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Abstract

Large Reasoning Models (LRMs) demonstrate remarkable problem-solving capa-
bilities through extended Chain-of-Thought (CoT) reasoning but often produce
excessively verbose and redundant reasoning traces. This inefficiency incurs high
inference costs and limits practical deployment. While existing fine-tuning methods
aim to improve reasoning efficiency, assessing their efficiency gains remains chal-
lenging due to inconsistent evaluations. In this work, we introduce the reasoning
efficiency frontiers, empirical upper bounds derived from fine-tuning a base LRM
(DeepSeek-R1-Distill-Qwen-1.5B/7B) across diverse approaches and training con-
figurations. Based on these frontiers, we propose the Reasoning Efficiency Gap
(REG), a unified metric quantifying deviations of any fine-tuned LRMs from these
frontiers. Systematic evaluation on challenging mathematical benchmarks, AMC23,
AIME24, and AIME25, reveals significant gaps in current methods: they either
sacrifice accuracy for short length or use excessive tokens to achieve sub-optimal
accuracies despite high overall accuracy. To reduce the efficiency gap, we propose
REO-RL, a Reinforcement Learning algorithm that optimizes reasoning efficiency
by targeting a sparse set of token budgets. Leveraging numerical integration over
strategically selected budgets, REO-RL approximates the full efficiency objective
with low error using a small set of token budgets. Experiments show that, compared
to vanilla RL with outcome reward, REO-RL reduces the reasoning efficiency gap
by 74.5% and 64.2% in the 1.5B and 7B settings. The 7B LRM fine-tuned with
REO-RL achieves reasoning conciseness surpassing frontier LRMs like Qwen3
and Claude Sonnet 3.7. Ablation studies confirm the efficacy of our token budget
strategy and highlight REO-RL’s flexibility across design choices. This work estab-
lishes a systematic framework for evaluating and optimizing reasoning efficiency
in LRMs. We will release the related code, data, and models to support future
research on efficient reasoning in LRMs.

1 Introduction

Large Reasoning Models (LRMs) have recently emerged as a powerful class of models capable of
solving complex tasks that require advanced reasoning. Frontier LRMs such as OpenAI o1 [OpenAI]
and DeepSeek R1 [Guo et al., 2025] have obtained superior performance across a wide range of
tasks, including mathematical reasoning and competitive programming. A major factor behind this
success is their ability to perform deep, multi-step reasoning through extended Chain-of-Thought
(CoT) processes. These reasoning traces often include sophisticated operations such as reflection,
verification, and exploration, within a single inference pass.

However, the powerful capability of long CoT reasoning comes at a cost. LRMs frequently generate
overly verbose and redundant reasoning traces, a phenomenon referred to as the overthinking prob-
lem [Yang et al., 2025b, Sui et al., 2025]. Recent studies [Chen et al., 2024b, Sui et al., 2025] have
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shown that even simple questions like “2 + 3 = ?” can result in outputs spanning up to 900 tokens.
This redundancy brings a significant cost in inference time and limits practical deployment. Several
fine-tuning approaches have been proposed to improve reasoning efficiency, mostly focusing on
reducing response length [Team et al., 2025, Luo et al., 2025a, Aggarwal and Welleck, 2025, Arora
and Zanette, 2025, Yeo et al., 2025, Shen et al., 2025b, Qu et al., 2025, Yang et al., 2025a, She et al.,
2025, Hou et al., 2025]. However, comparing these methods remains difficult due to inconsistent
evaluation setups, including varying models, benchmarks, and mixed performance metrics. It is still
unclear how close current approaches are to the optimal trade-off between length and accuracy.

In this work, we investigate a critical question: How far are current approaches from reaching the
optimal reasoning efficiency? To answer this question, we conduct a comprehensive empirical study
using two LRMs, DeepSeek-Distill-Qwen-1.5B and DeepSeek-Distill-Qwen-7B, on three challenging
benchmarks, AMC23, AIME24, and AIME25. We introduce the concept of reasoning efficiency
frontiers, derived from fine-tuning the base LRMs with 3 types of algorithms and diverse training
configurations. These reasoning efficiency frontiers represent the best reward achievable by the
current approaches at each token budget, offering a practical lower bound on optimal efficiency. By
comparing current methods to these frontiers, we uncover a substantial gap. Existing methods often
fall short in one of two ways, either they aggressively shorten responses at the expense of accuracy,
or methods that reach high overall accuracy would consume significantly more tokens than necessary
to reach moderate accuracy levels. To quantify this gap, we propose the Reasoning Efficiency Gap
(REG), a unified metric that captures both accuracy and response length by measuring the area
between the length-accuracy curve of an LRM and the frontier. REG offers practical insights into
how much room still remains for improvement.

We further ask: How can an LRM be fine-tuned to minimize this efficiency gap? A natural approach is
to optimize the rewards across all possible token budgets at RL training time. However, this approach
leads to a costly training process since rewards across all token budgets should be evaluated. To
overcome the inefficiency of this dense reward approach, we introduce Reasoning Efficiency Opti-
mization with Reinforcement Learning (REO-RL), a novel RL algorithm that improves reasoning
efficiency by targeting a small set of token budgets. The key insight of REO-RL is that the total
rewards across all token budgets can be well-approximated using numerical integration over a small
set of representative token budgets. We experiment with both an oracle-based greedy selection based
on the estimated reasoning efficiency frontiers and a heuristic strategy using exponentially spaced
token budgets. Remarkably, with as few as 5 token budgets, both token selection strategies could
achieve an approximation error of less than 1%, ensuring that the optimization direction of REO-RL
could align with the total rewards across all token budgets.

Finally, through systematically evaluating the reasoning efficiency gap for existing methods and
REO-RL, we find that REO-RL consistently outperforms baseline methods in terms of reasoning
efficiency across model scales. Notably, compared to the vanilla RL baseline, REO-RL reduces
the efficiency gap by 74.5% and 64.2% for the 1.5B and 7B models, respectively. By conducting a
controlled comparison with frontier LRMs including Qwen3 and Claude Sonnet 3.7, we show that
the 7B LRM fine-tuned with REO-RL exhibits more concise reasoning patterns than frontier LRMs.
Our ablation study on the design choices for REO-RL reveals the success of the exponential token
budget selection strategy and effective approximation with a small amount of token budgets. We also
show that REO-RL is flexible and various design choices, including setting the coefficients uniformly
as 1 and using question-specific token budget, both could lead to competitive reasoning efficiency
improvements.

2 Related Works

Efficient Reasoning. Prior studies have shown that LRMs often suffer from redundant reasoning.
Even for very simple questions, Frontier LRMs often generate lengthy responses spanning thousands
of tokens [Chen et al., 2025, Sui et al., 2025]. This redundancy in the reasoning process brings
significant overheads in the inference costs. Several works are then proposed to make LRM reasoning
more concise. Team et al. [2025], Luo et al. [2025a], Aggarwal and Welleck [2025], Arora and Zanette
[2025], Yeo et al. [2025], Shen et al. [2025b], Qu et al. [2025], Yang et al. [2025a], She et al. [2025],
Hou et al. [2025] investigate RL training with length reward designs, mostly focusing on reducing
the reasoning lengths. A line of works apply SFT to fine-tune LRMs on datasets with variable-length
reasoning traces to elicit concise reasoning [Yu et al., 2024, Wang et al., 2023, Han et al., 2024] or
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adjustable length control [Kang et al., 2024, Xia et al., 2025, Ma et al., 2025, Liu et al., 2024, Yu et al.,
2025c]. Some works also investigate enhancing the reasoning efficiency through test-time techniques,
including reward model guided decoding [Sun et al., 2024, Liao et al., 2025] and uncertainty-based
dynamic reasoning [Fu et al., 2024, 2025], and confidence-based approaches [Taubenfeld et al.,
2025, Huang et al., 2025]. In this work, we study the optimal reasoning efficiency for an LRM and
focus on training-based approaches for enhancing LRM reasoning efficiency. Our method aims at
enhancing the accuracy of the LRM under diverse token budgets without explicitly incentivizing
shorter responses.

