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Abstract

Reasoning abilities of large language models (LLMs) require explicit derivations1

compared to general question-answering, supervised fine-tuning (SFT) can em-2

power multiple reasoning abilities in LLMs via learning from various datasets.3

However, neither training the datasets jointly (mix-up) nor continually can maintain4

the performance of single-dataset SFT, sometimes better while sometimes even5

worse, illustrating vanilla SFT can not only facilitate reasoning abilities but also6

introduce conflicts. In this paper, we propose a novel framework to mitigate the7

conflicts and preserve benefits among different reasoning tasks, and even surpass8

each task’s single dataset SFT performance. We start by exploring the differences9

between reasoning fine-tuned and base LLMs by analyzing their parameter varia-10

tions during model inference, and we discover that each reasoning capability has11

exclusive parameters that benefit itself more evidently than others. In contrast,12

the overlapped parameters of tasks can bring benefits or conflicts. Inspired by13

the findings, we propose to update the exclusive and overlapped parameters ac-14

cording to specific reasoning task combinations differentially, thereby avoiding15

unnecessary conflicts while maintaining benefits. Consistent improvements in16

mix-up and continual SFT experiments demonstrate that the proposed SFT strat-17

egy can achieve better performance on various LLMs (Llama3-8B, Mistral-7B,18

and Qwen2.5-14B) and diverse reasoning tasks with fewer conflicts, showing the19

superiority and generality of our analysis findings and the proposed approach.20

1 Introduction21

Large language models (LLMs) have emerged various reasoning abilities [1; 2; 3], such as math22

problem-solving [4], coding [5], logical inference [6], and commonsense reasoning [7]. In contrast23

to the general conversation, reasoning tasks often require models to perform higher-order cognitive24

processes such as analysis, deduction, and problem-solving. Supervised fine-tuning (SFT) on25

distinct labeled datasets can facilitate such proficiencies [8; 9; 10; 11], enabling LLMs with versatile26

reasoning capabilities. Although vanilla SFT on different reasoning data can strengthen LLMs’27

certain capability in some curated combinations [8], it tends to underperform on a single dataset,28

revealing mutual enhancement and conflict may coexist across reasoning tasks. Prior works have29

explored the destructive interference of varied tasks [12; 13; 14; 15], they focused on the conflict of30

general abilities rather than reasoning and believed that all of them were harmful to others.31

In the investigation, we conduct comprehensive SFT experiments with different LLMs on types of32

reasoning data to discover the relationships among various reasoning proficiencies. As shown in33

Figure 1(a), some combinations, like Mix-Math-Code of Llama3-8B, obtain significant improve-34

ments in math (measured by GSM8k) compared to Math-only, while it underperforms on other35

tasks like code (measured by xGLUE) shown more clear in Figure 1(b). On the other hand, continual36
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Figure 1: Performance of various math-related SFT models on 5 benchmarks with Llama3-8B and
Mistral-7B, scores are increasingly ranked from the center to circle. (We multiply the pass rate of
xGLUE by 40 and the accuracy of LogiQA2 by 2 to align others for better visualization.)

learning results through Continual-Math-Code exhibit severe negative interference. However, an37

intriguing difference emerges in Mistral-7B [16] suggesting complex dynamics in distinct LLMs.38

These tendencies are also exhibited similarly in combinations among more reasoning tasks, while39

they perform distinctly in different LLMs. Such phenomena imply benefits and conflicts between40

distinct reasoning capabilities that may be ubiquitous. More detailed experiments and analysis are41

introduced in Section 3.42

Previous efforts have been made in parameter-variation SFT to mitigate potential conflicts among the43

different abilities of LLMs. [8] designed a dual-stage mixed fine-tuning strategy to endow LLMs44

with math, code, and other capabilities. HFT [13] updated half of the LLM parameters randomly in45

continual fine-tuning to alleviate catastrophic forgetting. LoTA [14] employed task vector extraction46

and sparse adaptation to minimize interference among multi-tasks. Regretfully, the complete picture47

of relations among tasks is neglected, including beneficial, contradictory, and neutral. In this paper,48

we investigate the mutual benefits and conflicts of reasoning capabilities in the SFT process.49

To determine what benefits and conflicts exist and what causes those, we explore the intrinsic50

weights of distinct fine-tuned LLMs. Concretely, we present a novel analysis approach to identify51

the individual sensitivity of the model parameters via inference of sampled data on different LLMs,52

thereby locating influential weights necessary for specific reasoning abilities. After that, we design a53

suit of Differential SFT (DiFT) strategies to get better versatile reasoning abilities: for mix-up SFT,54

we merely fine-tune the parameters that are in the union of critical weights for involved tasks, to55

obtain target reasoning abilities while making less disturb to others; as for continual SFT, we freeze56

the vital parameters in difference set of the former and current tasks, to reserve historic proficiencies57

and learn new ones by remaining parameters.58

We employ base instead of instruct LLMs for analysis and validation, as instruct models have been59

through massive post-training, making it hard to measure their inner benefits/conflicts. Additionally,60

our fine-tuned LLMs with fewer data beat instruct LLMs on some tasks (e.g., logic and commonsense61

as shown in Table 6), highlighting that our research can provide insights for specific reasoning-62

oriented fine-tuning(regardless of base or instruct models). We conduct extensive experiments with63

pilot LLMs on several reasoning tasks, and results show that the proposed DiFT can improve all64

LLMs in various reasoning combinations, where mix-up SFT can approach the single dataset SFT65

and continual SFT can maintain more historical performance, demonstrating that our analysis is valid66

and DiFT can mitigate reasoning conflicts and keep mutual benefits. Our contributions are as follows:67

• We investigate in comprehensive SFT experiments on single (vanilla), mix-up, and continual68

reasoning datasets with different LLMs, showing mutual benefits and conflicts exist among69

distinct reasoning tasks commonly.70

• By analyzing the parameter variations during inference between various fine-tuned and71

base models, we discover some parameters are vital to specific reasoning tasks, i.e., each72

reasoning capability corresponds to certain parts of parameters.73

• Based on the analysis and findings, we propose a novel fine-grained SFT strategy to preserve74

enhancement and mitigate the conflicts by selectively updating those reasoning-relevant75

parameters of LLMs.76
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• We conduct extensive experiments on different LLMs with the proposed DiFT, and em-77

pirical results across distinct reasoning tasks are in line with our analysis, validating the78

effectiveness of the proposed approach.79

2 Related Work80

SFT has been demonstrated as a productive post-training paradigm for improving models’ various81

capabilities [17], including chat [18], math [19], code [5], commonsense [20], logic [21], and82

instruction following [22]. Albeit large models may encounter fewer task conflicts [23], there are83

task conflicts in LLMs [24], and numerous SFT variants emerged in the era of LLMs from data84

selection and optimizing perspectives. [25] demonstrated the order of training data mattered, and85

they introduced an online data sampling algorithm to learn multiple skills in differential arrangements.86

Self-Play [10] presented self-driven data augmentation to accelerate training convergence.87

[26] built the mask out of the k parameters with the largest Fisher information as a simple approxi-88

mation of which parameters are most important for the given task. Task Vector [27] considered the89

fine-tuned and pre-trained parameter variations as the task-related weights and conducted addition and90

negation to modify or combine different tasks. [28] discovered that outlier dimensions could encode91

crucial task-specific knowledge and that the value of a representation in a single outlier dimension92

drives downstream model decisions. [29] proposed parameter optimization trajectory and learned to93

uncover its intrinsic task-specific subspace by exploiting the dynamics of fine-tuning a given task.94

Nonetheless, these works failed to connect the specific parameters and tasks.95

[8] designed dual-stage mixed fine-tuning to endow LLMs with math, code, and instruction-following96

capabilities. MoS [30] introduced a reinforcement learning strategy for data sampling during SFT to97

balance skills. [31] employed an efficient model to filter the instruction data to train LLMs, achieving98

a better performance. These methods aim to find better data usage, ignoring the learning process.99

