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ABSTRACT

Adaptive Retrieval-Augmented Generation (RAG) is an effective strategy to alle-
viate hallucination of large language models (LLMs). It dynamically determines
whether LLMs need external knowledge for generation and invokes retrieval ac-
cordingly. This paper introduces Self-aware Knowledge Retrieval (SEAKR), a
novel adaptive RAG model that extracts self-aware uncertainty of LLMs from
their internal states. SEAKR activates retrieval when the LLMs present high self-
aware uncertainty for generation. To effectively integrate retrieved knowledge
snippets, SEAKR re-ranks them based on LLM’s self-aware uncertainty to pre-
serve the snippet that reduces their uncertainty to the utmost. To facilitate solving
complex tasks that require multiple retrievals, SEAKR utilizes their self-aware un-
certainty to choose among different reasoning strategies. Our experiments on both
complex and simple Question Answering datasets show that SEAKR outperforms
existing adaptive RAG methods.

1 INTRODUCTION

In which city was the computer scientist Michael 
Jordan born?

Posed Question

Internal State

I don’t need retrieval.
The answer is Pittsburgh.

1) When to Retrieve

Previous Ours
I  need retrieval.

Low self-aware
uncertainty

2) How to Integrate

Self-aware
Reranking

Self-aware
Reasoning

Michael Jordan is a scientist, professor at
the University of California, Berkeley …

Michael Jordan, also known as MJ, is an
former professional basketball player …

Maryland

San Diego

Invoke Retrieval

Figure 1: Adaptive RAG mainly concerns 1)
when to retrieve and 2) how to integrate retrieved
knowledge.

Retrieval-Augmented Generation (RAG, Lewis
et al., 2020; Gao et al., 2023) retrieves and in-
tegrates external knowledge into the context of
large language models (LLMs, Achiam et al.,
2023; Touvron et al., 2023; Meta, 2024). RAG
represents a promising strategy to combat the
issue of hallucination Trivedi et al. (2022); Yao
et al. (2022); Ji et al. (2023); Cao et al. (2023)—
where LLMs produce factually incorrect an-
swers camouflaged as correct ones—primarily
caused by queries that exceed the limited para-
metric knowledge boundaries Yin et al. (2024)
of LLMs.

Most existing RAG methods retrieve knowl-
edge for every input query by default. How-
ever, due to the noisy nature of the data stor-
age, retrieved knowledge can be misleading or
even conflicting when the LLM can extract the
correct answer from its own parametric knowl-
edge Mallen et al. (2022); Xie et al. (2023); Liu
et al. (2024). Conducting retrieval for every
generation is both inefficient and unnecessary.
Adaptive retrieval strategy Jiang et al. (2023); Su et al. (2024); Wang et al. (2023; 2024) is hence
proposed to dynamically determine whether LLMs require external knowledge and then invoke the
retrieval step accordingly.

Adaptive RAG needs to consider two major factors: 1) When to retrieve knowledge and 2) How to
integrate retrieved knowledge. Recent studies Kadavath et al. (2022); Zhu et al. (2023) show that
LLMs are aware of their uncertainty for the generated content and this uncertainty can be discerned
from their internal states Chen et al. (2023a); Zhang et al. (2024). We argue that this self-aware
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nature of LLMs can be utilized to determine when retrieval is needed and help with knowledge in-
tegration. Motivated by this, we propose SElf-Aware Knowledge Retrieval (SEAKR) for adaptive
RAG. To the best of our knowledge, SEAKR is the first to leverage self-awareness from the inter-
nal states of LLMs to dynamically determine when to retrieve and effectively integrate retrieved
knowledge.

To decide when to retrieve, existing adaptive RAG Wang et al. (2024); Jiang et al. (2023); Su et al.
(2024) judges the knowledge sufficiency of LLMs solely based on their outputs, which is prone to
ubiquitous self-bias of LLMs Xu et al. (2024). In contrast, SEAKR initiates retrieval self-aware
uncertainty from the internal states of LLMs, which more accurately determines the knowledge
demand. To be specific, the self-aware uncertainty of LLMs is extracted from the internal states
in the feed-forward network (FFN) of each layer corresponding to the last generated token. The
consistency measure across multiple generations to the same prompt is computed as the self-aware
uncertainty score of LLMs, subsequently used for the retrieval decision and knowledge integration.

To effectively integrate retrieved knowledge into the generation process, which is largely neglected
by previous adaptive RAG methods, SEAKR designs two adaptive integration strategies based on
the LLM self-awareness: 1) Self-aware re-ranking. SEAKR asks the LLM to read multiple recalled
snippets and selects the knowledge that reduces most of its uncertainty as the augmented context.
2) Self-aware reasoning. SEAKR supports iterative knowledge retrieval to gather multiple knowl-
edge for answering complex questions. With multiple retrieved knowledge, SEAKR integrates dif-
ferent reasoning strategies, including direct generation and comprehensive reasoning, to digest the
knowledge. It then selects the strategy that produces the least generation uncertainty.

We conduct experiments on complex question-answering (QA) and simple QA tasks. We find
that SEAKR brings substantial improvement over existing adaptive RAG methods on complex QA
benchmarks. Our ablation study shows that dynamically integrating retrieved knowledge brings
even more performance gain than self-aware retrieval, further highlighting the necessity of dynami-
cal integration for adaptive RAG.

2 RELATED WORK

We formally define and introduce works related to SEAKR, including retrieval augmented genera-
tion and analyzing LLMs through their internal states.

2.1 RETRIEVAL AUGMENTED GENERATION

Retrieval augmented generation (RAG) system typically comprises a search engine for knowledge
retrieval and a Large Language Model (LLM) for answer generation Khandelwal et al. (2019); Guu
et al. (2020); Lewis et al. (2020); Borgeaud et al. (2022); Ram et al. (2023); Shi et al. (2023). Given
a user-posed question, RAG first searches for relevant knowledge snippets using the search engine
and then generates the answer via machine reading comprehension Chen et al. (2017).

Adaptive retrieval augmented generation dynamically determines whether LLMs require re-
trieved knowledge, thereby reducing the adverse effect of inaccurately retrieved information.
FLARE Jiang et al. (2023) and DRAGIN Su et al. (2024) activate the search engine when LLMs
output tokens with low probability. Self-RAG Asai et al. (2023) and Wang et al. (2024) prompt
LLMs to decide on retrieval. Self-knowledge guided generation Wang et al. (2023) trains a classifi-
cation model to judge the factuality of model generation.

Existing adaptive RAG methods mainly face two challenges. 1) To decide when to retrieve, it is
superficial to have the decision of retrieval solely on the output of LLM. However, the retrieval
decision made by LLMs is still at risk of hallucination, which potentially does not reliably indi-
cate the actual knowledge sufficiency Yona et al. (2024). Furthermore, LLMs have the tendency
to confidently produce incorrect contents even when correct knowledge is missing from their pa-
rameters Huang et al. (2023); Xu et al. (2024). 2) To integrate retrieved knowledge, these attempts
rely on the correctness of search engine returned knowledge, neglecting to re-rank multiple retrieved
knowledge and optimize the reasoning paths.

Retrieval augmented reasoning integrates the reasoning capabilities of LLMs into the RAG frame-
work to solve complex questions. IRCoT Trivedi et al. (2022) implements retrieval augmentation

2
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Figure 2: The overall framework of SEAKR.

within multi-step chain-of-thought (CoT, Wei et al., 2022) reasoning processes, which is adopted by
many following works Su et al. (2024); Jeong et al. (2024). ProbTree Cao et al. (2023) decomposes
complex questions into sub-questions, which are solved using RAG before being aggregated into the
final answer.