RL for LRM Reasoning. Reinforcement Learning is the central technique for eliciting and enhanc-
ing the reasoning capability of LRMs. Frontier LRMs, including OpenAI o1 [OpenAI] and DeepSeek
R1 [Guo et al., 2025], have shown that applying "zero RL" on a base LLM could effectively elicit the
ability to utilize long CoTs for complex reasoning. A series of works have emerged with the focus on
improving the training efficiency of RL for LRMs from the perspectives of data [Luo et al., 2025c,
RL Lab, 2025, He et al., 2025, Li et al., 2025, Wang et al., 2025], algorithms [Guo et al., 2025, He
et al., 2025, Luo et al., 2025c, Yu et al., 2025b, Yue et al., 2025], and training framework [Sheng et al.,
2024, Luo et al., 2025b, RL Lab, 2025]. A number of works successfully apply zero RL training on a
wide range of reasoning-heavy domains, including multi-modality [Shen et al., 2025a, Zhang et al.,
2025], medical [Yu et al., 2025a, Chen et al., 2024a], and financial [Liu et al., 2025]. Recent works
also explore efficiency enhancement by encouraging concise reasoning with RL [Team et al., 2025,
Luo et al., 2025a, Aggarwal and Welleck, 2025, Arora and Zanette, 2025, Yeo et al., 2025, Shen et al.,
2025b, Qu et al., 2025, Yang et al., 2025a, She et al., 2025, Hou et al., 2025]. In this work, we focus
on enhancing the reasoning efficiency with RL.

3 Preliminary

LRM Reasoning. In this work, we focus on the task of mathematical reasoning. Given a question
x, the goal of an LRM policy is to generate a response y that contains step-by-step reasoning to derive
the correct answer. We assume access to a verifier R(x, y) that evaluates the correctness of a solution
y given the question x. In practice, such a verifier is implemented by matching the ground-truth
answer and the model-generated answer. The LRM is a policy πθ parameterized with θ and generates
a sequence of reasoning tokens in an auto-regressive manner. Given a question distribution D, the
objective of the LRM is to maximize the probability of producing correct responses,

J(D, θ) = Ex∼D,y∼πθ(·|x)[R(x, y)] (1)

where θ is in a parameter space Θ and the response length |y| is limited to the maximum length Lmax.
In practice, θ is usually obtained through applying fine-tuning approaches such as RL on a base LRM.
Therefore we assume the existence of a base LRM θbase and Θ to be the set of all LRMs that could be
obtained by fine-tuning θbase with any algorithm.

4 Understanding the Limits of Efficient Reasoning

4.1 Defining Optimality in Token-Bounded Reasoning

Evaluating Reasoning under Token Budgets. To assess optimal reasoning efficiency, we must
evaluate the performance of an LRM πθ under a fixed token budget L. Simply truncating a model’s
output after L tokens, however, may lead to incomplete responses. To address this, we define a
fallback mechanism following prior works [Muennighoff et al., 2025, Fu et al., 2024]. If the reasoning
trace y ∼ πθ(·|x) exceeds L tokens, the model is prompted to produce a final answer a directly from
the truncated trace y:L,

a = Answer(πθ, x, y) =

{
πθ(·|x, y:L, [The Final Answer is]) if |y| > L

ExtractAnswer(x, y) otherwise

where y:L denotes the first L tokens of the reasoning trace and ExtractAnswer(x, y) extracts the
final answer from a complete trace. This approach allows consistent evaluation across different
budgets, though it introduces a minor additional token cost in the truncation case.
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Figure 1: Procedure of estimating the reasoning efficiency frontiers. (a) Starting from a base
LRM πθbase , we apply diverse fine-tuning strategies to obtain a large amount of LRMs. (b) We then
compute the best achievable accuracy across varying token budgets to obtain the reasoning efficiency
frontiers (Eq. 4)
Length-Constrained Reward and Optimality. We define the length-constrained reward for a
model πθ over a question distribution D as the expected reward obtained when the model is restricted
to a token budget L,

J(D, θ, L) = Ex∼D[Ey∼πθ(·|x)[R(x,Answer(πθ, x, y:L))]] (2)

The length-constrained optimal reward then captures the best possible reward achievable by any
model in a parameter space Θ under the same budget,

Joptimal(D,Θ, L) = max
θ∈Θ

J(D, θ, L) (3)

4.2 Empirical Estimation of Reasoning Frontiers

We aim to characterize the optimal reasoning efficiency, denoted by Joptimal(D,Θ, L), that reflects the
best achievable reward at any token budget L across all possible model parameters θ ∈ Θ. However,
computing this optimal frontier exactly is infeasible in practice, as it requires exhaustively exploring
all algorithms and training configurations. Instead, we construct an empirical reasoning efficiency
frontier by fine-tuning a diverse set of models using existing approaches. Let Θ̂ = {θ1, . . . , θm} ⊆ Θ
denote the collection of parameters from m fine-tuned models. Based on these, we define the
empirical reasoning efficiency frontier as,

Definition 4.1: Reasoning Efficiency Frontier

Given a parameter space Θ, a set of model parameters Θ̂ = {θ1, · · · , θm} and a
question distribution D, we define the reasoning efficiency frontier as a set of points
{Ĵoptimal(D, Θ̂, L)|L ∈ [1, Lmax]} where

Ĵoptimal(D, Θ̂, L) = max
θ∈{θ1,··· ,θm}

J(Dt, θ, L) ∀L ∈ [1, Lmax] (4)

Note that Ĵoptimal(D, Θ̂, L) serves as a lower bound of the optimal frontier since Θ̂ is a subset of Θ,

Ĵoptimal(D, Θ̂, L) ≤ Joptimal(D,Θ, L)

Diverse Fine-tuning Approaches. To obtain a close approximation to the optimal frontier in Eq. 4,
we fine-tune models using a wide range of training strategies,

• Online RL with Token Budgets: We conduct online RL training with different token budgets
ranging from 512 to 32k. Fine-tuning an LRM with a token budget effectively enforces the LRM
to reason with limited tokens [Xu et al., 2025, Hou et al., 2025].

• Online RL with Length Rewards. We test various reward designs that promote concise yet
accurate reasoning, including length-harmonizing rewards [Luo et al., 2025a] and length-group
normalized rewards [Arora and Zanette, 2025].

• Preference Learning. We apply SimPO [Meng et al., 2024] with preference datasets constructed
via methods such as TOPS [Yang et al., 2025b] and DAST [Shen et al., 2025b]. For example,
we contrast short correct responses with longer ones to promote conciseness [Munkhbat et al.,
2025].
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(a) DeepSeek-R1-Distill-Qwen-1.5B (b) DeepSeek-R1-Distill-Qwen-7B

Figure 2: Reasoning Efficiency Frontiers for DeepSeek-R1-Distill-Qwen1.5B and DeepSeek-R1-
Distill-Qwen-7B. DeepSeek-R1-Distill-Qwen-1.5B and DeepSeek-R1-Distill-Qwen-7B spend 3.4×
and 1.3× more tokens than the corresponding frontiers to achieve the same accuracies.

Experiment Setup. We conduct our study using two base LRMs, DeepSeek-R1-Distill-Qwen-1.5B
and DeepSeek-R1-Distill-Qwen-7B [Guo et al., 2025]. For each LRM, we start from RL-fine-tuned
versions and further fine-tune them using the strategies above. We evaluate on three challenging
mathematical reasoning benchmarks: AMC 2023, AIME 2024, and AIME 2025. More training
details can be found in Sec. 6.1 and Appendix. C. We conducted large-scale RL experiments spanning
8 algorithms and 15 training configurations, resulting in 180+ and 210+ models for 1.5B and 7B
scales, respectively.

Reasoning Efficiency Frontiers. Based on the fine-tuned models, we are able to construct the
reasoning efficiency frontiers for both base LRMs. Notably, we find that DeepSeek-R1-Distill-
Qwen-1.5B and DeepSeek-R1-Distill-Qwen-7B require approximately 3.4× and 1.3× more tokens,
respectively, than their corresponding empirical frontiers to achieve the same level of accuracy.

Measuring the Gap to Optimality. Given the estimated reasoning efficiency frontiers
Ĵoptimal(D,Θ, L), we can use the metric of Reasoning Efficiency Gap (REG) to quantify the distance
of any LRM from reaching the optimal reasoning efficiency.

