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Abstract

Reasoning abilities of large language models (LLMs) require explicit derivations
compared to general question-answering, supervised fine-tuning (SFT) can em-
power multiple reasoning abilities in LLMs via learning from various datasets.
However, neither training the datasets jointly (mix-up) nor continually can maintain
the performance of single-dataset SFT, sometimes better while sometimes even
worse, illustrating vanilla SFT can not only facilitate reasoning abilities but also
introduce conflicts. In this paper, we propose a novel framework to mitigate the
conflicts and preserve benefits among different reasoning tasks, and even surpass
each task’s single dataset SFT performance. We start by exploring the differences
between reasoning fine-tuned and base LLMs by analyzing their parameter varia-
tions during model inference, and we discover that each reasoning capability has
exclusive parameters that benefit itself more evidently than others. In contrast,
the overlapped parameters of tasks can bring benefits or conflicts. Inspired by
the findings, we propose to update the exclusive and overlapped parameters ac-
cording to specific reasoning task combinations differentially, thereby avoiding
unnecessary conflicts while maintaining benefits. Consistent improvements in
mix-up and continual SFT experiments demonstrate that the proposed SFT strat-
egy can achieve better performance on various LLMs (Llama3-8B, Mistral-7B,
and Qwen?2.5-14B) and diverse reasoning tasks with fewer conflicts, showing the
superiority and generality of our analysis findings and the proposed approach.

1 Introduction

Large language models (LLMs) have emerged various reasoning abilities [[1; [2; 13]], such as math
problem-solving [4], coding [5], logical inference [6]], and commonsense reasoning [7]]. In contrast
to the general conversation, reasoning tasks often require models to perform higher-order cognitive
processes such as analysis, deduction, and problem-solving. Supervised fine-tuning (SFT) on
distinct labeled datasets can facilitate such proficiencies [8|9; 105 [11], enabling LLMs with versatile
reasoning capabilities. Although vanilla SFT on different reasoning data can strengthen LLMs’
certain capability in some curated combinations [8], it tends to underperform on a single dataset,
revealing mutual enhancement and conflict may coexist across reasoning tasks. Prior works have
explored the destructive interference of varied tasks [[12}[13;[145[15]], they focused on the conflict of
general abilities rather than reasoning and believed that all of them were harmful to others.

In the investigation, we conduct comprehensive SFT experiments with different LLMs on types of
reasoning data to discover the relationships among various reasoning proficiencies. As shown in
Figure some combinations, like Mix-Math-Code of Llama3-8B, obtain significant improve-
ments in math (measured by GSM8k) compared to Math-only, while it underperforms on other
tasks like code (measured by XxGLUE) shown more clear in Figure On the other hand, continual
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Figure 1: Performance of various math-related SFT models on 5 benchmarks with Llama3-8B and
Mistral-7B, scores are increasingly ranked from the center to circle. (We multiply the pass rate of
xGLUE by 40 and the accuracy of LogiQA?2 by 2 to align others for better visualization.)

learning results through Continual-Math-Code exhibit severe negative interference. However, an
intriguing difference emerges in Mistral-7B [[16] suggesting complex dynamics in distinct LLMs.
These tendencies are also exhibited similarly in combinations among more reasoning tasks, while
they perform distinctly in different LLMs. Such phenomena imply benefits and conflicts between
distinct reasoning capabilities that may be ubiquitous. More detailed experiments and analysis are
introduced in Section 3l

Previous efforts have been made in parameter-variation SFT to mitigate potential conflicts among the
different abilities of LLMs. [8]] designed a dual-stage mixed fine-tuning strategy to endow LLMs
with math, code, and other capabilities. HFT [13] updated half of the LLM parameters randomly in
continual fine-tuning to alleviate catastrophic forgetting. LoTA [14] employed task vector extraction
and sparse adaptation to minimize interference among multi-tasks. Regretfully, the complete picture
of relations among tasks is neglected, including beneficial, contradictory, and neutral. In this paper,
we investigate the mutual benefits and conflicts of reasoning capabilities in the SFT process.

To determine what benefits and conflicts exist and what causes those, we explore the intrinsic
weights of distinct fine-tuned LL.Ms. Concretely, we present a novel analysis approach to identify
the individual sensitivity of the model parameters via inference of sampled data on different LLMs,
thereby locating influential weights necessary for specific reasoning abilities. After that, we design a
suit of Differential SFT (DiFT) strategies to get better versatile reasoning abilities: for mix-up SFT,
we merely fine-tune the parameters that are in the union of critical weights for involved tasks, to
obtain target reasoning abilities while making less disturb to others; as for continual SFT, we freeze
the vital parameters in difference set of the former and current tasks, to reserve historic proficiencies
and learn new ones by remaining parameters.

We employ base instead of instruct LLMs for analysis and validation, as instruct models have been
through massive post-training, making it hard to measure their inner benefits/conflicts. Additionally,
our fine-tuned LLMs with fewer data beat instruct LLMs on some tasks (e.g., logic and commonsense
as shown in Table [6), highlighting that our research can provide insights for specific reasoning-
oriented fine-tuning(regardless of base or instruct models). We conduct extensive experiments with
pilot LLMs on several reasoning tasks, and results show that the proposed DiFT can improve all
LLM:s in various reasoning combinations, where mix-up SFT can approach the single dataset SFT
and continual SFT can maintain more historical performance, demonstrating that our analysis is valid
and DiFT can mitigate reasoning conflicts and keep mutual benefits. Our contributions are as follows:

* We investigate in comprehensive SFT experiments on single (vanilla), mix-up, and continual
reasoning datasets with different LLMs, showing mutual benefits and conflicts exist among
distinct reasoning tasks commonly.

* By analyzing the parameter variations during inference between various fine-tuned and
base models, we discover some parameters are vital to specific reasoning tasks, i.e., each
reasoning capability corresponds to certain parts of parameters.

* Based on the analysis and findings, we propose a novel fine-grained SFT strategy to preserve
enhancement and mitigate the conflicts by selectively updating those reasoning-relevant
parameters of LLMs.
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* We conduct extensive experiments on different LLMs with the proposed DiFT, and em-
pirical results across distinct reasoning tasks are in line with our analysis, validating the
effectiveness of the proposed approach.