2.2 SELF-AWARENESS IN INTERNAL STATES OF LLMS

Most of the mainstream LLMs are stacks of Transformer Vaswani et al. (2017) decoders. To predict
the next token, without losing generality, the ith layer processes the hidden representation H(l−1)

from its previous layer according to the formula: H(l) = FFN
(
Attn

(
H(l−1)

))
, where Attn(·)

denotes attention sub-layer, FFN(·) is the feed-forward sub-layer.

Many works Meng et al. (2022); Li et al. (2022); Gurnee & Tegmark (2023); Zou et al. (2023)
show that the hidden representations H(l) entail non-trivial information about the internal states
of LLMs. These internal states are capable of being used to detect hallucinated generations from
LLMs. One direct way is to train a factuality classifier with internal states as input Kadavath et al.
(2022); Azaria & Mitchell (2023); Chen et al. (2023b); Zhang et al. (2024). Non-factual generation
can also be detected as uncertainty of LLMs by internal state level consistency measuring among
multiple generations Chen et al. (2023a).

These works potentially pave the way for improving adaptive RAG via examining the self-awareness
from internal states. Since model decoding breaks down continuous internal states into discrete to-
kens, information loss during this process is inevitable. Compared with output-level self-awareness
detection, internal states-level detection is more substantial and therefore better suited for adaptive
RAG.

3 SELF-AWARE KNOWLEDGE RETRIEVAL

As shown in Figure 2, SEAKR has three key components. 1) a search engine S(·), which returns
ranked knowledge snippets according to the relevance to its input search query qry. 2) a large
language model, denoted as LLM(c), which takes a context c as input, outputs a continuation to the
context. Most importantly, (3) a self-aware uncertainty estimator U(c), to quantify the uncertainty
level of LLM to generate for input context c.

For each input natural language question q, SEAKR adopts a Chain-of-Thought (CoT) Wei et al.
(2022) style iterative reasoning strategy. It maintains two buffers to collect retrieved knowledge
K = {ki} and generated rationales R = {ri} during the iteration. During the ith iteration, SEAKR
generates a rationale ri, before which it dynamically determines whether to augment the generation
with external knowledge, i.e., self-aware retrieval (§3.1). If SEAKR decides to invoke retrieval, it
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adaptively selects knowledge ki with self-aware re-ranking (§3.2). Finally, SEAKR integrates all
previously gathered information, including K and R, into the final answer, with self-aware reasoning
(§3.3). At each stage, SEAKR utilizes the self-aware uncertainty estimator to measure the LLM
uncertainty level from its internal states (§3.4).

3.1 SELF-AWARE RETRIEVAL

Self-aware retrieval relies on the self-aware uncertainty estimator U(·) to decide whether to use
retrieved knowledge for rationale generation. In the following, we introduce our design to organize
the input context, to generate the search query, and to generate the rationale.

Input Context. We first prepare the input context to prompt LLMs to generate one step of rationale
without retrieval, and use U(·) to examine whether the LLM is uncertain so as to invoke retrieval
accordingly. We organize q and historical rationales R into the input context cr using the following
prompt template, we show details of the prompting template in Appendix D.1:

[In-Context Learning Examples] Rationale [r1] Rationale [r2]
Rationale ...... For question: [q] The Next Rationale is:

Here, placeholders are denoted in square brackets. Retrieval is triggered if the self-aware uncertainty
exceeds an empirical threshold U(cr) > δ.

Query Generation. To generate a query for the search engine, the LLM performs a pseudo-
generation: rs = LLM(cr). Tokens in r indicating high uncertainty due to their low probability
are identified and removed from the pseudo-generated rationale to form the search query Jiang et al.
(2023). We expect the retrieved knowledge to contain information that directly provides information
to fill in the uncertain tokens in rs.

Rationale Generation. Finally, SEAKR generates rationale to proceed on answering the question
q. If retrieval is invoked, then knowledge snippets k are added to the current input context cr.
Otherwise, the input context remains unchanged. The generated rationale r = LLM(c) is then
appended to the rationale buffer.

3.2 SELF-AWARE RE-RANKING

Traditional RAG ranks the retrieved knowledge according to its relevance to the posed query. This
approach overlooks how the retrieved knowledge aligns with the intrinsic knowledge of LLMs, po-
tentially leading to performance degradation when the retrieved information contradicts the model’s
internal knowledge. Unlike existing methods, SEAKR prioritizes the utility of the retrieved knowl-
edge in reducing the LLM’s self-aware uncertainty. It selects the knowledge that most effectively
reduces the LLM’s uncertainty.

Specifically, SEAKR allows the search engine to retrieve multiple knowledge pieces. We preserve
the top N results and organize them along with previously generated rationales using the following
template (Detailed in Appendix D.2):

[In-Context Learning Examples] Rationale [r1] Rationale ......
Knowledge Evidence: [k] For question: [q] The Next Rationale is:

As the search engine recalls top N different knowledge snippets, SEAKR creates N input contexts
and evaluates their corresponding self-aware uncertainty from the LLM. The knowledge piece with
the least uncertainty evaluated by U(·) is selected.

3.3 SELF-AWARE REASONING

The retrieval process within the SEAKR system halts under two conditions: 1) the LLM signals the
end of generation with a prefatory statement, “So the final answer is”, terminating the iteration; 2)
the retrieval activity reaches the maximum limit.

To effectively synthesize all previously retrieved knowledge, SEAKR employs two distinct rea-
soning strategies: 1) Reasoning with generated rationales R. This approach prompts the LLM to
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directly generate the final answer. It puts the instruction “So the final answer is” right after the last
generated rationale. 2) Reasoning with retrieved knowledge K. This strategy involves concatenating
all re-ranked retrieved knowledge, which is then prepended to the question to serve as a reference
context. SEAKR then requires the LLM to engage in CoT reasoning based on this augmented textual
context. We show detailed prompting templates in Appendix D.3. The final answer is generated us-
ing the strategy that promotes the lowest level of uncertainty evaluated by U(·) between the answers
generated with these two strategies.

3.4 SELF-AWARE UNCERTAINTY ESTIMATOR

For input context c = ⟨IN⟩1 · · · ⟨IN⟩n with n tokens, LLM works as a probabilistic distribution
conditioned on the input context. To generate, it outputs o with m tokens ending with an ⟨EOS⟩
token: LLM(c) = ⟨OUT⟩1 · · · ⟨OUT⟩m⟨EOS⟩. We aim to extract how certain LLMs are that o is a
correct continuation for c. To this end, we follow INSIDE Chen et al. (2023a) and measure the
uncertainty in the hidden space of the ⟨EOS⟩ token.

Specifically, for an input context c, we first sample generation and preserve the hidden representation
for its ⟨EOS⟩ token, denoted as H

(l)
⟨EOS⟩. As ⟨EOS⟩ attends to all previous tokens, it compresses

information on both the output and the input. Then, we treat H(l)
⟨EOS⟩ as a random variable, and sample

k different generations from the LLM for the same input context, whose H
(l)
⟨EOS⟩ are subsequently

used to compute their Gram matrix Horn & Johnson (2012), which measures the correlation among
each pair of representations. Finally, the uncertainty of the LLM is evaluated as the determinant of
the regularized Gram matrix, a score of the consistency among a set of representations.

SEAKR uses the regularized Gram determinant as the self-aware uncertainty score for two reasons.
1) Pre-trained LLMs are proved to be well-calibrated probabilistic models, which behave less con-
sistently when producing incorrect contents Kadavath et al. (2022); Zhu et al. (2023). 2) The Gram
determinant examines the consistency on the internal state level, free from the influence of natural
language where the same semantics can be expressed differently Qi et al. (2022).