[32] presented a partial linearization technique to fuse multi-task abilities into one model. HFT [13]100

updated a random half of LLM parameters in continual fine-tuning to alleviate catastrophic forgetting.101

LoTA [14] employed task vector extraction and sparse adaptation to minimize interference among102

multiple tasks. [33] introduced a gradient approximation strategy for activated parameter locating to103

reduce the computational complexity associated with many parameter partitions. [15] enabled LLMs104

to achieve fine-tuning that balances task-specific losses across multiple tasks with low computational105

complexity. Nevertheless, none of them analyze the model parameters in-depth.106

3 Benefits and Conflicts Analysis107

In this section, we intend to validate and explore the mutual benefits and conflicts among reasoning108

abilities via delving into the LLMs’ parameters step by step to explore the causes. First, we conduct109

SFT experiments on 4 datasets (20,000 training samples for each reasoning task, more detailed data110

and evaluation setting can be referred to Section 5.1) in 3 settings: vanilla, mix-up, and continual. As111

instruct-LLMs were trained on a huge amount of math data, the scaling-up training may trade-off112

a part of conflicts in math reasoning, we take Llama3-8B-base and Mistral-7B-base, the results are113

shown in Table 1. We also put the results of instruction-tuned and fine-tuned models in Table 6, where114

fewer data fine-tuned LLMs can surpass instruct LLMs on logic and commonsense benchmarks,115

demonstrating that Instruct-LLMs are productions of complex reasoning benefits and conflicts.116

3.1 Mix-up and Continual Reasoning SFT117

In Table 1, we can observe that vanilla SFT can enhance the corresponding reasoning ability stably118

on both Llama and Mistral while it can affect others: for example, the Math-only can degrade logic119

and commonsense a bit, and so do the Logic-only and CSQA-only to math. Such results suggest:120

i. There may be a learning trade-off between distinct abilities that leads to reasoning interference.121

Interestingly, the mix-up SFT reveals potential synergistic effects in both positive and negative122

aspects. The Mix-Math-Code achieves rather good performance on both GSM8k and xGLUE123

compared to single-task variants, implying that math and code reasoning may share complementary124

weights. This phenomenon is evidenced by the 64.82% GSM8k accuracy and 1.0956 xGLUE pass125

rate of Mix-Math-Code on Llama3-8B, surpassing the Math-only. An intriguing discovery is the126

3



Table 1: The mix-up and continual SFT results of Llama3-8B and Mistral-7B on 5 benchmarks, the
↓and ↑denote decreasing and increasing compared to the base model performance, respectively.

Methods Llama3-8B Mistral-7B

GSM8k xGLUE LogiQA2 CSQA MMLU GSM8k xGLUE LogiQA2 CSQA MMLU
base model 39.42 ↑ 1.0874 ↑ 31.93 ↑ 69.29 ↑ 57.66 ↑ 38.97 ↑ 1.2449 ↑ 31.87 ↑ 64.29 ↑ 50.49 ↑

Vanilla SFT
1 Math-only 61.64 ↑ 1.2228 ↑ 30.73 ↓ 67.24 ↓ 56.76 ↑ 59.14 ↑ 2.0042 ↑ 30.85 ↓ 52.50 ↓ 28.68 ↓
2 Code-only 26.54 ↓ 1.1203 ↑ 35.05 ↑ 70.93 ↑ 55.65 ↑ 31.31 ↓ 1.7146 ↑ 28.94 ↓ 58.39 ↓ 43.04 ↓
3 Logic-only 30.17 ↓ 0.6880 ↓ 37.02 ↑ 72.89 ↑ 57.52 ↑ 4.62 ↓ 1.3628 ↑ 31.23 ↑ 54.55 ↓ 32.47 ↓
4 CSQA-only 8.79 ↓ 0.5702 ↓ 29.90 ↓ 79.36 ↑ 28.10 ↓ 1.36 ↓ 2.7964 ↑ 30.15 ↓ 70.93 ↑ 23.43 ↓

Mix-up SFT
5 Mix-Math-Code 64.82 ↑ 1.0956 ↑ 34.54 ↑ 68.22 ↑ 56.47 ↑ 41.17 ↑ 1.2913 ↑ 33.08 ↑ 60.28 ↓ 44.81 ↓
6 Mix-Math-Logic 64.37 ↑ 1.2092 ↑ 32.32 ↑ 70.52 ↑ 55.30 ↓ 57.39 ↑ 0.8593 ↓ 31.87 ↑ 62.49 ↑ 36.68 ↓
7 Mix-Math-CSQA 68.92 ↑ 1.1342 ↑ 32.32 ↑ 77.31 ↑ 47.46 ↓ 52.77 ↑ 2.8439 ↑ 31.11 ↑ 73.05 ↑ 39.76 ↓
8 Mix-Code-Logic 52.31 ↑ 1.0779 ↑ 32.57 ↑ 70.52 ↑ 58.05 ↑ 22.37 ↓ 1.2342 ↑ 31.17 ↑ 62.00 ↑ 43.33 ↓
9 Mix-Code-CSQA 52.39 ↑ 0.8905 ↓ 31.42 ↑ 77.15 ↑ 32.08 ↓ 26.69 ↓ 1.3969 ↑ 33.46 ↑ 75.02 ↑ 44.97 ↓
10 Mix-Logic-CSQA 16.91 ↓ 0.2150 ↓ 32.44 ↑ 77.40 ↑ 47.14 ↓ 16.60 ↓ 0.9582 ↓ 31.11 ↑ 74.69 ↑ 45.34 ↓

Continual SFT
11 Continual-Math-Code 44.35 ↑ 0.9902 ↓ 32.82 ↑ 70.52 ↑ 54.28 ↓ 47.01 ↑ 1.6431 ↑ 31.81 ↑ 44.96 ↓ 25.98 ↓
12 Continual-Math-Logic 10.99 ↓ 0.6433 ↓ 31.30 ↑ 67.90 ↑ 51.53 ↓ 4.62 ↓ 1.0365 ↓ 29.26 ↓ 40.29 ↓ 24.56 ↓
13 Continual-Math-CSQA 3.87 ↓ 0.5494 ↓ 31.36 ↑ 78.71 ↑ 47.07 ↓ 1.14 ↓ 3.8740 ↑ 30.34 ↓ 57.90 ↓ 23.12 ↓

imbalance impact: Mix-Math-Code improves the math (from Math-only 61.64% to 64.82%), while127

it only improves Code-only on xGLUE (1.0956, approaching but less than Code-only), implying:128

ii. Benefits between different reasoning abilities are not always reciprocal, where one reasoning129

ability may gain more than the other.130

In contrast to mix-up SFT, continual SFT is born with catastrophic forgetting, which remains a signif-131

icant challenge, making it more complex than mix-up SFT [23; 24]. At the bottom of Table 1, we can132

hardly observe mutual benefits between reasoning abilities except for Continual-Math-Code, and133

the performances of both LLMs are poor compared to the single SFT. The Continual-Math-Logic134

configuration, while achieving moderate LogiQA2 performance (31.30% on Llama3-8B), shows135

severe degradation in math reasoning (10.99% on GSM8k). Such catastrophic forgetting results136

indicate that continual SFT on different reasoning data may lead to the erosion of previously acquired137

capabilities. Additionally, the continual SFT on one reasoning data performs worse than the direct138

SFT on the base LLM in some settings, e.g., significant task interference in Continual-Math-Code139

(1.084 to 0.9902 with Llama3-8b). Such results indicate that there also exist reasoning conflicts140

besides catastrophic forgetting. Therefore, we make an assumption:141

iii. Even catastrophic forgetting is the main issue, reasoning conflicts hold an important place142

in continual SFT.143

The above findings highlight the complex interactions between different reasoning capabilities and144

the challenges in mitigating conflicts while preserving benefits. To address the above challenges, we145

start by analyzing the inner weights of LLMs with different reasoning proficiencies.146

3.2 Delta-scale rows147

We propose a novel method for identifying influential weights in large language models, inspired by148

[34], that aims to quantify the sensitivity of the model output to changes in weight parameters. We149

introduce a metric termed delta-scale row score to measure this sensitivity.150

Let W ∈ RH×D represent the weight matrix of a linear layer, where H is the output dimension and151