2 Related Work

SFT has been demonstrated as a productive post-training paradigm for improving models’ various
capabilities [17], including chat [18]], math [19], code [5], commonsense [20], logic [21], and
instruction following [22]]. Albeit large models may encounter fewer task conflicts [23], there are
task conflicts in LLMs [24]], and numerous SFT variants emerged in the era of LLMs from data
selection and optimizing perspectives. [25] demonstrated the order of training data mattered, and
they introduced an online data sampling algorithm to learn multiple skills in differential arrangements.
Self-Play [10] presented self-driven data augmentation to accelerate training convergence.

[26] built the mask out of the k parameters with the largest Fisher information as a simple approxi-
mation of which parameters are most important for the given task. Task Vector [27] considered the
fine-tuned and pre-trained parameter variations as the task-related weights and conducted addition and
negation to modify or combine different tasks. [28] discovered that outlier dimensions could encode
crucial task-specific knowledge and that the value of a representation in a single outlier dimension
drives downstream model decisions. [29] proposed parameter optimization trajectory and learned to
uncover its intrinsic task-specific subspace by exploiting the dynamics of fine-tuning a given task.
Nonetheless, these works failed to connect the specific parameters and tasks.

[I8] designed dual-stage mixed fine-tuning to endow LLMs with math, code, and instruction-following

capabilities. MoS [30] introduced a reinforcement learning strategy for data sampling during SFT to
balance skills. [31] employed an efficient model to filter the instruction data to train LLMs, achieving
a better performance. These methods aim to find better data usage, ignoring the learning process.
[32] presented a partial linearization technique to fuse multi-task abilities into one model. HFT [13]]
updated a random half of LLM parameters in continual fine-tuning to alleviate catastrophic forgetting.
LoTA [14] employed task vector extraction and sparse adaptation to minimize interference among
multiple tasks. [33] introduced a gradient approximation strategy for activated parameter locating to
reduce the computational complexity associated with many parameter partitions. [15] enabled LLMs
to achieve fine-tuning that balances task-specific losses across multiple tasks with low computational
complexity. Nevertheless, none of them analyze the model parameters in-depth.

3 Benefits and Conflicts Analysis

In this section, we intend to validate and explore the mutual benefits and conflicts among reasoning
abilities via delving into the LLMs’ parameters step by step to explore the causes. First, we conduct
SFT experiments on 4 datasets (20,000 training samples for each reasoning task, more detailed data
and evaluation setting can be referred to Section[5.1) in 3 settings: vanilla, mix-up, and continual. As
instruct-LL.Ms were trained on a huge amount of math data, the scaling-up training may trade-off
a part of conflicts in math reasoning, we take Llama3-8B-base and Mistral-7B-base, the results are
shown in Table[I] We also put the results of instruction-tuned and fine-tuned models in Table[6] where
fewer data fine-tuned LLMs can surpass instruct LL.Ms on logic and commonsense benchmarks,
demonstrating that Instruct-LLMs are productions of complex reasoning benefits and conflicts.

3.1 Mix-up and Continual Reasoning SFT

In Table[I] we can observe that vanilla SFT can enhance the corresponding reasoning ability stably
on both Llama and Mistral while it can affect others: for example, the Math-only can degrade logic
and commonsense a bit, and so do the Logic-only and CSQA-only to math. Such results suggest:

1. There may be a learning trade-off between distinct abilities that leads to reasoning interference.

Interestingly, the mix-up SFT reveals potential synergistic effects in both positive and negative
aspects. The Mix-Math-Code achieves rather good performance on both GSM8k and xGLUE
compared to single-task variants, implying that math and code reasoning may share complementary
weights. This phenomenon is evidenced by the 64.82% GSMS8k accuracy and 1.0956 xGLUE pass
rate of Mix-Math-Code on Llama3-8B, surpassing the Math-only. An intriguing discovery is the
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Table 1: The mix-up and continual SFT results of Llama3-8B and Mistral-7B on 5 benchmarks, the
Jand Tdenote decreasing and increasing compared to the base model performance, respectively.

Methods Llama3-8B Mistral-7B
GSM8k xGLUE LogiQA2 CSQA MMLU GSM8k xGLUE LogiQA2 CSQA MMLU

base model 39.42 1.0874 31.93 69.29 57.66 38.97 1.2449 31.87 64.29 50.49
Vanilla SFT

(D Math-only 61.64 T 1.2228 1 30731 67241 56.76 59.14 7 2.0042 1 3085, 5250 28.68 )

() Code-only 2654 1.1203 1 35051 70931 55.65 3131, 1.7146 7 2894 | 5839 43.04]

@ Logic-only 30.17 L 0.6880 | 37.021 72891 57.52 4.62] 1362871 31.23 5455 3247

@ CSQA-only 8791 0.5702 | 2990 79367 28.10] 136 L 2.7964 1 30.15] 70931 2343
Mix-up SFT

@ Mix-Math-Code 64.82 1 1.0956 345471 6822 56.47 41.171 1291371 33.087 6028 44.81]

@ Mix-Math-Logic 64371 120927 32321 7052 5530 57.39 0.8593 | 31.87 62.49 36.68 |

(D) Mix-Math-CSQA 68.921 1.13427 32321 77317 4746 5277 2.8439 1 31.11 73.051 39.76 |

Mix-Code-Logic 52311 1.0779 32571 705271 58.05 2237 1.2342 31.17 62.00 4333 ]

@ Mix-Code-CSQA 523917 0.8905 | 31.42 77157 3208, 26.69] 139697 334671 75.021 4497

Mix-Logic-CSQA 1691 02150 | 32441 77407 47.14] 16.60 ] 0.9582 31.11 74691 4534

Continual SFT

(1D Continual-Math-Code 443571 0.9902 | 32821 70.52 5428 | 47.017 1.643171 31.81 4496 2598

(12) Continual-Math-Logic 1099 0.6433 | 31.30 67.90 51.53 | 4.62 ] 1.0365] 2926 L 4029 2456

@ Continual-Math-CSQA 3871 05494 | 31.36 78711 47.07 1 1.14 ] 3.8740 1 3034 579040 23.12)

imbalance impact: Mix-Math-Code improves the math (from Math-only 61.64% to 64.82%), while
it only improves Code-only on XGLUE (1.0956, approaching but less than Code-only), implying:

ii. Benefits between different reasoning abilities are not always reciprocal, where one reasoning
ability may gain more than the other.