Definition 4.2: Reasoning Efficiency Gap (REG)

Given any LRM πθ and the estimated reasoning efficiency frontier {Ĵoptimal(D, Θ̂, L)|L ∈
[1, Lmax]}, we define Reasoning Efficiency Gap as,

dREG(θ,D, Θ̂) =

Lmax∑
L=1

Ĵoptimal(D, Θ̂, L)− J(D, θ, L) (5)

5 Methodology

5.1 Boosting Reasoning Efficiency by Optimizing Length-Constrained Rewards

Optimizing Length-Constrained Rewards. To minimize the reasoning efficiency gap, a straight-
forward idea is to optimize the length-constrained rewards under all token budgets to enhance the
reasoning efficiency of πθbase , leading to the efficiency objective,

LEfficiency(θ,D) =

Lmax∑
L=1

J(D, θ, L) (6)

where Lmax is the maximum generation length. However, directly optimizing Eq. 6 is computationally
impractical. Evaluating J(D, θ, L) for each budget L ∈ [1, Lmax] requires separate inference runs
to evaluate truncated responses as discussed in Sec. 4.1. As a result, each training example would
require up to Lmax additional LRM generations, significantly increasing both compute time and
memory usage, particularly due to the expanded KV cache usage.
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5.2 Reasoning Efficiency Optimization with Reinforcement Learning

REO-RL. We introduce Reasoning Efficiency Optimization with Reinforcement Learning (REO-
RL), an efficient training algorithm that optimizes an approximation for the objective in Eq. 6. In
REO-RL, instead of optimizing the length-constrained reward in all token budgets, we approximate
the objective with a small set of selected token budgets L1, · · · , LN to ensure high training efficiency.
Specifically, following the Trapezoidal rule in numerical integration, we could approximate the
objective in Eq. 6 with,

Lmax∑
L=1

J(D, θ, L) ≈
N∑
i=1

Li+1 − Li−1

2
J(D, θ, Li) +

L1

2
· J(D, θ, 0) +

Lmax − LN

2
· J(D, θ, Lmax)

(7)
= f(D, θ, {L1, · · · , LN}) (8)

where we assume L0 = 0 and LN+1 = Lmax and f(D, θ, {L1, · · · , LN}) denotes the approximated
objective with token budgets L1, · · · , LN . As the number of selected token budgets N increases,
f(D, θ, {L1, · · · , LN}) would become closer and closer to the objective in Eq. 6.

The approximated objective f(D, θ, {L1, · · · , LN}) could be equivalently represented as an RL
objective with dense rewards,

Lapprox(θ,D) = Ex∼D

[
Ey∼πθ(·|x)

[
N+1∑
i=1

ciR(x,Answer(πθ, x, y:Li
))

]]
(9)

where ci =
Li+1−Li−1

2 for 1 ≤ i ≤ N and cN+1 = Lmax−LN

2 are the coefficient for the i-th token
budget following Eq. 8.

Directly computing the derivative of θ in Eq. 9 would lead to the following equation with two terms,

∇θLapprox(θ,D) =Ex∼D

[
∇θEy∼πθ(·|x)

[
N+1∑
i=1

ci · R(x,Answer(πθ′ , x, y:Li
))

]]
︸ ︷︷ ︸

Rewards of Truncated Responses

(10)

+ Ex∼D

[
Ey∼πθ′ (·|x)

[
N+1∑
i=1

ci · ∇θR(x,Answer(πθ, x, y:Li))

]]
︸ ︷︷ ︸

Probability of Outputting Correct Answer Directly Given Truncated Responses

(11)

where θ′ = sg(θ) is equivalent to θ but does not propagate gradients. Note that the first term can be
computed through standard reinforcement learning algorithm. On the other hand, the second term
focuses on direct answer generation from truncated responses. In practice, we neglect the answer
generation term since this term focuses on a much smaller amount of tokens compared with the first
term and we also find optimizing answer generation not bringing empirical benefits.

REO-RL. To this end, we propose REO-RL that focuses on improving the rewards of responses
truncated under different token budgets. Suppose we use REINFORCE algorithm, the objective of
REO-RL is derived by

∇θLREO−RL(θ,D) =

Ex∼D,y∼πθ′ (·|x)

N+1∑
i=1

∇θπθ(yLi−1:Li |x, y:Li−1) ·
N+1∑
j=i

cjR(x,Answer(πθ′ , x, y:Lj ))


In Eq. 8, different sets of token budgets L1, · · · , LN would cause different approximation error .
Ideally, the approximation error induced by the selected token budgets should be low to ensure that
REO-RL aligns with the original objective in Eq. 4.
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(a) (b)

Figure 3: Selection of Token Budgets in REO-RL. (a) Token budgets selected roughly follow an
exponential pattern. (b) Both the oracle greedy approach and the exponential approach achieve lower
approximation errors with a few token budgets.

REO-RL (Oracle). Note that the original objective in Eq. 4 is bounded by the theoretical reasoning
efficiency frontier in Sec. 4.2, i.e.

∑Lmax
L=1 J(D, θ, L) ≤

∑Lmax
L=1 Joptimal(D,Θ, L). A natural idea is to

determine the optimal token budget selection scheme based on the estimated reasoning efficiency
frontiers. Specifically, for any set of token budgets L1, L2, · · · , LN ,

∑Lmax
L=1 Ĵoptimal(D, Θ̂, L) could

be approximated in a similar way as Eq. 8,

foptimal(D, Θ̂, {L1, · · · , LN}) =
N∑
i=1

Li+1 − Li−1

2
Ĵoptimal(D, Θ̂, Li) +

L1

2
· Ĵoptimal(D, Θ̂, 0) (12)

+
Lmax − LN

2
· Ĵoptimal(D, Θ̂, Lmax) (13)

where foptimal(D, Θ̂, {L1, · · · , LN}) denotes the approximated value for
∑Lmax

L=1 Ĵoptimal(D, Θ̂, L)
given token budgets L1, · · · , LN .

We adopt a greedy approach that iteratively selects the token budget with the lowest approximation
error. Note that this is an oracle approach since the reasoning efficiency frontiers should be known in
advance. This greedy selection approach leads to an oracle algorithm, REO-RL (Oracle). In REO-RL
(Oracle), the token budgets L1, · · · , LN are selected according to,

Li = argmin
L′

| foptimal(D, Θ̂, {L1, · · · , Li−1, L
′})−

Lmax∑
L=1

Ĵoptimal(D, Θ̂, L) |

The oracle greedy approach could produce a set of token budgets that achieves low approximation
error in Fig. 3(a). As illustrated in Fig. 3(b), the approximation error gradually degrades with more
token budgets. Notably, the approximation error could be lower than 1% with N ≥ 5.

REO-RL (Exp). However, in cases when the reasoning efficiency frontiers are unknown, it is
infeasible to apply REO-RL (Oracle). We observe that token budgets selected by the greedy selection
approach roughly follow an exponentially spaced pattern as shown in Fig. 3(a). Therefore, we
propose to adopt an exponentially spaced scheme for token budget selection, leading to the algorithm,
REO-RL (Exp), that selects a set of exponentially spaced token budgets,

Li = Lmin · (Lmax/Lmin)
i−1
N

where Lmin/Lmax are the minimum/maximum token budgets.

6 Experiments

6.1 Experimental Setup

Models, Datasets & Metrics. We use DeepSeek-R1-Distill-Qwen-1.5B and DeepSeek-R1-Distill-
Qwen-7B as the base LRMs. For training, we adopt a mixture of training data consisting of 135k
problems sourced from DeepScaleR Luo et al. [2025c] and AReaL RL Lab [2025] For evaluation,
we use three challenging mathematical benchmarks: AMC 2023, AIME 2024, and AIME 2025. We
report the average accuracy of 32 responses generated with temperature T = 0.6 and top_p= 0.95
with maximum length Lmax = 32K. The main results are averaged over three benchmarks. When
evaluating REG, we use a smaller length Lmax = 16K to focus on the area under lower token budgets.
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REO-RL & Baselines. For REO-RL, we consider both REO-RL (Exp), REO-RL (Oracle), and a
variant of REO-RL (Exp) that uniformly sets all coefficients ci = 1. For baselines, we consider,

• Online RL: We consider online RL with length-based rewards, including length-harmonizing
rewards [Luo et al., 2025a], and length group normalized rewards [Arora and Zanette, 2025]. We
also compare with Meta Reinforcement Fine-tuning (MFT) [Qu et al., 2025], which minimizes
regret for individual steps to enhance reasoning efficiency. Additionally, we also adopt online
RL with hard token budgets as a baseline, which is also adopted in recent works [Hou et al.,
2025, Xu et al., 2025].

• Supervised Fine-Tuning: For each problem in the training data, we generate multiple responses
and perform SFT on the shortest correct one. Two strategies are used for data generation. The
first strategy is direct generation with the problems as inputs [Munkhbat et al., 2025]. The second
strategy follows TOPS to prompt the LRM with different levels of reasoning efforts [Yang et al.,
2025b].

• Preference Learning: We apply SimPO [Meng et al., 2024] on various preference datasets. In
SimPOshortest, we use the shortest correct response and the longest response as the preference
pairs. We also follow TOPS [Yang et al., 2025b] and DAST [Shen et al., 2025b] to construct
preference datasets.