D is the input dimension. For a set of input activations X ∈ RL×D (where L is the effective number152

of tokens across batches and sequence lengths), the output activations Y ∈ RL×H are typically153

computed as:154

Y = XWT + b (1)
We analyze the difference in outputs between a base model (Mbase) and a fine-tuned model (Mft),155

where weights are presumed to have changed during fine-tuning. Let Ybase and Yft be the output156

activations of a specific layer for the same input X from Mbase and Mft, respectively. The difference157

in output for the k-th component (corresponding to the k-th row of W ) for a given token t is:158

∆Y k
t = Y k

ft(t)− Y k
base(t) (2)

This ∆Y k
t reflects the impact of the accumulated changes between W k

ft and W k
base (the k-th rows of159

the respective weight matrices) on the k-th output feature for that token.160
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(a) math rows (seed=42)
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(b) math rows (seed=43)
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(c) math rows (seed=44)
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(d) code rows (seed=42)
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(e) code rows (seed=43)
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(f) code rows (seed=44)
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(g) logic rows (seed=42)
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(h) logic rows (seed=43)
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Figure 2: Distribution of delta-scale rows for model.layer.24.mlp.gate.proj with distinct data
samples on different reasoning models, where the horizontal axis represents the row order of the
specific weight matrix, and the vertical axis denotes the delta-scale value.

The delta-scale score sk for the k-th output dimension (and thus associated with the k-th row of W )161

is then defined as the mean of the squared differences ∆Y k
t across a set of N input tokens:162

sk =
1

N

N∑
t=1

||∆Y k
t ||22 (3)

In practice, this approach accumulates these squared differences for each output component k,163

effectively capturing the impact of changes in the corresponding k-th row of the weight matrix164

(implicitly the difference W k
ft −W k

base) across the reasoning data. High values in the vector of165

scores indicate rows of the weight matrix (and their associated output features) that exhibit166

greater changes in activation magnitude due to fine-tuning, suggesting these rows are influential167

in the processes modified or learned by the model.168

3.3 Fine-tuned Reasoning Model Analysis169

To analyze the delta-scale rows, we perform inference with distinct fine-tuned and base model on170

samples, ensuring that each sampled data corresponds to their fine-tuned reasoning model. Concretely,171

we compute for each layer in the forward pass with 5 sampled groups of 50 data items (using random172

seed 42-46) to obtain the delta-scale rows for each task, we display some row distributions of173

model.layers.24.mlp.gate.proj in Figure 2, other model weights also express similar patterns,174

and we put more visualization results in the Appendix D. The magnitude of the delta-scale scores175

provides a quantitative measure of the corresponding parameters’ influence, where higher values carry176

more weight. Across all sub-figures in Figure 2, we can observe the presence of distinct peaks in177

the delta-scale rows. These peaks indicate specific rows in the weight matrix that disproportionately178

affect the model’s output, and the rows correspond to the critical delta-scale rows we aim to identify.179

Note that we only annotate the top-20 delta-scale rows for better visualization, there are remarkable180

differences among the distributions of distinct reasoning data in Figure 2.181

In the distribution of the math task (Figures 2(a) to 2(c)) row-wise, distinct peaks at multiple rows,182

e.g. 284, 1992, and 9246, among others, these peaks suggest that specific rows in the weight matrix183

exert a considerable influence on the model’s reasoning process for math reasoning. Interestingly, the184

distribution patterns are consistent across sampled data with different random seeds, and so are the185
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code and logic reasoning, implying stability of influential delta-scale rows for math tasks regardless of186

the input variation. However, the distribution of each fine-tuned reasoning LLM exhibits differentially187

in Figures 2(a) to 2(g) column-wise: rows 284 and 1992 have the top-2 scores across all rows in188

the math and logic LLM, while the top-2 rows of the code LLM are 6280 and 9246; the logic model189

has some influential rows of index >13000, but the indices of all the top-20 math rows are <13000.190

We also notice that math and code reasoning abilities share more common delta-scale rows than191

math and logic or logic and code, which can align with the more mutual benefits in Mix-Math-Code192

than Mix-Math-Logic. Similar phenomena also exist in Mistral-7B and Qwen2.5-14B as shown in193

Figures 5 and 6 in Appendix D.194

We further analyze the same model (Math-only) with different sampled data subsets and observe195

a more diverse delta-scale row distribution among distinct reasoning data, the results are shown in196

Figure 4, which illustrates the parameter divergence of the reasoning abilities within LLMs. After197

meticulous reasoning delta-scale rows analysis, we discover that On the one hand, rows of the198

parameter matrix are not sensitive to different inputs of the same reasoning task, on the other199

hand, different tasks demonstrate unique parameter distributions.200

4 Method201

We compute and then discover delta-scale rows through the analysis of different reasoning data in202

fine-tuned and base model inference, to take advantage of the findings, we propose a new Differential203

SFT (short for DiFT) strategy to incorporate the benefits and mitigate the conflicts via fine-tuning204

model adaptively. The DiFT algorithm intends to address the challenge of mix-up and continual205

learning in LLMs by adaptively freezing model parameters based on the sensitivity of their activations206

to changes induced by fine-tuning individual datasets. The core idea is to identify and protect207

parameters crucial for simultaneously and previously learned tasks while allowing the model to adapt208

to more reasoning proficiencies. The detailed pseudo-code of DiFT is in Algorithm 1 in Appendix B.209

4.1 Delta-scale Row Analysis210

The DiFT strategy begins with analyzing the target reasoning LLMs, it takes as input an LLM211

Mbase, a set of fine-tuned LLMs M0
ft, ...,M

K−1
ft specialized for different reasoning tasks, and their212

training datasets D0, ..., DK−1. For each fine-tuned model MK−1
ft , we sample N data points from213

its corresponding data DK−1 to form random subsets Sk. We register forward hooks on the layers214

of both the base and fine-tuned LLMs to capture the input and output activations during forward215

passes, allowing us to compute the delta-scale row scores. For each input x in the subsets, we216

process it through both Mk
ft and Mbase, collecting activation patterns at each monitored layer. After217

that, we compute the differences in activation patterns between Mk
ft and Mbase. For each layer,218

we maintain a running average of the squared L2 norms of these differences, effectively reflecting219

the magnitude of changes in the model’s behavior induced by SFT as introduced in Eq. 3. These220

accumulated differences form our delta-scale row scores, which quantify the degree to which each221

output dimension (corresponding to rows in the weight matrices) has been affected by the SFT process.222

Finally, we identify the top C rows with the highest delta-scale row scores for each layer, which223

represent the neural pathways that undergo more significant modifications during SFT, providing224

insight into what parameters of the model are really crucial for specific reasoning capabilities.225

4.2 Mix-up Fine-tuning226

To perform better fine-tuning on multiple tasks, we employ a mix-up strategy, and the union of all227

task-specific influential weight index sets is computed:228

DSRunion =

K−1⋃
k=0

DSRk (4)

All parameters in the base model M0 except those indexed by DSRunion are frozen, the model is229

then fine-tuned on the combined dataset ∪K−1
k=0 Dk, and this allows the model to update common230

critical parameters of all involved tasks while keeping parameters that are vital for irrelevant tasks231

from being disturbed. With such a strategy, DiFT can focus more on the target reasoning abilities to232

achieve better reasoning performance and disturb others less.233
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4.3 Continual Fine-tuning234

We employ a differential approach in the continual learning scenario, where reasoning datasets are235

fin-tuned sequentially. Specifically, for each task k (starting from k = 2), the difference set of236

influential weight indices is computed:237

DSRdiff = DSRk −
k−1⋃
j=0

DSRj (5)

