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ABSTRACT

As large language models increasingly drive real-world applications, aligning them
with human values becomes paramount. Reinforcement Learning from Human
Feedback (RLHF) has emerged as a key technique, translating preference data
into reward models when oracle human values remain inaccessible. In practice,
RLHF mostly relies on approximate reward models, which may not consistently
guide the policy toward maximizing the underlying human values. We propose
Policy-Interpolated Learning for Aligned Feedback (PILAF), a novel response
sampling strategy for preference labeling that explicitly aligns preference learning
with maximizing the underlying oracle reward. PILAF is theoretically grounded,
demonstrating optimality from both an optimization and a statistical perspective.
The method is straightforward to implement and demonstrates strong performance
in iterative and online RLHF settings where feedback curation is critical.

1 INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022) has revolutionized
large language models (LLMs) by incorporating human preferences, enabling significant progress in
applications such as conversational AI (Achiam et al., 2023), personalized tutoring (Limo et al., 2023),
and content curation (Yue et al., 2024). At the core of RLHF is reward modeling, a critical process that
translates human feedback—such as pairwise comparisons or rankings—into a measurable objective
for model training. By formalizing human preferences, reward models then guide LLMs towards
alignment through policy optimization.

While numerous studies have focused on improving language models (LMs) by optimizing fixed
reward functions (Dong et al., 2023; Liu et al., 2024c) or leveraging pre-existing preference datasets
(Ethayarajh et al., 2024; Azar et al., 2024; Xu et al., 2024), comparatively less attention has been paid
to the critical challenge of collecting effective data for human-labeling in RLHF, to maximize its utility.
This is an important problem, as the quality of preference data directly impacts the effectiveness
of reward modeling and, consequently, the overall success of fine-tuning. This challenge is further
compounded by the high cost of expert preference labeling (Lightman et al., 2023).

Preference data is usually generated by sampling response pairs (y⃗a
i , y⃗

b
i ) to a prompt xi from a

policy, and presenting them to human labelers for preference annotation. It is commonly assumed
that the annotation follows the Bradley-Terry (BT) model, under an oracle reward. Next, we use
maximum likelihood estimation (MLE) on these preference data to train a reward model, which then
serves as a measurable objective to optimize the policy (i.e. LLM) while staying close to a reference
policy. In Direct Preference Optimization (DPO) (Rafailov et al., 2023), this pipeline is simplified
by optimizing the policy with implicit reward modeling. However, all these pipelines give rise to a
misalignment of objectives: RLHF (or DPO) should, in principle, train its policy to maximize the
(inaccessible) oracle objective which combines the oracle reward from the BT model with reference
regularization. In practice, RLHF relies on preference data through the MLE objective in reward
modeling or through methods like DPO, which are not designed to guide policy optimization towards
maximizing oracle rewards. Thus, reward optimization (either directly or implicitly via DPO) and
(optimal) policy optimization are not inherently aligned, potentially leading to inefficiencies (Sec. 2).

In this work, we study this misalignment by examining the sampling scheme that generates response
pairs (y⃗a

i , y⃗
b
i ) for preference labeling, which is especially important when additional preference

data is collected mid-RLHF training to mitigate the off-policy distributional shift, as is empirically
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Figure 1: Overview of our approach. (a) We consider a full RLHF training setup, where a language model
(LM) policy is iteratively refined through active data collection. Our goal is to develop an optimal response
sampling method for preference labeling. (b) We introduce PILAF, which generates responses by interpolating
between the current policy and a reference policy, balancing exploration and exploitation. (c) Our theoretical
analysis shows that T-PILAF aligns the parameter gradient with the steepest direction for maximizing human
values and achieves more favorable convergence in regions of high sensitivity.

standard (Touvron et al., 2023; Bai et al., 2022). We show that uniform sampling from the current
policy, as is common, leads to misaligned gradients of the two objectives (reward model loss and true
oracle objective).