4 EXPERIMENTS

In this section, we conduct experiments to compare SEAKR with baseline RAG methods that are
commonly used on question answering (QA) tasks.

4.1 EXPERIMENT SETUP

We introduce the benchmark datasets used in the experiments and the baseline methods. We also
describe key implementation details for SEAKR.

4.1.1 BENCHMARK DATASETS

We use knowledge-intensive QA tasks, including both complex QA and simple QA.

Complex QA requires the model to perform multi-hop reasoning to answer the questions. Each
question also needs multiple supporting knowledge. Specifically, for complex QA tasks, we test
on 2WikiMultiHopQA (2Wiki, Ho et al., 2020), HotpotQA (HPQA, Yang et al., 2018), and the
answerable subset of IIRC Ferguson et al. (2020).

Simple QA does not require multi-hop reasoning. These questions focus more on evaluating ac-
curate knowledge acquisition. We use NaturalQuestions (NQ Kwiatkowski et al., 2019), TriviaQA
(Joshi et al., 2017), and SQuAD (Rajpurkar et al., 2016) in the experiments.

We use them in the open-domain QA setting, where documents for machine reading comprehension
are discarded. For dataset splitting, SEAKR is tuning-free and thus does not need a training set. We
use a sampled subset from NQ’s training split to search for hyper-parameters, which are adopted by
all other datasets. We follow IRCoT Trivedi et al. (2022) to use their official development set and
DPR Karpukhin et al. (2020) for simple QA.
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4.1.2 BASELINES

We mainly compare SEAKR with representative RAG models, which include:

Non-adaptive RAG-based methods. • Chain-of-Thought (CoT) Wei et al. (2022) prompts an
LLM to answer questions with multi-step explanations. We implement CoT with similar prompts as
SEAKR by removing the retrieval-related instructions. • IRCoT Trivedi et al. (2022) interweaves
CoT reasoning with retrieval augmented generation strategy. IRCoT retrieves for every reasoning
step by default and integrates the top-ranked knowledge.

Adaptive RAG-based methods. • Self-RAG Asai et al. (2023) fine-tunes the LLM to generate a spe-
cial token to indicate whether they need retrieval. The LLM is also trained to criticize the retrieved
knowledge. The training data is generated by GPT-4 Achiam et al. (2023) with seed questions from
NaturalQuestions Kwiatkowski et al. (2019). • FLARE Jiang et al. (2023) triggers retrieval when
the LLM generates tokens with low probability. If so, it retrieves knowledge and regenerates the
answer. The original FLARE does not support complex QA. We re-implement FLARE with IRCoT
strategy to support evaluation on complex QA. • DRAGIN Su et al. (2024) decides to retrieve when
low-probability tokens are generated and reformulates the query based on attention weights.

4.1.3 IMPLEMENTATION AND VARIABLE CONTROL

To implement SEAKR, we use LLaMA-2-chat with 7 billion parameters as the backbone LLM. The
search engine is implemented with BM25 Robertson et al. (2009) algorithm using Elastic Search.
Following DRAGIN Su et al. (2024), we use the English version Wikipedia dumped on December
20, 2018 as the external knowledge source. For simple QA, which does not require multiple knowl-
edge evidence, we constrain the search time to 1. These choices and constraints are also applied to
all our baseline methods for fair comparison.

For hyper-parameters, we empirically set the number of knowledge recalled by the search engine to
N = 3. We sample the hidden representation for ⟨EOS⟩ for k = 20 times, and implement with vLLM
Kwon et al. (2023) for parallel inference. The self-aware uncertainty threshold δ is searched on with
the development set. We 10 examples for in-context learning. The internal states are extracted from
the middle layer of the LLM, i.e., l = L

2 , where L is the total layer number.

4.2 EXPERIMENT RESULTS

We conduct experiments and report the results in F1 measure and exact match (EM) score.

4.2.1 RESULTS ON COMPLEX QA

Table 1: Experiment results on complex QA
datasets. Shown in percentage (%).

Models 2Wiki HPQA IIRC

EM F1 EM F1 EM F1

CoT 14.6 22.3 18.4 27.5 13.9 17.3
IR-CoT 18.9 26.5 21.4 30.4 17.8 21.6

Self-RAG 4.6 19.6 6.8 17.5 0.9 5.7
FLARE 14.3 21.3 14.9 22.1 13.6 16.4
DRAGIN 22.4 30.0 23.7 34.2 19.1 22.9

SEAKR 30.2 36.0 27.9 39.7 19.5 23.5

Table 1 shows experiment results on complex
QA tasks. SEAKR achieves 36.0%, 39.7%,
and 23.5% F1 scores on 2WikiMultiHop, Hot-
potQA, and IIRC, which outperforms the best
baselines by 6.0%, 5.5%, and 0.6%, respec-
tively. These results indicate that self-aware
knowledge retrieval strategy is beneficial for
solving complex questions. It is worth noting
that IIRC is especially challenging as it requires
many numerical reasoning steps, which is ex-
tremely difficult for LLMs with 7B parameters.
As SEAKR does not optimize the numerical
reasoning capability, the performance gain on
IIRC is less obvious than on 2Wiki and HPQA.

For detailed analysis, we can see from the table
that CoT reasoning, even without retrieval augmentation, can still solve a non-trivial amount of
complex questions, reaching even 22.3%, 27.5%, and 17.3% F1 measures on the three datasets.
This owns to questions that fully fall into the knowledge boundary of existing language models. As
CoT utilizes similar reasoning prompts as SEAKR, with differences only in their retrieval-related
instructions, the performance gap between CoT and SEAKR mainly lies in SEAKR’s awareness of

6
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its knowledge insufficiency to answer the question. At the opposite extreme, IRCoT retrieves in
every reasoning step, also lagging behind SEAKR. This observation testifies to our hypothesis that
adaptively determining when to retrieve is necessary.

Compared with the only fine-tuning based adaptive RAG method—Self-RAG, we can see that Self-
RAG achieves less satisfactory results. This is mainly caused by the distribution of its fine-tuning
data, which is generated by GPT-4 Achiam et al. (2023) with demonstrations from NaturalQuestions,
a simple QA dataset. The distribution shift from simple QA to complex QA largely undermines
LLMs’ capacity to perform self-aware RAG. In contrast, SEAKR, as a tuning-free adaptive RAG
method, achieves even better results. This shows that by exploring the intrinsic self-awareness of
LLMs better generalizes to different QA tasks.

SEAKR outperforms FLARE and DRAGIN by a large margin. The most salient differences between
SEAKR and FLARE / DRAGIN are two folds: 1) SEAKR determines the retrieval via self-aware
uncertainty, while FLARE and DRAGIN superficially rely on output probability; 2) SEAKR is
augmented with adaptive integration strategies, i.e., self-aware re-ranking and self-aware reasoning,
while FLARE and DRAGIN neglect this part. This performance gain is mainly due to these two
improvements. We will conduct ablation study (§5.1) and case study (§5.4) to verify these reasons.

4.2.2 RESULTS ON SIMPLE QA

Table 2: Experiment results on simple QA
datasets in percentage (%). Self-Rag is fine-tuned
from LLaMA-2-chat (7B) with NQ style data. IR-
CoT is not included as Simple QA do not require
multiple retrieval.