This set contains the indices of weights that are influential for the current task k while not influential238

for any of the previous tasks. Only the parameters corresponding to these indices in the previous239

step Mk−1
ft are fine-tuned on dataset Dk to obtain the updated model Mk

ft. This strategy aims to240

mitigate forgetting in continual SFT by preserving those vital parameters of knowledge acquired241

from previous tasks and learning new capabilities with the parameters in the difference set between242

former and current abilities.243

The DiFT focuses on reasoning-related influential parameters and extends these principles into244

practical fine-tuning scenarios. By selectively updating parameters based on their identified impact,245

we try to enhance the performance and scalability of LLMs in mix-up data settings and retain the246

model’s historic reasoning capabilities while adapting to new tasks.247

5 Experiments248

To validate our findings in the former analysis and evaluate the proposed DiFT, we conduct compre-249

hensive SFT experiments on both mix-up and continual settings. We employ Llama3-8B, Mistral-7B,250

and Qwen2.5-14B as the base LLM, and several widely used reasoning datasets to evaluate the251

generality and extension of our strategy. All the DiFT empirical results in the main body are carried252

out on the union of the 100 delta-scale rows. We show experiments of Qwen2.5-14B whose results253

are with confident intervals in Appendix Section C. All SFT experiments were conducted on NVIDIA254

A100 servers, and computation cost details are in Section A in the Appendix.255

5.1 Setting256

Training data We collect and randomly sample training data to fine-tune LLMs toward distinct257

reasoning abilities. All the source data are widely used for task-specific training, including but not258

limited to MathInstruct [35], Code Bagel Hermes [36], LogiCoT [37], and CommonsenseQA [38],259

more source data can be referred to Appendix A. We sample 20,000 for each reasoning ability and260

conduct SFT involving 2 reasoning tasks with DiFT every time.261

Evaluation We choose the pass rate (code) and 0-shot accuracy (others) to evaluate the performance262

of the LLMs, details are in Appendix A. As our research goal is to reserve the benefits and mitigate the263

conflicts, we mainly focus on the performance of involved tasks, therefore we use the average target264

accuracy (ATA) to better show gains and drops of target/historic reasoning capabilities compared to265

the base LLMs, which can better reflect the performance of various methods. For example, when we266

conduct the mix-up SFT of math and logic, we compute the (math accuracy + logic accuracy) / 2 as267

the ATA score, especially, we multiply the code pass rate by 50 for the ATA involving code reasoning268

to align the others’ accuracy metrics.269

Baselines As the DiFT can be exploited in both mix-up and continual settings, we implement270

several comparable approaches to evaluate its effectiveness and generality. HFT [13] is a continual271

SFT framework, it randomly freezes half of the parameters in each named parameter in each round of272

fine-tuning on a new task dataset to memorize the old knowledge. LoTA [14] extracts the so-called273

feature vectors, which can represent different tasks, in every round of continual fine-tuning first and274

mask these vectors in the next round. Dual-stage Mixed Fine-tuning (DMT) [8] presented a two-stage275

mix-up fine-tuning strategy, implemented by merging different training data. CoBa [15] designed276

a novel synthesized loss function by calculating the relative and absolute convergence scores, thus277

achieving balanced performance for all tasks. The hyperparameter settings of baselines are the same278

as the vanilla and DiFT, we put them in Appendix A, where we also compare LoRA in Section D.3.279
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Table 2: The mix-up and continual SFT results of Llama3-8B and Mistral-7B under different strategies
on 4 benchmarks. The SOTA results across different strategies are marked in bold numbers, and the
sub-optimal results are italic numbers, respectively.

Methods Llama3-8B Mistral-7B

GSM8k xGLUE LogiQA2 CSQA ATA GSM8k xGLUE LogiQA2 CSQA ATA
base model 39.42 1.0874 31.93 69.29 – 38.97 1.2449 31.87 64.29 –

Mix-up SFT
Mix-Math-Code 64.82 1.0956 34.54 68.22 59.80 41.17 1.2913 33.08 60.28 52.87
+DMT 65.07 1.0851 32.44 67.52 59.66 42.13 1.2400 32.18 59.82 52.07
+CoBa 66.21 1.0725 33.15 68.34 59.91 43.07 1.1900 31.94 58.45 51.29
+DiFT 67.02 1.0735 32.63 68.39 60.35 42.46 1.3429 33.33 59.46 54.80
Mix-Code-Logic 52.31 1.0779 32.57 70.52 43.23 22.37 1.2342 31.17 62.00 46.44
+DMT 50.37 1.0865 31.93 69.36 43.12 26.58 1.2308 30.62 63.19 46.08
+CoBa 51.12 1.0811 32.25 68.67 43.15 26.05 1.2431 30.16 63.82 46.16
+DiFT 41.09 1.1359 33.40 68.55 45.10 31.69 1.2555 32.51 62.24 47.64
Mix-Logic-CSQA 16.91 0.2150 32.44 77.40 54.92 16.60 0.9582 31.11 74.69 52.90
+DMT 13.79 0.3907 31.68 78.84 55.26 18.58 0.7731 30.72 72.75 51.74
+CoBa 14.93 0.3868 32.16 78.05 55.11 19.42 0.7847 30.41 73.48 51.95
+DiFT 16.22 0.4592 32.38 78.95 55.67 21.68 0.6196 31.68 74.45 53.07

Continual SFT
Continual-Math-Code 44.35 0.9902 32.82 70.52 46.93 47.01 1.6431 31.81 44.96 64.58
+HFT 44.74 1.0362 33.94 69.69 48.28 47.72 1.3429 31.46 45.95 57.43
+LoTA 44.29 1.0258 34.45 68.99 47.79 47.15 1.3534 31.92 45.49 57.41
+DiFT 46.32 1.0557 35.86 70.93 49.55 49.81 1.6362 31.81 44.55 65.81
Continual-Math-Logic 10.99 0.6433 31.30 67.90 21.15 4.62 1.0365 29.26 40.29 16.94
+HFT 11.06 0.6682 31.55 67.52 21.31 6.57 0.9902 28.48 43.16 17.53
+LoTA 10.89 0.6749 31.87 66.84 21.38 6.70 0.9803 28.76 42.51 17.73
+DiFT 11.37 0.6919 31.23 68.80 21.30 10.92 0.7107 29.20 42.92 20.06

5.2 Mix-up SFT280

Table 2 presents the mix-up SFT results, we can observe that DiFT consistently improves the ATA, i.e.281

the averaged target reasoning performance, on all mix-up settings, and outperforms most baselines282

across most benchmarks and model architectures. Concretely, in the Mix-Math-Code, we know that283

these 2 reasoning abilities can benefit each other, in Llama3-8B the math reasoning benefits more, so284

its ATA gain of DiFT is not striking even if it beats the baselines. While Mistral-7B fails to achieve285

mutual benefits much with the vanilla SFT, the 2 tasks gain more (from 52.87 to 54.80) with DiFT. In286

Mix-Code-Logic, DiFT on both 2 models can improve involved reasoning abilities.287

Multiple tasks mix-up However, we notice that it hurts the math of Llama3-8B and the common-288

sense of Mistral-7B, which results from the Mix-Code-Logic not considering the delta-scale rows289

of the math reasoning. Once the takes math and commonsense into consideration, issues like290

this can be eliminated as shown in Figure 3. Mix-Logic-CSQA is similar to Mix-Math-Code, albeit291

the vanilla SFT has mutual benefits in Llama3-8B, the proposed DiFT still can enhance their ATA292

performance, as for Mistral-7B, the vanilla and all baselines trade the logic ability for commonsense,293

DiFT maintains more LogiQA2 accuracy (31.68%) and obtains better CSQA accuracy (74.45%),294

achieving the balanced ATA performance.295

Through massive mix-up SFT experiments, we can see that DiFT can maintain and facilitate mutual296

benefits and alleviate conflicts between reasoning capabilities, thereby supporting the effectiveness of297

the delta-scale rows analysis on reasoning data. We also found that math and code tasks are somehow298

synergistic while logic and commonsense tasks are conflicting, which is interesting. The math-code299

synergizing may come from the fact that the two tasks share similar computation backgrounds,300

providing more views for LLMs to understand the reasoning process and such Mix-Math-Code301

tuning has been utilized in math- and code-specific LLMs training [39; 40]. In contrast, logic tasks302

need to obey strict complex logical rules, while commonsense tasks are more about ground knowledge303

and simple reasoning, leading to conflicts between two tasks [41].304

5.3 Continual SFT305

The bottom part of Table 2 manifests the results for the continual setting, where models are fine-tuned306

sequentially, where models need to retain the knowledge of previous tasks while adapting to new307

ones. As we mentioned in Section 3.1, reasoning benefits and conflicts exist along with catastrophic308

forgetting, not dominant but still matter. In continual-math-code, DiFT can learn code ability better309

while keeping more math reasoning with both Llama3-8B and Mistral-7B, resulting in 2.62 and310
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Figure 3: DiFT performance on Llama3-8B in multiple task mix-up and different order continual
setting, involving more task mix-up and continual experiments of different orders.

