(
a1, . . . an

)
, x0 ∈ Rd and ϵ > 0

1: k← 0
2: while True do
3: xk+1← T

(
xk

)
4: if

∥∥xk+1 − xk
∥∥
2
< ϵ then

5: return xk+1

6: k← k + 1

B SPECTRAL STATISTICS AND SPECTRAL ISOMORPHISM MEASURES

We also explored other spectral statistics on monolingual embeddings. The numeric rank of A
is a smoother analog to rank (where there is noise in low rank components), defined η(A) =
∥A∥2F /∥A∥22. The condition number of A is κ(A) = σ1/σd, and measures how close the ma-
trix is to being truly full rank, smaller is more stable. For two matrices A1 and A2, the condition
number harmonic mean is COND-HM(A1, A2) = 2κ(A1)κ(A2)

κ(A1)+κ(A2)
. Smaller means the matrices are

more comparable. Figure 3 plots these measures, and again demonstrates that I-C+SN+L improves
these measures on matrices.

We also show the raw numbers used to generate the charts in Figure 2 in the tables below.
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Figure 3: Spectral Measures of four (4) monolingual word embeddings.

Table 8: Effective Rank
Normalization Algorithms

Languages N
on

e

PR G
eo

M
ed

ia
N

C
+L

I-
C

+L

I-
C

+S
N

+L

EN 268 277 278 279 279 283
DE 264 273 273 274 274 278
HI 258 270 269 269 269 282
JA 39 96 171 253 255 276

Table 9: Effective Condition Number
Normalization Algorithms

Langauges N
on

e

PR G
eo

M
ed

ia
N

C
+L

I-
C

+L

I-
C

+S
N

+L

EN 13.1 6.7 5.4 5.3 5.3 3.3
DE 14.8 5.9 6.2 6.1 6.1 3.7
HI 16.1 9.4 9.1 8.9 8.9 3.2
JA 175.0 113.3 73.1 16.4 15.0 3.4
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Table 10: Effective Condition Number Harmonic Mean
Normalization Algorithms

Langauges Pairs N
on

e

PR G
eo

M
ed

ia
N

C
+L

I-
C

+L

I-
C

+S
N

+L

EN-DE 13.9 6.3 5.8 5.7 5.7 3.5
EN-HI 14.4 7.8 6.8 6.6 6.6 3.2
EN-JA 24.4 12.7 10.0 8.0 7.8 3.3

Table 11: Singular Value Gap
Normalization Algorithms

Langauges Pairs N
on

e

PR G
eo

M
ed

ia
N

C
+L

I-
C

+L

I-
C

+S
N

+L

EN-DE 2.3 2.4 2.2 2.2 2.2 2.2
EN-HI 49.0 48.6 12.2 12.2 12.2 5.2
EN-JA 44.1 45.8 404.0 17.7 14.8 2.2

C NORMALIZING CONTEXTUAL TYPE-LEVEL EMBEDDINGS

Contextual Type-level Embeddings To obtain the contextual type-level embeddings, Fast Align
(Dyer et al., 2013) is applied to the source-target parallel corpora to derive silver aligned token pairs.
The tokenized parallel corpus is fed into pre-trained BERTs (Wolf et al., 2019; Safaya et al., 2020)
of the source and target language. Since there will be multiple occurrences of type-level words and
each type-level word will possess a contextual word embedding, for each type-level word, its vector
representation is derived from the mean vector of all the type-level words from the monolingual
corpus fed into the pre-trained language model. This is done for both source and target language.
The resulting type-level contextual embedding from the source and target language is then aligned
by solving the Procrustes problem.

D WORD SIMILARITY TASK

The word similiarity task was conducted using the following English word similarity benchmarks:
WS-3533 (Finkelstein et al., 2001), WS-SIM and WSREL (Agirre et al., 2009), RG-65 (Rubenstein
& Goodenough, 1965), MC-30 (Miller & Charles, 1991), MTurk-2875 (Radinsky et al., 2011),
MTurk-771 (Halawi et al., 2012), MEN7 (Bruni et al., 2012), YP-130 (Yang & Powers, 2006), Rare
Words (Luong et al., 2013).

In addition to a baseline (None, which means no normalization), Tabel 12 shows results comparing
against our proposed normalization (I-C+SN+L) and the state of the art (I-C+L). Note that both of
these improve the accuracy of the similarity tests. This indicates that they are not distorting the
critical information contained in the original embeddings. And our proposed approach (I-C+SN+L)
increases the score the most.

In contrast, we show the results of two other spectral adjustments we considered. SSV (SSV means
Same Singular Values), performs the SVD on the original embedding and then sets all the singular
values to η =

√
∥A∥2F /d. Then we compute U@S@VT to get the new word embedding. So

similar to SpecNorm, but it never reaches the else condition. This slightly decreases the scores on
the similarity tests. This is a result of accentuating the noise directions. In the other direction, SSVZ
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(SSVZ means Set Singular Values to Zero) only keeps the top 40 singular values and then sets the
rest to zero. Then we compute U@S@VT to get the new word embedding. This drastically reduces
the similarity score. This shows those noise directions, which tend to be well below the average
singular value, are still important and cannot just be removed.