In contrast to mix-up SFT, continual SFT is born with catastrophic forgetting, which remains a signif-
icant challenge, making it more complex than mix-up SFT [23} 24]. At the bottom of Table[I} we can
hardly observe mutual benefits between reasoning abilities except for Continual-Math-Code, and
the performances of both LLMs are poor compared to the single SFT. The Continual-Math-Logic
configuration, while achieving moderate LogiQA2 performance (31.30% on Llama3-8B), shows
severe degradation in math reasoning (10.99% on GSMS8Kk). Such catastrophic forgetting results
indicate that continual SFT on different reasoning data may lead to the erosion of previously acquired
capabilities. Additionally, the continual SFT on one reasoning data performs worse than the direct
SFT on the base LLM in some settings, e.g., significant task interference in Continual-Math-Code
(1.084 to 0.9902 with Llama3-8b). Such results indicate that there also exist reasoning conflicts
besides catastrophic forgetting. Therefore, we make an assumption:

iii. Even catastrophic forgetting is the main issue, reasoning conflicts hold an important place
in continual SFT.

The above findings highlight the complex interactions between different reasoning capabilities and
the challenges in mitigating conflicts while preserving benefits. To address the above challenges, we
start by analyzing the inner weights of LLMs with different reasoning proficiencies.

3.2 Delta-scale rows

We propose a novel method for identifying influential weights in large language models, inspired by
[34]], that aims to quantify the sensitivity of the model output to changes in weight parameters. We
introduce a metric termed delta-scale row score to measure this sensitivity.

Let W € RH*P represent the weight matrix of a linear layer, where H is the output dimension and
D is the input dimension. For a set of input activations X € RZ*P (where L is the effective number
of tokens across batches and sequence lengths), the output activations Y € RL*H are typically
computed as:

Y=XW"+b (1
We analyze the difference in outputs between a base model (Mp,s.) and a fine-tuned model (M),
where weights are presumed to have changed during fine-tuning. Let Y34, and Yy, be the output
activations of a specific layer for the same input X from My, . and M, respectively. The difference
in output for the k-th component (corresponding to the k-th row of W) for a given token ¢ is:

AYF =YF(t) = Vi (1) )

This AY;" reflects the impact of the accumulated changes between W, and Wy, .. (the k-th rows of
the respective weight matrices) on the k-th output feature for that token.
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Figure 2: Distribution of delta-scale rows for model.layer.24.mlp.gate.proj with distinct data
samples on different reasoning models, where the horizontal axis represents the row order of the
specific weight matrix, and the vertical axis denotes the delta-scale value.

The delta-scale score sy, for the k-th output dimension (and thus associated with the k-th row of W)
is then defined as the mean of the squared differences AY;* across a set of IV input tokens:

1 N
sk = D 1AYFI3 3)
t=1

In practice, this approach accumulates these squared differences for each output component £k,
effectively capturing the impact of changes in the corresponding k-th row of the weight matrix
(implicitly the difference W;ft - Wlf“ase) across the reasoning data. High values in the vector of
scores indicate rows of the weight matrix (and their associated output features) that exhibit
greater changes in activation magnitude due to fine-tuning, suggesting these rows are influential
in the processes modified or learned by the model.

3.3 Fine-tuned Reasoning Model Analysis

To analyze the delta-scale rows, we perform inference with distinct fine-tuned and base model on
samples, ensuring that each sampled data corresponds to their fine-tuned reasoning model. Concretely,
we compute for each layer in the forward pass with 5 sampled groups of 50 data items (using random
seed 42-46) to obtain the delta-scale rows for each task, we display some row distributions of
model.layers.24.mlp.gate.proj in Figure[2] other model weights also express similar patterns,
and we put more visualization results in the Appendix [D} The magnitude of the delta-scale scores
provides a quantitative measure of the corresponding parameters’ influence, where higher values carry
more weight. Across all sub-figures in Figure[2] we can observe the presence of distinct peaks in
the delta-scale rows. These peaks indicate specific rows in the weight matrix that disproportionately
affect the model’s output, and the rows correspond to the critical delta-scale rows we aim to identify.
Note that we only annotate the top-20 delta-scale rows for better visualization, there are remarkable
differences among the distributions of distinct reasoning data in Figure[2]

In the distribution of the math task (Figures 2(a)]to row-wise, distinct peaks at multiple rows,
e.g. 284, 1992, and 9246, among others, these peaks suggest that specific rows in the weight matrix
exert a considerable influence on the model’s reasoning process for math reasoning. Interestingly, the
distribution patterns are consistent across sampled data with different random seeds, and so are the
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code and logic reasoning, implying stability of influential delta-scale rows for math tasks regardless of
the input variation. However, the distribution of each fine-tuned reasoning LLM exhibits differentially
in Figures 2(a)|to [2(g)] column-wise: rows 284 and 1992 have the top-2 scores across all rows in
the math and logic LLM, while the top-2 rows of the code LLM are 6280 and 9246; the logic model
has some influential rows of index >13000, but the indices of all the top-20 math rows are <13000.
We also notice that math and code reasoning abilities share more common delta-scale rows than
math and logic or logic and code, which can align with the more mutual benefits in Mix-Math-Code
than Miz-Math-Logic. Similar phenomena also exist in Mistral-7B and Qwen2.5-14B as shown in
Figures[5]and [6]in Appendix D]

We further analyze the same model (Math-only) with different sampled data subsets and observe
a more diverse delta-scale row distribution among distinct reasoning data, the results are shown in
Figure[d] which illustrates the parameter divergence of the reasoning abilities within LLMs. After
meticulous reasoning delta-scale rows analysis, we discover that On the one hand, rows of the
parameter matrix are not sensitive to different inputs of the same reasoning task, on the other
hand, different tasks demonstrate unique parameter distributions.