We have also tried RL-based length control methods such as [Aggarwal and Welleck, 2025, Xu et al.,
2025] but find these methods only achieve successful length control under low token budgets and
yield similar performance as RL w. Token Budgets. More details about the baselines and our other
investigations could be found in Appendix. D.

Training Details. For REO-RL and all baselines, we use the same training data and implement all
methods based on the AReaL framework. Instead of directly fine-tuning the base LRMs, we fine-tune
the corresponding RL-trained versions. Specifically, we use AReaL-Boba-RL-1.5B [RL Lab, 2025]
and SkyWork-OR1-Math-7B [He et al., 2025] as the starting points for further fine-tuning in 1.5B
and 7B experiments, respectively. For REO-RL (Exp) and REO-RL (Oracle), we use N = 5 token
budgets since N = 5 already obtains sufficiently accurate approximations as illustrated in Fig. 3(b).
For more training details, please refer to Appendix. C.

6.2 Main Results
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Figure 4: Performance comparison of REO-RL (Exp) with representative baseline methods on
DeepSeek-R1-Distill-Qwen-1.5B and DeepSeek-R1-Distill-Qwen-7B. REO-RL (Exp) notably im-
proves the reasoning efficiency of LRMs. Although existing approaches can approach the efficiency
frontier when sufficient token budgets are available, there still exist large performance gaps under
tight token constraints. Results are averaged over AMC 2023, AIME 2024 and AIME 2025.

Fig. 4 presents the accuracy of LRMs fine-tuned using REO-RL (Exp) and a range of strong baseline
methods across varying token budgets.2 Full quantitative results are detailed in Tab. 1. We draw
several key observations from the experiments,

There exist fundamental gaps between existing approaches and the frontiers (Fig. 4). As shown
in Fig. 4, several existing approaches can approach or even reach the reasoning efficiency frontier

2For clearer visualization, we include only a set of representative approaches and plot their performance
under limited token budgets.
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Method DeepSeek-R1-Distill-Qwen-1.5B DeepSeek-R1-Distill-Qwen-7B
Accuracy (%) ↑ Length ↓ REG ↓ Accuracy (%) ↑ Length ↓ REG ↓

Base LRM 41.4 14430.5 2036.7 62.0 11160.4 1782.1

Vanilla RL 51.6 11635.5 1257.0 71.0 12609.9 1691.6

REO-RL (Exp) (ours) 53.1↑1.5 7467.2↓35.8% 551.8↓56.1% 68.7↓2.3 6725.7↓46.7% 816.7↓51.7%
REO-RL (Exp) - Coef=1 (ours) 54.3↑2.7 9042.7↓22.3% 320.8↓74.5% 67.6↓3.4 6160.3↓51.1% 605.9↓64.2%

REO-RL (Oracle) (ours) 53.9↑2.2 7119.7↓38.8% 606.9↓51.7% 69.2↓1.9 7660.8↓39.2% 771.1↓54.4%

RL w. Token Budget=1K 32.2↓19.5 1293.9↓88.9% 2823.6↑124.6% 39.8↓31.2 1123.6↓91.1% 3627.1↑114.4%
RL w. Token Budget=2K 37.7↓13.9 1979.0↓83.0% 2077.5↑65.3% 49.5↓21.6 1729.6↓86.3% 2256.5↑33.4%
RL w. Token Budget=4K 46.1↓5.5 3441.0↓70.4% 1045.3↓16.8% 57.6↓13.4 2978.4↓76.4% 1343.3↓20.6%

RL w. Len Group Norm. Rew. 52.6↑1.0 8999.0↓22.7% 891.2↓29.1% 69.8↓1.2 8961.3↓28.9% 1057.2↓37.5%
RL w. Len-Harmonizing Rew. 52.7↑1.1 7075.4↓39.2% 622.8↓50.4% 70.4↓0.7 7956.8↓36.9% 970.8↓42.6%

MRT 53.4↑1.8 9031.8↓22.4% 770.2↓38.7% 70.1↓0.9 8252.2↓34.6% 976.4↓42.3%

SFTShortest 51.9↑0.3 11544.5↓0.8% 1166.0↓7.2% 71.6↑0.6 11711.3↓7.1% 1542.4↓8.8%
SFTTOPS 51.7↑0.1 9666.2↓16.9% 1090.6↓13.2% 70.4↓0.6 11549.1↓8.4% 1519.3↓10.2%

SimPODAST 36.8↓14.8 10382.2↓10.8% 2318.3↑84.4% 66.1↓4.9 6489.7↓48.5% 987.8↓41.6%
SimPOShortest 46.6↓5.0 6274.6↓46.1% 1250.7↓0.5% 69.9↓1.1 8144.5↓35.4% 1060.3↓37.3%
SimPOTOPS 30.8↓20.8 2185.8↓81.2% 3137.0↑149.6% 58.3↓12.7 4379.3↓65.3% 1453.3↓14.1%

Table 1: Accuracy, Generation Length, and Reasoning Efficiency Gap (REG) for all methods. The
relative changes compared to the vanilla RL baseline are also reported. REO-RL could significantly
reduce the gap from the LRM to the reasoning efficiency frontier with minor or even no accuracy
drop at the same time.

given sufficient token budgets. However, they could require significantly more tokens than the
efficiency frontier to achieve moderate-level accuracies. For example, on On the other hand, some
methods, such as RL with Token Budget, perform well under tight token constraints but exhibit
substantially lower overall accuracy. Our benchmarking results suggest that, optimizing the base
LRM to precisely match reasoning efficiency frontiers remains an open problem.

REO-RL consistently outperforms baselines in reasoning efficiency (Tab. 1). Compared to
baseline methods, the three variants of REO-RL are much closer to the reasoning efficiency frontier,
exhibiting much lower Reasoning Efficiency Gap (REG). REO-RL maintains high accuracy while
generating shorter outputs. REO-RL (Exp) - Coef=1 performs the best in terms of reasoning efficiency,
reducing the REG by 74.5% and 64.2% for the 1.5B and 7B models, respectively.

Vanilla RL does not yield consistent improvements across budgets (Fig. 4). Although Vanilla RL
improves overall accuracy relative to the base LRM, it fails to provide stable gains across different
token budgets. In the 7B experiments, its accuracy is lower than the base LRM when the token budget
is below 8K.

Figure 5: REG effectively captures the trade-off between accuracy and response length. Achiev-
ing a low REG require both competitive accuracy and short response length. By minimizing the
efficiency gap, REO-RL outperforms baselines in terms of reasoning efficiency.

REG effectively captures the trade-off between accuracy and response length (Fig. 5). Achieving
low REG requires balancing high accuracy with concise output. For example, REO-RL (Exp)
maintains strong accuracy while generating compact responses, resulting in low REG. In contrast,
methods that optimize only one aspect, such as minimizing length at the cost of accuracy, fail
to achieve low REG. RL with Token Budgets, despite producing shorter responses, suffers from
significant accuracy loss.
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6.3 Comparison with Frontier LRMs

To further evaluate the reasoning efficiency of LRMs trained with REO-RL (Exp) in comparison to
advanced LRMs, we conduct a controlled analysis focused on the correct response length. Since
frontier LRMs and those fine-tuned with REO-RL (Exp) differ significantly in overall accuracy, we
construct a balanced subset of 71 questions from the test set, where all models achieve an accuracy
exceeding 50%. For each model, we compute the average length of correct reasoning traces for each
problem. The final length metric for each model is then obtained by averaging the correct response
lengths across all 71 questions. As shown in Tab. 2, the 7B model trained with REO-RL (Exp)
exhibits more concise reasoning patterns than frontier LRMs, with a much shorter response length.

Claude Sonnet 3.7 (Thinking) DeepSeek R1 Qwen3-4B Qwen3-8B Qwen3-32B Vanilla RL - 7B REO-RL (Exp) - 7B (ours)

Length 17478.87 5156.39 8631.61 8898.57 7755.99 7732.11 4524.02
Accuracy 90.0% 98.2% 95.8% 94.9% 97.2% 93.5% 93.5%

Table 2: Comparing the response length with frontier LRMs.