To tackle this issue, we present Theoretically Grounded Policy-Interpolated Learning for Aligned
Feedback (T-PILAF), a novel sampling method that aligns reward modeling with value optimization.
Specfically, T-PILAF generates responses by interpolating the policy model and the reference model
for a balanced exploration and exploitation. We provide rigorous theoretical analysis to show that
for preference data generated with T-PILAF, the gradient of the MLE loss with respect to the policy
network’s parameters is aligned with the policy gradient of the oracle objective in a first-order sense.
This alignment enables the policy to optimize directly for the oracle value, achieving both alignment
and efficiency. Furthermore, we separately show from a statistical perspective that T-PILAF aligns
optimization with the steepest directions of the oracle objective. It thus makes the sampled preference
pairs more informative, reducing variance and improving training stability.

We then present PILAF, a simple modification of our theoretical sampling scheme T-PILAF, which
naturally lends itself to practical implementation. For clarity of exposition, we present our method
in the context of DPO; however, PILAF can be adapted to a wide class of preference optimization
methods.1 See Figure 1 for an illustration of our setup, method, and the optimization and statistical
principles underlying PILAF.

We conduct extensive experiments to validate PILAF’s effectiveness and robustness. As a stand-in
for expensive human annotators, we use a well-trained reward model—Skywork-Llama-3.1-8B (Liu
et al., 2024a)—as a proxy for the oracle reward. Throughout training, we query this model exclusively
for preference labels, simulating human feedback. We then align the Llama-3.1-8B base model
(Dubey et al., 2024) using these proxy-labeled preference data in two settings: iterative DPO (Xiong
et al., 2024) and online DPO (Guo et al., 2024). In both scenarios, preference data is collected
on-the-fly, either after each full training epoch in the iterative setting or after every training step in
the online setting. Across all configurations, PILAF outperforms all the baselines, producing a policy
with higher reward (as measured by the proxy) and a lower KL divergence from the reference model,
reducing annotation and computation costs by over 40% in iterative DPO.

Our key contributions are as follows:
• (Practical sampling algorithm) We propose PILAF (Section 5), an efficient sampling algo-

rithm for generating response pairs in the RLHF pipeline for improved sample efficiency
and performance, derived from its theoretically grounded variant T-PILAF (Section 3).

• (Theoretical optimality) We provide theoretical guarantees for the efficiency of our approach
from both optimization and statistical perspectives (Section 4).

• (Empirical validation) We validate PILAF in both iterative and online DPO settings (Sec-
tion 6) and observe that it consistently outperforms baselines by achieving higher reward
and lower KL divergence from the reference model. Moreover, PILAF achieves comparable
performance at significantly reduced annotation and computational costs.

1See Appendix G for the extension to PPO.
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1.1 RELATED WORK

Existing Sampling Schemes. In academic papers, uniform vanilla sampling is the most commonly
used approach, while methods such as best-of-N and worst-of-N have also been explored (Dong et al.,
2024). Xie et al. (2024) propose sampling one response from the current policy model and another
from a reference model, modifying the loss function to encourage optimistic behavior. Similarly,
Zhang et al. (2024) sample one response from the current model but rank it alongside two offline
responses from the reference model. Shi et al. (2024) present a formula similar to ours based on
intuition, introducing several hyperparameters and analyzing convergence speed with DPO in a tabular
setting. Liu et al. (2024d) train an ensemble of reward models to approximate a posterior distribution
over possible rewards and use Thompson sampling to generate responses with exploration. In contrast
to these works, we theoretically establish the principles of response generation for preference labeling,
making minimal assumptions and simplifications while demonstrating the optimality of our approach.
Our approach eliminates the need for hyperparameter tuning.

Policy Gradient. Our theoretical principle is closely related to the family of policy gradient methods
(Williams, 1992; Sutton et al., 1999) in reinforcement learning, which optimize a policy πθ by
estimating and ascending the gradient of the expected return ∇θJ(θ). Significant advancements
have been made to improve the efficiency of these methods, including variance reduction techniques
(Greensmith et al., 2004), off-policy gradient estimation (Degris et al., 2012), interpolating on-policy
and off-policy updates (Gu et al., 2017), deterministic policy gradients (Silver et al., 2014), and
three-way robust estimation approaches (Kallus & Uehara, 2020). Our study extends these principles
to preference learning for LMs, aligning the MLE gradient with the oracle objective gradient by
controlling the response sampling distribution, thereby improving learning efficiency.

A review of other RLHF literature, particularly on data selection for the preference dataset, is deferred
to Appendix A.