4 Method

We compute and then discover delta-scale rows through the analysis of different reasoning data in
fine-tuned and base model inference, to take advantage of the findings, we propose a new Differential
SFT (short for DiFT) strategy to incorporate the benefits and mitigate the conflicts via fine-tuning
model adaptively. The DiFT algorithm intends to address the challenge of mix-up and continual
learning in LLMs by adaptively freezing model parameters based on the sensitivity of their activations
to changes induced by fine-tuning individual datasets. The core idea is to identify and protect
parameters crucial for simultaneously and previously learned tasks while allowing the model to adapt
to more reasoning proficiencies. The detailed pseudo-code of DiFT is in Algorithm [I]in Appendix [B]

4.1 Delta-scale Row Analysis

The DiFT strategy begins with analyzing the target reasoning LLMs, it takes as input an LLM
Mpgse, a set of fine-tuned LLMs M ]Qt, e, M ﬁ -1 specialized for different reasoning tasks, and their

training datasets Dy, ..., D 1. For each fine-tuned model M fii ~1, we sample N data points from
its corresponding data Dy _1 to form random subsets Sj,. We register forward hooks on the layers
of both the base and fine-tuned LLMs to capture the input and output activations during forward
passes, allowing us to compute the delta-scale row scores. For each input x in the subsets, we
process it through both M J’Et and Mp,se, collecting activation patterns at each monitored layer. After

that, we compute the differences in activation patterns between M ’f“t and Mpqs.. For each layer,
we maintain a running average of the squared L2 norms of these differences, effectively reflecting
the magnitude of changes in the model’s behavior induced by SFT as introduced in Eq.[3| These
accumulated differences form our delta-scale row scores, which quantify the degree to which each
output dimension (corresponding to rows in the weight matrices) has been affected by the SFT process.
Finally, we identify the top C rows with the highest delta-scale row scores for each layer, which
represent the neural pathways that undergo more significant modifications during SFT, providing
insight into what parameters of the model are really crucial for specific reasoning capabilities.

4.2 Mix-up Fine-tuning

To perform better fine-tuning on multiple tasks, we employ a mix-up strategy, and the union of all
task-specific influential weight index sets is computed:

K—1

DSRunion = |_J DSRy )

k=0
All parameters in the base model M except those indexed by DS Ry ,;0n are frozen, the model is
then fine-tuned on the combined dataset Uf;ol Dy, and this allows the model to update common
critical parameters of all involved tasks while keeping parameters that are vital for irrelevant tasks
from being disturbed. With such a strategy, DiFT can focus more on the target reasoning abilities to
achieve better reasoning performance and disturb others less.
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4.3 Continual Fine-tuning

We employ a differential approach in the continual learning scenario, where reasoning datasets are
fin-tuned sequentially. Specifically, for each task & (starting from k& = 2), the difference set of
influential weight indices is computed:

k—1
DSRyigs = DSRi — | ] DSR; 5)
j=0

This set contains the indices of weights that are influential for the current task & while not influential
for any of the previous tasks. Only the parameters corresponding to these indices in the previous
step M ]’ft_l are fine-tuned on dataset Dy, to obtain the updated model M ]’?t. This strategy aims to
mitigate forgetting in continual SFT by preserving those vital parameters of knowledge acquired
from previous tasks and learning new capabilities with the parameters in the difference set between
former and current abilities.

The DiFT focuses on reasoning-related influential parameters and extends these principles into
practical fine-tuning scenarios. By selectively updating parameters based on their identified impact,
we try to enhance the performance and scalability of LLMs in mix-up data settings and retain the
model’s historic reasoning capabilities while adapting to new tasks.

S Experiments

To validate our findings in the former analysis and evaluate the proposed DiFT, we conduct compre-
hensive SFT experiments on both mix-up and continual settings. We employ Llama3-8B, Mistral-7B,
and Qwen2.5-14B as the base LLM, and several widely used reasoning datasets to evaluate the
generality and extension of our strategy. All the DiFT empirical results in the main body are carried
out on the union of the 100 delta-scale rows. We show experiments of Qwen2.5-14B whose results
are with confident intervals in Appendix Section[C} All SFT experiments were conducted on NVIDIA
A100 servers, and computation cost details are in Section[A]in the Appendix.

5.1 Setting

Training data We collect and randomly sample training data to fine-tune LLMs toward distinct
reasoning abilities. All the source data are widely used for task-specific training, including but not
limited to MathInstruct [35], Code Bagel Hermes [36], LogiCoT [37], and CommonsenseQA [38]],
more source data can be referred to Appendix [A] We sample 20,000 for each reasoning ability and
conduct SFT involving 2 reasoning tasks with DiFT every time.

Evaluation We choose the pass rate (code) and 0-shot accuracy (others) to evaluate the performance
of the LLMs, details are in Appendix[A] As our research goal is to reserve the benefits and mitigate the
conflicts, we mainly focus on the performance of involved tasks, therefore we use the average target
accuracy (ATA) to better show gains and drops of target/historic reasoning capabilities compared to
the base LLMs, which can better reflect the performance of various methods. For example, when we
conduct the mix-up SFT of math and logic, we compute the (math accuracy + logic accuracy) / 2 as
the ATA score, especially, we multiply the code pass rate by 50 for the ATA involving code reasoning
to align the others’ accuracy metrics.

Baselines As the DiFT can be exploited in both mix-up and continual settings, we implement
several comparable approaches to evaluate its effectiveness and generality. HFT [13] is a continual
SFT framework, it randomly freezes half of the parameters in each named parameter in each round of
fine-tuning on a new task dataset to memorize the old knowledge. LoTA [[14] extracts the so-called
feature vectors, which can represent different tasks, in every round of continual fine-tuning first and
mask these vectors in the next round. Dual-stage Mixed Fine-tuning (DMT) [8] presented a two-stage
mix-up fine-tuning strategy, implemented by merging different training data. CoBa [[15] designed
a novel synthesized loss function by calculating the relative and absolute convergence scores, thus
achieving balanced performance for all tasks. The hyperparameter settings of baselines are the same
as the vanilla and DiFT, we put them in Appendix|A] where we also compare LoRA in Section
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Table 2: The mix-up and continual SFT results of Llama3-8B and Mistral-7B under different strategies
on 4 benchmarks. The SOTA results across different strategies are marked in bold numbers, and the
sub-optimal results are italic numbers, respectively.