Model NQ TriviaQA SQuAD

EM F1 EM F1 EM F1

CoT 13.4 18.7 42.6 48.6 8.7 13.6

Self-RAG 32.3 40.2 21.2 37.9 5.1 18.3
FLARE 25.3 35.9 51.5 60.3 19.4 28.3
DRAGIN 23.2 33.2 54.0 62.3 18.7 28.7

SEAKR 25.6 35.5 54.4 63.1 27.1 36.5

Table 2 shows results on simple QA tasks.
SEAKR achieves the best performance among
baselines on TriviaQA and SQuAD, at 63.1%
and 36.5% F1 measure, On NaturalQuestions,
SEAKR demonstrates comparable performance
with tuning-free baseline FLARE, while lag-
ging behind Self-RAG, which is fine-tuned to
determine when to retrieve on GPT-4 generated
NaturalQuestions-style data. The experiment
results show that SEAKR is effective for ques-
tions that do not require reasoning.

We note that the performance gap between
SEAKR and baselines in simple QA is less ob-
vious than in complex QA datasets, especially
on NQ and TriviaQA. This is because knowl-
edge integration for simple questions is com-
prehended as a single machine reading compre-
hension step, which demands less on the capability to integrate external knowledge.

5 ANALYSIS

We follow conventions Trivedi et al. (2022); Jiang et al. (2023) to sample 500 questions from each
dataset to reduce the cost in analysis experiments.

5.1 ABLATION STUDY

We conduct the ablation study to verify the effectiveness of each component in SEAKR and explore
alternative implementations. We show our ablation study results in Table 3.

Ablating Self-aware Uncertainty Estimator. We explore multiple ways to extract self-aware un-
certainty from the LLM. The prompting-based method asks the LLM “do I have sufficient knowledge
to solve the question?” and judges its uncertainty from the output directly. The perplexity-based
method estimates the self-aware uncertainty based on the perplexity of the pseudo-generated con-
tents. Multi-Perplexity estimates the uncertainty by averaging the perplexity of multiple generations,
where we generate 20 times. Length normalized entropy (LN-Entropy, Malinin & Gales, 2020) is
another uncertainty estimator for auto-regressive language models. Energy score calculates the un-
certainty in the logit space, which is originally proposed to detect out-of-distribution samples Liu
et al. (2020).
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Table 3: Ablations study results. S.A. is abbreviate for
self-aware. SEAKR performs differently from Table 1
and Table 2 due to dataset sampling. Self-aware rea-
soning only applies to complex QA as simple QA does
not require multiple retrieval.

Models 2Wiki HPQA NQ

EM F1 EM F1 EM F1

SEAKR 31.4 37.8 27.4 38.1 25.6 36.1

Ablating Self-aware Uncertainty Estimator
Prompt 27.0 33.9 26.5 37.3 23.8 34.2
Perplexity 29.0 35.2 26.6 36.9 23.0 33.4
LN-Entropy 30.0 36.0 26.2 37.5 24.8 34.8
Energy 26.8 33.2 22.2 31.7 22.8 32.3

Ablating Self-aware Retrieval
− S.A. Retrieval 29.0 35.7 26.8 37.6 25.4 35.8

Ablating Self-aware Re-Ranking
− S.A. Re-rank 29.2 35.0 26.2 36.6 24.8 35.0

Ablating Self-aware Reasoning
Rationales-only 29.4 35.9 26.6 36.3 / /
Knowledge-only 30.4 37.0 27.6 37.2 / /

Ablating Self-aware Retrieval. To ab-
late the self-aware retrieval, we retrieve
knowledge for each generation step, with-
out dynamically determining when to re-
trieve (− S.A. Retrieval). We can see that
experiments on both the complex QA and
simple QA degrade, indicating that when
the LLM does not supplement knowl-
edge, retrieved information indeed mis-
leads LLM into generating incorrect infor-
mation. Thus, it is necessary to determine
when to retrieve dynamically to avoid such
interference.

Ablating Self-aware Re-ranking. We ab-
late the self-aware re-ranking by choos-
ing the first knowledge from the search
engine, without utilizing the self-aware
uncertainty score to select knowledge (−
S.A. Re-rank). From Table 3 we see that
discarding self-aware re-ranking under-
mines the performance of SEAKR. This
is because the self-aware re-ranking func-
tions by de-noising retrieved knowledge,
which integrates external knowledge re-
sources more flexibly.

Comparing the effect between removing self-aware retrieval and self-aware re-ranking, we ob-
serve that ablating self-aware re-ranking reduces the performance of SEAKR more than removing
self-aware retrieval. This indicates the crucial aspect of designing effective knowledge integration
method in adaptive RAG.

Ablating Self-aware Reasoning. We ablate self-aware reasoning by choosing two default reasoning
strategies without adaptive choosing. Rationale-only prompts the LLM to generate the final answer
directly after the last generated rationale. Knowledge-only concatenates the question with all previ-
ously selected knowledge K to require the LLM to synthesize the final answer with CoT reasoning.
Both the two strategies perform inferior to the original SEAKR. We interpret the results from two
different angles. (1) The self-aware reasoning integrates all previously retrieved knowledge more
effectively. (2) The self-aware reasoning functions as ensemble learning. Thus, self-aware reasoning
exceeds each individual strategy Murphy (2012).

5.2 BACKBONE LLMS

Table 4: Experiments for backbone LLMs.

Models 2Wiki HPQA NQ

EM F1 EM F1 EM F1

LLaMA-2 with 7B Parameters
Base Version 20.4 26.9 22.0 30.1 15.0 20.8
Chat Version 31.4 37.8 27.4 38.1 25.6 36.1

LLaMA-3 with 8B Parameters
Base Version 38.4 44.7 29.2 39.2 25.0 33.9
Instruct Version 40.6 48.1 36.0 47.7 31.0 43.0

To examine whether SEAKR scales to
more powerful LLMs, we substitute the
backbone LLM with LLaMA-3 with 8 bil-
lion parameters, which is pre-trained with
more than 10× FLOPS than LLaMA-2
(7B). We also examine the effectiveness of
alignment tuning of the backbone LLM,
and compare with the chat version of
LLaMA-2 and instruct version of LLaMA-
3.

Table 4 shows the comparisons. We find
that SEAKR benefits from stronger back-
bone LLMs (i.e., LLaMA-3), indicating
that the effectiveness of SEAKR scales
positively with the sophistication and ca-
pacity of the underlying language models. Another observation is that backbone LLMs with align-
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Table 5: Case study. #Search denotes the knowledge rank given by the search engine. #U(c) is the
ranking according to self-aware uncertainty. SEAKR answers the question with two iterations and
here we show the overall process of the second iteration. SEAKR first performs pseudo-generation,
which results in high uncertainty U(c) = −4.4 and triggers retrieval. The first returned knowledge
from the search engine is relevant to the Alejandro Jodorowsky with certains dates, but does not
help in answering the question. In contrast, the second retrieved knowledge reduces the self-aware
uncertainty most, and indeed contains the critical information. We also notice that the third retrieved
knowledge has overlapped information with the second one, which also result in a relatively low
uncertainty score.

Question (HPQA): Who lived longer, Alejandro Jodorowsky or Philip Saville? Ground-Truth Answer: Alejandro Jodorowsky

Knowledge Buffer: . . . Philip Saville (sometimes credited as Philip Savile, 28 October 1930 – 22 December 2016) was a British
television and film director, screenwriter and former actor . . .

Rationale Buffer: Philip Saville was born on 28 October 1930 and passed away on 22 December 2016.

Pseudo-Generation: Alejandro Jodorowsky was born on 7 July 1929. Self-aware Uncertainty: U(c) = −4.4, U(c) > δ

#Search #U(c) U(c) Retrieved Knowledge Ranked by Search Engine S(qry)

1 3 −4.37
. . . interview with “The Guardian” newspaper in November 2009, however, Jodorowsky revealed that he was unable
to find the funds to make “King Shot”, and instead would be entering preparations on “Sons of El . . .