2 PROBLEM SETUP AND MOTIVATION

Language Model (LM). At the core of RLHF is a language model that processes prompts x ∈ X
and generates responses y⃗ ∈ Y . Each response is represented as a sequence of tokens y⃗ =
(y1, y2, . . . , yT ). The primary goal of RLHF is to guide the model to generate responses that align
with human preferences. This translates to designing a policy π (parameterized as a LM) that maps
prompts to responses, maximizing a reward that reflects human preferences (with a KL regularization).

Preference Data. The oracle reward for human values is inherently inaccessible. Instead,
the alignment process approximates the reward using a dataset of human-labeled preferences,
D =

{
(xi, y⃗

w
i , y⃗

ℓ
i)
}n

i=1
, where each sample contains: (i) a prompt xi, independently drawn from a

distribution ρ, and (ii) a pair of responses (y⃗w
i , y⃗

ℓ
i), where y⃗w

i is preferred over y⃗ℓ
i in human labeling.

The response pair (y⃗w
i , y⃗

ℓ
i) is first generated from a joint distribution µ(· | x) and then presented

to human labelers for preference annotation. Human preferences are commonly modeled using the
Bradley–Terry (BT) model, which assumes:

P
(
y⃗a ≻ y⃗b

∣∣ x) = σ
(
r⋆(x, y⃗a)− r⋆(x, y⃗b)

)
, (1)

where r⋆(x, y⃗) represents the (unknown) oracle reward of a response given a prompt, and σ(z) =
{1+ exp(−z)}−1 is the sigmoid function, mapping differences in rewards to probabilities. We adopt
the BT model throughout this paper.

Reward Modeling. The preference data, encoding human judgment, is then used to train a reward
model, rθ, which serves as a measurable objective for training the policy model. rθ is trained by
solving a MLE objective:

min
θ

L̂(θ) := − 1

n

n∑
i=1

log σ
(
rθ
(
xi, y⃗

w
i

)
− rθ

(
xi, y⃗

ℓ
i

))
. (2)

This empirical loss approximates the expected negative log-likelihood

L(θ) := Ex∼ρ, (y⃗a,y⃗b)∼µ(·|x)

[
− log σ

(
rθ(x, y⃗

w)− rθ(x, y⃗
ℓ)
)]

. (3)

Policy Optimization. To align a language model ϕ with human preferences, we optimize it to
maximize the learned rewards rθ while staying close to a reference policy πref . The objective is

maxϕ Ex∼ρ,y⃗∼πϕ(·|x)
[
rθ(x, y⃗)

]
− βDKL(πϕ ∥ πref). (4)
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It consists of two parts:

(i) The reward term Ex∼ρ, y⃗∼π(·|x)[rθ(x, y⃗)] encourages the policy to generate high-quality
responses.

(ii) The regularization term DKL(π ∥ πref) penalizes deviations from the reference policy πref

and is defined as Ex∼ρ

[
DKL

(
π(· | x)

∥∥ πref(· | x)
)]

.

Here, β is a regularization parameter that balances the trade-off between reward maximization and
adherence to the reference policy. We assume β is fixed and practitioner-specified.

Direct Preference Optimization. The above-described RLHF pipeline typically leverages the
Proximal Policy Optimization (PPO) algorithm (Schulman et al., 2017) to perform policy optimization.
This approach requires loading the policy network, reward model, reference model, and a value
model onto the GPU during training, making it highly resource-intensive. To improve computational
efficiency and practicality, Direct Preference Optimization (DPO) (Rafailov et al., 2023) has been
proposed, enabling direct alignment without the need for a reward model or a value model.

A key insight of DPO is that any policy πθ can be viewed as the optimal solution to problem equation 4
if the reward rθ is

rθ(x, y⃗) := β · log
(

πθ(y⃗ | x)
πref(y⃗ | x)

)
. (5)

Thus, DPO can directly optimize the policy πθ using L̂(θ) in Equation (2), where rθ is replaced by
πθ as defined in Equation (5). This reformulation makes the objective dependent solely on θ, with
the reward being implicitly learned through the policy itself. As a result, the optimization process
becomes significantly more efficient.

Motivation. To fully align with human values, RLHF should, in principle, train the policy to
maximize the oracle reward, r⋆, as defined in the BT model. The corresponding oracle objective is
then:

J(π) := Ex∼ρ, y⃗∼π(·|x)
[
r⋆(x, y⃗)

]
− β DKL(π ∥ πref) .