Methods Llama3-8B Mistral-7B

GSM8k xGLUE LogiQA2 CSQA ATA GSM8k xGLUE LogiQA2 CSQA ATA
base model 3942 1.0874 31.93  69.29 - 38.97 1.2449 31.87  64.29 -

Mix-up SFT
Mix-Math-Code 64.82  1.0956 3454  68.22 59.80 41.17 1.2913 33.08 60.28 52.87
+DMT 65.07 1.0851 3244  67.52 59.66 4213 1.2400 32.18 59.82  52.07
+CoBa 66.21 1.0725 33.15 68.34 5991 43.07  1.1900 31.94 5845 51.29
+DiFT 67.02 1.0735 32.63  68.39 60.35 42.46  1.3429 33.33  59.46 54.80
Mix-Code-Logic 52.31 1.0779 3257 70.52 4323 22.37 1.2342 31.17  62.00 46.44
+DMT 50.37 1.0865 3193  69.36 43.12 26.58 1.2308 30.62  63.19 46.08
+CoBa 51.12 1.0811 32.25 68.67 43.15 26.05 1.2431 30.16  63.82 46.16
+DiFT 41.09  1.1359 3340 6855 45.10 31.69  1.2555 3251 6224 47.64
Mix-Logic-CSQA 1691  0.2150 3244 7740 5492 16.60  0.9582 31.11  74.69 52.90
+DMT 13.79  0.3907 31.68 7884 5526 18.58  0.7731 30.72 72775 51.74
+CoBa 1493  0.3868 32.16 78.05 55.11 19.42  0.7847 3041 7348 51.95
+DiFT 16.22  0.4592 32.38 7895 55.67 21.68  0.6196 31.68 7445 53.07
Continual SFT

Continual-Math-Code 44.35  0.9902 32.82  70.52 4693 47.01 1.6431 31.81 4496 64.58
+HFT 44.74  1.0362 3394  69.69 4828 47.72 1.3429 3146 4595 5743
+LoTA 4429  1.0258 3445  68.99 47.79 47.15  1.3534 31.92 4549 5741
+DiFT 46.32  1.0557 35.86  70.93 49.55 49.81 1.6362 31.81 4455 65.81
Continual-Math-Logic 10.99  0.6433 31.30 6790 21.15 4.62 1.0365 29.26  40.29 1694
+HFT 11.06  0.6682 31.55 6752 2131 6.57  0.9902 2848  43.16 17.53
+LoTA 10.89  0.6749 31.87 66.84 21.38 6.70  0.9803 28.76 4251 17.73
+DiFT 11.37  0.6919 31.23  68.80 21.30 10.92  0.7107 29.20 4292 20.06

5.2 Mix-up SFT

Table[2) presents the mix-up SFT results, we can observe that DiFT consistently improves the ATA, i.e.
the averaged target reasoning performance, on all mix-up settings, and outperforms most baselines
across most benchmarks and model architectures. Concretely, in the Mix-Math-Code, we know that
these 2 reasoning abilities can benefit each other, in Llama3-8B the math reasoning benefits more, so
its ATA gain of DiFT is not striking even if it beats the baselines. While Mistral-7B fails to achieve
mutual benefits much with the vanilla SFT, the 2 tasks gain more (from 52.87 to 54.80) with DiFT. In
Mix-Code-Logic, DiFT on both 2 models can improve involved reasoning abilities.

Multiple tasks mix-up However, we notice that it hurts the math of Llama3-8B and the common-
sense of Mistral-7B, which results from the Mix-Code-Logic not considering the delta-scale rows
of the math reasoning. Once the takes math and commonsense into consideration, issues like
this can be eliminated as shown in Figure 8] Mix-Logic-CSQA is similar to Mix-Math-Code, albeit
the vanilla SFT has mutual benefits in Llama3-8B, the proposed DiFT still can enhance their ATA
performance, as for Mistral-7B, the vanilla and all baselines trade the logic ability for commonsense,
DiFT maintains more LogiQA?2 accuracy (31.68%) and obtains better CSQA accuracy (74.45%),
achieving the balanced ATA performance.

Through massive mix-up SFT experiments, we can see that DiFT can maintain and facilitate mutual
benefits and alleviate conflicts between reasoning capabilities, thereby supporting the effectiveness of
the delta-scale rows analysis on reasoning data. We also found that math and code tasks are somehow
synergistic while logic and commonsense tasks are conflicting, which is interesting. The math-code
synergizing may come from the fact that the two tasks share similar computation backgrounds,
providing more views for LLMs to understand the reasoning process and such Mix-Math-Code
tuning has been utilized in math- and code-specific LLMs training [39; 40]. In contrast, logic tasks
need to obey strict complex logical rules, while commonsense tasks are more about ground knowledge
and simple reasoning, leading to conflicts between two tasks [41].

5.3 Continual SFT

The bottom part of Tablemanifests the results for the continual setting, where models are fine-tuned
sequentially, where models need to retain the knowledge of previous tasks while adapting to new
ones. As we mentioned in Section [3.1] reasoning benefits and conflicts exist along with catastrophic
forgetting, not dominant but still matter. In continual-math-code, DiFT can learn code ability better
while keeping more math reasoning with both Llama3-8B and Mistral-7B, resulting in 2.62 and
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Figure 3: DiFT performance on Llama3-8B in multiple task mix-up and different order continual
setting, involving more task mix-up and continual experiments of different orders.

1.23 ATA performance. As for Continual-Math-Logic, DiFT on Llama3-8B can also enhance the
ATA compared to the vanilla SFT but underperforms the other 2 baselines which are presented for
mitigating catastrophic forgetting. In contrast to Llama3-8B, DiFT on Mistral-7B performs better on
both the historical math and the new logic reasoning, achieving a 3.12 improvement in ATA, and such
a difference between the 2 models illustrates that there are more reasoning conflicts in Mistral-7B
while more forgetting in Llama3-8B.

Different continual orders In Figure we reverse the learning orders of continual SFT, and results
still can prove the effectiveness of the DiFT regardless of training orders. These results highlight
DiFT’s validity in reducing conflicts between historical and new reasoning abilities. Nevertheless,
catastrophic forgetting is the main challenge in continual SFT, which is not our research objective in
this work. The experimental results demonstrate the effectiveness of the proposed DiFT on pursuing
better diverse reasoning abilities under the mix-up and continual SFT: by differentially fine-tuning
LLMs parameters based on their sensitivity to individual tasks, DiFT achieves state-of-the-art or
competitive performance across a range of benchmarks and model architectures.

5.4 Necessity of Delta-scale rows

Incorporating new reasoning abilities with identified delta-scale rows works well under both mix-
up and continual SFT settings, we also wonder whether the other parameters can achieve nearly
performance, thus we further conduct with inverse DiFT, i.e, exchange the freezing positions of
original DiFT. Concretely, we fine-tune the delta-scale rows while freezing others in the continual SFT,
as for mix-up SFT, we fine-tune the others while
freezing delta-scale rows, to test whether the other
parameters can learn the same reasoning abilities.