2 1 −4.91 Alejandro Jodorowsky Prullansky (born 17 February 1929) is a Chilean-French filmmaker . . .

3 2 −4.88 . . . Alejandro Jodorowsky Prullansky (born 17 February 1929) is a Chilean-French filmmaker. Since . . .

ment tuning achieve higher performance. This is because of their better instruction-following capa-
bility to solve complex tasks.

5.3 HYPER-PARAMETER SEARCH

(a) Searching for 𝑁 and 𝑘. (b) Searching for 𝛿.

Figure 3: Hyper-parameter search results.

We search hyper-parameters for the
knowledge recall size N , the dimen-
sion of the Gram determinant k, and
the uncertainty threshold δ on a sam-
ple of training set of NQ. The ex-
ploration results are shown in Fig-
ure 3. The best number of genera-
tions to compute the Gram determi-
nant k falls into the interval [10−25].
The most indicative internal state is
extracted from the middle layer, at
l = 16. To determine the condition
for the LLM to demand retrieval, we
use δ > −6 as the cut point to trigger
retrieval, under which condition less
than 80% questions cannot be answered correctly. Our implementation for SEAKR is in line with
these results.

5.4 CASE STUDY

In Table 5, we show an example on how SEAKR answers a question from HotpotQA. The main ob-
servations are two folds— 1) SEAKR accurately identifies its knowledge insufficiency. We observe
this from its false pseudo-generation, where the LLM reckons the birthday of Alejandro Jodorowsky
as 7 July 1929. Luckily, SEAKR indeed gives a relatively high self-aware uncertainty estimation,
and invokes retrieval timely. 2) SEAKR effectively integrates retrieved knowledge. We observe
that the top-ranked knowledge from the search engine does not help with answering the question,
while the knowledge that reduces the self-aware uncertainty most contains the information for the
following step of reasoning. We show more cases in Appendix C to illustrate the effectiveness of
each component in SEAKR.
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6 CONCLUSION

In this paper, we propose self-aware knowledge retrieval (SEAKR) to perform adaptive RAG.
SEAKR extracts self-aware uncertainty of LLMs from their internal states, and uses this as an in-
dicator to invoke knowledge retrieval and dynamically integrate retrieved knowledge. Experiments
on both complex QA and simple QA tasks show that SEAKR outperforms existing adaptive base-
lines. It is intriguing to further explore whether we can further enhance the uncertainty awareness
via model training in the future.
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A LIMITATIONS

We discuss the limitations of SEAKR.

(1) Scope of Usage. As SEAKR requires access to the internal state of LLMs, this limits the usability
of SEAKR to open-sourced LLMs. However, the most powerful and widely adopted LLMs are still
preserved by commercial companies, such as GPT series model. We still need to explore new
ways to estimate the self-aware uncertainty from the output of the language model, rather than their
internal states.

(2) Task Coverage. We mainly evaluate SEAKR on short-form question answering tasks, neglect-
ing a broad spectrum of natural language processing tasks, such as long-form question answering,
creative writing, etc.

(3) Computation Issues. To compute Gram determinant, SEAKR requires the backbone to conduct
20 pseudo-generations, which is computationally costly. We explore the engineering trick to mitigate
this issue—by deploying the backbone LLM with vLLM Kwon et al. (2023), which implements
paged attention to support parallel inference in a single batch. Thus, the latency of 20 pseudo-
generation is roughly the same as a single pseudo-generation. All the experiments can be held on a
single NVidia 3090 GPU with 24GiB GRAM.

(4) Model Scaling. Due to our limited computation resources, we are not able to deploy LLMs
larger than one with 8 billion parameters. As recent evidences suggest that model scaling is more
closely related to training FLOPS, rather than model scale. We thus compare between LLaMA-2
(7B) and LLaMA-3 (8B) to verify whether SEAKR is scalable to more powerful LLMs. This is
because although they have similar parameter scales, LLaMA-3 is trained on 10× more corpora,
and thus 10× more FLOPS than LLaMA-2.

(5) Information Retrieval. The authors would like to mention that, with the development of in-
formation retrieval technology, the second part of SEAKR (i.e., Self-aware Re-ranking) could be
surpassed by advanced IR methods, in the future.

B BROAD IMPACT

We discuss the ethical considerations and broader impact of SEAKR.

(1) Intended Usage. SEAKR falls into the category of retrieval augmented generation, which is
intended to increase the factual correctness of LLMs. Thus, the intention of our work is to improve
the trustworthiness of LLM.

(2) Potential Misuse. However, for detailed technology we adopted, it can be misused to create
misleading information. For example, the self-aware uncertainty estimator can be used as an adver-
sarial signal for model training, which could make models better at deceiving humans with uncertain
information. Another issue is the increased integration of LLM and IR systems, which may be used
to automate cyber manhunt.

(3) Risk Control. SEAKR is developed upon open-sourced LLMs. We will also release our code.
We hope that transparency helps to monitor and prevent its mis-usage.

(4) Intellectual Artifacts. We cite the creator of our used intellectual artifacts. Specifically, we use
6 question answering benchmark dataset in this paper, they are 2WikiMultiHopQA Ho et al. (2020),
HotpotQA Yang et al. (2018), IIRC Ferguson et al. (2020), NaturalQuestion Kwiatkowski et al.
(2019), TriviaQA Joshi et al. (2017), and SQuAD Rajpurkar et al. (2016). We would also like to
acknowledge creators of Self-RAG Asai et al. (2023), FLARE Jiang et al. (2023), and DRAGIN Su
et al. (2024) for sharing their codebases, which are used to reproduce their methods, along with
IRCoT. All the used intellectual artifacts’ license allows for academic usage.

C CASE STUDY

C.1 CASE STUDY FOR SELF-AWARE RETRIEVAL

We present additional examples for self-aware retrieval in Table 7.
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Table 6: Dataset Statistics.

Complex QA Simple QA

TwoWiki HotpotQA IIRC NQ TriviaQA SQuAD

#Examples 12, 576 7, 405 954 3, 610 11, 313 7, 357

In each step, SEAKR evaluates the uncertainty of the pseudo-generation and determines whether to
retrieve external knowledge based on the predefined threshold. Three cases are presented: Case #1,
where the generation fails to meet the predefined threshold and retrieval is triggered; Case #2 &
#3, where the model correctly and confidently generates an output, bypassing potentially redundant
retrieval; Case #3 also shows that SEAKR successfully performs self-aware retrieval amidst multi-
step reasoning, where the knowledge buffer and the rationale buffer are not empty.

C.2 CASE STUDY FOR SELF-AWARE RE-RANKING

We present additional examples for self-aware re-ranking in Table 8.

After the retrieval is invoked, SEAKR performs pairwise re-ranking and identifies the optimal pas-
sage for generating subsequent reasoning steps. Here, to determine what is the original parent
company of FastJet Tanzania, three pieces of external knowledge (passages) are retrieved, where
Knowledge #1 and Knowledge #3 present distractions—listing the current headquarters (Dar es
Salaam) and the major shareholder (Fastjet Plc), while Knowledge #2 contains critical information
that it was founded as a subsidiary of a Kenya company. SEAKR’s self-aware uncertainty gives an
effective re-ranking and prioritizes Knowledge #2.

C.3 CASE STUDY FOR SELF-AWARE REASONING

Table D.3 illustrates an additional example of self-aware reasoning.

In this case, SEAKR adaptively selects the optimal answer from two strategies: one generated from
all rationales and the other from all knowledge. The initial rationale incorrectly asserts that Storm-
breaker is a fantasy film, misleading the reasoning afterward and exhibiting poor uncertainty scores.
In contrast, when reasoning from all evidence passages, SEAKR regenerates each step from scratch,
utilizing more informative knowledge retrieved in the second step (The Spiderwick Chronicles is the
fantasy film that has Sarah Bolger in it). It also results in a better uncertainty score, at −6.20, than
the average rationale score −4.73.
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Table 7: Additional examples for self-aware retrieval.