1.23 ATA performance. As for Continual-Math-Logic, DiFT on Llama3-8B can also enhance the311

ATA compared to the vanilla SFT but underperforms the other 2 baselines which are presented for312

mitigating catastrophic forgetting. In contrast to Llama3-8B, DiFT on Mistral-7B performs better on313

both the historical math and the new logic reasoning, achieving a 3.12 improvement in ATA, and such314

a difference between the 2 models illustrates that there are more reasoning conflicts in Mistral-7B315

while more forgetting in Llama3-8B.316

Different continual orders In Figure 3, we reverse the learning orders of continual SFT, and results317

still can prove the effectiveness of the DiFT regardless of training orders. These results highlight318

DiFT’s validity in reducing conflicts between historical and new reasoning abilities. Nevertheless,319

catastrophic forgetting is the main challenge in continual SFT, which is not our research objective in320

this work. The experimental results demonstrate the effectiveness of the proposed DiFT on pursuing321

better diverse reasoning abilities under the mix-up and continual SFT: by differentially fine-tuning322

LLMs parameters based on their sensitivity to individual tasks, DiFT achieves state-of-the-art or323

competitive performance across a range of benchmarks and model architectures.324

5.4 Necessity of Delta-scale rows325

Incorporating new reasoning abilities with identified delta-scale rows works well under both mix-326

up and continual SFT settings, we also wonder whether the other parameters can achieve nearly327

performance, thus we further conduct with inverse DiFT, i.e, exchange the freezing positions of328

original DiFT. Concretely, we fine-tune the delta-scale rows while freezing others in the continual SFT,329

Table 3: Inverse DiFT comparison on Llama3-
8B under mix-up and continual settings.

Settings Mix-Math-Code Continual-Math-Cdde
DiFT inverse-DiFT DiFT inverse-DiFT

GSM8k 67.02 61.26 46.32 25.17
xGLUE 1.0735 0.9561 1.0557 0.9512
LogiQA2 32.63 33.84 35.86 34.54
CSQA 68.39 70.84 70.93 69.94

as for mix-up SFT, we fine-tune the others while330

freezing delta-scale rows, to test whether the other331

parameters can learn the same reasoning abilities.332

Table 3 compares the performance of DiFT and333

inverse DiFT with Llama3-8B, we can see that in334

the mix-up experiments, learning some reasoning335

abilities with less related parameters would not336

lead to model collapse, while still incomparable337

for target abilities with DiFT. As for the continual SFT, the historic reasoning proficiency is forgotten338

catastrophically albeit it works well on others, demonstrating that the identified delta-scale rows are339

indispensable for target reasoning abilities, which also validates the correctness of our analysis and340

the proposed DiFT. To compare the DiFT performance with different numbers of delta-scale rows,341

we conduct ablation studies in Appendix D.2.342

6 Conclusion343

In this work, we first discover mutual benefits and conflicts among various reasoning tasks through344

mix-up and continual SFT experiments with several LLMs. Then we explore such phenomena by345

presenting a novel delta-scale row analysis approach, we compare fine-tuned and base LLMs during346

inference, finding specific groups of parameters are crucial for distinct reasoning abilities. Inspired347

by that, we propose a novel DiFT strategy to update the parameters differentially based on their348

optimizing directions. We conduct dozens of experiments with several LLMs on task combinations,349

and consistent experimental improvements demonstrate that the proposed DiFT can preserve benefits350

and mitigate conflicts to achieve better diverse reasoning capabilities.351
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A Implementation Details460

Format and hyperparameters For all the SFT experiments (vanilla, mix-up, continual SFT), we461

adopt learning rate=2e-5, max length=2,048, batch size=256, warm-up ratio=0.03, weight decay=0.1,462

max gradient norm=1.0, and we employ DeepSpeed Zero2 for gradient interference convenience.463

In LoRA experiments, we adopt lora_rank=8, lora_alpha=32, target_modules=’all-linear’, learning464

rate=1e-4, and the rest hyperparameters are the same as the full-parameter SFT. All the hyperparam-465

eters are widely used in SFT practice, and with these hyperparameters, we can ensure that all the466

model training converges. Besides, we use the same seed (42) during the dataset shuffle to make the467

comparison fair.468

Computing cost The delta-scale row analysis experiments can be conducted on 1 NVIDIA A100469

GPU, each group in the analysis only consumes around 30GB CUDA memory for ≈900 seconds470

on 7B/8B models, and around 62GB for ≈1,200 seconds on the 14B model, indicating the cost of471

computing delta-scale rows is negligible compared to the naive LLM inference. During SFT, we472

employ 8-A100 servers (one server can conduct all experiments in this work) and employ fixed batch473

size and max length to utilize the GPU efficiently.474

Data For math and code reasoning, we select 20,000 training samples from math and code Infinity475

Instruction data [42], respectively, which consists of various math and code data as shown in Table A;476

for logic reasoning, we sample the same amount of data from LogiCoT [37]; as for Commonsense477

reasoning, we gather CommonsenseQA [38], CoS-e [43], OpenBookQA [44], SocialIQA [45],478

StrategyQA [46], WorldTree [47]. As introduced in Section 5.1, we collect training data from479

available and popular reasoning datasets, and we use the "query", "response" format for training.480

Table 4: The data composition details of Infinity-Instruct-7M after de-duplication, we sample our
math and code training data from all the math/code-related subsets.

Raw Dataset Numbers of Rows
glaiveai/glaive-code-assistant-v3 9,281
Replete-AI/code_bagel_hermes-2.5 386,649
m-a-p/CodeFeedback-Filtered-Instruction 60,735
bigcode/self-oss-instruct-sc2-exec-filter-50k 50,467
codefuse-ai/CodeExercise-Python-27k 27,159
nickrosh/Evol-Instruct-Code-80k-v1 43,354
jinaai/code_exercises 590958
TokenBender/code_instructions_122k_alpaca_style 23,130
iamtarun/python_code_instructions_18k_alpaca 2,581
Nan-Do/instructional_code-search-net-python 82,920
Safurai/Code-Instruct-700k 10,860
ajibawa-2023/Python-Code-23k-ShareGPT 2,297
jtatman/python-code-dataset-500k 88,632
m-a-p/Code-Feedback 79,513
TIGER-Lab/MathInstruct 329,254
microsoft/orca-math-word-problems-200k 398,168
MetaMathQa 690,138
teknium/Openhermes-2.5 855,478
google/flan 2,435,840
Selected subjective instructions 1,342,427
Summary 7,449,106

Evaluation Since the outputs of math, logic, and commonsense reasoning are either a number or an481

option, we use GSM8k [48], LogicQA2 [49], and CommonsenseQA [38] as evaluation benchmarks,482

respectively, and adopt the accuracy of 0-shot as a common metric. For code reasoning, we use the483

pass rate on CodeXGlue [50] to test whether the generated codes can pass. We employ the official 1484

as the base repo for evaluation, and the results fluctuations for the same benchmarks were of a limited485

1lm-evaluation-harness: https://github.com/huggingface/lm-evaluation-harness
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range, so we report their stable accuracy. We save and evaluate 3 checkpoints in each training process486

and take the best one for results report.487

B DiFT Algorithm488

Algorithm 1 Delta-Scale Analysis of Fine-tuned Language Models

Input: Base LLM Mbase, fine-tuned models M0
ft,M

1
ft, ...,M

K−1
ft , evaluation data

D0, D1, ..., DK−1, sample size N , top dimensions C
Output: Delta-scale row scores for each model and layer
for k = 0 to K − 1 do