Table 3: Inverse DiFT comparison on Llama3-
8B under mix-up and continual settings.
Mix-Math-Code Continual-Math-Cdde
Table [3| compares the performance of DiFT and DIiFT _inverse-DIFT DiFT __ inverse-DiFT
invers.e DiFT With Llama3—8B., we can see thaF in S(S}E/Il?]]; 16370325 0(?;'52661 1‘{3753527 02;'51172

the mix-up experiments, learning some reasoning LogiQA2 | 32.63 33.84 35.86 34.54
abilities with less related parameters would not  CSQA | 68.39 70.84 70.93 69.94
lead to model collapse, while still incomparable

for target abilities with DiFT. As for the continual SFT, the historic reasoning proficiency is forgotten
catastrophically albeit it works well on others, demonstrating that the identified delta-scale rows are
indispensable for target reasoning abilities, which also validates the correctness of our analysis and
the proposed DiFT. To compare the DiFT performance with different numbers of delta-scale rows,
we conduct ablation studies in Appendix [D.2]

Settings

6 Conclusion

In this work, we first discover mutual benefits and conflicts among various reasoning tasks through
mix-up and continual SFT experiments with several LLMs. Then we explore such phenomena by
presenting a novel delta-scale row analysis approach, we compare fine-tuned and base LLMs during
inference, finding specific groups of parameters are crucial for distinct reasoning abilities. Inspired
by that, we propose a novel DiFT strategy to update the parameters differentially based on their
optimizing directions. We conduct dozens of experiments with several LLMs on task combinations,
and consistent experimental improvements demonstrate that the proposed DiFT can preserve benefits
and mitigate conflicts to achieve better diverse reasoning capabilities.
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A Implementation Details

Format and hyperparameters For all the SFT experiments (vanilla, mix-up, continual SFT), we
adopt learning rate=2e-5, max length=2,048, batch size=256, warm-up ratio=0.03, weight decay=0.1,
max gradient norm=1.0, and we employ DeepSpeed Zero2 for gradient interference convenience.
In LoRA experiments, we adopt lora_rank=8, lora_alpha=32, target_modules="all-linear’, learning
rate=1e-4, and the rest hyperparameters are the same as the full-parameter SFT. All the hyperparam-
eters are widely used in SFT practice, and with these hyperparameters, we can ensure that all the
model training converges. Besides, we use the same seed (42) during the dataset shuffle to make the
comparison fair.

Computing cost The delta-scale row analysis experiments can be conducted on 1 NVIDIA A100
GPU, each group in the analysis only consumes around 30GB CUDA memory for ~900 seconds
on 7B/8B models, and around 62GB for /1,200 seconds on the 14B model, indicating the cost of
computing delta-scale rows is negligible compared to the naive LLM inference. During SFT, we
employ 8-A100 servers (one server can conduct all experiments in this work) and employ fixed batch
size and max length to utilize the GPU efficiently.

Data For math and code reasoning, we select 20,000 training samples from math and code Infinity
Instruction data [42]], respectively, which consists of various math and code data as shown in TableE];
for logic reasoning, we sample the same amount of data from LogiCoT [37]; as for Commonsense
reasoning, we gather CommonsenseQA [38]], CoS-e [43], OpenBookQA [44], SociallQA [45]],
StrategyQA [46], WorldTree [47]]. As introduced in Section we collect training data from

non

available and popular reasoning datasets, and we use the "query", "response" format for training.

Table 4: The data composition details of Infinity-Instruct-7M after de-duplication, we sample our
math and code training data from all the math/code-related subsets.

Raw Dataset Numbers of Rows
glaiveai/glaive-code-assistant-v3 9,281
Replete-Al/code_bagel_hermes-2.5 386,649
m-a-p/CodeFeedback-Filtered-Instruction 60,735
bigcode/self-oss-instruct-sc2-exec-filter-50k 50,467
codefuse-ai/CodeExercise-Python-27k 27,159
nickrosh/Evol-Instruct-Code-80k-v1 43,354
jinaai/code_exercises 590958
TokenBender/code_instructions_122k_alpaca_style 23,130
iamtarun/python_code_instructions_18k_alpaca 2,581
Nan-Do/instructional _code-search-net-python 82,920
Safurai/Code-Instruct-700k 10,860
ajibawa-2023/Python-Code-23k-ShareGPT 2,297
jtatman/python-code-dataset-500k 88,632
m-a-p/Code-Feedback 79,513
TIGER-Lab/MathInstruct 329,254
microsoft/orca-math-word-problems-200k 398,168
MetaMathQa 690,138
teknium/Openhermes-2.5 855,478
google/flan 2,435,840
Selected subjective instructions 1,342,427
Summary 7,449,106

Evaluation Since the outputs of math, logic, and commonsense reasoning are either a number or an
option, we use GSM8k [48]], LogicQA2 [49], and CommonsenseQA [38] as evaluation benchmarks,
respectively, and adopt the accuracy of 0-shot as a common metric. For code reasoning, we use the
pass rate on CodeXGlue [50] to test whether the generated codes can pass. We employ the ofﬁcialm
as the base repo for evaluation, and the results fluctuations for the same benchmarks were of a limited

'Im-evaluation-harness: https://github.com/huggingface/lm-evaluation-harness
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range, so we report their stable accuracy. We save and evaluate 3 checkpoints in each training process
and take the best one for results report.

B DiFT Algorithm

Algorithm 1 Delta-Scale Analysis of Fine-tuned Language Models

Input: Base LLM M., fine-tuned models M})t, M }t, M ;g —1 evaluation data
Dy, D, ..., Dk _1, sample size N, top dimensions C
Output: Delta-scale row scores for each model and layer
fork=0to K — 1do
Sample NV data points from Dy: Sy ~ Dy,
Hj, = Register forward hooks on linear layers of M Jlft
Hyqse = Register forward hooks on linear layers of My,
DSRy, = {}
for x in S do
out, =M J’?t(a:)
OUlpgse = Mbase (I)
for hk7 hbase in (Hk, Hbase) do
hy..add_batch(inpy, outy)
hpase.add_batch(inppgse, 0Utpase)
\\ compare the differences between M Ji“t and Mpgse
hi.update(hpgse.inp, hpgse-out)
end for
end for
for h in Hy, do
scaler_values = h.scaler_rows
top_indices = argsort(scaler_values)[-C:]
DSRy, = DS Ry, U {scaler_values[top_indices] }
end for
end for
return DSRy, DSRs, ..., DSRk
\\ Mix-up SFT
DSRunion =Up—,' DSRy,
freeze parameter in My - DS Rynion
fine-tune M, on Uf;ol Dy,
\\ Continual SFT
for k =1to Kdo
DSRgigs = DSRy, - (USZ§ DSR_j)
freeze all parameters in M }ct exceptin DSR_dif f
fine-tune M]’ft_ L on Dy, to obtain M Jlft
end for

C 14B LLM Experiments

We also conduct DiFT experiments with Qwen2.5-14B, and the results are shown in Table |C] the
results illustrate that our method can facilitate multiple reasoning abilities, and the DiFT is even better
for large-scale models, demonstrating not only the scalability of the DiFT but also the effectiveness
of our delta-scale row analysis. Due to the hardware limitation, we cannot conduct experiments on
32B or larger models (70/72B) for now, and we will validate our analysis and the proposed DiFT
once we get enough computing devices.
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Table 5: The mix-up and continual SFT results of Qwen2.5-14B-base with vanilla and DiFT on 4

benchmarks.