Table 12: Monolingual Word Similarity Score (Spearman rank coefficient)
Normalization Algorithms

Dataset None SSV SSVZ I-C+L I-C+SN+L

EN WS-353-ALL 0.7388 0.7127 0.5395 0.7433 0.7555
EN VERB-143 0.3973 0.4283 0.2635 0.4231 0.4346
EN YP-130 0.5333 0.5534 0.3904 0.5514 0.5631
EN MTurk-771 0.6689 0.6583 0.5540 0.6838 0.6926
EN RG-65 0.7974 0.7640 0.6390 0.8082 0.8087
EN RW-STANFORD 0.5080 0.5569 0.3873 0.5125 0.5258
EN SEMEVAL17 0.7216 0.7478 0.5779 0.7288 0.7366
EN MEN-TR-3k 0.7637 0.7506 0.6581 0.7720 0.7792
EN WS-353-SIM 0.7811 0.7678 0.6162 0.7897 0.7888
EN MTurk-287 0.6773 0.6439 0.6016 0.6864 0.6864
EN WS-353-REL 0.6820 0.6363 0.4824 0.6905 0.7081
EN MC-30 0.8123 0.8203 0.6754 0.8352 0.8494
EN SIMLEX-999 0.3823 0.4069 0.2276 0.3899 0.3955

Avg 0.6511 0.6498 0.5087 0.6627 0.6711

E SUMMARY OF MODEL PERFORMANCE AND SIGNIFICANCE TEST

Table 13: Summary of Model Performance on I-C+SN+L vs. No Normalization. Where a significant
number of language pairs show an improvement (see Table 14) are in bold.

Models

Dict C
C

A

PR
O

C

PR
O

C
-B

D
LV

R
C

SL
S

V
E

C
M

A
P

1k 28/28 28/28 25/28 28/28 13/28
3k 28/28 28/28 25/28 28/28 25/28
5k 28/28 28/28 28/28 28/28
– 27/28

Table 13 summarizes the performance of I-C+SN+L on several supervised and unsupervised
projection-based CLWE models across all the 28 language pairs as presented in Appendix L . After
preprocessing the monolingual word embeddings with I-C+SN+L, CCASN, PROCSN and DLVSN

outperformed CCA, PROC and DLV respectively on 28 of 28 language pairs across all the transla-
tion dictionaries. PROC-BSN outperformed PROC-B on 25 of 28 language pairs across 1k and 3k
translation dictionaries. The performance of RCSLSSN supersedes RCSLS on 25 of 28 language
pairs and 28 of 28 language pairs trained on 3k and 5k translation dictionaries respectively. The
unsupervised projection-based CLWE model, VECMAPSN outperformed VECMAP on 27 of 28
language pairs. The lowest performing model was RCSLSSN trained on 1k translation dictionary.

We compare the effectiveness of Iterative Spectral Normalization on n = 28 language pairs. We use
a 1-tail Binomial Test to measure the significance of the consistency of the improvement. That is,
Iterative Spectral Normalization is a significant improvement over no normalization if it improves
the score on well more than 50% of the language pairs. Table 14 shows the p-value derived from the
Binomial test with n = 28 language with probability 0.5, for different values k/n language pairs
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with an improvement. For instance, 21/28 language pairs with an improvement have a p-value of
0.006 so is significant at the 0.05 level and the 0.01 level. In the associated Tables 13 and 15 we
show those results in bold which are significant at the 0.01 level.

Table 14: This table shows the p-values corresponding with a 1-tail Binomial Test using n = 28
items, k observations, against a rate parameter of 0.5, indicating a null hypothesis where each sce-
nario is equally likely (i.e., that neither provides an improvement).

k/28 18 19 20 21 22 23 24 25 26 27 28

p-value 0.09 0.04 0.02 0.006 0.002 0.0004 9e-05 1e-05 2e-06 1e-07 4e-09

Table 15: Comparison of Model Performance of I-C+L vs. I-C+SN+L. The table shows the fraction
of language pairs where I-C+SN+L performs better. Where a significant number of language pairs
show an improvement (see Table 14) are in bold.

Models

Dict C
C

A

PR
O

C

PR
O

C
-B

D
LV

R
C

SL
S

V
E

C
M

A
P

3k 25/28
5k 22/28 24/28 23/28 14/28
– 24/28

Table 15 summarizes the performance of I-C+L and I-C+SN+L on several supervised and unsuper-
vised projection-based CLWE models across all the 28 language pairs as presented in Appendix K .
In all cases, I-C+SN+L outperforms I-C+L except on RCSLS where there was a tie.

Bold signifies that they are significant at a significance level of 0.01 under a Binomial Test, as shown
in Table 14.

F P@1 PERFORMANCE FOR MAPPING BASED CLWE METHODS VS JOINT
TRAINING

Table 16: BLI performance (P@1) on 4 languages from MUSE. ∗ are scores reported from published
papers; others are ones we computed.

Model Normalization EN-DE EN-ES EN-FR EN-RU Avg

Embed then Align Methods

PROC (Conneau et al., 2018a)∗ None 73.5 81.4 81.1 51.7 71.9
PROC (Conneau et al., 2018a) I-C+SN+L 75.7 82.7 83.2 51.8 73.3

RCSLS (Joulin et al., 2018) None 43.6 50.5 53.1 26.6 43.4
RCSLS (Joulin et al., 2018) I-C+SN+L 77.9 83.7 83.7 57.8 75.7
ADV (Conneau et al., 2018a)∗ None 74.0 81.7 82.3 44.0 70.5
ADV (Conneau et al., 2018a) I-C+SN+L 0.00 0.00 82.9 0.07 20.7

WP (Grave et al., 2019)∗ None 75.6 82.8 82.3 45.2 71.5
WP (Grave et al., 2019) I-C+SN+L 77.4 82.9 83.6 47.8 72.9

Joint Training Methods

(Wang et al., 2019)∗ None 74.2 81.4 82.8 45.0 70.9

(Ormazabal et al., 2021)∗ None 78.1 84.2 84.9 51.5 74.7
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Joint training methods. The CLWE methods proposed by Wang et al. (2019) and Ormazabal
et al. (2021) learn a new embedding from scratch including words from both languages. They do
so with a different objective function than standard approaches so that it prevents words entirely
clustering by language, and so cross-lingual synonyms are encouraged to be embedded close to
each other. Wang et al. (2019) accomplished this by encouraging alignment of representations of
words. This was enhanced by Ormazabal et al. (2021) via a mechanism (Cross-lingual Anchoring)
that extended the skip-gram to have bilingual target embeddings. Ultimately, these can learn a cross-
lingual embedding that preserves synonyms, and is optimized over the entire source language data.