Since direct access to r⋆ is unavailable, RLHF instead relies on preference data, either through
MLE-based reward modeling or methods like DPO. However, these processes are not inherently
designed to train the policy to directly maximize the oracle objective, J(π).

In this work, we aim to design an optimal sampling distribution µ to realign DPO with the max-
imization of J(π). Such a sampling strategy will improve the quality of the preference dataset,
maximize the utility of limited data, and enhance both performance and efficiency. This focus is
particularly crucial in scenarios where additional data is collected during mid-training—a key phase
in the iterative fine-tuning of LMs (Touvron et al., 2023; Bai et al., 2022; Xiong et al., 2024; Guo
et al., 2024). At this stage, a preliminary policy πθ (distinct from πref ) is already in place, but its
performance may fall short of expectations. It is thus necessary to gather additional preference data,
ideally on-policy data that target areas where the current policy shows room for improvement. An
effective sampling design can significantly enhance the efficiency of leveraging human feedback in
this process.

3 T-PILAF: THEORETICAL SAMPLING SCHEME

We now present T-PILAF - theoretically grounded policy interpolation for aligned feedback - our
sampling scheme for generating responses in data collection2. The scheme is shown (in Section 4) to
be optimal from both optimization and statistical perspectives.

Consider we have an initial policy πθ and aim to collect preference data to further refine its perfor-
mance. We propose two complementary variants of policy πθ: one that encourages exploration in
regions more preferred by πθ, reflecting an optimistic perspective, and another that focuses on areas
less favored by πθ, reflecting a conservative adjustment.

2The T in T-PILAF serves to distinguish the theoretical scheme from the derived, simplified, efficiently
implementable PILAF.
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Specifically, we define policies π+
θ and π−

θ around πθ as

π+
θ (y⃗ | x) := 1

Z+
θ (x)

πθ(y⃗ | x) exp
{
rθ(x, y⃗)

}
, (6a)

π−
θ (y⃗ | x) := 1

Z−
θ (x)

πθ(y⃗ | x) exp
{
− rθ(x, y⃗)

}
, (6b)

where the reward function rθ is defined in equation equation 5. The partition function Z+
θ (x) (or

Z−
θ (x)) is given by Z+

θ (x) :=
∫
Y πθ(y⃗ | x) exp{rθ(x, y⃗)} dy⃗.

For any prompt x ∈ X , our sampling procedure involves the following steps:

(i) Draw a random variable ξ from Bernoulli(p0(x)), where p0(x) := Z+
θ (x)Z−

θ (x)/{1 +

Z+
θ (x)Z−

θ (x)}.

(ii) If ξ = 1, independently draw responses y⃗a, y⃗b ∈ Y according to y⃗a ∼ π+
θ (· | x) and

y⃗b ∼ π−
θ (· | x). If ξ = 0, draw responses as y⃗a, y⃗b ∼ πθ(· | x).

In the next section, we will theoretically analyze T-PILAF. To account for the changes in sampling,
we adopt a slightly modified loss function in the theoretical framework:

L̂(θ) :=− 1

n

n∑
i=1

w(xi) · log σ
(
rθ
(
xi, y⃗

w
i

)
− rθ

(
xi, y⃗

ℓ
i

))
.

The newly introduced weight function w is defined as
w(x) :=

{
1 + Z+

θ (x)Z−
θ (x)

}
/Zθ , (7)

where the normalization constant Zθ > 0 is given by Zθ : = 1 +
∫
X Z+

θ (x)Z−
θ (x) ρ(x) dx. We also

modify the population loss L in Equation (3) with the weight function.

4 THEORETICAL ANALYSIS

This section provides the theoretical grounding and analysis of our proposed sampling scheme
from two perspectives. In the optimization analysis (Section 4.1) we show that T-PILAF aligns
two objectives (gradient alignment property): maximizing the likelihood function (Equation (3))
becomes equivalent to gradient ascent on the value function J(πθ) (Equation (6)). Consequently,
policy updates on πθ move the parameters in the direction of steepest increase of J . T-PILAF
thus provides the potential to accelerate training and improve generalization, compared to vanilla
(uniform) sampling. In the statistical analysis (Section 4.2) we focus on statistical error and show
that the asymptotic covariance of the estimated parameter θ̂ (inversely) aligns with the Hessian of
the objective function J when sampling with T-PILAF. As a result, T-PILAF makes the sampled
comparisons more informative, as they align with directions where J is most sensitive. The net
outcome is reduced statistical variance of our method through tighter concentration of estimates in
directions that matter most for performance.