Sample N data points from Dk: Sk ∼ Dk

Hk = Register forward hooks on linear layers of Mk
ft

Hbase = Register forward hooks on linear layers of Mbase

DSRk = {}
for x in Sk do
outk = Mk

ft(x)

outbase = Mbase(x)
for hk, hbase in (Hk, Hbase) do
hk.add_batch(inpk, outk)
hbase.add_batch(inpbase, outbase)
\\ compare the differences between Mk

ft and Mbase

hk.update(hbase.inp, hbase.out)
end for

end for
for h in Hk do

scaler_values = h.scaler_rows
top_indices = argsort(scaler_values)[-C:]
DSRk = DSRk ∪ {scaler_values[top_indices]}

end for
end for
return DSR1, DSR2, ..., DSRK

\\ Mix-up SFT
DSRunion = ∪K−1

k=0 DSRk

freeze parameter in M0 - DSRunion

fine-tune M0 on ∪K−1
k=0 Dk

\\ Continual SFT
for k = 1 to K do

DSRdiff = DSRk - (∪k−1
j=0 DSR_j)

freeze all parameters in Mk
ft except in DSR_diff

fine-tune Mk−1
ft on Dk to obtain Mk

ft

end for

C 14B LLM Experiments489

We also conduct DiFT experiments with Qwen2.5-14B, and the results are shown in Table C, the490

results illustrate that our method can facilitate multiple reasoning abilities, and the DiFT is even better491

for large-scale models, demonstrating not only the scalability of the DiFT but also the effectiveness492

of our delta-scale row analysis. Due to the hardware limitation, we cannot conduct experiments on493

32B or larger models (70/72B) for now, and we will validate our analysis and the proposed DiFT494

once we get enough computing devices.495
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Table 5: The mix-up and continual SFT results of Qwen2.5-14B-base with vanilla and DiFT on 4
benchmarks.

Model GSM8k xGLUE LogiQA2 CSQA ATA
Mix-Math-Code 85.52±0.31 1.4113±0.0062 43.51±0.27 84.28±0.31 78.04
+DiFT 86.43±0.40 1.4188±0.0077 44.15±0.34 84.68±0.26 78.69
Mix-Code-Logic 72.10±0.34 1.0592±0.0059 47.33±0.30 83.78±0.29 50.15
+DiFT 57.16±0.41 1.0925±0.0063 47.44±0.33 83.29±0.32 51.03
Mix-Logic-CSQA 54.06±0.37 1.0758±0.0020 40.01±0.27 86.65±0.35 63.33
+DiFT 67.78±0.42 1.0910±0.0025 41.38±0.22 87.81±0.32 64.60
Continual-Math-Code 71.42±0.43 1.1322±0.0043 44.53±0.36 82.56±0.28 64.02
+DiFT 79.00±0.38 1.1461±0.0040 44.40±0.34 83.46±0.30 68.15
Continual-Math-Logic 56.86±0.46 0.7387±0.0044 48.28±0.27 84.36±0.33 52.57
+DiFT 57.70±0.50 0.7620±0.0036 48.35±0.31 84.36±0.35 53.03
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Figure 4: Delta-scale rows of model.layer.24.mlp.gate_proj with distinct data samples on
Llama3-8B’s Math-only models.
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Figure 5: Delta-scale rows of model.layer.24.mlp.gate_proj with distinct data samples on
different reasoning Mistral-7B models.
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Figure 6: Delta-scale rows of model.layer.24.mlp.gate_proj with distinct data samples on
different reasoning Qwen2.5-14B models.
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(k) csqa rows (seed=43)
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Figure 7: Delta-scale rows of model.layer.14.self_attn.v_proj with distinct data samples on
different reasoning Llama3-8B models.
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D Reasoning Model Analysis496

We analyze the fine-tuned reasoning LLMs then check each task and the named parameters thoroughly,497

and eventually come up with the conclusion in Section 3. Here we display more named parameters’498

delta-scale rows visualization for reasoning tasks on their corresponding fine-tuned LLMs, including499

Llama3-8B, Mistral-7B, and Qwen2.5-14B to demonstrate the universal delta-scale rows pattern.500

Figure 4 display the delta-scale row distribution of Math-only with different sampled data subsets501

where we can see a more diverse delta-scale row distribution among distinct reasoning data, recon-502

firming the observation in Section 3.2. In each row of Figure 7, we can see that all sampled data503

from the same reasoning data display nearly the same distribution for delta-scale rows, as for its504

row-wise sub-figures, i.e., the influential parameters of each reasoning ability, the behaviors are rather505

inconsistent, leaving us a huge optimal space for multiple reasoning proficiencies gathering.506

In Mistral-7B and Qwen2.5-14B, the patterns are also like in Llama3-8B, we visualize the507

model.layer.24.mlp.gate for each reasoning data in Figures 5 and 6. We can observe that508

math and code abilities share a large proportion of common delta-scale rows, while others do not,509

such a phenomenon reminds us that the benefits and conflicts are entangled. Therefore, we can see510

the math and code performances of Mistral-7B and Qwen2.5-14B in Table 2 and Table C are in strong511

correlation, which can also align with the finding in Section 3.2.512

D.1 Existing reasoning ability conflicts and benefits within Instruct-LLMs513

As instruct-LLMs were trained on a huge amount of math data, the scaling-up training may trade-514

off a part of conflicts in math reasoning, unfortunately, we can’t validate it with that data scale.515

We evaluated the instruct-LLMs at first, and we found that Instruct-LLMs still have conflicts after516

massive post-training on millions of data, e.g., code/logic/csqa performances, shown in Table 6.517

Table 6: Inverse DiFT performance comparison on
Llama3-8B under mix-up and continual settings.

Model xGLUE LogiQA2 CSQA
Llama3-8B-Ins 1.2506 31.55 76.09
Llama3-8B-sft 1.2228 37.02 79.36
Qwen2.5-14B-Ins 1.4669 43.19 83.95
Qwen2.5-14B-sft 1.4194 46.25 87.55

It turns out SFT on base-LLMs with only 20k518

data can outperform Instruct-LLMs in specific519

reasoning tasks, demonstrating that Instruct-520

LLMs have been through exceptionally com-521

plicate reasoning benefits and conflicts, mak-522

ing them not suitable for our analysis. Mean-523

while, other task conflicts have happened in the524

above table, and experiments on Instruct-LLMs525

can bring extra irrelevant factors to our research, so we adopted base LLMs, but our analysis and526

methods are suitable for both base and instruct LLMs.527

D.2 Numbers of delta-scale rows528

No matter the analysis or the method section, the delta-scale rows are rather im-529

portant, from which we can identify the reasoning-related weights, intuitively, the530

more samples employed during model inference, the more comprehensive the location.531
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Figure 8: The effect of delta-scale row num-
bers on different reasoning models.

To figure out that, we try various numbers of delta-532

scale rows to freeze and conduct corresponding ab-533

lation studies. In Figure 8, we choose 20, 50, 100,534

and 200 as top numbers to locate the top delta-scale535

rows and then conduct mix-up and continual SFT,536

and inference on the GSM8k to evaluate the math537

ability. The results indicate that when it increases538

from 20 to 100, the math performance gradually gets539

better, however, it drops when we adopt the first 200540

rows, showing that the critical parameters for a task541

might be very limited.542

D.3 Compared to PEFT methods543

As we intended to locate the related parameters of544

different reasoning tasks, and then differentially train545

LLMs with the (almost) full-parameter SFT. Compared with PEFT methods like LoRA, we merely546
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Table 7: Results of LoRA and DiFT in mix-up and continual SFT.