Results. Both Ormazabal et al. (2021) and Wang et al. (2019) reported P@1 (precision of the 1st
nearest neighbor) BLI results for their method – as opposed to the more robust MAP evaluation we
use in the remainder of the paper. So we report the BLI performance on the MUSE dataset on 4
languages before and after I-C+SN+L for a variety of alignment techniques in Table 16. We include
their published numbers directly for comparison. We also include reported numbers from various
other papers, denoted with ∗. The work of Ormazabal et al. (2021) slightly outperforms I-C+SN+L
(with RCSLS (Joulin et al., 2018)) on EN-DE, EN-ES, and EN-FR, but under-performs on EN-RU
and as a result has a lower overall average.

The result of Ormazabal et al. (2021) are certainly intriguing, and we hope to be able to compare on a
broader set of languages and use the MAP evaluation in future work. We remark, however, that such
approaches are less flexible than using a post-processing alignment as they require re-training, so it
is less clear how to apply for multiple languages, would need to be re-trained for other languages
pairs (e.g., DE-FR), and how it will work for lower resource languages where less training data is
available.

After applying our proposed I-C+SN+L normalization, ADV (Conneau et al., 2018b) failed to align
EN-DE, EN-ES, EN-RU. This method uses a Generative Adversarial Network (GAN), and this phe-
nomenon is explained by Hartmann et al. (2019). In their works, they showed that unit length nor-
malization makes GAN based CLWE method unstable and deteriorates their performance but other
supervised alignments are not affected by it. This explains why the performance on PROC (Conneau
et al., 2018a), RCSLS (Joulin et al., 2018) and Wasserstein Procrustes (WP) (Grave et al., 2019) are
not affected by I-C+SN+L, and in fact, it leads to an improvement in the BLI performance.

G ALIGNMENT OF SINGLE-CELL MULTI-OMICS DATA

Table 17: Alignment Performance (FOSCTTM) on Single-cell Sequencing Dataset
scGEM SNAREseq

Alignment methods Normalization FOSCTTM FOSCTTM

Before Normalization

MMD-MA ∗ None 0.2014 0.15
UnionCom ∗ None 0.296 0.265
SCOT ∗ None 0.198 0.15
After Normalization

SCOT I-C+L 0.201 0.395
SCOT I-C+SN+L 0.184 0.15

Single-cell measurements allow scientists to study the various properties of the genome such as
gene expression, chromatin accessibility, DNA methylation etc. Therefore there is the need for data
integration of these single-cell measurements so that scientists can understand cell development
over time and disease. However, due to the lack of cell-to-cell correspondence between the different
types of measurements, it makes the process of data integration a challenging task. Motivated by
this, (Demetci et al., 2020) proposed a Single-Cell alignment using Optimal Transport (SCOT), an
unsupervised learning algorithm that uses Gromov Wasserstein-based optimal transport to recover
the cell-to-cell correspondence between two sequencing domains. * represents results taken directly
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from (Demetci et al., 2020). MMD-MA (Liu et al., 2019) and UnionCom (Cao et al., 2020) are two
other unsupervised single-cell alignment methods.

We follow the implementation details from (Demetci et al., 2020). * represents results taken
directly from (Demetci et al., 2020). We use two single-cell multi-omics datasets: 1) scGEM
assay (Cheow et al., 2016) and 2) SNAREseq assay (Chen et al., 2019). The fraction of samples is
closer than the true match, (FOSCTTM) is used to evaluate the alignment performance. A lower
average FOSCTTM score indicates a higher ability of SCOT to recover the correct correspondences.

Table 17 summaries the before and after I-C+L and I-C+SN+L SCOT performance based on FOS-
CTTM. On the SNAREseq dataset SCOT with I-C+SN+L outperforms SCOT with I-C+L but
achieves the same performance as SCOT without normalization. However, processing the scGEM
dataset with I-C+SN+L before alignment achieved the highest FOSCTTM score of 0.184 followed
by SCOT without normalization.

H CODE FOR SPECNORM

The code implementing our new algorithm Spectral Normalization is provided here https://
github.com/poaboagye/SpecNorm. As it is quite simple, for completeness we also present
it next.

Spectral Normalization (SpecNorm) is below, referred to as SpecNorm.py. Similarly, the code
implementation of Iterative Spectral Normalization (I-C+SN+L) referred to as IterSpecNorm.py is
also shown below.
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Spectral Normalization (SpecNorm.py)

import numpy as np

def computeSVD(embed):
"""
Args:

emded: Monolingual Embedding
Returns:

Singular Value Decomposition
"""
U, S, VT = np.linalg.svd(embed,full_matrices=False)
return U, S, VT

def specNorm(embed, beta):
"""
Args:

emded: Monolingual Embedding
beta: Use to determine smaller (noisy)
singular values to be removed

Returns:
Spectral Normalized Embedding

"""
# Perform SVD on the Monolingual Embedding
_, S, VT = computeSVD(embed)
# Compute eta
eta = np.sqrt(np.sum(S**2)/len(S))
# Transform diagonal matrix
S_prime = 1 / S
for idx, sigma in enumerate(S):

if sigma > beta*eta:
S_prime[idx] = S_prime[idx] * (beta*eta)

else:
S_prime[idx] = 1

S_prime = np.eye(len(S)) * S_prime
# Compute new monolingual embedding
embed = embed @ VT.T @ S_prime
return embed
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Iterative Spectral Normalization (IterSpecNorm.py)

import numpy as np
from SpecNorm import specNorm
from argparse import ArgumentParser

def load_embed(filename, max_vocab=-1):
words, embeds = [], []
with open(filename, ’r’) as f:

next(f)
for line in f:

word, vector = line.rstrip().split(’ ’, 1)
vector = np.fromstring(vector, sep=’ ’)
words.append(word)
embeds.append(vector)
if len(embeds) == max_vocab:

break
return words, np.array(embeds)

def saveEmbed(path, words, word_embeds):
with open(path, ’w’) as f:

print(word_embeds.shape[0], word_embeds.shape[1], file=f)
for word, embed in zip(words, word_embeds):

vector_str = ’ ’.join(str(x) for x in embed)
print(word, vector_str, file = f)

def main():
parser = ArgumentParser()
parser.add_argument(’--input_file’)
parser.add_argument(’--output_file’)
parser.add_argument(’--niter’, default=5, type=int)
parser.add_argument(’--max_vocab’, default=200000, type=int)
parser.add_argument(’--beta’, default=2, type=int)
args = parser.parse_args()

words, embeds = load_embed(args.input_file, max_vocab=args.max_vocab)
embeds /= np.linalg.norm(embeds, axis=1)[:, np.newaxis] + 1e-8

for i in range(args.niter):
# Center Monoligual Embedding
embeds -= embeds.mean(axis=0)[np.newaxis, :]
# Perform Spectral Normalization
embeds = specNorm(embeds, args.beta)
# Unit Length Normalization
embeds /= np.linalg.norm(embeds, axis=1)[:, np.newaxis] + 1e-8

saveEmbed(args.output_file, words, embeds)

if __name__ == ’__main__’:
main()

I RUNTIME

Most of the alignment algorithms run on a CPU except for VecMap, which requires a GPU for
faster computation. It takes about 91 seconds to run Iterative Spectral Normalization on a CPU
with a β = 2 and five iterations. Hardware specifications are NVIDIA GeForce GTX Titan Xp
12GB, AMD Ryzen 7 1700 eight-core processor, and 62.8GB RAM. All alignment approaches
were completed in under 15 minutes, and most less than 5 minutes. Each evaluation (BLI, CLDC,
or XNLI) takes under 2 minutes, but the training step for CLDC and XNLI takes about a day each;
hence our approach aims only to need to do this once (on a high resource language like English),
and then use the faster alignment step to transfer this to other languages.
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J FULL BLI PERFORMANCE OF VARIOUS NORMALIZATION ALGORITHMS

Table 18: BLI performance (MAP) on aligning EN−XL2
. We compare all the normalization techniques: None (No normalization), PR (PCA Removal) (Mu & Viswanath,

2018), GeoMediaN (Geometric Median Normalization), C+L (Mean centering and Length normalization, 1 round), I-C+L (Iterative Mean centering and Length normalization, 5
rounds) (Zhang et al., 2019), SN (Spectral Normalization, 1 round), C+SN+L (Mean centering, Spectral Normalization and Length normalization, 1 round), I-C+SN+L (Iterative
Mean centering, Spectral Normalization and Length normalization, 5 rounds).

.

Method Normalization BG CA CS DE ES FR KO TH ZH Avg

CCA None 0.298 0.556 0.364 0.358 0.514 0.485 0.242 0.209 0.198 0.358
PR 0.316 0.583 0.389 0.374 0.523 0.492 0.283 0.224 0.362 0.394
GeoMediaN 0.316 0.580 0.383 0.376 0.524 0.492 0.277 0.226 0.362 0.393
C+L 0.326 0.582 0.387 0.375 0.521 0.491 0.267 0.227 0.359 0.393
I-C+L 0.326 0.582 0.387 0.375 0.521 0.492 0.267 0.226 0.371 0.394
SN 0.314 0.580 0.384 0.370 0.519 0.494 0.259 0.223 0.378 0.391
C+SN+L 0.329 0.586 0.389 0.374 0.523 0.495 0.262 0.225 0.376 0.395
I-C+SN+L 0.328 0.585 0.388 0.374 0.524 0.496 0.258 0.229 0.378 0.396

PROC None 0.296 0.553 0.363 0.357 0.509 0.481 0.255 0.212 0.255 0.365
PR 0.316 0.575 0.386 0.371 0.524 0.492 0.285 0.223 0.343 0.391
GeoMediaN 0.317 0.578 0.384 0.376 0.521 0.491 0.281 0.225 0.346 0.391
C+L 0.327 0.582 0.390 0.373 0.520 0.490 0.279 0.227 0.354 0.394
I-C+L 0.327 0.582 0.390 0.372 0.520 0.490 0.280 0.228 0.366 0.395
SN 0.319 0.580 0.384 0.369 0.520 0.493 0.277 0.227 0.378 0.394
C+SN+L 0.331 0.586 0.380 0.374 0.524 0.495 0.273 0.227 0.378 0.396
I-C+SN+L 0.330 0.586 0.389 0.375 0.525 0.495 0.287 0.224 0.374 0.398

PROC-B None 0.326 0.587 0.400 0.382 0.528 0.497 0.236 0.218 0.221 0.377
PR 0.340 0.605 0.425 0.395 0.536 0.505 0.259 0.227 0.341 0.404
GeoMediaN 0.304 0.605 0.425 0.395 0.538 0.507 0.260 0.219 0.352 0.400
C+L 0.354 0.607 0.423 0.396 0.536 0.507 0.257 0.223 0.366 0.408
I-C+L 0.354 0.608 0.424 0.396 0.536 0.508 0.257 0.224 0.380 0.410
SN 0.347 0.602 0.421 0.392 0.533 0.504 0.257 0.229 0.389 0.408
C+SN+L 0.358 0.613 0.427 0.396 0.539 0.501 0.261 0.229 0.397 0.413
I-C+SN+L 0.358 0.619 0.426 0.397 0.538 0.510 0.258 0.227 0.393 0.414