Model

GSME&k

xGLUE

LogiQA2

CSQA ATA

Mix-Math-Code
+DiFT

85.52+0.31
86.43+0.40

1.4113£0.0062
1.4188+0.0077

43.514+0.27
44.15+0.34

84.28£0.31
84.68+0.26

78.04
78.69

Mix-Code-Logic
+DiFT

72.10+0.34
57.16+0.41

1.0592-+0.0059
1.0925+0.0063

47.33+0.30
47.44+0.33

50.15
51.03

83.78£0.29
83.29£0.32

Mix-Logic-CSQA
+DiFT

54.06£0.37
67.78+0.42

1.0758+0.0020
1.0910+0.0025

40.01+0.27
41.38+0.22

63.33
64.60

86.65+0.35
87.81+0.32

Continual-Math-Code
+DiFT

71.4240.43
79.00£0.38

1.1322+0.0043
1.1461+0.0040

44.53+0.36
44.40+0.34

64.02
68.15

82.56+0.28
83.46+0.30

Continual-Math-Logic
+DiFT

56.86+0.46
57.70+0.50

0.7387+0.0044
0.7620+0.0036

48.28+0.27
48.35+0.31

52.57
53.03

84.36+0.33
84.36+0.35
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Figure 4: Delta-scale rows of model.layer.24.mlp.gate_proj
Llama3-8B’s Math-only models.

0 2000 4000 6000 8000 10000 12000 14000
Column Index

(k) csqa rows (seed=43)

15

0 2000 4000 6000 8000 10000 12000 14000
Column Index

(1) csqa rows (seed=44)

with distinct data samples on



4.mip.gate_proj

Layer: model.layers.24.mlp.gate_proj 4.mip.gate_proj
3000 3000- 3000-
2500 2500 2500
22000 32000 52000
s s g
5 1500 g 1500 51500
i} i g
11000 ¥ 1000 ¥ 1000-
500 500- 500
[ 0 o
o 2000 4000 6000 8000 10000 12000 14000 o 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000
Column Index Column Index Column Index:
(a) math rows (seed=42) (b) math rows (seed=43) (c) math rows (seed=44)
Layer: model.layers.24.mip.gate_proj Layer: model.l 4.mip.gate_proj Layer: model.layers.24.mip.gate_proj
6000 6000 T 5000 T
5000 s000 4000
$ 4000 3 4000 E}
2 2 3 3000-
E] e E]
5 3000 5 3000 S
H 3 “® 2000
¥ 2000 ¥ 2000 n
1000 1000° 1000-
0 [} o
o 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000
Column Index Column Index Column Index:
(d) code rows (seed=42) (e) code rows (seed=43) (f) code rows (seed=44)
Layer: modellayers.24.mip.gate_proj - Laver: el ayes 28 mp st prol .
2000
1500- 2000-
21500 3 3
s ® © 1500-
; ;wuo ;
§ 1000 K 1000
H H H
500 500 500
0 0 o
o 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000
Column Index “olumn Index Column Index:
(g) logic rows (seed=42) (h) logic rows (seed=43) (i) logic rows (seed=44)
Layer: model.| 4.mlp.gate_proj Layer: model.layers.24.mip.gate_proj Layer: model.layers.24.mip.gate_proj
800-
800
600- 600

Scaler Value
I
8
8

200

Scaler Value
&
8
8

0 2000 4000 6000 8000 10000 12000 14000
Column Index

(j) csqa rows (seed=42)

0 2000 4000 6000 8000 10000 12000 14000
Column Index

(k) csqa rows (seed=43)

0 2000 4000 6000 8000 10000 12000 14000
Column Index

(1) csqa rows (seed=44)

Figure 5: Delta-scale rows of model.layer.24.mlp.gate_proj with distinct data samples on
different reasoning Mistral-7B models.
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Figure 6: Delta-scale rows of model.layer.24.mlp.gate_proj with distinct data samples on
different reasoning Qwen2.5-14B models.
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Figure 7: Delta-scale rows of model.layer.14.self_attn.v_proj with distinct data samples on
different reasoning Llama3-8B models.
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D Reasoning Model Analysis

We analyze the fine-tuned reasoning LLMs then check each task and the named parameters thoroughly,
and eventually come up with the conclusion in Section[3} Here we display more named parameters’
delta-scale rows visualization for reasoning tasks on their corresponding fine-tuned LLMs, including
Llama3-8B, Mistral-7B, and Qwen2.5-14B to demonstrate the universal delta-scale rows pattern.

Figure @ display the delta-scale row distribution of Math-only with different sampled data subsets
where we can see a more diverse delta-scale row distribution among distinct reasoning data, recon-
firming the observation in Section In each row of Figure /| we can see that all sampled data
from the same reasoning data display nearly the same distribution for delta-scale rows, as for its
row-wise sub-figures, i.e., the influential parameters of each reasoning ability, the behaviors are rather
inconsistent, leaving us a huge optimal space for multiple reasoning proficiencies gathering.