Model GSM8k xGLUE LogiQA2 CSQA ATA
math 61.64 1.2228 30.73 67.24 –
+LoRA 56.71 1.1542 29.77 67.73 –
code 26.54 1.1203 35.05 70.93 –
+LoRA 20.02 1.0805 32.82 71.33 –
Mix-Math-Code 64.82 1.0956 34.54 68.22 59.80
+LoRA 62.62 1.0589 32.32 69.7 57.78
+DiFT 67.02 1.0735 32.63 68.39 60.35
Continual-Math-Code 44.35 0.9902 32.82 70.52 46.93
+LoRA 43.97 0.9565 34.03 71.09 45.90
+DiFT 46.32 1.0557 35.86 70.93 49.55

freeze the gradient backpropagation for the parameters of delta-scale rows, and the rest of the547

parameters are still fine-tuned. Therefore, DiFT does not reduce the fine-tuning time and memory548

usage compared to full fine-tuning. The cost of DiFT is higher than that of LoRA, which is the cost549

of computing delta-rows and the cost of fine-tuning the model with delta-rows. We can see that LoRA550

is not comparable with full SFT and underperforms the DiFT in most of the settings, and the results551

are consistent with our previous analysis. However, we notice that LoRA can forget less though it552

also learns less., which is quite interesting.553

Limitations554

Although our proposed delta-scale row analysis and the proposed DiFT have been demonstrated555

effective via extensive experiments, there is no proof to support it theoretically. Due to hardware556

limitations, we only conducted experiments on 7/8B and 14B LLMs in this paper, lacking validation557

on larger-scale (30B+) models that can be complementary. In contrast to the mix-up SFT, while558

the continual SFT can alleviate some conflicts between reasoning tasks, we cannot address the559

catastrophic forgetting, which is the main cause of the huge performance drop.560
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made in the paper.569
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NA answer to this question will not be perceived well by the reviewers.572
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2. Limitations577

Question: Does the paper discuss the limitations of the work performed by the authors?578

Answer: [Yes]579

Justification: We have discussed the limitations of this work in Section D.3 in the Appendix.580
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• The answer NA means that the paper has no limitation while the answer No means that582

the paper has limitations, but those are not discussed in the paper.583

• The authors are encouraged to create a separate "Limitations" section in their paper.584

• The paper should point out any strong assumptions and how robust the results are to585

violations of these assumptions (e.g., independence assumptions, noiseless settings,586

model well-specification, asymptotic approximations only holding locally). The authors587

should reflect on how these assumptions might be violated in practice and what the588

implications would be.589

• The authors should reflect on the scope of the claims made, e.g., if the approach was590

only tested on a few datasets or with a few runs. In general, empirical results often591
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• The authors should reflect on the factors that influence the performance of the approach.593

For example, a facial recognition algorithm may perform poorly when image resolution594

is low or images are taken in low lighting. Or a speech-to-text system might not be595

used reliably to provide closed captions for online lectures because it fails to handle596
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• The authors should discuss the computational efficiency of the proposed algorithms598

and how they scale with dataset size.599

• If applicable, the authors should discuss possible limitations of their approach to600

address problems of privacy and fairness.601

• While the authors might fear that complete honesty about limitations might be used by602

reviewers as grounds for rejection, a worse outcome might be that reviewers discover603

limitations that aren’t acknowledged in the paper. The authors should use their best604

judgment and recognize that individual actions in favor of transparency play an impor-605

tant role in developing norms that preserve the integrity of the community. Reviewers606

will be specifically instructed to not penalize honesty concerning limitations.607

3. Theory assumptions and proofs608

Question: For each theoretical result, does the paper provide the full set of assumptions and609

a complete (and correct) proof?610

Answer: [NA]611
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Justification: There is no theoretical proof in this paper, only some definitions and computa-612

tions.613

Guidelines:614

• The answer NA means that the paper does not include theoretical results.615

• All the theorems, formulas, and proofs in the paper should be numbered and cross-616

referenced.617

• All assumptions should be clearly stated or referenced in the statement of any theorems.618

• The proofs can either appear in the main paper or the supplemental material, but if619

they appear in the supplemental material, the authors are encouraged to provide a short620

proof sketch to provide intuition.621

• Inversely, any informal proof provided in the core of the paper should be complemented622

by formal proofs provided in appendix or supplemental material.623

• Theorems and Lemmas that the proof relies upon should be properly referenced.624

4. Experimental result reproducibility625

Question: Does the paper fully disclose all the information needed to reproduce the main ex-626

perimental results of the paper to the extent that it affects the main claims and/or conclusions627

of the paper (regardless of whether the code and data are provided or not)?628

Answer: [Yes]629

Justification: All the analysis method and proposed strategies of this paper can be reproduced630

given the descriptions in Sections 3, 4 and 5 in the main body, also in the Appendix631

Sections A and B.632

Guidelines:633

• The answer NA means that the paper does not include experiments.634

• If the paper includes experiments, a No answer to this question will not be perceived635

well by the reviewers: Making the paper reproducible is important, regardless of636

whether the code and data are provided or not.637

• If the contribution is a dataset and/or model, the authors should describe the steps taken638

to make their results reproducible or verifiable.639

• Depending on the contribution, reproducibility can be accomplished in various ways.640

For example, if the contribution is a novel architecture, describing the architecture fully641

might suffice, or if the contribution is a specific model and empirical evaluation, it may642

be necessary to either make it possible for others to replicate the model with the same643

dataset, or provide access to the model. In general. releasing code and data is often644

one good way to accomplish this, but reproducibility can also be provided via detailed645

instructions for how to replicate the results, access to a hosted model (e.g., in the case646

of a large language model), releasing of a model checkpoint, or other means that are647

appropriate to the research performed.648

• While NeurIPS does not require releasing code, the conference does require all submis-649

sions to provide some reasonable avenue for reproducibility, which may depend on the650

nature of the contribution. For example651

(a) If the contribution is primarily a new algorithm, the paper should make it clear how652

to reproduce that algorithm.653

(b) If the contribution is primarily a new model architecture, the paper should describe654

the architecture clearly and fully.655

(c) If the contribution is a new model (e.g., a large language model), then there should656

either be a way to access this model for reproducing the results or a way to reproduce657

the model (e.g., with an open-source dataset or instructions for how to construct658

the dataset).659

(d) We recognize that reproducibility may be tricky in some cases, in which case660

authors are welcome to describe the particular way they provide for reproducibility.661

In the case of closed-source models, it may be that access to the model is limited in662

some way (e.g., to registered users), but it should be possible for other researchers663

to have some path to reproducing or verifying the results.664

5. Open access to data and code665
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Question: Does the paper provide open access to the data and code, with sufficient instruc-666

tions to faithfully reproduce the main experimental results, as described in supplemental667

material?668

Answer: [Yes]669

Justification: We submitted the necessary analysis codes and SFT codes, along with the670

training data for reproducing this work.671
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• The instructions should contain the exact command and environment needed to run to680

reproduce the results. See the NeurIPS code and data submission guidelines (https:681
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• The authors should provide instructions on data access and preparation, including how683

to access the raw data, preprocessed data, intermediate data, and generated data, etc.684

• The authors should provide scripts to reproduce all experimental results for the new685

proposed method and baselines. If only a subset of experiments are reproducible, they686

should state which ones are omitted from the script and why.687

• At submission time, to preserve anonymity, the authors should release anonymized688

versions (if applicable).689

• Providing as much information as possible in supplemental material (appended to the690

paper) is recommended, but including URLs to data and code is permitted.691

6. Experimental setting/details692

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-693

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the694

results?695

Answer: [Yes]696

Justification: We have put the experimental details in Section 5 of the main body and697

Section A of the Appendix.698
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• The answer NA means that the paper does not include experiments.700

• The experimental setting should be presented in the core of the paper to a level of detail701

that is necessary to appreciate the results and make sense of them.702

• The full details can be provided either with the code, in appendix, or as supplemental703

material.704

7. Experiment statistical significance705

Question: Does the paper report error bars suitably and correctly defined or other appropriate706

information about the statistical significance of the experiments?707

Answer: [No]708

Justification: Our evaluation experiments were conducted with an out-of-the-box evaluation709

repository, although the original results were output with fluctuating intervals, we reported710
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with statistical intervals on Qwen2.5-14B in Section C in the Appendix.713
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• The answer NA means that the paper does not include experiments.715

