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ABSTRACT

Modeling sequential user behaviors for future action prediction is crucial in im-
proving user’s information retrieval experience. Recent studies highlight the im-
portance of incorporating contextual information to enhance prediction perfor-
mance. One crucial and typical contextual information is the scene feature which
we define it as sub-interfaces within an app, created by designers to provide spe-
cific functionalities, such as “text2product search” and “live” in e-commence apps.
Different scenes exhibit distinct functionalities and usage habits, leading to sig-
nificant distribution gap in user engagement across them. Popular sequential be-
havior models either ignore the scene feature or merely use it as attribute em-
beddings, which could lead to substantial information loss or cannot capture the
inter-dependencies between scene and item in modeling dynamic user interests.
In this work, we propose a novel Dual Sequence Prediction network (DSPnet) to
effectively capture the inter-dependencies between scene and item sequences for
future behavior prediction. DSPnet consists of two parallel networks dedicated to
predicting scene and item sequences, and a sequence feature enhancement module
to capture the inter-dependencies. Further, considering the randomness and noise
in learning sequence dynamics, we introduce Conditional Contrastive Regulariza-
tion (CCR) loss to capture the invariance of similar historical sequences. Theoret-
ical analysis suggests that DSPnet can learn the joint relationships between scene
and item sequences, and also show better robustness on real-world user behaviors.
Extensive experiments are conducted on one public benchmark and two collected
industrial datasets. The codes and collected datasets will be made public soon.

1 INTRODUCTION

Modern online information retrieval services, such as search and recommendation, have brought
great changes and convenience for human’s daily life. Correspondingly, users’ sequential behaviors
spread over a variety of apps and websites (Kang & McAuley, [2018; (Chen et al,2021a)). Modeling
these sequential user behaviors as representations for future behavior prediction has become an
important issue in machine learning applications, which greatly improves the downstream services.

Recent advances in modeling sequential user behaviors concentrate on three key areas: design of
the encoding architecture, formulation of the training objective and utilization of the contextual in-
formation. In design of the encoding architecture, early works employ Markov models (Rendle
et al.l 2010) to capture sequential patterns within historical behavior sequences. However, these
models face limitations in their ability to represent complex and higher-order sequential dependen-
cies. Consequently, researchers tend to investigate the more expressive recurrent neural networks
(RNNs) (Medsker et al.,|2001; Hidasi et al.| 20165 |Hidasi & Karatzoglou, 2018;|Donkers et al., 2017)
or self-attention mechanisms (Vaswani et al., |2017; [Kang & McAuley, 2018} [Sun et al, 2019)), to
enhance sequential behavior modeling. Subsequently, researchers explored more advanced formu-
lation of training objective, beyond the conventional next-item prediction objective. They primarily
designed various self-supervised training tasks to extract additional insights from sequences dur-
ing training (Sun et al.l [2019; |Yao et al., 2021; |Zhou et al., 2020; |[Fu et al.l 2023} Wang et al.,
2023a)). For instance, [Wang et al.| (2023a)) introduced a context-context contrast which encourages
sequences after augmentation to have similar representations by leveraging contrastive learning loss.
Additionally, several studies have focused on utilization of the contextual information such as item
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Figure 1: (a) An example to show different scenes within an App. Users usually engage in clicks or
make purchases across different scenes. The red dashed boxes represent distinct scenes, while the
blue dashed boxes indicate individual items. (b) An example to show the distribution gap between
different scenes. The upper one indicates the category distribution of different scenes in our e-
commence app. The lower one shows users’ conversion rate in different scenes. Since the volume
of our scenes and categories is quite large, we select several largest scenes and categories for better
visualization. (c) shows our idea of performing scene-aware sequential user behavior prediction.
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category (Cai et al.} 2021)), behavior type (Huang et al.,[2018)) and time intervals (Ye et al.,[2020)), as

the contextual information notably influences user behaviors in apps or websites.

One crucial and typical contextual factor influencing user behaviors is the scene feature, which we
define it as sub-interfaces within an app or website, created by designers to encapsulate specific
themes or functionalities. As shown in Figure[I] (a), different scenes, usually operated by different
teams, have different themes and styles. For example, the shopping app encompasses scenes such as
“text search”, “recommendation” and “live”, facilitating functionalities like text-to-product search,
product recommendations, and interactive live shopping experiences. Each of these scenes repre-
sents different shopping types, leading to significant distribution gap in user engagement across
them. Figure [T (b) illustrates the category distribution and user conversion rate across different
scenes, unveiling significant disparities in both item content and user engagement among various
scenes. The distinct features of a scene play a crucial role in providing conditional information for
behavior occurrence. When a user enters a specific scene, it can reflect certain shopping interests
and the interests greatly impact the items the user is likely to interact with. Ignoring the scene fea-
ture would result in a large loss of information and introduce data bias in modeling the sequential
user trajectory. Some studies have incorporated the scene feature as an input field of items
et al, 2023}, [Papsol [2023)) in user behavior modeling. However, they often overlook the interplay
between scene and item, which hinders their ability of mining scene feature in behavior prediction.
As shown in Figure |I| (c), the item and scene simultaneously occur in an interaction behavior, and
the sequential scene dynamics and item dynamics have mutual effects in subsequent behavior gen-
eration. How to capture the mutual effects and enhance the model’s representation learning ability
remains a challenging problem.

In this work, we propose a novel Dual Sequence Prediction network (DSPnet) that effectively cap-
tures the inter-dependencies between sequential scenes and items to predict future user behaviors.
DSPnet comprises two parallel networks dedicated to predicting scene and item sequences, together
with a sequence feature enhancement module to deliver the mutual effects across both sequences.
In particular, the scene sequence prediction network and item sequence prediction network encode
their own dynamics from historical behaviors. Meanwhile, the sequence feature enhancement mod-
ule enables one network’s encoding features to be input into the other, allowing both prediction
networks to capitalize on their inter-dependencies during the sequence learning process. We also
demonstrate that the learning approach of DSPnet is theoretically equivalent to maximizing the
joint log-likelihood of scenes and items, presenting a good way to model their relationships and
inter-dependent sequential dynamics. Moreover, given that sequential user behaviors often exhibit



Under review as a conference paper at ICLR 2025

randomness and noise, which can adversely affect the learning of sequence dynamics, we intro-
duce Conditional Contrastive Regularization (CCR) loss to capture the representation invariance of
similar historical sequences. Through learned conditional weights, CCR loss can adaptively pro-
mote similarity in representations for sequences that undergo augmentation with different forces.
We empirically demonstrate that CCR loss highlights the relationships among contrasting samples,
enhancing the model’s robustness in representation learning for real-world, skewed user behaviors.
To sum up, the contributions of this work are summarized as follows:

* We propose a novel DSPnet method that enhances behavior prediction by capturing the
inter-dependencies between scenes and items in a sequence. Our theoretical analysis re-
veals that training DSPnet is equivalent to maximizing the joint log-likelihood of both
scene and item sequences, enabling us to effectively model their relationships.