Case #1
Question (HPQA): In what city is the company that Fastjet Tanzania was originally

founded as a part of prior to rebranding based?
Ground-Truth An-
swer:

Nairobi, Kenya

Pseudo-Generation: FastJet Tanzania was originally founded as a part of the company
Fastjet plc, which was based in London, United Kingdom.

Gold-Fact: Fastjet Airlines Limited (Tanzania), also known as Fastjet Tanzania,
was founded in 2011 as Fly540 Tanzania.

Self-aware Uncer-
tainty:

U(c) = −4.84, U(c) > δ, Need to retrieve ✗

Case #2
Question (HPQA): The Argentine National Anthem was adopted 3 years after which

event that led to the removal of Viceroy Baltasar Hildalgo de Cis-
neros?

Ground-Truth An-
swer:

May Revolution

Pseudo-Generation: The Argentine National Anthem was adopted in 1813 .
Gold-Fact: The National Anthem of Argentina, or the Himno Nacional Argentino

as it is known to its citizens, was adopted on May 11, 1813.
Self-aware Uncer-
tainty:

U(c) = −6.11, U(c) < δ, No need to retrieve ✓

Case #3
Question (HPQA): Stephen Smith appears on ESPN First Take alongside which HBO

boxing commentator?
Ground-Truth An-
swer:

Max Kellerman

Knowledge Buffer: Stephen A. Smith Stephen Anthony Smith (born October 14, 1967)
is an American sports television personality, sports radio host, sports
journalist, and actor. Smith is a commentator on ”ESPN First Take”,
where he appears with Max Kellerman and Molly Qerim. He also
makes frequent appearances as an NBA analyst on ”SportsCenter”.
He also is an NBA analyst for ESPN on ”NBA Countdown” and NBA
broadcasts on ESPN. Smith formerly hosted ”The Stephen A. Smith
and Ryan Ruocco Show” on ESPN Radio New York 98.7 FM. He now
hosts ”The Stephen A. Smith Show” on the Chris Russo sports radio
station:

Rationale Buffer: Stephen Smith appears on ESPN First Take alongside Max Kellerman
and Molly Qerim

Pseudo-Generation: Max Kellerman is an HBO boxing commentator.
Gold-Fact: Max Kellerman (born August 6, 1973) is an American sports televi-

sion personality and boxing commentator
Self-aware Uncer-
tainty:

U(c) = −6.03, U(c) < δ, No need to retrieve ✓

D PROMPT TEMPLATES

D.1 SELF-AWARE RETRIEVAL

At the beginning of each iteration of reasoning, SEAKR executes and evaluates a pseudo-generation.
We set the stop token to a period (.) to limit the generation to the next single step.
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Self-aware Retrieval

[ICL Examples]

Question: [INPUT QUESTION]
Answer:

D.2 SELF-AWARE RE-RANKING

When the uncertainty score of direct generation fails to meet the threshold, SEAKR retrieves and
re-rank a pseudo-generation in a pair-wise manner. We also set the stop token to a period (.).

Self-aware Re-ranking

[ICL Examples]

Context:
[1]. [Retrieved Doc 1]
Answer in the same format as before.
Question: [INPUT QUESTION]
Answer:

D.3 SELF-AWARE REASONING

In the final stage, SEAKR selects the optimal response either from the rationales or directly from
the knowledge. For the rationales, we extract the answer following the phrase “So the answer is”
in the last rationale. For the knowledge group, we perform a full CoT reasoning using all retrieved
passages. The stop token in both groups is the newline character \n.

Self-aware Reasoning with retrieved knowledge

[ICL Examples]

Context:
[1]. [Retrieved Doc 1]
[2]. [Retrieved Doc 1]
[3]. [Retrieved Doc 1]
Answer in the same format as before.
Question: [INPUT QUESTION]
Answer:

Self-aware Reasoning with generated rationales

[ICL Examples]

Question: [INPUT QUESTION]
Answer:
[Step 1].
[Step 2].
[Step 3].
So the answer is

D.4 IN CONTEXT LEARNING EXAMPLES

We use the same in-context-learning examples for simple QA datasets (Fig. 4) and different exam-
ples for each multihop QA dataset followed by IRCoTTrivedi et al. (2022): 2WikiMultiHopQA(Fig.
5), HotpotQA(Fig. 6), and IIRC (Fig. 7).
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E DATASETS AND SETTINGS

Dataset statistics are summarized in Table 6. We conduct the hyperparameter search using 3, 000
samples from the training set of the Natural Questions dataset.

We modified the source code of vLLM 0.4.2 to compute uncertainty scores based on internal states.
This implementation uses PyTorch 2.3.0. For the retrieval component, we employ Elasticsearch
7.17.9 to run a local retrieval service.
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Table 8: Additional examples for self-aware re-ranking.

Question (HPQA): In what city is the company that Fastjet Tanzania was originally founded
as a part of prior to rebranding based?

Ground-Truth Answer: Nairobi, Kenya
Failed Direct Output: FastJet Tanzania was originally founded as a part of the company Fastjet

plc, which was based in London, United Kingdom.
Gold-Fact: Fastjet Airlines Limited (Tanzania), also known as Fastjet Tanzania, was

founded in 2011 as Fly540 Tanzania. Fly540, is a low-cost airline which
commenced operations in 2006 and is based in Nairobi, Kenya.

Query: FastJet Tanzania originally founded as part

Knowledge #1
Passage: Plc group accounts. Some information has been made available for the

Tanzanian operation (as at year ending 31 December): Fastjet Tanzania
maintains a head office in Samora Avenue, Dar es Salaam, Tanzania. As
of 4 November 2017, Fastjet Tanzania serves the following destinations:
Fastjet has signed an agreement with one of Africa’s largest cargo oper-
ators, BidAir Cargo, to carry cargo on its fleet of Airbus A319s. Fastjet
has sufficient capacity to accommodate the carrying of cargo on its Tan-
zanian routes The Fastjet Tanzania fleet includes the following aircraft as
of June 2017: Fastjet Tanzania Fastjet Airlines Limited (Tanzania), also
known

Pseudo-Generation: Fastjet Tanzania was originally founded as a part of prior to rebranding
based in Dar es Salaam, Tanzania.

Self-aware Uncertainty: U(c) = −5.10 ✗

Knowledge #2
Passage: Fastjet Tanzania Fastjet Airlines Limited (Tanzania), also known as Fast-

jet Tanzania, is a low-cost airline that operates flights under the fastjet
brand in Tanzania. The airline was founded in 2011 as ”Fly540 Tanza-
nia”, but through the acquisition of Fly540 in 2012, it was rebranded as
Fastjet Tanzania. It is based in Dar es Salaam. The airline carried more
than 350,000 passengers in the first year of operations and sold one mil-
lion seats by December 2014. Fastjet Tanzania was founded in 2011 as
”Fly540 Tanzania”, a subsidiary of Kenya-based Fly540. Using a Bom-
bardier CRJ100 and a Dash 8-100,

Pseudo-Generation: Fastjet Tanzania was originally founded as a part of Fly540, which is
based in Nairobi, Kenya.