In Mistral-7B and Qwen2.5-14B, the patterns are also like in Llama3-8B, we visualize the
model.layer.24.mlp.gate for each reasoning data in Figures [5]and [6l We can observe that
math and code abilities share a large proportion of common delta-scale rows, while others do not,
such a phenomenon reminds us that the benefits and conflicts are entangled. Therefore, we can see
the math and code performances of Mistral-7B and Qwen2.5-14B in Table [J]and Table[C|are in strong
correlation, which can also align with the finding in Section[3.2}

D.1 Existing reasoning ability conflicts and benefits within Instruct-LLMs

As instruct-LLMs were trained on a huge amount of math data, the scaling-up training may trade-
off a part of conflicts in math reasoning, unfortunately, we can’t validate it with that data scale.
We evaluated the instruct-LLMs at first, and we found that Instruct-LLMs still have conflicts after
massive post-training on millions of data, e.g., code/logic/csqa performances, shown in Table [6]
It turns out SFT on base-LLMs with only 20k
data can outperform Instruct-LLMs in specific
reasoning tasks, demonstrating that Instruct-

Table 6: Inverse DiFT performance comparison on
Llama3-8B under mix-up and continual settings.

LLMs have been through exceptionally com- Model XGLUE LogiQA2 CSQA

. . . Llama3-8B-Ins 1.2506  31.55 76.09
plicate reasoning benefits and conflicts, mak- Llama3-8B-sft 12228  37.02 7936
ing them not suitable for our analysis. Mean- Qwen2.5-14B-Ins | 1.4669  43.19  83.95
while, other task conflicts have happened in the Qwen2.5-14B-sft | 1.4194  46.25  87.55

above table, and experiments on Instruct-LLMs
can bring extra irrelevant factors to our research, so we adopted base LL.Ms, but our analysis and
methods are suitable for both base and instruct LLMs.

D.2 Numbers of delta-scale rows

No matter the analysis or the method section, the delta-scale rows are rather im-
portant, from which we can identify the reasoning-related weights, intuitively, the
more samples employed during model inference, the more comprehensive the location.
To figure out that, we try various numbers of delta-
scale rows to freeze and conduct corresponding ab-
lation studies. In Figure[8] we choose 20, 50, 100,
and 200 as top numbers to locate the top delta-scale
rows and then conduct mix-up and continual SFT,
and inference on the GSMS8k to evaluate the math

425 465 -50.0

-42.0 46.0- -49.5

415 455 -49.0

o 3450 s
* Sas S,
405 Saas / ., 480

) Ba0- ) a7
65.0- )/ 400 x )

GSM8K accuracy (%)

Zas [ -47.0
395 Cuo0 / -6

ability. The results indicate that when it increases 6/ B0 s/
from 20 to 100, the math performance gradually gets 0o W oo
better, however, it drops when we adopt the first 200 (a) Mix-up SFT (b) Continual SFT
rows, showing that the critical parameters for a task

might be very limited. Figure 8: The effect of delta-scale row num-

bers on different reasoning models.
D.3 Compared to PEFT methods

As we intended to locate the related parameters of

different reasoning tasks, and then differentially train
LLMs with the (almost) full-parameter SFT. Compared with PEFT methods like LoRA, we merely
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Table 7: Results of LoRA and DiFT in mix-up and continual SFT.

Model GSM8Bk xGLUE LogiQA2 CSQA ATA
math 61.64 1.2228 30.73 67.24 -
+LoRA 56.71 1.1542 29.77 67.73 -
code 26.54 1.1203 35.05 70.93 -
+LoRA 20.02 1.0805 32.82 71.33 -
Mix-Math-Code 64.82 1.0956 34.54 68.22  59.80
+LoRA 62.62 1.0589 32.32 69.7  57.78
+DiFT 67.02 1.0735 32.63 68.39  60.35
Continual-Math-Code | 44.35 0.9902 32.82 70.52 46.93
+LoRA 43.97 0.9565 34.03 71.09  45.90
+DiFT 46.32 1.0557 35.86 7093  49.55

freeze the gradient backpropagation for the parameters of delta-scale rows, and the rest of the
parameters are still fine-tuned. Therefore, DiFT does not reduce the fine-tuning time and memory
usage compared to full fine-tuning. The cost of DiFT is higher than that of LoRA, which is the cost
of computing delta-rows and the cost of fine-tuning the model with delta-rows. We can see that LoRA
is not comparable with full SFT and underperforms the DiFT in most of the settings, and the results
are consistent with our previous analysis. However, we notice that LoRA can forget less though it
also learns less., which is quite interesting.

Limitations

Although our proposed delta-scale row analysis and the proposed DiFT have been demonstrated
effective via extensive experiments, there is no proof to support it theoretically. Due to hardware
limitations, we only conducted experiments on 7/8B and 14B LLMs in this paper, lacking validation
on larger-scale (30B+) models that can be complementary. In contrast to the mix-up SFT, while
the continual SFT can alleviate some conflicts between reasoning tasks, we cannot address the
catastrophic forgetting, which is the main cause of the huge performance drop.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We have made our main claims in the abstract and introduction sections.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We have discussed the limitations of this work in Section[D.3]in the Appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: There is no theoretical proof in this paper, only some definitions and computa-
tions.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the analysis method and proposed strategies of this paper can be reproduced
given the descriptions in Sections 3] [ and [5]in the main body, also in the Appendix
Sections[A]and

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We submitted the necessary analysis codes and SFT codes, along with the
training data for reproducing this work.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have put the experimental details in Section [5] of the main body and
Section [A] of the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Our evaluation experiments were conducted with an out-of-the-box evaluation
repository, although the original results were output with fluctuating intervals, we reported
the stable performance on Llama3-8B and Mistral-7B in the main body as all the fluctuations
are similar. To illustrate the minor impact of the result intervals, we also reported results
with statistical intervals on Qwen2.5-14B in Section|C|in the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We introduce the analysis computing requirements in the main body and the
hardware information in Section [A|of the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We can ensure that this research conducted in the paper conforms in every
respect with the NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All assets we employed in this paper conform to the corresponding licenses.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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873 * We recognize that the procedures for this may vary significantly between institutions

874 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
875 guidelines for their institution.

876 * For initial submissions, do not include any information that would break anonymity (if
877 applicable), such as the institution conducting the review.

878 16. Declaration of LLM usage

879 Question: Does the paper describe the usage of LLMs if it is an important, original, or
880 non-standard component of the core methods in this research? Note that if the LLM is used
881 only for writing, editing, or formatting purposes and does not impact the core methodology,
882 scientific rigorousness, or originality of the research, declaration is not required.

883 Answer: [NA]

884 Justification: Although our research objects are LLMs, the core method development in this
885 research does not involve LLMs as any important, original, or non-standard components.
886 Guidelines:

887 * The answer NA means that the core method development in this research does not
888 involve LLMs as any important, original, or non-standard components.

889 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
890 for what should or should not be described.
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