* Further, we introduce Conditional Contrastive Regularization (CCR) to enhance the
model’s representation learning by capturing the invariance of similar historical sequences.
CCR uses learned conditional weights to more effectively promote similarity among those
sequences, improving representation robustness in skewed user behaviors.

* We have collected 37-day sequential user behavior data from our e-commence app and
constructed two datasets. They contain chronological purchase behaviors on nearly thirty
million items, providing a valuable resource to address the research data gap in this field.

* We conduct extensive experiments on three datasets: one public benchmark and two indus-
trial ones. Results on these datasets show the impact of employing scene information in
sequential behavior modeling and how our method outperforms state-of-the-art baselines.

2 RELATED WORK

Design of the Encoding Architecture: Early works investigate Markov chains (Ching & Ng|,2006)
to capture sequential dynamics within historical sequential behaviors. However, as the number of
past actions increases, the state space grows exponentially, making it challenging to capture higher-
order dependencies in real-world applications. Consequently, researchers explore more expressive
neural sequence models like Recurrent Neural Networks (RNNs) (Medsker et al., 2001; |[Hidasi
et al.l 2016} Hidasi & Karatzoglou, [2018; [Donkers et al., [2017), Convolutional Neural Networks
(CNNs) (Tang & Wang, [2018)), Long Short-Term Memory Networks (LSTM) (Graves & Graves,
2012;|Duan et al.,|2023) and self-attention (Vaswani et al.,2017; Kang & McAuley, 2018};/Sun et al.,
2019) models to enhance sequential behavior modeling. For example, SASRec (Kang & McAuley,
2018) and BERT4Rec (Sun et al., 2019) broadened the application of self-attention models to se-
quential behavior modeling. Some works (Hu et al.||2024; [Li et al.| 2024b; [Zheng et al.| [2024; [Liao
et al.,[2024)) focus on leveraging large LLMs for sequential recommendation, including aligning se-
quential RS with LLMs, summarizing user preferences. Others (Ma et al., [2024} [Yang et al.| 2024;
Wang et al.l 2024) investigate the application of diffusion models in sequential recommendation,
aiming to better capture the evolution of user preferences over time.

Formulation of the Training Objective: Several studies concentrate on forecasting item lists over
specific time periods or behavioral distributions instead of the next individual items. SUMN (Gu
et al., [2021) hypothesizes that future behavioral distributions should align with past distributions.
It learns sequence representations by maximizing the Kullback-Leibler divergence between item
occurrence distributions from a previous period and those of the future. MSDP (Fu et al., [2023)
uses a multi-scale approach to optimize predictions for the next period by considering item lists
across different timeframes. Constructing self-supervised learning tasks to facilitate the prediction
of sequential user behaviors has also gained considerable attention. CL4SRec (Qiu et al., [2021)
explores the contrastive signals derived from augmented historical sequences through contrastive
learning. ContraRec (Wang et al., 2023b) achieves state-of-the-art performance by constructing
contrastive sequences using random mask and reorder augmentation techniques.

While contrastive learning improves sequential behavior modeling, it often ignores the varying roles
of positive and negative samples. Our CCR loss learns conditional weights for these samples, captur-
ing their unique contributions and enhancing the model’s robustness in learning sequence dynamics.

Utilization of the Contextual Information: In user behavior sequences, there are various contex-
tual factors linked to each action, such as types of user behavior (e.g., clicks, purchases, additions to
favorites) (Meng et al., 2020; N1 et al., [ 2018)), product category (Cai et al.,|2021)) and other multiple
item attributes (Papsol 2023). DUPN (Ni et al.,|2018)) incorporates multiple kinds of behavior types
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to construct multi-task learning for more effective personalization. MKM-SR (Meng et al.| [2020)
points out that a user’s sequence behaviors could have some micro-behaviors that reflect fine-grained
and deep understanding of the user’s preference. The micro-behaviors are identified by specific be-
havior activities (e.g. reading comments, adding to cart), and embedded individually to augment
the original sequence prediction. CoCoRec (Cai et al., 2021) leverages item category to organize
a user’s own past actions and further employs self-attention to capture in-category transition pat-
terns. Then, these transition patterns are used to find similar users, thereby enhancing collaborative
learning. CARCA (Papso, [2023) incorporates both the attributes of interacted items and contextual
data of user interactions by employing combined sequences as input for multi-head attention blocks.
Some other works employ different scene definitions from ours. |Chen et al.| (2021b)) explored adap-
tive sequential recommendation systems (RS) across different domains. Wang et al.[(2021) defined
the scene as a collection of predefined item categories. |Wan et al.| (2024) investigated the usage of
large language models (LLMs) for real-time sequential RS. |Li et al.|(2024a)) defined scenes as 200
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predefined topics, such as “weekend spring outing”, “afternoon tea” and “KFC crazy Thursday”.

Although some contextual based models (Tian et al., 2023} [Papsol [2023) consider the scene as an
additional attribute of items, they ignore the inherent dependencies between scenes and items in
sequential behaviors. Our DSPnet is designed to capture the inter-dependencies between historical
scene and item sequence for subsequent behavior prediction.

3 DUAL SEQUENCE PREDICTION NETWORK

3.1 OVERVIEW

In sequential user behavior prediction task, we aim to predict the user’s future behaviors based on
historical behaviors. Given a historical behavior sequence 7 from user u, it is defined as:

T = {(’Ul, 31), (’UQ7 32), ceny (’Uj, Sj)7 . (’U‘T|, S\T\)}’ (1)

where v; € V = {vq,...,vn,} and s; € S = {s1,..., sy, } denote one interacted item and the
corresponding scene, respectively. V' denotes the whole item set with size N, and .S denotes the
whole scene set with size Ng. |T| is the number of historical interactions. The historical behav-
iors actually contains two coupling sequences, i.e. the item sequence V = {v1,v2,...,v|7|} and
the scene sequence S = {si, 82, ..., s7|}. Based on these two historical sequences, we learn the
sequential user representation z,, and predict future behaviors. To better study the issue, we only
consider one-type behavior which means the sequence includes only one-type behavior, e.g. “buy”.

DSPnet consists of two main and original components: dual sequence learning and conditional
contrastive regularization (CCR) loss. Both two components are designed to tackle important chal-
lenges. The first one is proposed to effectively encode sequential dynamics and deliver these dy-
namics to both scene and item side for predicting future behaviors. The second one aims to learn
representation invariance and dynamically enhance the similarity between representations of sim-
ilar sequences, thereby improving the model’s robustness against random, noisy, and skewed user
behaviors. The model architecture is shown in Figure 2] details are given in the following parts.