Self-aware Uncertainty: U(c) = −5.828↓ ✓

Knowledge #3
Passage: It currently (August 2015) has domestic routes operating linking Dar es

Salaam with Mwanza, Kilimanjaro and Mbeya, and four international
routes from Dar es Salaam to Johannesburg, Harare, Entebbe, Lilongwe
and Lusaka. Fastjet Tanzania is 49% owned by Fastjet Plc; on 14 Novem-
ber 2014 it was announced that Fastjet Plc had entered into an agreement
to sell an interest in fastjet Tanzania to Tanzanian investors. The issue
of the shares brings the total Tanzanian legal and beneficial ownership of
fastjet Tanzania to 51

Pseudo-Generation: Fastjet Tanzania was originally founded as a part of prior to rebranding
based in Dar es Salaam, Tanzania.

Self-aware Uncertainty: U(c) = −5.302 ✗

Rerank Result
Selected Knowledge: Knowledge #2
Generated Rationale: Fastjet Tanzania was originally founded as a part of Fly540, which is

based in Nairobi, Kenya.
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Table 9: Additional examples for self-aware reasoning

Question (HPQA): What’s the name of the fantasy film starring Sarah Bolger, featuring a
New England family who discover magical creatures around their estate?

Ground-Truth Answer: The Spiderwick Chronicles

Rationale Buffer: The fantasy film starring Sarah Bolger is ”Stormbreaker”

It features a New England family who discover magical creatures around
their estate.

So the answer is Stormbreaker.

Knowledge Buffer: Hard to Find” directed by Abner Pastoll. Filming completed in Decem-
ber 2017, with a release slated for 2018. In January 2011, Bolger was
selected to be in photographer Kevin Abosch’s project ”The Face of Ire-
land” alongside other Irish celebrities including Sinéad O’Connor, Neil
Jordan, and Pierce Brosnan. Sarah Bolger Sarah Bolger (born 28 Febru-
ary 1991) is an Irish actress. She has starred in the films ”In America”,
”Stormbreaker”, ”The Spiderwick Chronicles” and ”Emilie”. She is also
known for her role as Lady Mary Tudor in the TV series ”The Tudors”,
for which she won an IFTA award, and for her

The Spiderwick Chronicles (film) The Spiderwick Chronicles is a 2008
American fantasy adventure film based on the bestselling book series of
the same name by Holly Black and Tony DiTerlizzi. It was directed by
Mark Waters and stars Freddie Highmore, Sarah Bolger, Mary-Louise
Parker, Martin Short, Nick Nolte, and Seth Rogen. Set in the Spiderwick
Estate in New England, it follows the adventures of Jared Grace and his
family as they discover a field guide to fairies while battling goblins, mole
trolls, and other magical creatures. Produced by Nickelodeon Movies and
distributed by Paramount Pictures, it was released on February

ESRB. The Spiderwick Chronicles (film) The Spiderwick Chronicles is
a 2008 American fantasy adventure film based on the bestselling book
series of the same name by Holly Black and Tony DiTerlizzi. It was di-
rected by Mark Waters and stars Freddie Highmore, Sarah Bolger, Mary-
Louise Parker, Martin Short, Nick Nolte, and Seth Rogen. Set in the Spi-
derwick Estate in New England, it follows the adventures of Jared Grace
and his family as they discover a field guide to fairies while battling gob-
lins, mole trolls, and other magical creatures. Produced by Nickelodeon
Movies and distributed by Paramount Pictures, it was released on

From Rationales
Answer: Stormbreaker.
Self-aware Uncertainty: ((−5.25) + (−5.38) + (−3.56))/3 = −4.73.

From Knowledge
Answer: The fantasy film starring Sarah Bolger is The Spiderwick Chronicles. So

the answer is The Spiderwick Chronicles.
Self-aware Uncertainty: −6.20.✓

Final Answer
The Spiderwick Chronicles.
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Examples for Simple QA

Question: Nobody Loves You was written by John Lennon and released on what album that was
issued by Apple Records, and was written, recorded, and released during his 18 month separation
from Yoko Ono?
Answer: The album issued by Apple Records, and written, recorded, and released during John
Lennon’s 18 month separation from Yoko Ono is Walls and Bridges.
Nobody Loves You was written by John Lennon on Walls and Bridges album.
So the answer is Walls and Bridges.

Question: What is known as the Kingdom and has National Route 13 stretching towards its border?
Answer: Cambodia is officially known as the Kingdom of Cambodia.
National Route 13 stretches towards the border to Cambodia.
So the answer is Cambodia.

Question: Jeremy Theobald and Christopher Nolan share what profession?
Answer: Jeremy Theobald is an actor and producer.
Christopher Nolan is a director, producer, and screenwriter.
Therefore, they both share the profession of being a producer.
So the answer is producer.

Question: What film directed by Brian Patrick Butler was inspired by a film directed by F.W.
Murnau?
Answer: Brian Patrick Butler directed the film The Phantom Hour.
The Phantom Hour was inspired by the films such as Nosferatu and The Cabinet of Dr. Caligari.
Of these, Nosferatu was directed by F.W. Murnau.
So the answer is The Phantom Hour.

Question: Vertical Limit stars which actor who also played astronaut Alan Shepard in ’The Right
Stuff’?
Answer: The actor who played astronaut Alan Shepard in ’The Right Stuff’ is Scott Glenn.
The movie Vertical Limit also starred Scott Glenn.
So the answer is Scott Glenn.

Question: Which car, produced by Ferrari from 1962 to 1964 for homologation into the FIA’s Group
3 Grand Touring Car category inspired the Vandenbrink GTO?
Answer: The car produced by Ferrari from 1962 to 1964 for homologation into the FIA’s Group 3
Grand Touring Car category is the Ferrari 250 GTO.
The Ferrari 250 GTO also inspired the Vandenbrink GTO’s styling.
So the answer is Ferrari 250 GTO.

Question: The actor that stars as Joe Proctor on the series ’Power’ also played a character on
’Entourage’ that has what last name?
Answer: The actor that stars as Joe Proctor on the series ’Power’ is Jerry Ferrara.
Jerry Ferrara also played a character on Entourage named Turtle Assante.
Thus, Turtle Assante’s last name is Assante.
So the answer is Assante.

Question: In which country did this Australian who was detained in Guantanamo Bay detention camp
and published ’Guantanamo: My Journey’ receive para-military training?
Answer: The Australian who was detained in Guantanamo Bay detention camp and published
’Guantanamo: My Journey’ is David Hicks.
David Hicks received his para-military training in Afghanistan.
So the answer is Afghanistan.

Question: Does The Border Surrender or Unsane have more members?
Answer: The Border Surrender band has following members: Keith Austin, Simon Shields, Johnny
Manning and Mark Austin. That is, it has 4 members.
Unsane is a trio of 3 members.
Thus, The Border Surrender has more members.
So the answer is The Border Surrender.

Figure 4: Examples for Simple QA.
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Question: Who was born first out of Martin Hodge and Ivania Martinich?
Answer: Martin Hodge was born on 4 February 1959.
Ivania Martinich was born on 25 July 1995.
Thus, 4 February 1959 is earlier than 25 July 1995 and Martin Hodge was born first.
So the answer is Martin Hodge.

Question: When did the director of film Hypocrite (Film) die?
Answer: The film Hypocrite was directed by Miguel Morayta.
Miguel Morayta died on 19 June 2013.
So the answer is 19 June 2013.

Question: Are both Kurram Garhi and Trojkrsti located in the same country?
Answer: Kurram Garhi is located in the country of Pakistan.
Trojkrsti is located in the country of Republic of Macedonia.
Thus, they are not in the same country.
So the answer is no.

Question: Do the director of film Coolie No. 1 (1995 Film) and the director of film The Sensational
Trial have the same nationality?
Answer: Coolie No. 1 (1995 film) was directed by David Dhawan.
The Sensational Trial was directed by Karl Freund.
David Dhawan’s nationality is Indian.
Karl Freund’s nationality is German.
Thus, they do not have the same nationality.
So the answer is no.