RCSLS None 0.347 0.601 0.404 0.392 0.530 0.503 0.317 0.227 0.227 0.394
PR 0.337 0.591 0.387 0.385 0.529 0.498 0.290 0.234 0.107 0.373
GeoMediaN 0.337 0.592 0.391 0.384 0.530 0.499 0.284 0.231 0.167 0.379
C+L 0.345 0.599 0.400 0.391 0.530 0.502 0.288 0.221 0.361 0.404
I-C+L 0.346 0.598 0.400 0.391 0.530 0.502 0.288 0.221 0.382 0.406
SN 0.341 0.597 0.395 0.394 0.533 0.504 0.282 0.217 0.385 0.405
C+SN+L 0.348 0.601 0.403 0.393 0.533 0.506 0.285 0.215 0.377 0.407
I-C+SN+L 0.348 0.601 0.401 0.392 0.533 0.506 0.280 0.214 0.376 0.406



Table 19: BLI performance (MAP) on aligning XL1
−EN. We compare all the normalization techniques: None (No normalization), PR (PCA Removal) (Mu & Viswanath,

2018), GeoMediaN (Geometric Median Normalization), C+L (Mean centering and Length normalization, 1 round), I-C+L (Iterative Mean centering and Length normal-
ization, 5 rounds) (Zhang et al., 2019), SN (Spectral Normalization, 1 round), C+SN+L (Mean centering, Spectral Normalization and Length normalization, 1 round),
I-C+SN+L (Iterative Mean centering, Spectral Normalization and Length normalization, 5 rounds).

.

Method Normalization BG CA CS DE ES FR KO TH ZH Avg

CCA None 0.448 0.673 0.514 0.444 0.576 0.568 0.199 0.086 0.078 0.398
PR 0.465 0.684 0.523 0.450 0.581 0.578 0.230 0.099 0.292 0.434
GeoMediaN 0.467 0.688 0.523 0.449 0.582 0.583 0.231 0.098 0.279 0.433
C+L 0.471 0.692 0.526 0.449 0.582 0.585 0.235 0.102 0.306 0.439
I-C+L 0.471 0.692 0.526 0.449 0.582 0.585 0.234 0.102 0.313 0.439
SN 0.467 0.689 0.527 0.455 0.587 0.581 0.230 0.114 0.310 0.440
C+SN+L 0.472 0.693 0.527 0.458 0.586 0.590 0.238 0.115 0.319 0.444
I-C+SN+L 0.473 0.692 0.526 0.459 0.586 0.590 0.236 0.115 0.324 0.445

PROC None 0.450 0.669 0.510 0.440 0.573 0.569 0.203 0.081 0.096 0.399
PR 0.465 0.679 0.519 0.447 0.578 0.579 0.235 0.099 0.273 0.430
GeoMediaN 0.468 0.685 0.519 0.449 0.581 0.582 0.236 0.100 0.267 0.432
C+L 0.475 0.688 0.523 0.451 0.582 0.583 0.240 0.101 0.293 0.437
I-C+L 0.475 0.688 0.523 0.451 0.582 0.583 0.240 0.103 0.301 0.438
SN 0.470 0.687 0.523 0.452 0.584 0.580 0.234 0.116 0.298 0.438
C+SN+L 0.475 0.692 0.526 0.457 0.586 0.589 0.245 0.115 0.315 0.444
I-C+SN+L 0.476 0.694 0.527 0.458 0.586 0.589 0.245 0.115 0.321 0.446

PROC-B None 0.453 0.675 0.531 0.458 0.576 0.579 0.211 0.077 0.085 0.405
PR 0.477 0.693 0.546 0.465 0.585 0.587 0.253 0.110 0.261 0.442
GeoMediaN 0.476 0.691 0.545 0.469 0.585 0.590 0.251 0.107 0.242 0.440
C+L 0.483 0.698 0.550 0.468 0.584 0.590 0.259 0.111 0.264 0.445
I-C+L 0.483 0.698 0.550 0.469 0.583 0.590 0.255 0.113 0.290 0.448
SN 0.479 0.697 0.553 0.470 0.588 0.590 0.251 0.133 0.302 0.451
C+SN+L 0.489 0.702 0.555 0.474 0.591 0.598 0.261 0.127 0.325 0.458
I-C+SN+L 0.491 0.703 0.558 0.475 0.592 0.599 0.258 0.130 0.341 0.461

RCSLS None 0.509 0.721 0.556 0.463 0.612 0.607 0.265 0.120 0.003 0.428
PR 0.505 0.724 0.548 0.464 0.611 0.611 0.249 0.077 0.035 0.425
GeoMediaN 0.504 0.725 0.549 0.462 0.611 0.611 0.250 0.108 0.041 0.429
C+L 0.510 0.728 0.549 0.462 0.612 0.613 0.259 0.116 0.327 0.464
I-C+L 0.510 0.728 0.549 0.463 0.612 0.613 0.260 0.118 0.285 0.460
SN 0.510 0.732 0.553 0.467 0.613 0.615 0.253 0.119 0.349 0.468
C+SN+L 0.505 0.729 0.549 0.466 0.612 0.610 0.251 0.118 0.354 0.466
I-C+SN+L 0.505 0.727 0.549 0.466 0.612 0.610 0.251 0.118 0.352 0.466



K FULL BLI RESULTS FOR ALL 28 LANGUAGE PAIRS, TRANSLATION DICTIONARIES, AND MODELS.

Table 20: BLI performance (MAP) for the first batch (14) of language pairs. We compared the Baseline result from (Glavaš et al., 2019) to I-C+SN+L (denoted SN) and
I-C+L result on the BLI task.