3.2 DUAL SEQUENCE LEARNING

Dual Sequence Dynamics: Online user behaviors occur under different contexts chronologically,
reflecting the user’s dynamic interest over time. In other words, sequential behaviors encompass the
user’s personalized knowledge and interests when transitioning from one item to another, influenced
by specific contextual information. Given such various contextual information, we highlight the
significance of scene features which denote specific display modules within an app or website where
user behavior occurs. As illustrated in Figure|[I] (a), scenes are usually structured by app or website
designers and operational teams to offer varied functionalities and perspectives to users. The scene
feature largely influences how users interact with items, while interactions taken on particular items
can subsequently influence users’ decisions in following scenes. Therefore, the sequential dynamics
of both items and scenes play a vital role in predicting subsequent user behaviors.

Given the historical scene sequence S and item sequence V of user u, we can employ some sequen-
tial models to capture the sequential dynamics. Let fs and fy, be the sequential model of historical
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Figure 2: The architecture of DSPnet. Its dual sequence learning efficiently models the inter-
dependencies between scene and item sequences while capturing the sequence dynamics for behav-
ior prediction. CCR loss learns representation invariance with different forces on different samples.

scenes and items respectively, we have:

hs = fS(S)7 hy = fV(V)’ 2

where hs and hy, mean the encoded latent representations of S and V, respectively. The choice of
sequential model is flexible (such as RNN, LSTM and transformer) and we employ the powerful
transformer model following recent works (Sun et al.| 2019; [Fu et al.| 2023} Wang et al.,[2023a)).

Sequence Feature Enhancement: As we previously discussed, both the item and the scene mutu-
ally influence subsequent behavior generation. This means that when predicting future interacted
items, we cannot solely depend on information from historical item interactions. Similarly, if we
predict the subsequent interacted scenes, we cannot only employ the information from past scene
interactions. FEither the item sequence or the scene sequence serves as the enhanced information
for the other to predict future behaviors. Specifically, denoting zs and zy as the feature enhanced
representation of scene sequence and item sequence, we have:

zs = gs(hs ® hy), zy = gy(hs @ hy), 3)

where gs(-) and gy (-) denote the fusion MLP layers. Both zs and 2y, can be considered as the
user representation z,, that encodes inter-dependencies and dynamics from historical behaviors. We
maintain these two enhanced representations here to provide diverse aspects of the user interests
and better facilitate the subsequent item and scene prediction tasks.

Adversarial Prior Regularization: Since user behaviors usually face severe data sparsity problem
and user representations may overfit to some samples, we impose prior regularization on learned
user representations. Recent studies explore prior regularization using Kullback-Leibler (KL) diver-
gence, which necessitates a clear specification of prior distributions and hard derivation. In contrast,
our approach employs adversarial learning (Makhzani et al., 2016a) to ensure a discriminator cannot
discriminate the prior distribution and user presentations. This approach can eliminate the need for
those hard derivation. Let Ds and Dy, be the discriminator of zs and zy, respectively, the adversarial
learning based prior regularization is written as:

o Juin - max Larr =B p(zs)[l0g Ds(zs)] + Ezgngs., [log(l — Ds(zs))]
+ EZVNP(ZV) [IOg Dy (ZV)] + EzVN!Jv(-) [IOg(l — Dy (ZV))]7 “)

where p(zs) and p(zy) are the prior distribution. DSPnet includes a behavior prediction task that
matches true behavior distributions, largely preventing mode collapse issues in adversarial learning.

Subsequent Behavior Prediction: When conducting subsequent behavior prediction, we incorpo-
rate both enhanced representations zs and zy for behavior prediction:

0s =71s(zs © zy), oy =r1y(zs D 2v), (5)
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where os and oy are outputs of the feature selection functions. Additionally, since the next user
behavior may be stochastic and noisy, we choose to predict the subsequent behaviors over a period of
time following (Fu et al.} 2023). Here, we denote the candidate scene set and candidate item set for
prediction as VM C V and §° C S, respectively. The ground-truth label of subsequent scene
behavior is given by y* € {0,1}% * and the subsequent item behavior is given by y? € {0,1}% ’,
where K ® and K" are the size of candidate scene or item set. Then the prediction objective functions
on future scenes and items are formulated as follows:

K
1 . o
L3g = —¢ 2 wilog(yi) + (1 —yi)log(1 — )], ¥ =o(os - ep), (6a)
k=1
1 K
Lys = o > lyplog(yp) + (1 — yp)log(1 — yP), yp = oloy - e}), (6b)

k

1

where y}j and jg indicate the prediction probability of k-th scene and item in candidate sets, e; and
e} are the latent representations of k-th candidate scene and item, respectively. o(-) is the sigmoid
function and - means the inner-product operation.

We also reveal the theoretical analysis of this dual sequence learning mechanism on capturing the
inter-dependencies between scene and item sequences.

Lemma 1 Without specifying the sequential encoder architecture and prediction objective function,
minimizing the dual sequence learning scheme is equivalent to maximizing the following evidence
lower bound of the joint log-likelihoods of observed item and scene sequential behaviors:

max  Lerpo =Eq, (20|V.8)qy, (25|v.5) 108 Do, (V]2v, 25)pe, (8|2, 25)]

01,02,01,02
— Dkr[g, (2v|V,S)lIp(2v)] — Drrlae, (zsV, S)|Ip(2s)], (7)

where v and s denote the observed item and scene, respectively. V and S indicate the historical
sequential items and scenes before v and s, respectively. zy and zs are the encoded representations
from historical behaviors. Dy, is the KL Divergence that imposes prior regularization on latent
representations.

Detailed derivation is given in The meaning of Eq. [7] is equivalent to our model design in
Figure[2] To be specific, g4, (2v[V, S) and g4, (zs|V, S) are the posteriors that encode information
from V, S into zy, zs. pe, (V|zv, zs) and pe, (s|zy, zs) indicate that predicting the future items or
scenes both should be dependent on the historical behaviors, like our design in Eq.[5} The last two
KL divergence correspond to our adversarial learning based prior regularization in Eq. ]

Remark: Modeling the joint log-likelihood of scene and item sequences is a principled way to cap-
ture their dependencies and dynamics, which is usually overlooked in (Sun et al., [2019; [Fu et al.,
2023;|Chen et al.,2019; Wang et al., [2023a)). Although some works (Tian et al., 2023} |Papso, [2023))
do incorporate the scene information, they treat it merely as an additional attribute embedding for
items, failing to capture such relationships and dependencies between scene and item data. In this
regard, dual sequence learning can empower our DSPnet to develop more comprehensive represen-
tations of historical behaviors, leading to improved behavior predictions.

3.3 SEQUENTIAL CONTRASTIVE REPRESENTATION LEARNING

Unlike the structured human language, online sequential user behaviors are often random and noisy.
In DSPnet, we use sequential contrastive representation learning to capture the dynamics of sequen-
tial behaviors. We create augmented sequences from the original data, align their representations
with the originals, and ensure that representations of different sequences remain distinct.