Question: Who is Boraqchin (Wife Of Ögedei)’s father-in-law?
Answer: Boraqchin is married to Ögedei Khan.
Ögedei Khan’s father is Genghis Khan.
Thus, Boraqchin’s father-in-law is Genghis Khan.
So the answer is Genghis Khan.

Question: When did the director of film Laughter In Hell die?
Answer: The film Laughter In Hell was directed by Edward L. Cahn.
Edward L. Cahn died on August 25, 1963.
So the answer is August 25, 1963.

Question: Who is the grandchild of Krishna Shah (Nepalese Royal)?
Answer: Krishna Shah has a child named Rudra Shah.
Rudra Shah has a child named Prithvipati Shah.
Thus, Krishna Shah has a grandchild named Prithvipati Shah.
So the answer is Prithvipati Shah.

Question: Where did the director of film Maddalena (1954 Film) die?
Answer: The film Maddalena is directed by Augusto Genina.
Augusto Genina died in Rome.
So the answer is Rome.

Question: What is the cause of death of Grand Duke Alexei Alexandrovich Of Russia’s mother?
Answer: The mother of Grand Duke Alexei Alexandrovich of Russia is Maria Alexandrovna.
Maria Alexandrovna died from tuberculosis.
So the answer is tuberculosis.

Question: Which film has the director died later, The Gal Who Took the West or Twenty Plus Two?
Answer: The mother of Grand Duke Alexei Alexandrovich of The film Twenty Plus Two was directed
by Joseph M. Newman.
The Gal Who Took the West was directed by Frederick de Cordova.
Joseph M. Newman died on January 23, 2006.
Fred de Cordova died on September 15, 2001.
Thus, January 23, 2006 is later than September 15, 2001, and the person to die later from the two is
Twenty Plus Two.
So the answer is Twenty Plus Two.

Figure 5: Examples for 2WikiMultiHopQA
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Question: Jeremy Theobald and Christopher Nolan share what profession?
Answer: Jeremy Theobald is an actor and producer.
Christopher Nolan is a director, producer, and screenwriter.
Therefore, they both share the profession of being a producer.
So the answer is producer.

Question: What film directed by Brian Patrick Butler was inspired by a film directed by F.W.
Murnau?
Answer: Brian Patrick Butler directed the film The Phantom Hour.
The Phantom Hour was inspired by the films such as Nosferatu and The Cabinet of Dr. Caligari.
Of these, Nosferatu was directed by F.W. Murnau.
So the answer is The Phantom Hour.

Question: How many episodes were in the South Korean television series in which Ryu Hye-young
played Bo-ra?
Answer: The South Korean television series in which Ryu Hye-young played Bo-ra is Reply 1988.
The number of episodes Reply 1988 has is 20.
So the answer is 20.

Question: Were Lonny and Allure both founded in the 1990s?
Answer: Lonny (magazine) was founded in 2009.
Allure (magazine) was founded in 1991.
Thus, of the two, only Allure was founded in the 1990s.
So the answer is no.

Question: Vertical Limit stars which actor who also played astronaut Alan Shepard in The Right
Stuff ?
Answer: The actor who played astronaut Alan Shepard in The Right Stuff is Scott Glenn.
The movie Vertical Limit also starred Scott Glenn.
So the answer is Scott Glenn.

Question: What was the 2014 population of the city where Lake Wales Medical Center is located?
Answer: Lake Wales Medical Center is located in the city of Lake Wales, Polk County, Florida.
The population of Lake Wales in 2014 was 15,140.
So the answer is 15,140.

Question: Who was born first? Jan de Bont or Raoul Walsh?
Answer: Jan de Bont was born on 22 October 1943.
Raoul Walsh was born on March 11, 1887.
Thus, Raoul Walsh was born first.
So the answer is Raoul Walsh.

Question: In what country was Lost Gravity manufactured?
Answer: The Lost Gravity (roller coaster) was manufactured by Mack Rides.
Mack Rides is a German company.
So the answer is Germany.

Question: Which of the following had a debut album entitled ’We Have an Emergency’: Hot Hot
Heat or The Operation M.D.?
Answer: The debut album of the band ’Hot Hot Heat’ was ’Make Up the Breakdown’.
The debut album of the band ’The Operation M.D.’ was ’We Have an Emergency’.
So the answer is The Operation M.D..

Question: How many awards did the ’A Girl Like Me’ singer win at the American Music Awards of
2012?
Answer: The singer of ’A Girl Like Me’ is Rihanna.
In the American Music Awards of 2012, Rihanna won one award.
So the answer is one.

Question: The actor that stars as Joe Proctor on the series ’Power’ also played a character on
’Entourage’ that has what last name?
Answer: The actor that stars as Joe Proctor on the series ’Power’ is Jerry Ferrara.
Jerry Ferrara also played a character on Entourage named Turtle Assante.
Thus, Turtle Assante’s last name is Assante.
So the answer is Assante.

Figure 6: Examples for HotpotQA.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

IIRC

Question: What is the age difference between the kicker and the quarterback for the Chargers?
Answer: The kicker for the Chargers is Nate Kaeding.
The quarterback (QB) for the Chargers is Philip Rivers.
Nate Kaeding was born in the year 1982.
Philip Rivers was born in the year 1981.
Thus, the age difference between them is of 1 year.
So the answer is 1.

Question: How many years was the ship that took the battalion from New South Wales to Ceylon in
service?
Answer: The ship that took the battalion from New South Wales to Ceylon is General Hewitt.
General Hewitt was launched in Calcutta in 1811.
General Hewitt was sold for a hulk or to be broken up in 1864.
So she served for a total of 1864 - 1811 = 53 years.
So the answer is 53.

Question: What year was the theatre that held the 2016 NFL Draft built?
Answer: The theatre that held the 2016 NFL Draft is Auditorium Theatre.
The Auditorium Theatre was built in 1889.
So the answer is 1889.

Question: How long had Milan been established by the year that Nava returned there as a reserve in
the first team’s defense?
Answer: Nava returned to Milan as a reserve in the first team’s defense in the year 1990.
Milan had been established in the year 1899.
Thus, Milan had been established for 1990 - 1899 = 91 years when Nava returned to Milan as a
reserve in the first team’s defense.
So the answer is 91.

Question: When was the town Scott was born in founded?
Answer: Scott was born in the town of Cooksville, Illinois.
Cooksville was founded in the year 1882.
So the answer is 1882.

Question: In what country did Wright leave the French privateers?
Answer: Wright left the French privateers in Bluefield’s river.
Bluefields is the capital of the South Caribbean Autonomous Region (RAAS) in the country of
Nicaragua.
So the answer is Nicaragua.

Question: Who plays the A-Team character that Dr. Hibbert fashioned his hair after?
Answer: Dr. Hibbert fashioned his hair after Mr. T from The A-Team.
Mr. T’s birthname is Lawrence Tureaud.
So the answer is Lawrence Tureaud.

Question: How many people attended the conference held near Berlin in January 1942?
Answer: The conference held near Berlin in January 1942 is the Wannsee Conference.
The Wannsee Conference was attended by 15 people.
So the answer is 15.

Question: When did the country Ottwalt went into exile in founded?
Answer: Ottwalt went into exile in the country of Denmark.
Denmark has been inhabited since around 12,500 BC.
So the answer is 12,500 BC.

Question: When was the J2 club Uki played for in 2001 founded?
Answer: The J2 club that Uki played for is Montedio Yamagata.
Montedio Yamagata was founded in 1984.
So the answer is 1984.

Figure 7: Examples for IIRC
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