Model Dict DE-FI DE-FR DE-HR DE-IT DE-RU DE-TR EN-DE EN-FI EN-FR EN-HR EN-IT EN-RU EN-TR FI-FR Avg

CCA 5k 0.353 0.509 0.318 0.506 0.411 0.280 0.542 0.383 0.652 0.325 0.624 0.454 0.327 0.362 0.432
CCAI-C+L 5k 0.372 0.523 0.339 0.520 0.425 0.306 0.561 0.409 0.662 0.350 0.642 0.472 0.365 0.383 0.452
CCASN 5k 0.371 0.528 0.340 0.527 0.426 0.303 0.568 0.410 0.665 0.356 0.648 0.476 0.372 0.387 0.455
PROC 5k 0.359 0.511 0.329 0.510 0.425 0.284 0.544 0.396 0.654 0.336 0.625 0.464 0.335 0.362 0.438
PROCI-C+L 5k 0.377 0.524 0.346 0.524 0.436 0.312 0.564 0.421 0.662 0.358 0.641 0.484 0.371 0.386 0.458
PROCSN 5k 0.378 0.531 0.350 0.531 0.440 0.312 0.570 0.421 0.670 0.366 0.650 0.490 0.380 0.388 0.463
PROC-B 3k 0.362 0.514 0.324 0.508 0.413 0.278 0.532 0.380 0.642 0.336 0.612 0.449 0.328 0.350 0.431
PROC-BI-C+L 3k 0.355 0.527 0.335 0.516 0.371 0.290 0.539 0.419 0.651 0.356 0.622 0.429 0.356 0.372 0.438
PROC-BSN 3k 0.359 0.535 0.342 0.524 0.378 0.293 0.545 0.415 0.657 0.362 0.631 0.443 0.368 0.376 0.445
DLV 5k 0.357 0.506 0.328 0.510 0.423 0.284 0.545 0.396 0.649 0.334 0.625 0.467 0.335 0.351 0.436
DLVI-C+L 5k 0.385 0.541 0.366 0.542 0.423 0.322 0.578 0.453 0.681 0.402 0.655 0.487 0.405 0.424 0.476
DLVSN 5k 0.384 0.549 0.365 0.548 0.424 0.326 0.582 0.449 0.684 0.404 0.661 0.488 0.407 0.431 0.479
RCSLS 5k 0.395 0.536 0.359 0.529 0.458 0.324 0.580 0.438 0.675 0.375 0.652 0.510 0.386 0.395 0.472
RCSLSI-C+L 5k 0.396 0.576 0.370 0.549 0.479 0.341 0.645 0.471 0.712 0.428 0.679 0.557 0.452 0.421 0.505
RCSLSSN 5k 0.404 0.569 0.370 0.550 0.480 0.345 0.636 0.465 0.713 0.419 0.687 0.557 0.439 0.416 0.504

VECMAP - 0.302 0.505 0.300 0.493 0.322 0.253 0.521 0.292 0.626 0.268 0.600 0.323 0.288 0.368 0.390
VECMAPI-C+L - 0.331 0.529 0.325 0.522 0.336 0.283 0.552 0.348 0.654 0.323 0.630 0.356 0.348 0.396 0.424
VECMAPSN - 0.343 0.539 0.326 0.533 0.337 0.293 0.559 0.355 0.660 0.333 0.635 0.368 0.352 0.400 0.431



Table 21: BLI performance (MAP) for second batch (14) of language pairs. We compared the Baseline result from (Glavaš et al., 2019) to I-C+SN+L (denoted SN) and
I-C+L result on the BLI task.

Model Dict FI-HR FI-IT FI-RU HR-FR HR-IT HR-RU IT-FR RU-FR RU-IT TR-FI TR-FR TR-HR TR-IT TR-RU Avg

CCA 5k 0.288 0.353 0.340 0.372 0.366 0.367 0.668 0.469 0.474 0.260 0.337 0.250 0.331 0.285 0.369
CCAI-C+L 5k 0.313 0.381 0.359 0.399 0.394 0.389 0.678 0.488 0.490 0.284 0.358 0.263 0.353 0.295 0.389
CCASN 5k 0.311 0.384 0.362 0.403 0.393 0.389 0.681 0.491 0.492 0.284 0.364 0.269 0.357 0.299 0.391
PROC 5k 0.294 0.355 0.342 0.374 0.364 0.372 0.669 0.470 0.474 0.269 0.338 0.259 0.335 0.290 0.372
PROCI-C+L 5k 0.317 0.382 0.363 0.400 0.395 0.393 0.676 0.485 0.492 0.288 0.360 0.270 0.355 0.299 0.391
PROCSN 5k 0.316 0.385 0.364 0.407 0.396 0.393 0.679 0.491 0.495 0.290 0.368 0.275 0.360 0.305 0.395
PROC-B 3k 0.293 0.348 0.327 0.365 0.368 0.365 0.664 0.478 0.476 0.270 0.333 0.244 0.330 0.262 0.366
PROC-BI-C+L 3k 0.303 0.371 0.336 0.399 0.397 0.371 0.671 0.488 0.488 0.279 0.351 0.263 0.348 0.256 0.380
PROC-BSN 3k 0.303 0.374 0.337 0.403 0.399 0.377 0.678 0.488 0.491 0.286 0.360 0.267 0.356 0.264 0.384
DLV 5k 0.294 0.356 0.342 0.364 0.366 0.374 0.665 0.466 0.475 0.268 0.333 0.255 0.336 0.289 0.370
DLVI-C+L 5k 0.350 0.413 0.390 0.440 0.441 0.422 0.691 0.510 0.507 0.313 0.394 0.302 0.385 0.318 0.420
DLVSN 5k 0.357 0.420 0.392 0.445 0.440 0.422 0.695 0.515 0.513 0.320 0.401 0.311 0.391 0.322 0.425
RCSLS 5k 0.321 0.388 0.376 0.412 0.399 0.404 0.682 0.494 0.491 0.300 0.375 0.285 0.368 0.324 0.401
RCSLSI-C+L 5k 0.334 0.404 0.384 0.431 0.413 0.424 0.701 0.519 0.496 0.296 0.401 0.299 0.382 0.330 0.415
RCSLSSN 5k 0.331 0.403 0.392 0.431 0.417 0.417 0.700 0.520 0.509 0.304 0.397 0.302 0.385 0.335 0.417
VECMAP - 0.280 0.355 0.312 0.402 0.389 0.376 0.667 0.463 0.463 0.246 0.341 0.223 0.332 0.200 0.361
VECMAPI-C+L - 0.301 0.388 0.363 0.433 0.434 0.403 0.684 0.492 0.485 0.258 0.367 0.249 0.359 0.219 0.388
VECMAPSN - 0.289 0.398 0.350 0.438 0.431 0.407 0.689 0.497 0.487 0.270 0.386 0.251 0.365 0.194 0.389



L FULL BLI RESULTS FOR ALL 28 LANGUAGE PAIRS, TRANSLATION DICTIONARIES, AND MODELS.