Sequence Augmentation: The sequence augmentation must not alter the user’s intended meaning
in input sequence. Drawing insights from recent studies (Sun et al.| [2019; |Wang et al., |2023a)),
we utilize masking and reordering approaches to perform sequence augmentation. The mask aug-
mentation involves randomly masking a percentage of elements from the input sequence. Reorder
augmentation consists of two steps: first, we randomly select a size that ranges from 2 up to the
length of the sequence. Then, we uniformly choose a continuous subsequence of this size and shuf-
fle its elements, while the elements outside of this subsequence retain their original order. Let A(-)
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represent a function that applies augmentation to the original sequence. We can express the aug-
mented historical scene and item sequence as ST = A(S) and V' = A(V), respectively. These
augmented samples offer valuable signals for learning representation invariance.

Conditional Contrastive Regularization: To learn the invariance of behavior sequences, we aim to
maximize the similarity between original and augmented sequences while minimizing the similarity
to sampled dissimilar sequences. Additionally, we introduce two conditional weights to reflect the
differing contributions of augmented and sampled dissimilar sequences in optimization.

Let h$ be the representation of augmented item sequence V* and h,, be the representation of
sampled dissimilar item sequence, then our contrastive loss with two conditional weights is:

, Ny msthvnd ) . Noo ps(hvihg )
Leécr = _Ehv[E ¥ S(hv,hv z)} +Ehv [Z - s(hv,hv j)]ﬂ ®)
Ny —s(hy,hy; ;) ’ N_ s(hy,hy; ) ’
=1y ;€ i =10 € %
[ —
conditional weights: w\t,q‘, conditional weights: w;'j

where s(hy, h{;) = hLhy, /71 and s(hy, hy;) = hLhy, /7~ calculate the similarity between two
vectors. 71 and 7~ are two temperature hyper-parameters. N, and N_ indicate the number of
augmented sequences (i.e. positive samples) and dissimilar sequences (i.e. negative samples). w‘J; :

and w,, ; are the conditional weights which are designed to mine hard samples to perform more
effective representation learning. Note that the conditional contrastive loss of scene sequence EgCR
can be written in similar formula with (hs, h¥, hy) as input.

Remark: Given the original sequence, different augmented sequences could have different contribu-
tions in optimization. Meanwhile, when sampling negative samples for skewed data distributions,
such as the pronounced long-tailed patterns in user behavior data, the relationships among nega-
tives may be largely different from uniform distribution. Therefore, it is vital to optimize the con-
trastive signals with conditional weights, unlike the uniform distribution in conventional contrastive
loss (Wang et al., |2023a;|Chen et al.| 2020).

3.4 TRAINING OBJECTIVE FUNCTION

To sum up, we can write the whole training objective function of DSPnet as follows:
Loseaet = Lot + A% Ly + @ x Lapr + 5 * Lecr, ©)

where Locr = L3cg + LEg- The A, o and 3 are hyper-parameters to weight the importance of
loss terms. We usually care more on future item prediction in practice, so we take L}, to be the
main part and set A on L5, here. To sum up, DSPnet offers an efficient and principled approach for
modeling the inter-dependencies and dynamics of sequential scene and item behaviors. Compared
to recent studies, it stands out by effectively capturing the mutual influences between scene and
item sequences for predicting user actions. DSPnet incorporates CCR loss to enhance the model’s
robustness in learning sequence dynamics, especially for user behaviors with skewed distributions.

4 EXPERIMENTS AND ANALYSIS

4.1 EXPERIMENT SETUP

Datasets: We conduct our experiments on three datasets, one of which is a public benchmark, while
the other two are collected from our e-commence app. The public dataset, Ourbrailﬂ focuses on
news recommendation and contains chronological views of user interactions with documents. For
this dataset, we utilize the view sequence and feature fields “uuid”, “document_id”, “timestamp”,
and “source_id”. Here, “uuid” identifies the user, while “timestamp” records when an interaction
occurred. The “document_id” serves as the item id, and “source_id”, linked to the publisher’s web-
site, indicates the scene information. To ensure the valid size of model inputs, we take behaviors
before 1975—10—01E] as the historical behaviors and those following as the prediction behaviors. We

"nttps://www.kaggle.com/competitions/outbrain-click-prediction/overview
*Note this time is directly transformed from the “timestamp” feature, without adding the actual time offset.
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Table 1: Performance comparison of different methods on next item prediction task. R@k and
N@F represent Recall@k and NDCG@F, respectively. We use “w/0” to denote DSPnet without a
particular part. The best results are bolded and the most competitive results are underlined.

Dataset Outbrain AllScenePay-1m AllScenePay-10m
Method R@5 N@5 R@10 N@I0 | R@5 N@5 R@I0 N@I0 [ R@5 N@5 R@I0 N@I0
BERT4Rec 0.0943  0.0676  0.1384  0.0819 | OOM OOM OOM OOM | OOM OOM OOM OOM
MSDP 0.2703  0.2181  0.2994  0.2275 | 0.0006 0.0004 0.0010 0.0005 | 0.0005 0.0003 0.0011  0.0005
CARCA 0.5126 04373  0.5430 04472 | OOM OOM OOM OOM | OOM OOM OOM OOM
ContraRec 03619  0.2468 04701  0.2820 | 0.0753 0.0533 0.1010 0.0616 | 0.1414 0.1026 0.1925 0.1191
SceneCTC 04811 04068  0.5232  0.4205 | 0.0735 0.0517 0.1023 0.0610 | 0.1459 0.1027 0.1974 0.1193
SceneContraRec 04979 04027  0.5448 04182 | 0.0762 0.0544 0.1045 0.0635 | 0.1455 0.1028 0.1983 0.1199

DSPnet(w/o Lapr, Lccr)| 0.6115  0.5292  0.6625  0.5459 | 0.0843 0.0617 0.1123 0.0707 | 0.1680 0.1241 0.2206 0.1411
DSPnet(w/o Lccr) 0.6109  0.5327  0.6674  0.5511 | 0.0845 0.0616 0.1121 0.0704 | 0.1710 0.1266 0.2239  0.1437
DSPnet(w/o Lapr) 0.6198  0.5388  0.6684  0.5545 | 0.0870 0.0630 0.1158 0.0723 | 0.1711 0.1266 0.2229 0.1433

DSPnet 0.6248 05368 0.6717  0.5520 | 0.0870 0.0632 0.1155 0.0725 | 0.1712 0.1267 0.2240 0.1436
ne (+12.69%) (+13.00%) (+12.69%) (+13.15%)|(+1.07%) (+0.88%) (+1.10%) (+0.90%)|(+2.53%) (+2.39%) (+2.57%) (+3.17%)

filtered out sequences where the number of historical actions or future actions is less than 1. The
dataset is split as train/val/test set with common 8/1/1 setting.