6.4 Ablation Study of REO-RL

Method Accuracy (%) ↑ Length ↓ REG

Vanilla RL 71.0 12609.9 1691.6

Base LRM 62.0 11160.4 1782.1

Exp 68.7↓2.3 6725.7↓46.7% 816.7↓51.7%
Oracle 69.2↓1.9 7660.8↓39.2% 771.1↓54.4%

Exp - Coef=1 67.6↓3.4 6160.3↓51.1% 605.9↓64.2%
Exp - N=10 69.0↓2.0 7979.1↓36.7% 923.2↓45.4%

Linear 69.1↓1.9 7424.8↓41.1% 886.1↓47.6%
Question-Specific Oracle 69.5↓1.5 7312.3↓42.0% 687.7↓59.3%

Table 3: Ablation Study of REO-RL on
DeepSeek-R1-Distill-Qwen-7B.

We conduct an ablation study on the design choices
of REO-RL using the DeepSeek-R1-Distill-Qwen-7B
model to better understand its flexibility and perfor-
mance characteristics. By varying key components,
we demonstrate that REO-RL can maintain compet-
itive performance across different configurations.

Token budget selection strategy. We evaluate REO-
RL (Oracle) that adopts the oracle greedy strategy.
This variant achieves slightly better performance than
REO-RL (Exp), reflected in a lower REG. We also
investigate linearly spaced token budgets, which leads to less optimal efficiency and higher REG.

Coefficient ci in REO-RL objective. Setting all coefficients ci uniformly to 1 leads the model to
align more closely with the efficiency frontier and shorter response lengths. However, this approach
comes at the cost of reduced overall accuracy.

Number of selected token budgets N . We increase the number of selected token budgets to N = 10
to explore whether a finer granularity improves performance. In practice, we observe that using more
token budgets results in slower convergence and a higher rate of training instability. Consequently,
this configuration produces weaker results overall.

Question-Specific Oracle Budgets. Finally, we investigate a question-specific oracle strategy that
assigns two token budgets to each problem, the minimum reasoning length derived through the
frontier estimation experiments (Sec. 4.2) and the full budget Lmax. This oracle approach proves to
be competitive, further reducing the efficiency gap of REO-RL.

7 Conclusion

In this work, we investigate efficient reasoning for LRMs. We introduce reasoning efficiency frontiers,
which characterize the empirically optimal trade-off between response length and accuracy for LRMs.
To quantify the reasoning efficiency of a fine-tuned LRM, we introduce the Reasoning Efficiency
Gap (REG), a unified metric that captures both accuracy and length. We benchmark existing methods
and reveal a substantial gap between current fine-tuning approaches and the frontiers. Our proposed
method, REO-RL, consistently obtains better reasoning efficiency than strong baselines across model
scales. Despite these gains, achieving full match with the reasoning efficiency frontiers remains an
open problem.
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A Limitations

Limitations. Our study is currently only taken place on 1.5B and 7B LRMs. Extending our
research to larger and more powerful models could potentially uncover more efficient reasoning
capabilities. Additionally, our evaluations and training are primarily based on mathematical reasoning
tasks. Broadening our scope to include more diverse tasks, such as competitive programming and
multimodal reasoning, may enhance the generalizability and impact of our approach.

B Reproducibility

We provide our code in the https://anonymous.4open.science/r/REO-RL-803F. Please refer to Sec. F
for the details on reasoning efficiency frontiers and reasoning efficiency gap, and Sec. C for the
implementation detials.

C Implementation Details

Training Data. For training data, we integrate data from DeepScaleR Luo et al. [2025c] and
AReaL RL Lab [2025]. For 7B we directly use the training data of AReaL-Boba-RL-7B [RL Lab,
2025]. For 1.5B, we adopt the mixture of training data from DeepScaleR Luo et al. [2025c] and
AReaL RL Lab [2025] and remove duplicated problems.

We implement the training algorithm with the AReaL framework [RL Lab, 2025], which supports
SGLang [?] for rollout generation. Below we detail implementation details of each training algorithm.

Online RL Training. We use PPO as the default online RL algorithm. Following standard practices
in RL training for LLM reasoning [Yu et al., 2025b, Hu et al., 2025], we do not utilize value model
and KL regularization. The default training setting and hyperparameters for PPO training are listed in
Tab. 4.

For REO-RL and baseline methods, we do not carry out RL training directly from the base LRM since
it would lead to prolonged training and slower convergence. Instead, we perform further fine-tuning
on the RL trained versions for both 1.5B and 7B settings. Specifically, we adopt AReaL-Boba-RL-
1.5B [RL Lab, 2025] and Skywork-OR1-Math-7B [He et al., 2025] as the starting points for further
fine-tuning. Following the cluster config in Tab. 4, each experiment could finish within 48 hours.

Supervised Fine-Tuning. The default training configurations and hyperparameters for SFT are
listed in Tab. 5.

Preference Learning. We implement SimPO [Meng et al., 2024] in the AReaL framework [RL Lab,
2025]. The default training configurations and hyperparameters for SimPO are listed in Tab. 5.

D Baselines

RL with Token Budgets. In our online RL training with token budget constraints, we control the
maximum generation length during each training phase. Rather than fine-tuning the LRM directly on
a fixed token budget, we adopt a progressive length-shrinking strategy. We begin training with a 16K
token budget. Once RL training at this level converges, we reduce the budget to 8K and continue
training. This process is repeated, halving the token budget each time, until we reach the minimum
budget of 512 tokens. This staged approach enables the model to gradually adapt to shorter generation
lengths while maintaining reasoning performance.

RL with Length Rewards. In the “RL with Length Group Normalized Rewards” baseline [Arora
and Zanette, 2025], for each question x and the corresponding set of sampled responses y1, · · · , ym,
the reward of response yi is computed as,

r(x, yi) = I{yi is correct}(1− αf(|yi|))
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Table 4: Default training configurations and hyperparameters for PPO.

Training Configuration
Batch size (number of prompts) 512
Rollouts per prompt 16
Random seed 1
Cluster Config 8× 8 H800 (for 1.5B) / 16× 8 H800 (for 7B)

PPO Parameters
PPO Minibatches 4
Clipping ϵ 0.2
Advantage normalization True
Discount factor γ 1.0
GAE λ 1.0
Epochs 2.0

Optimizer Parameters
Optimizer Adam
Learning rate 2.0× 10−5

Weight decay 0.05
β1 0.9
β2 0.95
Adam ϵ 1× 10−5

Gradient norm clipping 1.0
Learning rate scheduler constant
Warmup steps proportion 0.001

Generation Parameters
Temperature 1.0
Top-p 1.0
Top-k -1
Max prompt length 1024
Min generation length 0
Max generation length 24376 (for 1.5B) / 32768 (for 7B)

where the function f normalizes |yi| according to the lengths of correct responses and applies a
sigmoid function. Specifically,

f(|yi|) = σ

(
|yi| − MEAN(x)

STD(x)

)
where

MEAN(x) = Ey∼π(·|x),s.t.y is correct[|y|]

STD(x) =
√
Vary∼π(·|x),s.t.y is correct[|y|]

In the “RL with Length-Harmonizing Rewards” baseline [Luo et al., 2025a], for each question x and
the corresponding set of sampled responses y1, · · · , ym, the reward of response yi is computed as,

r(x, yi) =
Lref (x)

|y|
− 1 + γ · (I{y is correct} −Aref (x))

where Lref (x) is the average response length of the reference model when taking x as input and
Aref (x) is the average accuracy of the reference model. In our implementations, we set the models
that serve as the starting point of RL training as the reference models.

In the MRT baseline [Qu et al., 2025], different from the original paper that only implements single-
step optimization with offline collected response prefixes, we implement the online RL training
version with dense rewards for MRT. For each question x and the corresponding set of sampled
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Table 5: Default training configurations and hyperparameters for SFT.

Training Configuration
Batch size (number of prompt-answer pairs) 512
Cluster Config 16× 8 H800

SFT Parameters
Epochs 10
Save Frequency Steps 100
use_bf16 True
Max Seq Length 32768

Optimizer Parameters
Optimizer Adam
Learning rate 1× 10−5

Weight decay 0.05
β1 0.9
β2 0.95
Adam ϵ 1× 10−5

Gradient norm clipping 1.0
Learning rate scheduler constant
Warmup steps proportion 0.03

Table 6: Default training configurations and hyperparameters for SimPO.