• The authors should answer "Yes" if the results are accompanied by error bars, confi-716

dence intervals, or statistical significance tests, at least for the experiments that support717

the main claims of the paper.718
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• The factors of variability that the error bars are capturing should be clearly stated (for719

example, train/test split, initialization, random drawing of some parameter, or overall720

run with given experimental conditions).721

• The method for calculating the error bars should be explained (closed form formula,722

call to a library function, bootstrap, etc.)723

• The assumptions made should be given (e.g., Normally distributed errors).724

• It should be clear whether the error bar is the standard deviation or the standard error725

of the mean.726

• It is OK to report 1-sigma error bars, but one should state it. The authors should727

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis728

of Normality of errors is not verified.729

• For asymmetric distributions, the authors should be careful not to show in tables or730

figures symmetric error bars that would yield results that are out of range (e.g. negative731

error rates).732

• If error bars are reported in tables or plots, The authors should explain in the text how733

they were calculated and reference the corresponding figures or tables in the text.734

8. Experiments compute resources735

Question: For each experiment, does the paper provide sufficient information on the com-736

puter resources (type of compute workers, memory, time of execution) needed to reproduce737

the experiments?738

Answer: [Yes]739

Justification: We introduce the analysis computing requirements in the main body and the740

hardware information in Section A of the Appendix.741

Guidelines:742

• The answer NA means that the paper does not include experiments.743

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,744

or cloud provider, including relevant memory and storage.745

• The paper should provide the amount of compute required for each of the individual746

experimental runs as well as estimate the total compute.747

• The paper should disclose whether the full research project required more compute748

than the experiments reported in the paper (e.g., preliminary or failed experiments that749

didn’t make it into the paper).750

9. Code of ethics751

Question: Does the research conducted in the paper conform, in every respect, with the752

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?753

Answer: [Yes]754

Justification: We can ensure that this research conducted in the paper conforms in every755

respect with the NeurIPS Code of Ethics.756

Guidelines:757

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.758

• If the authors answer No, they should explain the special circumstances that require a759

deviation from the Code of Ethics.760

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-761

eration due to laws or regulations in their jurisdiction).762

10. Broader impacts763

Question: Does the paper discuss both potential positive societal impacts and negative764

societal impacts of the work performed?765

Answer: [NA]766

Justification: There is no societal impact of the work performed.767

Guidelines:768

• The answer NA means that there is no societal impact of the work performed.769
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• If the authors answer NA or No, they should explain why their work has no societal770

impact or why the paper does not address societal impact.771

• Examples of negative societal impacts include potential malicious or unintended uses772

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations773

(e.g., deployment of technologies that could make decisions that unfairly impact specific774

groups), privacy considerations, and security considerations.775

• The conference expects that many papers will be foundational research and not tied776

to particular applications, let alone deployments. However, if there is a direct path to777

any negative applications, the authors should point it out. For example, it is legitimate778

to point out that an improvement in the quality of generative models could be used to779

generate deepfakes for disinformation. On the other hand, it is not needed to point out780

that a generic algorithm for optimizing neural networks could enable people to train781

models that generate Deepfakes faster.782

• The authors should consider possible harms that could arise when the technology is783

being used as intended and functioning correctly, harms that could arise when the784

technology is being used as intended but gives incorrect results, and harms following785

from (intentional or unintentional) misuse of the technology.786

• If there are negative societal impacts, the authors could also discuss possible mitigation787

strategies (e.g., gated release of models, providing defenses in addition to attacks,788

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from789

feedback over time, improving the efficiency and accessibility of ML).790

11. Safeguards791

Question: Does the paper describe safeguards that have been put in place for responsible792

release of data or models that have a high risk for misuse (e.g., pretrained language models,793

image generators, or scraped datasets)?794

Answer: [NA]795

Justification: This paper poses no such risks.796

Guidelines:797

• The answer NA means that the paper poses no such risks.798

• Released models that have a high risk for misuse or dual-use should be released with799

necessary safeguards to allow for controlled use of the model, for example by requiring800

that users adhere to usage guidelines or restrictions to access the model or implementing801

safety filters.802

• Datasets that have been scraped from the Internet could pose safety risks. The authors803

should describe how they avoided releasing unsafe images.804

• We recognize that providing effective safeguards is challenging, and many papers do805

not require this, but we encourage authors to take this into account and make a best806

faith effort.807

12. Licenses for existing assets808

Question: Are the creators or original owners of assets (e.g., code, data, models), used in809

the paper, properly credited and are the license and terms of use explicitly mentioned and810

properly respected?811

Answer: [Yes]812

Justification: All assets we employed in this paper conform to the corresponding licenses.813

Guidelines:814

• The answer NA means that the paper does not use existing assets.815

• The authors should cite the original paper that produced the code package or dataset.816

• The authors should state which version of the asset is used and, if possible, include a817

URL.818

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.819

• For scraped data from a particular source (e.g., website), the copyright and terms of820

service of that source should be provided.821
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• If assets are released, the license, copyright information, and terms of use in the822

package should be provided. For popular datasets, paperswithcode.com/datasets823

has curated licenses for some datasets. Their licensing guide can help determine the824

license of a dataset.825

• For existing datasets that are re-packaged, both the original license and the license of826

the derived asset (if it has changed) should be provided.827

• If this information is not available online, the authors are encouraged to reach out to828

the asset’s creators.829

13. New assets830

Question: Are new assets introduced in the paper well documented and is the documentation831

provided alongside the assets?832

Answer: [NA]833

Justification: This paper does not release new assets.834

Guidelines:835

• The answer NA means that the paper does not release new assets.836

• Researchers should communicate the details of the dataset/code/model as part of their837

submissions via structured templates. This includes details about training, license,838

limitations, etc.839

• The paper should discuss whether and how consent was obtained from people whose840

asset is used.841

• At submission time, remember to anonymize your assets (if applicable). You can either842

create an anonymized URL or include an anonymized zip file.843

14. Crowdsourcing and research with human subjects844

Question: For crowdsourcing experiments and research with human subjects, does the paper845

include the full text of instructions given to participants and screenshots, if applicable, as846

well as details about compensation (if any)?847

Answer: [NA]848

Justification: This paper does not involve crowdsourcing or research with human subjects.849

Guidelines:850

• The answer NA means that the paper does not involve crowdsourcing nor research with851

human subjects.852

• Including this information in the supplemental material is fine, but if the main contribu-853

tion of the paper involves human subjects, then as much detail as possible should be854

included in the main paper.855

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,856

or other labor should be paid at least the minimum wage in the country of the data857

collector.858

15. Institutional review board (IRB) approvals or equivalent for research with human859

subjects860

Question: Does the paper describe potential risks incurred by study participants, whether861

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)862

approvals (or an equivalent approval/review based on the requirements of your country or863

institution) were obtained?864

Answer: [NA]865

Justification: This paper does not involve crowdsourcing or research with human subjects.866

Guidelines:867

• The answer NA means that the paper does not involve crowdsourcing nor research with868

human subjects.869

• Depending on the country in which research is conducted, IRB approval (or equivalent)870

may be required for any human subjects research. If you obtained IRB approval, you871

should clearly state this in the paper.872
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• We recognize that the procedures for this may vary significantly between institutions873

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the874

guidelines for their institution.875

• For initial submissions, do not include any information that would break anonymity (if876

applicable), such as the institution conducting the review.877

16. Declaration of LLM usage878

Question: Does the paper describe the usage of LLMs if it is an important, original, or879

non-standard component of the core methods in this research? Note that if the LLM is used880

only for writing, editing, or formatting purposes and does not impact the core methodology,881

scientific rigorousness, or originality of the research, declaration is not required.882

Answer: [NA]883

Justification: Although our research objects are LLMs, the core method development in this884

research does not involve LLMs as any important, original, or non-standard components.885

Guidelines:886

• The answer NA means that the core method development in this research does not887

involve LLMs as any important, original, or non-standard components.888

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)889

for what should or should not be described.890
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