The two industrial datasets are named as AllScenePay-1m and AllScenePay-10m, which contain 1
million and 10 million user purchase sequences, respectively. The occurrence time of these purchase
behaviors ranges from 2024-07-01 to 2024-08-07. We take behaviors from 2024-07-01 to 2024-07-
31 as historical behaviors and those those from 2024-08-01 to 2024-08-07 as prediction behaviors.
We filtered out sequences with fewer than 3 historical or prediction behaviors. To conduct fast
evaluation, we randomly select 10% sequences as the val and test set, and the rest are taken as the
train set. More details on these datasets are given in Appendix Table

Baselines: We conduct performance comparison with recent strong and popular methods, including
the aspect of encoding architecture design, training objective formulation and contextual informa-
tion utilization. BERT4Rec (Sun et al.,[2019) is a representative model that introduces self-attention
to sequential user behavior modeling. MSDP (Fu et al., [2023) introduces a multi-scale stochas-
tic distribution prediction as the training objective. In ContracRec (Wang et al.l |2023a) introduces
a context-context contrastive loss to make similar sequences learn similar representations. Fur-
ther, we introduce SceneCTC and SceneContraRec as the baselines incorporating scene informa-
tion as embeddings like CARCA (Papsol [2023). SceneCTC employs context-target contrastive loss
from (Wang et al.,[2023al), while SceneContraRec extends the input of ContraRec with scene feature.

Parameter Settings: The experiments are conducted five times and we take the mean value as
the model performance. The dimension of item embeddings and scene embeddings is set as 256
for all models on Outbrain. Since the number of items is too large on our industrial datasets, we
set the dimension of item embeddings and scene embeddings as 16 and 4 on AllScenePay-1m and
AllScenePay-10m for all models to save computation memory. We use one GPU for training on
Outbrain and the batch size is 32. While 8 GPUs are used on the two industrial datasets and the
batch size on each GPU is 32. We use the validation performance as early stop condition and the max
training epoch is 100. Hyper-parameters of baselines are set according to their papers or searched
on our datasets. In DSPnet, we employ the transformer in (Sun et al.,[2019)) as our sequential model
and the transformer layer is 2. The number of MLP layers in gs(-) and gy (+) equals 2. The number
of positive samples in CCR is 2, and that of negative samples is dependent on the batch size because
we use the popular intra-batch sampling to sample negatives. The temperature parameters are set as
7+ = 1.0 and 7~ = 0.07 by experience. Meanwhile, since the dataset size of Outbrain is small, we
setrs(-) = rp(-) as one linear MLP. We set A = 1.0, « = 2 x 10~ 7 and 8 = 5 x 10~° on Outbrain,
while A = 0.2, « = 1072 and 8 = 10~7 on two industrial datasets’] The prior distribution is
standard Gaussian distribution. The study of other prior distributions is provided in Appendix

4.2 OVERALL COMPARISON

In this section, we present the performance comparison for both the next behavior prediction task in
Table[T]and period behavior prediction task in Table[d]of Appendix D] Given that next behavior can
be stochastic while behavior distribution over a time period tends to be more stable, we introduce
the period behavior prediction, which focuses on forecasting user behaviors within a time period.
We also investigate the impact of model components by removing them.

3The loss value of Lpgy, is quite small due to the abundance of negative samples compared to the few
positive ones in BCE calculation. We set o and 3 to a small scale to ensure they do not dominate Lpsr,.
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Figure 3: Performance comparison of different methods on different user groups. (a) and (b) indicate
results on next behavior prediction task. (c) and (d) show results on period behavior prediction task.
Table 2: Study of the sequence feature enhancement module. According to Figure [2] “w/o concat”
indicates there is no feature enhancement between two sequences. “w/o MLP” means there is feature
enhancement but we simply use non-learnable concatenation operation.

Dataset Ourbrain AllScenePay-1m AllScenePay-10m

Model R@5 N@5 R@I0 N@IO|R@5 N@5 R@I0 N@IO[R@5 N@5 R@I0 N@I0
w/o concat 0.3661 0.2997 0.4028 0.3118]0.0701 0.0488 0.0994 0.0582|0.1412 0.1000 0.1953 0.1175
w/o MLP 0.5400 0.4719 0.5704 0.4819|0.0899 0.0627 0.1215 0.0729]0.1645 0.1201 0.2184 0.1375

DSPnet(MLP_layers=1)|0.5633 0.4795 0.6211 0.4984]0.0868 0.0634 0.1138 0.0720[0.1676 0.1241 0.2194 0.1409
DSPnet(MLP_layers=3)|0.6175 0.5360 0.6644 0.5513|0.0857 0.0623 0.1165 0.0723|0.1621 0.1207 0.2111 0.1365
DSPnet(MLP _layers=2)]0.6248 0.5368 0.6717 0.5520]0.0870 0.0632 0.1155 0.0725]0.1712 0.1267 0.2240 0.1436

From the tables, we observe that: 1) combining the scene information can obviously promote the
modeling ability of sequential behaviors. By incorporating this information, SceneContraRec im-
proves its Recall@5 score from 0.3619 to 0.4979 on Outbrain. 2) When considering the technique
of combining scene information, DSPnet demonstrates a clear advantage over popular methods that
only use scene information as attribute embeddings. For instance, DSPnet outperforms SceneCon-
traRec by achieving a 12.69% increase in Recall@5 on Outbrain. The proposed dual sequence learn-
ing facilitates the model to capture inter-dependent dynamics between two sequences. Meanwhile,
the introduced CCR loss enables the model to better learn representation invariance of historical se-
quences, mitigating the risk of overfitting in learning sequential dynamics. CARCA contains a high
complexty cross attention module and Bert4Rec involves the Cloze task that output large memory
tensors for loss calculation. They meet OOM issue in our large-scale industrial datasets.

When removing Lapr and Lccr, we only have the vanilla dual sequence learning EgSL and ESSL in
working. In this case, DSPnet(w/o Lapr, Lccr) can still achieve better performance than baselines,
emphasizing the effectiveness of our dual sequence learning approach. Additionally, either removing
Lapr or Lccr would deteriorate the model performance. £apr incorporates prior knowledge into the
learned representations, while Lccr facilitates the learning of representation invariance, with both
contributing to improved behavior prediction. The A, a, 5 for AllScenePay-10m were not tuned
and were instead set based on the AllScenePay-1m. Proper tuning of them could lead to a more
noticeable performance gap among DSPnet’s variants.