Training Configuration
Batch size (number of preference pairs) 128
Cluster Config 16× 8 H800

SimPO Parameters
Epochs 2
Save Frequency Steps 10
use_bf16 True
Max Seq Length 32768
SimPO Coefficient β 1/2
SimPO Coefficient γ 1.2/1.4

Optimizer Parameters
Optimizer Adam
Learning rate 1× 10−5 (for 1.5B) / 3× 10−6 (or 7B)
Weight decay 0.05
β1 0.9
β2 0.95
Adam ϵ 1× 10−5

Gradient norm clipping 1.0
Learning rate scheduler constant
Warmup steps proportion 0.03

responses , we partition each response into several steps y = (y1, · · · , ys). In each training step, the
model is updated by computing the policy gradient for the following objective,

Ex,y=(y1,··· ,ys)∼πθ′ (·|x)[

s∑
i=1

Ey′
i∼πθ(·|x,y:i−1)[R(x,Answer(πθ′ , x, [y:i−1; y

′]))

−R(x,Answer(πθ′ , x, y:i−1)) + α · R(x, y)]]

where α is the weight for the overall accuracy and is set as 0.2 in our experiments.
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Supervised Fine-Tuning. In SFTShortest, we generate 16 outputs for each question in the training
dataset. Then we select the correct response with the shortest length for each question to construct the
SFT dataset. In SFTTOPS, we follow [Yang et al., 2025b] to prompt the LRM to generate responses
with three different types of reasoning efforts. We strictly follow the prompts used in [Yang et al.,
2025b]. For each type of reasoning effort, we generate 16 responses. To construct the SFT dataset,
the shortest correct response among all 48 responses are gathered.

Preference Learning. We adopt three strategies for constructing the preference datasets. In
SimPOShortest, we adopt the responses generated for SFTShortest and select the shortest correct response
and the longest response as the preference pair for each question. In SimPOTOPS, we use the same
preference construction strategy as SimPOShortest but on the responses generated through TOPS,
which contain reasoning traces with different reasoning efforts. Finally, in SimPODAST, we again
utilize the responses generated for SFTShortest but adopt a different preference construction strategy.
In the preference dataset of SimPODAST, each pair falls into one of the two cases: it either contains
two correct responses where the positive sample is much shorter than the negative sample, or contains
two incorrect responses where the positive sample is much longer than the negative sample.

Other Methods We Have Tried. We have also experimented with Z1 [Yu et al., 2025c] that con-
structs code-based reasoning traces, and L1 [Aggarwal and Welleck, 2025] that fine-tunes the LRMs
to follow token budget instruction with RL. We find Z1 having poor performance on mathematical
reasoning tasks, demonstrating significantly lower accuracy to that of the base LRMs as illustrated
in Tab. 7. For L1, we find L1 mainly works under tight token budgets, i.e. less than 4K. When we
extend the training approach of L1 to a larger context length, i.e. 24K for 1.5B models, we find it
hard to make the LRM learning to follow strict token budget instructions through RL. Consequently,
the resulted models, L1-Exact-24K-1.5B and L1-Max-24K-1.5B could not follow the token budget
instruction, as shown in Tab, 8.

Method AIME24 MATH500 GPQA
Accuracy (%) Length Accuracy (%) Length Accuracy (%) Length

Base LRM 31.5 16747.6 83.6 5633.1 44.6 10325.2

Z1 10.0 15106.0 63.6 4904.1 61.6 9004.1

Table 7: Result of Z1 on DeepSeek-R1-Distill-Qwen-1.5B. [Yu et al., 2025c]

Instructed Token Budget AMC23 AIME24 AIME25
Accuracy (%) Length Accuracy (%) Length Accuracy (%) Length

2048 63.9 20267.7 38.6 18067.4 27.2 19657.7
4096 63.5 20142.6 38.4 17961.3 26.9 19711.1
8192 62.9 20191.6 38.4 17868.7 26.8 19673.5

Table 8: Result of L1-Exact-24K-1.5B.

E REO-RL

E.1 Implementing REO-RL

Generation Phase. In the generation phase of REO-RL, there are two rounds of LRM generation.
In the first round, multiple responses are generated for each question in the training batch. In the sec-
ond round, to compute the length-constrained rewards for each of the responses and across all selected
token budgets, we choose all truncated responses y:Li and apply a prompt to enforce the LRM to gen-
erate the final answer given incomplete reasoning traces, i.e. a = πθ(·|x, y:L, [The Final Answer is]).
We follow the prompt employed by [Fu et al., 2024] and [Fu et al., 2025].
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Prompt for Forcing LRM to Produce Answer

...
Oh, I suddenly got the answer to the whole problem. **Final Answer**:
[\boxed{

Dense Reward RL. REO-RL obtains dense rewards through forcing the LRM to generate answer
under various token budgets. The objective of REO-RL is as follows,

REO-RL: LREO−RL(θ,D) = Ex∼D

[
Ey∼πθ(·|x)

[
N+1∑
i=1

ciR(x,Answer(πθ, x, y:Li))

]]

where ci =
Li+1−Li−1

2 for 1 ≤ i ≤ N and cN+1 = Lmax−LN

2 are the coefficient for the i-th token
budget.

To perform policy update, we compute the return for each section between two consecutive token
budgets Li and Li+1. For 1 ≤ i ≤ N , we compute,

Returni(x, y) =

N+1∑
j=i

cjR(x,Answer(πθ, x, y:Lj
))

Since we disable value model in the training process, the computed returns are then used directly as
the advantages for PPO loss computation. Specifically Returni(x, y) would be used to update the
tokens yLi:Li+1

.

F Reasoning Efficiency Frontiers & Reasoning Efficiency Gap

Reasoning Efficiency Frontiers. The two boxes below record the detailed lengths and accuracies
for points on the estimated reasoning efficiency frontiers for DeepSeek-R1-Distill-Qwen-1.5B and
DeepSeek-R1-Distill-Qwen-7B, respectively.

Reasoning Efficiency Frontier for DeepSeek-R1-Distill-Qwen-1.5B

[(0, 0.0722), (64, 0.0616), (128, 0.0626), (192, 0.0928), (256, 0.1121), (320, 0.1261), (384,
0.1562), (448, 0.1884), (512, 0.2126), (576, 0.2219), (640, 0.2296), (704, 0.237), (768,
0.2486), (832, 0.2646), (896, 0.2809), (960, 0.2892), (1024, 0.3034), (2048, 0.4035), (3072,
0.4413), (4096, 0.471), (5120, 0.4851), (6144, 0.4941), (7168, 0.5088), (8192, 0.5195), (9216,
0.5273), (10240, 0.5339), (11264, 0.541), (12288, 0.5431), (13312, 0.5469), (14336, 0.5491),
(15360, 0.5506), (16384, 0.5517), (17408, 0.552), (18432, 0.5526), (19456, 0.5516), (20480,
0.5517), (21504, 0.5517), (22528, 0.5523), (23552, 0.5523), (24576, 0.5523), (25600, 0.5527),
(26624, 0.5527), (27648, 0.5527), (28672, 0.5527), (29696, 0.5527), (30720, 0.5527), (31744,
0.5527), (32768, 0.5527)]

Reasoning Efficiency Frontier for DeepSeek-R1-Distill-Qwen-7B

[(0, 0.0872), (64, 0.0892), (128, 0.0977), (192, 0.1143), (256, 0.1512), (320, 0.1959), (384,
0.2522), (448, 0.2766), (512, 0.2896), (576, 0.2939), (640, 0.294), (704, 0.2944), (768,
0.2991), (832, 0.3155), (896, 0.3265), (960, 0.3418), (1024, 0.3889), (2048, 0.4885), (3072,
0.5345), (4096, 0.5742), (5120, 0.5926), (6144, 0.6128), (7168, 0.6293), (8192, 0.6486),
(9216, 0.662), (10240, 0.6742), (11264, 0.6872), (12288, 0.6936), (13312, 0.6977), (14336,
0.7023), (15360, 0.7039), (16384, 0.7066), (17408, 0.7123), (18432, 0.7147), (19456, 0.7167),
(20480, 0.7173), (21504, 0.7177), (22528, 0.7201), (23552, 0.7208), (24576, 0.7212), (25600,
0.7219), (26624, 0.7219), (27648, 0.7219), (28672, 0.7222), (29696, 0.7222), (30720, 0.7222),
(31744, 0.7225), (32768, 0.7221)]
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Evaluating Reasoning Efficiency Gap. To practically evaluate REG, instead of strictly fol-
lowing Eq. 5, we obtain approximations of

∑Lmax
L=1 Ĵoptimal and

∑Lmax
L=1 J(D, θ, L) through numer-

ical integration on a set of token budgets respectively, in a similar way to Eq. 8. We select
{L1, · · · , LN} = {64i|0 ≤ i < 16} ∪ {1024i|1 ≤ i ≤ 16}. Note that we set Lmax = 16K
instead of Lmax = 32K to focus on the efficiency gap under lower token budgets.