Table 22: BLI performance (MAP) for the first batch (14) of language pairs. We compared the Baseline result from (Glavaš et al., 2019) to I-C+SN+L (denoted SN) result
on the BLI task.

Model Dict DE-FI DE-FR DE-HR DE-IT DE-RU DE-TR EN-DE EN-FI EN-FR EN-HR EN-IT EN-RU EN-TR FI-FR Avg

CCA 1k 0.241 0.422 0.206 0.414 0.308 0.153 0.458 0.259 0.582 0.218 0.538 0.336 0.218 0.230 0.327
CCASN 1k 0.259 0.456 0.224 0.445 0.326 0.179 0.486 0.286 0.609 0.244 0.560 0.362 0.259 0.260 0.354
CCA 3k 0.328 0.494 0.298 0.491 0.399 0.251 0.531 0.351 0.642 0.299 0.613 0.434 0.314 0.332 0.413
CCASN 3k 0.345 0.518 0.314 0.511 0.413 0.278 0.554 0.377 0.657 0.335 0.634 0.455 0.348 0.360 0.436
CCA 5k 0.353 0.509 0.318 0.506 0.411 0.280 0.542 0.383 0.652 0.325 0.624 0.454 0.327 0.362 0.432
CCASN 5k 0.371 0.528 0.340 0.527 0.426 0.303 0.568 0.410 0.665 0.356 0.648 0.476 0.372 0.387 0.455
PROC 1k 0.264 0.428 0.225 0.421 0.323 0.169 0.458 0.271 0.579 0.225 0.535 0.352 0.225 0.239 0.336
PROCSN 1k 0.280 0.459 0.244 0.458 0.346 0.194 0.490 0.293 0.611 0.255 0.566 0.378 0.263 0.268 0.365
PROC 3k 0.340 0.499 0.308 0.495 0.413 0.260 0.532 0.365 0.642 0.307 0.611 0.449 0.320 0.333 0.420
PROCSN 3k 0.354 0.522 0.326 0.516 0.423 0.283 0.558 0.385 0.659 0.346 0.637 0.472 0.357 0.362 0.443
PROC 5k 0.359 0.511 0.329 0.510 0.425 0.284 0.544 0.396 0.654 0.336 0.625 0.464 0.335 0.362 0.438
PROCSN 5k 0.378 0.531 0.350 0.531 0.440 0.312 0.570 0.421 0.670 0.366 0.650 0.490 0.380 0.388 0.463
PROC-B 1k 0.354 0.511 0.306 0.507 0.392 0.250 0.521 0.360 0.633 0.296 0.605 0.419 0.301 0.329 0.413
PROC-BSN 1k 0.347 0.531 0.321 0.518 0.359 0.283 0.543 0.411 0.66 0.346 0.628 0.414 0.354 0.373 0.435
PROC-B 3k 0.362 0.514 0.324 0.508 0.413 0.278 0.532 0.380 0.642 0.336 0.612 0.449 0.328 0.350 0.431
PROC-BSN 3k 0.359 0.535 0.342 0.524 0.378 0.293 0.545 0.415 0.657 0.362 0.631 0.443 0.368 0.376 0.445
DLV 1k 0.259 0.384 0.222 0.420 0.325 0.167 0.454 0.271 0.546 0.225 0.537 0.353 0.221 0.209 0.328
DLVSN 1k 0.260 0.472 0.239 0.458 0.333 0.198 0.503 0.305 0.632 0.274 0.584 0.389 0.287 0.274 0.372
DLV 3k 0.341 0.496 0.306 0.494 0.411 0.261 0.533 0.365 0.636 0.307 0.611 0.444 0.320 0.321 0.418
DLVSN 3k 0.361 0.540 0.339 0.537 0.414 0.300 0.571 0.418 0.677 0.381 0.651 0.471 0.393 0.399 0.461
DLV 5k 0.357 0.506 0.328 0.510 0.423 0.284 0.545 0.396 0.649 0.334 0.625 0.467 0.335 0.351 0.436
DLVSN 5k 0.384 0.549 0.365 0.548 0.424 0.326 0.582 0.449 0.684 0.404 0.661 0.488 0.407 0.431 0.479
RCSLS 1k 0.288 0.459 0.262 0.453 0.361 0.201 0.501 0.306 0.612 0.267 0.565 0.401 0.275 0.269 0.373
RCSLSSN 1k 0.282 0.465 0.247 0.459 0.347 0.197 0.508 0.305 0.635 0.266 0.577 0.403 0.273 0.271 0.374
RCSLS 3k 0.373 0.524 0.337 0.518 0.442 0.296 0.568 0.404 0.665 0.357 0.637 0.491 0.364 0.367 0.453
RCSLSSN 3k 0.366 0.543 0.336 0.533 0.448 0.302 0.612 0.421 0.696 0.375 0.668 0.523 0.395 0.374 0.471
RCSLS 5k 0.395 0.536 0.359 0.529 0.458 0.324 0.580 0.438 0.675 0.375 0.652 0.510 0.386 0.395 0.472
RCSLSSN 5k 0.404 0.569 0.370 0.550 0.480 0.345 0.636 0.465 0.713 0.419 0.687 0.557 0.439 0.416 0.504
VECMAP - 0.302 0.505 0.300 0.493 0.322 0.253 0.521 0.292 0.626 0.268 0.600 0.323 0.288 0.368 0.390
VECMAPSN - 0.343 0.539 0.326 0.533 0.337 0.293 0.559 0.355 0.660 0.333 0.635 0.368 0.352 0.400 0.431



Table 23: BLI performance (MAP) for second batch (14) of language pairs. We compared the Baseline result from (Glavaš et al., 2019) to I-C+SN+L (denoted SN) result
on the BLI task.