4.3 PERFORMANCE ON DIFFERENT USER GROUPS

As online user behaviors are usually extremely sparse and the length of user sequences follows a
severe long-tailed distribution, we conduct an experiment to study the model’s generalization ability
on different parts of the distribution. We split test user sequences into three groups (i.e. “high”,
“medium”, “low”) according to their sequence lengths. The comparison results are given in Figure[3]

From this figure, we can see that DSPnet has consistent improvements on different groups over
other competitive baselines. This demonstrates the superior generalization capability of our method.
Additionally, DSPnet shows a more significant performance gap over DSPnet (w/o Lccr) for the
“low” group than for the “medium” group. As illustrated in Section [3.3] the inclusion of CCR
loss provides the advantage of considering relationships inner positives or negatives, which is quite
important for skewed data distributions.

4.4 STUDY OF SEQUENCE FEATURE ENHANCEMENT

In our dual sequence learning, the sequence feature enhancement is an important module to capture
the inter-dependencies between two historical sequences. We thus conduct an experiment to explore
how this component influence the model performance. The results are summarized in Table 2}
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e, 2

(a) ContraRec (b) SceneContraRec
Figure 4: The t-SNE visualization of learned user representations on AllScenePay-1m dataset.

From this table, we can conclude that: 1) The removal of feature enhancement module (denoted
as “w/o concat”) leads to a significant decrease in model performance, underscoring the crucial
role of sequence feature enhancement module in capturing the inter-dependencies and dynamics for
predicting future behaviors. 2) When the MLP layers are excluded (as indicated by “w/o MLP”),
the model relies solely on concatenation operation to integrate information. This limitation results
in poorer performance compared to the variants that include MLP layers, as the “w/o MLP” variant
lacks capacity and flexibility to generate fused user representations. 3) Different the number of MLP
layers lead to different model performances. With proper MLP layers, we can enhance the model’s
capability, allowing for better inter-dependency modeling.

4.5 VISUALIZATION OF USER REPRESENTATIONS

In sequential behavior modeling, user representations are usually encoded from historical behaviors
and largely influence the performance of final behavior prediction. We here investigate whether the
learned user representations are better than baselines. Specifically, we obtain user representations
of test set and split them into three groups (i.e. “high”, “medium”, “low”) based on their number
of historical interactions. Then, for each group, we randomly sample 500 user representations for
t-SNE visualization. The results of different methods are given in Figure 4]

From this figure, we can summarize that: 1) User representations generated by DSPnet achieve
significant improvements compared to recent baselines, such as ContraRec and SceneContraRec.
In ContraRec, representations from different groups are intertwined, leading to less discrimination.
Meanwhile, SceneContraRec manages to classify representations well, but they tend to converge
into a small region, which can be detrimental for personalization in subsequent recommendation or
retrieval tasks. Additionally, the representation distances in SceneContraRec do not align with the
expectation that the distance between “high” and “low” groups should be greater than that between
“medium” and “low” groups. In contrast, DSPnet’s representations are distinctly differentiable, do
not collapse into a small subspace, and exhibit clear distance interpretability. 2) When comparing
panels (c) and (d), it is evident that the inclusion of CCR loss facilitates the learning of more compact
representations, particularly within the “low” group. The implementation of CCR loss promotes
representation invariance and generalization abilities on skewed user behaviors.

5 CONCLUSION AND FUTURE WORK

Learning to represent sequential user behaviors for predicting future actions is a crucial topic in ma-
chine learning applications. In this study, we propose a novel framework called DSPnet that effec-
tively captures the interplay between historical scene and item sequences, enabling a better modeling
of dynamic user interests for future behavior prediction. Additionally, recognizing the randomness
and noise inherent in user behaviors, we introduce CCR loss to enhance representation invariance,
thereby improving the learning of dynamic interests. Through both theoretical analysis and empiri-
cal evaluation, we demonstrate that DSPnet does better at modeling the inter-dependencies between
sequences and exhibits superior performance in skewed data scenarios.

Although DSPnet has achieved remarkable performance of user behavior prediction, it still has cer-
tain limitations. For instance, the current DSPnet only incorporates scene and item sequences, leav-
ing potential to improve performance by integrating additional feature information from these se-
quences. Additionally, DSPnet currently establishes the inter-dependencies between historical scene
and item sequences only after processing the last token’s representation. An alternative, but more
computationally consuming approach, would be to model these inter-dependencies at the level of
each token’s representation. We plan to study these issues in our future research.
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A DERIVATION OF THE THEOREMS

A.1 DERIVATION OF THE JOINT LOG-LIKELIHOOD

Let v and s denote the observed interacted item and scene of user u, respectively. Then, the joint
log-likelihood is composed of a sum over the likelihoods of individual data points ), [log pg(v, s)],
where pg(v, s) is the probability density function. Given the observed item-scene behaviors (v, s),
we denote V and S as the historically interacted items and scenes sequentially before v and s,
respectively. The corresponding encoded latent representations of }V and S are denoted as zy and zg,
respectively. Then, drawing from the idea of maximizing the marginal log-likelihood in Variational
Autoencoders (VAEs) (Kingma & Welling, 2013)), log pg(v, s) can be written as:

logps(v, s) = Dk rlgs(zv, zs|V,S)||p(zv, zs|V,S)] + LeLgo, (10)

where the first term denotes KL divergence between parameterized posterior ¢4(zy, zs|V,S) and
the true one p(zy, zs|V, S). This KL divergence is non-negative, so the second term is the evidence
lower bound (ELBO) on the log-likelihood log pg (v, s).

Following the derivation in VAE (Kingma & Welling} |2013)), when maximizing the above joint log-
likelihood, we can maximize the following ELBO as:

H;%)X Lripo = Eq(p(Z\;,zs\Vﬁ) [10gp0(’v, 3|zV7 zS)} 7DKL[Q¢('ZV7 25|V, S)HP(ZV7 Zs)], (11)
1 encoder-decoder joint prior regularization

where pg(v, s|zy, zs) is the conditional distribution parameterized by 6. The first term actually
shows an encoder-decoder architecture, while the second term indicates a joint prior regularization
on gy(2zv, zs|V,S).

The Encoder-Decoder: Given V and S, the encoded latent representations zy and zgs are condi-
tional independent, and the posterior can be written as:

d¢ (Zv, zs |V7 S) = q¢ (Zv |257 V, S)q¢2 (ZS |V7 8)

= d¢u (ZV |V7 8)q¢2 (zS ‘Vv 8)7
which indicates both the representations of historical items and scenes are not solely dependent
from their own sequences. Instead, these representations are derived from V and S, indicating that

the representation of historical items zy is influenced by the contextual scene sequence, similarly
influencing zs.

(12)

Similarly, given zy and zs, v and s are conditional independent, the conditional distribution is
written as:
po(v, 8|2y, 2s) = po, (V|8 2v, 25)po, (8]2v, 2s)
= po, (v|2v, zs)pe, (8|2, 25),
which indicates we employ both the information from zy, and zs to make the individual prediction
of v and s.