G Additional Results

G.1 More Results on Frontier LRMs

To enable a more comprehensive comparison as discussed in Sec 6.3, we also evaluated Claude
Sonnet 3.7 under two different configurations. The detailed results are presented in Table 9. Row 2
shows the performance of Claude Sonnet 3.7 without the use of thinking mode, while Row 3 reflects
its performance under the low reasoning effort mode (with a maximum token limit of 16,384 and 30%
of the tokens allocated as budget tokens). Under both configurations, Claude Sonnet 3.7 produces
significantly shorter responses, but this comes at the cost of a noticeable drop in accuracy.

Model Length Accuracy

Claude Sonnet 3.7 (Thinking) 17478.87 90.0%
Claude Sonnet 3.7 (Without Thinking) 906.01 54.15%

Claude Sonnet 3.7 (Low Reasoning Effect) 3491.14 67.62%
DeepSeek R1 5156.39 98.2%

Qwen3-4B 8631.61 95.8%
Qwen3-8B 8898.57 94.9%
Qwen3-32B 7755.99 97.2%

Vanilla RL - 7B 7732.11 93.5%
REO-RL (Exp) - 7B (ours) 4524.02 93.5%

Table 9: Comparing the response length and accuracy with frontier LRMs.

G.2 Results on all Benchmarks

Generalization to Other Tasks

To demonstrate the generalizability of REG and REO-RL, we conduct cross-domain evaluations on
coding tasks using models trained solely on math data. Additionally, we apply the REG framework
and REO-RL to coding by fine-tuning Qwen3-4B on DeepCoder data Luo et al. [2025b].

1. Cross-Domain Evaluation (Math → Coding)

We evaluate models trained on math on two coding benchmarks, CodeContests and LiveCodeBench.
We construct cross-domain efficiency frontiers by truncating responses under different token budgets
and allowing an extra 512-token budget for python code generation. We then compute REG based on
the cross-domain efficiency frontiers. 8 responses are generated for evaluation for each method.

Even when trained only on math, REO-RL achieves strong generalization to coding, significantly
improving efficiency (lower REG) while maintaining accuracy.

2. Applying the REG & REO-RL to Coding (Qwen3-4B)

For frontier construction, we run RL with different token budgets to estimate the efficiency frontier.
Regarding REO-RL, we run REO-RL (Exp) using exponentially spacing token budgets. To obtain
length-constrained rewards, we use the model to generate python codes from truncated responses
with an additional generation budget of 512 tokens. REO-RL (Exp) reduces REG and response length
by 51.14% and 32.49% on coding while maintaining the overall accuracy.
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Method Accuracy (%) ↑ Length ↓ REG

Base LRM 29.2 16757.1 2136.8

Vanilla RL 42.7 12829.1 1073.3

REO-RL (Exp) - Coef=1 46.9↑4.2 10624.2↓17.2% 30.0↓97.2%
REO-RL (Exp) 42.9↑0.2 8780.3↓31.6% 574.5↓46.5%

REO-RL (Oracle) 42.5↓0.2 8443.8↓34.2% 784.0↓26.9%

RL w. Token Budget=1K 17.3↓25.4 1487.4↓88.4% 3321.1↑209.4%
RL w. Token Budget=2K 22.4↓20.3 2423.9↓81.1% 2610.3↑143.2%
RL w. Token Budget=4K 31.4↓11.4 3991.0↓68.9% 1490.4↑38.9%

RL w. Len Group Norm. Rew. 44.4↑1.7 10486.0↓18.3% 689.8↓35.7%
RL w. Len-Harmonizing Rew. 41.5↓1.2 9119.2↓28.9% 767.2↓28.5%

MRT 44.0↑1.3 10365.8↓19.2% 610.1↓43.2%

SFTShortest 43.2↑0.5 12898.1↑0.5% 1024.0↓4.6%
SFTTOPS 41.8↓0.9 10823.9↓15.6% 1057.7↓1.4%

SimPODAST 22.9↓19.8 14029.4↑9.4% 2583.4↑140.7%
SimPOShortest 35.8↓6.9 7422.1↓42.1% 1170.0↑9.0%
SimPOTOPS 15.6↓27.1 2647.4↓79.4% 3639.7↑239.1%

Table 10: Results of 1.5B Models on AIME 2024

Method Accuracy (%) ↑ Length ↓ REG

Base LRM 23.5 16577.6 906.7

Vanilla RL 28.3 14109.4 749.2

REO-RL (Exp) - Coef=1 32.9↑4.6 10298.4↓27.0% 250.5↓66.6%
REO-RL (Exp) 31.9↑3.5 8630.5↓38.8% 292.8↓60.9%

REO-RL (Oracle) 34.7↑6.4 8288.7↓41.3% 232.2↓69.0%

RL w. Token Budget=1K 13.5↓14.8 1282.8↓90.9% 1403.1↑87.3%
RL w. Token Budget=2K 17.5↓10.8 1966.0↓86.1% 1105.9↑47.6%
RL w. Token Budget=4K 26.1↓2.2 3770.8↓73.3% 474.5↓36.7%

RL w. Len Group Norm. Rew. 30.7↑2.4 10599.6↓24.9% 553.5↓26.1%
RL w. Len-Harmonizing Rew. 31.6↑3.2 8113.9↓42.5% 316.0↓57.8%

MRT 31.8↑3.4 10496.2↓25.6% 458.1↓38.9%

SFTShortest 29.9↑1.6 14221.8↑0.8% 629.7↓16.0%
SFTTOPS 30.7↑2.4 11720.5↓16.9% 549.1↓26.7%

SimPODAST 19.4↓9.0 11161.7↓20.9% 1008.3↑34.6%
SimPOShortest 26.5↓1.9 7380.9↓47.7% 672.1↓10.3%
SimPOTOPS 18.3↓10.0 2412.2↓82.9% 1056.8↑41.1%

Table 11: Results of 1.5B Models on AIME 2025
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Method Accuracy (%) ↑ Length ↓ REG

Base LRM 71.6 9956.8 1709.0

Vanilla RL 83.8 7968.0 1424.0

REO-RL (Exp) - Coef=1 84.5↑0.7 4990.8↓37.4% 648.5↓54.5%
REO-RL (Exp) 83.2↓0.6 6205.6↓22.1% 562.8↓60.5%

REO-RL (Oracle) 84.4↑0.5 4626.6↓41.9% 821.2↓42.3%

RL w. Token Budget=1K 65.6↓18.2 1111.3↓86.1% 1354.2↓4.9%
RL w. Token Budget=2K 73.1↓10.7 1547.1↓80.6% 827.8↓41.9%
RL w. Token Budget=4K 80.9↓2.9 2561.2↓67.9% 493.8↓65.3%

RL w. Len Group Norm. Rew. 82.7↓1.1 5911.5↓25.8% 1097.2↓22.9%
RL w. Len-Harmonizing Rew. 85.1↑1.2 3993.2↓49.9% 648.5↓54.5%

MRT 84.6↑0.8 6233.6↓21.8% 1051.8↓26.1%
SFTShortest 82.5↓1.3 7513.7↓5.7% 1370.4↓3.8%
SFTTOPS 82.7↓1.1 6454.1↓19.0% 1283.5↓9.9%

SimPODAST 68.1↓15.7 5955.5↓25.3% 1514.4↑6.4%
SimPOShortest 77.7↓6.2 4020.8↓49.5% 1038.2↓27.1%
SimPOTOPS 58.5↓25.3 1497.8↓81.2% 2179.7↑53.1%

Table 12: Results of 1.5B Models on AMC 2023

Method Accuracy (%) ↑ Length ↓ REG

Base LRM 55.3 13062.1 2471.8

Vanilla RL 66.2 14264.7 1770.8

REO-RL (Exp) 64.0↓2.3 7671.5↓46.2% 849.3↓52.0%
REO-RL (Oracle) 63.9↓2.4 9348.6↓34.5% 1015.6↓42.6%

RL w. Token Budget=1K 26.7↓39.6 1242.4↓91.3% 6119.5↑245.6%
RL w. Token Budget=2K 36.5↓29.8 1929.6↓86.5% 4372.7↑146.9%
RL w. Token Budget=4K 48.3↓17.9 3480.9↓75.6% 2458.7↑38.8%

RL w. Len Group Norm. Rew. 64.2↓2.1 10608.1↓25.6% 1353.4↓23.6%
RL w. Len-Harmonizing Rew. 65.5↓0.7 9167.7↓35.7% 1169.7↓33.9%