Model Dict FI-HR FI-IT FI-RU HR-FR HR-IT HR-RU IT-FR RU-FR RU-IT TR-FI TR-FR TR-HR TR-IT TR-RU Avg

CCA 1k 0.167 0.232 0.214 0.238 0.240 0.256 0.612 0.344 0.352 0.151 0.213 0.134 0.202 0.146 0.250
CCASN 1k 0.193 0.257 0.236 0.273 0.265 0.274 0.638 0.380 0.379 0.157 0.236 0.148 0.227 0.164 0.273
CCA 3k 0.264 0.328 0.306 0.346 0.345 0.348 0.659 0.452 0.449 0.232 0.308 0.211 0.309 0.252 0.343
CCASN 3k 0.289 0.359 0.331 0.375 0.377 0.366 0.672 0.476 0.469 0.257 0.332 0.240 0.329 0.269 0.367
CCA 5k 0.288 0.353 0.340 0.372 0.366 0.367 0.668 0.469 0.474 0.260 0.337 0.250 0.331 0.285 0.369
CCASN 5k 0.311 0.384 0.362 0.403 0.393 0.389 0.681 0.491 0.492 0.284 0.364 0.269 0.357 0.299 0.391
PROC 1k 0.187 0.247 0.233 0.248 0.247 0.269 0.615 0.352 0.360 0.169 0.215 0.148 0.211 0.168 0.262
PROCSN 1k 0.217 0.271 0.252 0.285 0.276 0.285 0.641 0.387 0.391 0.178 0.243 0.166 0.239 0.182 0.287
PROC 3k 0.269 0.328 0.310 0.346 0.350 0.353 0.659 0.455 0.455 0.241 0.312 0.219 0.312 0.262 0.348
PROCSN 3k 0.296 0.365 0.337 0.381 0.384 0.371 0.671 0.474 0.472 0.262 0.336 0.248 0.336 0.279 0.372
PROC 5k 0.294 0.355 0.342 0.374 0.364 0.372 0.669 0.470 0.474 0.269 0.338 0.259 0.335 0.290 0.372
PROCSN 5k 0.316 0.385 0.364 0.407 0.396 0.393 0.679 0.491 0.495 0.290 0.368 0.275 0.360 0.305 0.395
PROC-B 1k 0.263 0.328 0.315 0.335 0.343 0.348 0.665 0.467 0.466 0.247 0.305 0.210 0.298 0.230 0.344
PROC-BSN 1k 0.296 0.365 0.337 0.408 0.392 0.371 0.678 0.486 0.483 0.280 0.357 0.255 0.346 0.246 0.379
PROC-B 3k 0.293 0.348 0.327 0.365 0.368 0.365 0.664 0.478 0.476 0.270 0.333 0.244 0.330 0.262 0.366
PROC-BSN 3k 0.303 0.374 0.337 0.403 0.399 0.377 0.678 0.488 0.491 0.286 0.360 0.267 0.356 0.264 0.384
DLV 1k 0.184 0.244 0.225 0.214 0.245 0.264 0.585 0.320 0.358 0.161 0.194 0.144 0.209 0.161 0.251
DLVSN 1k 0.217 0.275 0.249 0.290 0.286 0.286 0.645 0.398 0.393 0.174 0.266 0.164 0.252 0.182 0.291
DLV 3k 0.269 0.331 0.307 0.331 0.348 0.353 0.653 0.446 0.452 0.243 0.306 0.219 0.311 0.261 0.345
DLVSN 3k 0.324 0.390 0.364 0.417 0.415 0.394 0.684 0.495 0.495 0.294 0.373 0.276 0.361 0.288 0.398
DLV 5k 0.294 0.356 0.342 0.364 0.366 0.374 0.665 0.466 0.475 0.268 0.333 0.255 0.336 0.289 0.370
DLVSN 5k 0.357 0.420 0.392 0.445 0.440 0.422 0.695 0.515 0.513 0.320 0.401 0.311 0.391 0.322 0.425
RCSLS 1k 0.214 0.272 0.257 0.281 0.275 0.291 0.637 0.381 0.383 0.194 0.247 0.170 0.246 0.191 0.289
RCSLSSN 1k 0.217 0.271 0.253 0.284 0.279 0.286 0.645 0.388 0.393 0.179 0.243 0.168 0.239 0.185 0.288

RCSLS 3k 0.296 0.362 0.341 0.384 0.382 0.379 0.673 0.477 0.472 0.272 0.348 0.256 0.340 0.290 0.377
RCSLSSN 3k 0.301 0.372 0.345 0.392 0.388 0.382 0.684 0.489 0.482 0.270 0.363 0.259 0.348 0.291 0.383
RCSLS 5k 0.321 0.388 0.376 0.412 0.399 0.404 0.682 0.494 0.491 0.300 0.375 0.285 0.368 0.324 0.401
RCSLSSN 5k 0.331 0.403 0.392 0.431 0.417 0.417 0.700 0.520 0.509 0.304 0.397 0.302 0.385 0.335 0.417
VECMAP - 0.280 0.355 0.312 0.402 0.389 0.376 0.667 0.463 0.463 0.246 0.341 0.223 0.332 0.200 0.361
VECMAPSN - 0.289 0.398 0.350 0.438 0.431 0.407 0.689 0.497 0.487 0.270 0.386 0.251 0.365 0.194 0.389
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