(13)

The Joint Prior Regularization: The second term in Eq. [IT|represents a joint prior on the posterior
qs(2zv, zs|V,S) for zy and zs. Given the complexity of the joint prior p(zy, zs), we simplify its
implementation by assuming p(zy, zs) = p(2y)p(zs). This choice aligns with recent works (Chen
et al., |2023; [Tomczak & Welling| [2017), allowing for a more straightforward and efficient imple-
mentation. By integrating this with Eq. the joint prior regularization (Eq. can be formulated
as:

Dirlgs(zv, zs|V,S)||p(zv, zs)] = Drrlas(zv|V, S)as(zs|V, S)|p(zv)p(2s)] (14)
= Dk rlgg(zv|V,S)|Ip(2v)] + Drrlas(zs|V, S)lIp(zs)].

It is worthwhile to point out that the joint prior assumption p(zy,zs) = p(zy)p(zs) is not a
perfect choice. In future work, we may explore more intricate joint priors, leveraging the insights
from (Tomczak & Welling, [2017; Rezende & Mohamed, 2015} |Yin & Zhou, 2018)).

Rewrite the Lgygo: By integrating Eq.[12] Eq.[[3]and Eq. [T4]together, we can rewrite the ELBO in
Eq.[T1]as follows:

s, Jax Lo =By, (2vV.8)qs, (zsv.5) 108 Do, (V|2v, 25)po, (8|2v, 25)] as)

— Dk r[gy, (2v|V, S)l|p(2v)] — Dk Llge, (zs|V, S)lIp(2s)]-
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Table 3: The statistics of datasets.
Dataset #sequences  #items  #scenes #avg. length #density
Outbrain 46,676 238,653 3,508 2.36 9.89%e-4%
AllScenePay-1m 1,000,000 7,871,700 330 25.35 3.22e-4%
AllScenePay-10m 10,000,000 32,766,762 801 25.33 7.70e-5%

The Objective Function: Maximizing the above ELBO is equivalent to minimizing its negative
version. We summarize the optimization objective function as:

o i L=—Ey s logpe, (v]zv, 25)] = By, (z/v,5)[l0g po, (8|20, 25)]
1,02,61,¢2 (16)

+ Drcrlge, (2v|V, S)|[p(2v)] + Dk L[gg, (zs]V, S)||p(2s)]-

where the first and second term indicate we obtain the latent representations from historical se-
quences V, S, and then we use them to predict the future item v and scene s. The third and fourth
term show prior regularization on the latent representations, which can be implemented by adver-
sarial learning shown in (Makhzani et al.l 2016b). Therefore, we can see that the objective function
above actually is the same as our dual sequence framework without specifying the detailed encoder-
decoder networks and prediction loss.

B DETAILS ABOUT ALLSCENEPAY-1M/10M DATASETS

Incorporating scene information for modeling sequential user behavior is a compelling and impor-
tant area of research in real-world applications. However, this topic has not received extensive atten-
tion due to a lack of publicly available datasets for academic purposes. To address this research data
gap, we collected 37-day sequential user purchase behaviors from our e-shopping app, covering all
scenes (e.g. recommendation, text2product search, image2product search, VIPs), and constructed
two real-world datasets for academic research.

In particular, the user purchase behaviors range from 2024-07-01 to 2024-08-07, containing over
hundreds of millions of users and items. To study the sequential user behavior prediction issue, we
take user behaviors between 2024-07-01 and 2024-07-31 as historical behaviors, while behaviors
between 2024-08-01 and 2024-08-07 as prediction behaviors. Since the original datasets contain a
large number of users having very few purchases, we preprocess the data to enhance its usability
while preserving the original real-world behavior distribution. Specifically, we filter out users who
have fewer than three historical purchases or fewer than three prediction purchases. After this pre-
processing, we still have nearly 50 million user sequences and 100 million items, presenting great
challenges in GPU training for academic usage. Thereby, we randomly sample 1 million and 10
million user sequences as the AllScenePay-1m and AllScenePay-10m dataset.

The two datasets encompass users’ purchase behaviors across all scenes in our app from July 1, 2024,
to August 7, 2024. Each user’s purchase activities form a sequence data. Each sequence data in-
cludes seven feature fields“user_id”, “history_item_ids”, “history_scene_ids”,“history_timestamps”,
“future_item-_ids”, “future_scene_ids”, “future,timestamps’ﬂ All feature fields except the timestamp
are hashed for anonymization. One example is given as follows:

user_id: 0

history_item_ids: 12,32,3,90,7

history_scene_ids: 293,43,53,23,11

history_timestamps: 20240701,20240701,20240708,20240721,20240721
future_item_ids: 9,101, 35

future_scene_ids: 73,911,137

future_timestamps: 20240802,20240807,20240807

The general statistics of these two datasets are shown in Table 3] From this table, we can see that
both two datasets are extremely sparse. The number of items and scenes are quite large, bringing

*In our work, we just use the user_id to identify different sequences in data processing and do not use it as
imput feature. This helps the model to handle the user-cold-start issue, and we can make predictions of arbitrary
users as long as the historical item purchases are given.
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Figure 5: The long-tailed distribution of sequence length of two industrial datasets. This figure
illustrates that the majority of users engage in only a limited number of interactions, presenting
modeling challenges of user behaviors.

Table 4: Performance comparison of different methods on period item prediction task. R@k and
N@F represent Recall@k and NDCG@F;, respectively. We use “w/0” to denote DSPnet without a
particular part. The best results are bolded and the most competitive results are underlined.

Dataset Outbrain AllScenePay-Im AllScenePay-10m
Method R@5 N@5 R@I0 N@I0 R@5 N@5 R@I0 N@I0O | R@5 N@5 R@I0 N@I0
BERT4Rec 0.0946  0.0694  0.1388 0.084 OOM OOM OOM OOM | OOM OOM OOM OOM
MSDP 0.2671 0.2191 0.2967 0.229 | 0.0007 0.0006 0.0011 0.0008 | 0.0008 0.0007 0.0012 0.0009
CARCA 0.5092 04393  0.5402 04499 | OOM OOM OOM OOM | OOM OOM OOM OOM
ContraRec 03573 0.2481 0.4654 02844 | 0.0759 0.0790 0.0888 0.0839 | 0.1534 0.1610 0.1796 0.1707
SceneCTC 0.4754 04080  0.5184 04225 | 0.0758 0.0785 0.0913 0.0848 | 0.1538 0.1585 0.1813 0.1694