MRT 66.1↓0.1 9210.6↓35.4% 1051.8↓40.6%
SFTShortest 67.7↑1.5 13197.2↓7.5% 1512.1↓14.6%
SFTTOPS 66.0↓0.2 13204.1↓7.4% 1609.1↓9.1%

SimPODAST 60.1↓6.1 7500.5↓47.4% 1348.4↓23.9%
SimPOShortest 65.5↓0.7 9348.1↓34.5% 1138.9↓35.7%

Table 13: Results of 7B Models on AIME 2024
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Method Accuracy (%) ↑ Length ↓ REG

Base LRM 39.7 14241.9 2055.6

Vanilla RL 52.9 16305.3 1502.3

REO-RL (Exp) 48.8↓4.2 8361.1↓48.7% 767.2↓48.9%
REO-RL (Oracle) 49.0↓4.0 9189.6↓43.6% 628.2↓58.2%

RL w. Token Budget=1K 19.7↓33.2 1168.0↓92.8% 4789.6↑218.8%
RL w. Token Budget=2K 27.6↓25.3 1831.6↓88.8% 3354.8↑123.3%
RL w. Token Budget=4K 35.4↓17.5 3345.2↓79.5% 2119.4↑41.1%

RL w. Len Group Norm. Rew. 50.8↓2.1 11486.8↓29.6% 851.4↓43.3%
RL w. Len-Harmonizing Rew. 51.1↓1.8 10394.6↓36.2% 881.5↓41.3%

MRT 50.5↓2.4 10559.3↓35.2% 711.4↓52.6%

SFTShortest 53.6↑0.7 15208.6↓6.7% 1309.2↓12.9%
SFTTOPS 52.0↓0.9 15170.8↓7.0% 1349.6↓10.2%

SimPODAST 46.2↓6.7 7916.9↓51.4% 1013.8↓32.5%
SimPOShortest 50.8↓2.1 10292.3↓36.9% 862.4↓42.6%

Table 14: Results of 7B Models on AIME 2025

Method Accuracy (%) ↑ Length ↓ REG

Base LRM 90.9 6177.3 1652.7

Vanilla RL 93.9 7259.8 1841.5

REO-RL (Exp) 93.4↓0.5 4144.6↓42.9% 1067.1↓42.1%
REO-RL (Oracle) 94.7↑0.8 4444.1↓38.8% 960.9↓47.8%

RL w. Token Budget=1K 73.0↓20.9 960.4↓86.8% 2098.1↑13.9%
RL w. Token Budget=2K 84.3↓9.6 1427.5↓80.3% 906.7↓50.8%
RL w. Token Budget=4K 89.1↓4.8 2109.2↓70.9% 708.5↓61.5%

RL w. Len Group Norm. Rew. 94.5↑0.5 4788.9↓34.0% 1181.3↓35.9%
RL w. Len-Harmonizing Rew. 94.5↑0.5 4307.9↓40.7% 1027.8↓44.2%

MRT 93.8↓0.2 4986.6↓31.3% 1242.6↓32.5%
SFTShortest 93.6↓0.3 6728.2↓7.3% 1755.5↓4.7%
SFTTOPS 93.3↓0.6 6272.5↓13.6% 1653.4↓10.2%

SimPODAST 92.0↓1.9 4051.7↓44.2% 1050.1↓43.0%
SimPOShortest 93.4↓0.5 4793.1↓34.0% 1276.0↓30.7%

Table 15: Results of 7B Models on AMC 2023
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Method Accuracy (%) ↑ Length ↓ REG

Vanilla RL 66.2 14264.7 1770.8

Base LRM 55.3 13062.1 2471.8

REO-RL (Exp) - Coef=1 62.6↓3.6 7218.5↓49.4% 756.5↓57.3%
REO-RL (Exp) - N=10 64.0↓2.3 9352.7↓34.4% 1088.9↓38.5%

REO-RL (Linear) 63.5↓2.7 8982.0↓37.0% 1097.8↓38.0%
REO-RL (Question-Specific Oracle) 63.9↓2.4 8407.8↓41.1% 831.4↓53.0%

REO-RL (Oracle) 63.9↓2.4 9348.6↓34.5% 1015.6↓42.6%
REO-RL (Exp) 64.0↓2.3 7671.5↓46.2% 849.3↓52.0%

Table 16: Results of Ablation Study on DeepSeek-R1-Distilled-Qwen-7B on AIME 2024

Method Accuracy (%) ↑ Length ↓ REG

Vanilla RL 52.9 16305.3 1502.3

Base LRM 39.7 14241.9 2055.6

REO-RL (Exp) - Coef=1 47.2↓5.7 7525.9↓53.8% 611.1↓59.3%
REO-RL (Exp) - N=10 48.9↓4.1 9804.9↓39.9% 927.0↓38.3%

REO-RL (Linear) 49.9↓3.0 9001.6↓44.8% 715.1↓52.4%
REO-RL (Question-Specific Oracle) 51.4↓1.6 9298.5↓43.0% 401.2↓73.3%

REO-RL (Oracle) 49.0↓4.0 9189.6↓43.6% 628.2↓58.2%

REO-RL (Exp) 48.8↓4.2 8361.1↓48.7% 767.2↓48.9%

Table 17: Results of Ablation Study on DeepSeek-R1-Distilled-Qwen-7B on AIME 2025

Method Accuracy (%) ↑ Length ↓ REG

Vanilla RL 93.9 7259.8 1841.5

Base LRM 90.9 6177.3 1652.7

REO-RL (Exp) - Coef=1 93.1↓0.8 3736.4↓48.5% 804.4↓56.3%
REO-RL (Exp) - N=10 94.1↑0.2 4779.6↓34.2% 1027.3↓44.2%

REO-RL (Linear) 93.90.0 4290.9↓40.9% 1093.9↓40.6%
REO-RL (Question-Specific Oracle) 93.4↓0.5 4230.6↓41.7% 970.6↓47.3%

REO-RL (Oracle) 94.7↑0.8 4444.1↓38.8% 960.9↓47.8%

REO-RL (Exp) 93.4↓0.5 4144.6↓42.9% 1067.1↓42.1%
Table 18: Results of Ablation Study on DeepSeek-R1-Distilled-Qwen-7B on AMC 2023

Table 19: DeepSeek-R1-Distill-Qwen-1.5B Results (Trained on Math, Eval on Coding)

Method Acc. Len. REG
Vanilla RL 13.55 15593.15 881.45
REO-RL (Oracle) 14.76 13064.89 556.57
REO-RL (Exp) 14.83 14047.32 510.56
RL w. Len Group Norm. Rew. 13.2 14328 996.29
RL w. Len-Harmonizing Rew. 14.34 12670.71 646.61
RL w. Token Budget=4K 13.35 6144.13 876.90
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Table 20: DeepSeek-R1-Distill-Qwen-7B Results (Trained on Math, Eval on Coding)

Method Acc. Len. REG
Vanilla RL 33.2 14722.48 849.27
REO-RL (Oracle) 32.29 10246.18 747.14
REO-RL (Exp) 31.98 9143.80 789.20
RL w. Len Group Norm. Rew. 32.48 13183.96 839.00
RL w. Len-Harmonizing Rew. 31.49 13240.02 1070.17
RL w. Token Budget=4K 29.40 4968.69 1353.91

Table 21: Qwen3-4B Results on Coding

Method Acc. Length REG
Base LRM (Qwen3-4B) 41.14 16850.23 514.86
REO-RL (Exp) 41.03 11375.06 251.55
RL w. Token Budget=8K 28.78 7059.58 2572.08
RL w. Token Budget=16K 32.58 10443.31 1961.00
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We believe our introduction and the abstract sections both clearly state the
contributions made in this paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Please refer to Sec. 7.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: N/A

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide full guideline for reproducing the results of our experiment results
in Appendix. C, Appendix. D and Appendix. E.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide our training code through anonymous link in Appendix. B. Our
training data are gathered from open-sourced projects, which we have already properly
cited. We also provide the estimated reasoning efficiency frontiers, that are necessary for
computing the introduced metric REG , in Appendix. F.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please refer to Sec. 6.1 and Appendix. C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We did not include error bars for end-to-end experiments because this paper
includes a large volume of expensive experiments. We present results within a single trial
across different settings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to Appendix. C.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: N/A
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper investigates training algorithms, which has limited social impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
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Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We ensure existing assets are properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release the code for implementing REO-RL and the exact numerical value
of our estimated efficiency frontiers. We will also release necessary models in the future.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This work does not use LLMs as any important, original, or non-standard
components
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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