SceneContraRec 0.4902  0.4031 0.5388  0.4197 | 0.0790 0.0821 0.0933 0.0876 | 0.1532 0.1587 0.1820 0.1702
DSPnet(w/o Lapr, Lccr)[ 0.6062 05307  0.6583  0.5482 | 0.0997 0.1053 0.I12T 0.1090 | 0.1895 0.1998 0.2149 0.2083
DSPnet(w/o Lccr) 0.6069  0.5347  0.6635  0.5537 | 0.0995 0.1049 0.1120 0.1088 | 0.1930 0.2033 0.2186 0.2118
DSPnet(w/o Lapr) 0.6151 0.5396  0.6651 0.5562 | 0.1007 0.1060 0.1148 0.1107 | 0.1930 0.2037 0.2178 0.2117

DSPret 0.6198 05388 0.6682 0.5549 | 0.1015 0.1071 0.I149 0.I114 | 0.1926 02028 0.2187 02115
ne (+12.96%) (+13.08%) (+12.94%) (+13.24%)|(+2.25%) (+2.50%) (+2.16%) (+2.38%)|(+3.88%) (+4.18%) (+3.67%) (+4.08%)

challenges in modeling user behaviors. Further, we randomly sample 10,000 sequences and make
an analysis about the sequence length distribution. The results are given in Figure 3]

C MODEL COMPLEXITY COMPARISON

We analyze the complexity of different models via two components: feature encoding and behavior
prediction, both of which are commonly present in sequential behavior prediction models. The
compared methods all use the powerful and popular transformer encoder. Let B be the batch size, L
be the number of transformer layers, | 7| be the sequence length of samples, H be the head number
and d be the dimension of each head. The time complexity of transformer encoder can be represented
as O(B * L* H |T|? x d), which is nearly the same for all compared methods. The main difference
of complexity lies in behavior prediction. Before analyzing the complexity of behavior prediction
part, we denote KV as the number of candidate items (including positive and negative ones) for
prediction, the complexity comparison is listed in Table 3]

In this table, K generally reaches the magnitude of millions in industrial settings. The value of
|T| varies depending on the dataset, and for our business applications, we typically set it to 100.
Consequently, the complexity of DSPnet is considerably lower than that of CARCA and Bert4Rec
and does not significantly increase over SOTA methods such as SceneContraRec. This makes DSP-

Table 5: Time complexity of different models on behavior prediction part.

Method Behavior Prediction Remark
Bert4Rec O(Bx*px|T[+xK") p is the ratio of sequence tokens for Cloze task
It involves cross attention between user-side features and candidate item.
CARCA OB+ K"+ Bx*H % (K"*N')xd) H' is number of heads in cross attention,
and N' is the number of user-side features
SceneCTC O(B* K") It has no contrastive loss
MSDP O(B+ K" + B” xd) It involves contrastive loss of input sequence
ContraRec O(B* K"+ B* xd) It involves contrastive loss of input sequence
SceneContraRec O(B x K* + B” xd) It involves contrastive loss of input sequence
DSPnet O(B* K" +2x% B? xd) It involves CCR loss of two input sequences
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(a)Outbrain

(b)Outbrain

(d)AllScenePay-1m
Figure 6: The performance of different hyper-parameters.

Table 6: Study of the prior distribution.

Dataset Ourbrain AllScenePay-1m

Model R@5 N@5 R@10 N@10| R@5 N@5 R@10 N@10
Uniform 0.6025 0.5190 0.6537 0.5355|0.0851 0.0621 0.1129 0.0711
Laplace 0.5867 0.5031 0.64 0.5206|0.0839 0.0610 0.1127 0.0703

Multi-Gaussian
Lognormal

0.5982 0.5181 0.6485 0.5343
0.6177 0.5373 0.6648 0.5525

0.0842 0.0618 0.1114 0.0705
0.0843 0.0615 0.1131 0.0708

Standard Guassian

0.6248 0.5368 0.6717 0.5520

0.0870 0.0632 0.1155 0.0725

NDCG@S.

net well-suited for usage in large-scale industrial datasets. We have successfully deployed it in our
system using 16 A100 GPUs.

D MORE EXPERIMENTS

D.1 HYPER-PARAMETER SENSITIVITY

In our DSPnet, o and (3 control the weight on adversarial prior regularization and conditional con-
trastive regularization, respectively. We here investigate the effects on performance of these two
hyper-parameters. The results are collected in Figure[6]

From this figure, when comparing different columns, we see that the model performance varies
a lot, highlighting the substantial impact of the loss weight on CCR. Additionally, the optimal
hyper-parameter settings differ, primarily due to the distinct data distributions of Outbrain and
AllScenePay-1m. It is practical to set these hyper-parameters according to the used data.

D.2 EFFECTS OF DIFFERENT PRIORS

DSPnet incorporates adversarial prior regularization loss to impose prior knowledge on the learned
representations. In this part, we explore the influence of different prior distributions on model perfor-
mance. In particular, we use the uniform distribution ¢/ (0, 1), the Laplace distribution Laplace(0, 1),
the standard normal distribution A/(0, 1), and the lognormal distribution Lognormal(0, 1). Addition-
ally, we used a sum of two normal distributions, N'(0,1) + A(3,1), to construct Multi-Gaussian
distribution. The results are provided in Table 6]

By analyzing the results from this table, we see that the standard Gaussian distribution consistently
shows the best performance on three datasets. This observation matches a widely accepted principle
in recommendation and search systems, where user preferences tend to exhibit Gaussian distribu-
tion(Liang et al., 2018} [Cui et all [2018; [Xie et al [2021). While a Multi-Gaussian approach has
the potential to capture user preferences more accurately, given that individuals often have multiple
areas of interest, determining the parameters for a Multi-Gaussian model can be rather complex.
Consequently, employing the standard Gaussian serves as a straightforward and effective choice of
leveraging prior knowledge in practical applications.

D.3 ON THE PREDICTION PERFORMANCE OF SCENE

We conducted additional experiments to evaluate the scene prediction capabilities of various models,
aiming to demonstrate that our DSPnet more effectively captures the ’scene” aspect alongside item
sequences. The results, presented in Table [/} indicate that DSPnet achieves better scene prediction
ability, validating the effectiveness of our idea.
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Table 7: Performance comparison of different methods
N@F represent Recall@k and NDCG@FE, respectively.

on next scene prediction task. R@k and

Dataset Outbrain

AllScenePay-1m

Method R@5 N@5 R@10 N@10

R@5 N@5 R@10 N@10

BERT4REC 0.3043 0.2763 0.3345 0.2861
MSDP 0.2638 0.1798 0.3789 0.2167
ContraRec  0.4071 0.3468 0.4662 0.3661
SceneCTC  0.6246 0.5492 0.6937 0.5715
SceneContraRec 0.6175 0.5386 0.6858 0.5606

0.8253 0.6365 0.9205 0.6483
0.8464 0.6489 0.9371 0.6788
0.8710 0.6635 0.9508 0.6903
0.8872 0.6692 0.9547 0.6918
0.8692 0.6629 0.9528 0.6911

DSPnet 0.6567 0.5770 0.7200 0.5975

0.8944 0.6816 0.9629 0.7045
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