4.1 OPTIMIZATION CONSIDERATIONS

We begin by analyzing the DPO algorithm from an optimization perspective. Theorem 4.1 below
formally illustrates how T-PILAF ensures alignment between the MLE gradient, ∇θ L(θ), and the
oracle objective gradient, ∇θ J(πθ).
Theorem 4.1 (Gradient structure in DPO training). Using data collected from our proposed response
sampling scheme T-PILAF, the gradient of L(θ) satisfies

∇θ L(θ) = − β

Zθ

∇θ J(πθ) + T2 ,

where the constant Zθ is defined in equation equation 7, and the term T2 is a second-order error.

The detailed proof of Theorem 4.1 is deferred to Appendix C.1. It involves calculation of explicit
forms of the gradients ∇θ L(θ) and ∇θ J(πθ); the most notable technical contribution is showing
how to leverage our sampling scheme to approximate the derivative σ′ of the sigmoid function. By
using T-PILAF sampling, we can transform a difference term of the form σ(∆r⋆) − σ(∆rθ) in
∇θ L(θ) into a linear difference ∆r⋆ −∆rθ in ∇θ J(πθ).
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Theorem 4.1 establishes the gradient alignment property, demonstrating that minimizing the
likelihood-based loss function L closely aligns with maximizing the oracle objective function J , with
only a minor second-order error. It highlights how the proposed sampling scheme enables the DPO
framework to effectively guide the policy toward optimizing the expected reward. Beyond DPO, in
Appendix G, we show how the same principle can be applied to PPO-based RLHF algorithms to help
improve the sampling.

4.2 STATISTICAL CONSIDERATIONS

From a statistical standpoint, we first examine the asymptotic distribution of the estimated parameter
θ̂ when it (approximately) solves the optimization problem equation 2. In Theorem 4.2, we formally
characterize the randomness or statistical error inherent in θ̂ under this idealized scenario. The
detailed proof of Theorem 4.2 is provided in Appendix C.2.2.
Theorem 4.2. Assume the reward model r⋆ in the BT model equation 1 satisfies r⋆ = rθ⋆ for some
parameter θ⋆. Under mild regularity conditions, the estimate θ̂ asymptotically follows a Gaussian
distribution

√
n (θ̂−θ⋆)

d−→ N (0,Ω) as n → ∞. We have an estimate of the covariance matrix Ω:
Ω ⪯ C1 ·Σ−1

⋆ , where C1 > 0 is a universal constant. When using T-PILAF, Σ⋆ is given by

Σ⋆ : = Ex∼ρ

[
Covy⃗∼π⋆(·|x)

[
∇θ r

⋆(x, y⃗)
∣∣ x]] . (8)

Next we analyze the performance of the output policy π̂ = πθ̂ from Theorem 4.2 in terms of the
expected value J(π). In Theorem 4.3, we show that our proposed sampling method guarantees
that the covariance of the statistical error in θ̂ aligns inversely with the Hessian of J at the optimal
policy π⋆. This alignment prioritizes convergence efficiency along directions where the Hessian has
large eigenvalues, adapting to the geometry of the optimization landscape. It highlights the efficiency
of our sampling scheme in reducing statistical error. For the detailed proof, see Appendix C.2.3.
Theorem 4.3. The value function J(π) we define in equation equation 6 satisfies ∇θ J(π

⋆) = 0 and

∇2
θ J(π

⋆) = − 1

β
Σ⋆ (9)

for matrix Σ⋆ defined in equation equation 8. As a corollary, suppose Σ⋆ is nonsingular, then there
exists a constant C2 > 0 such that for any ε > 0,

lim sup
n→∞

P

{
J(π̂) < J(π⋆)− C2 ·

d (1 + ε)

n

}
≤ P

{
χ2
d > (1 + ε) d

}
. (10)

Our proposed sampling distribution µ ensures that the output policy π̂ performs predictably and
reliably. The value gap J(π⋆)− J(π̂) asymptotically follows a chi-square distribution, irrespective
of the problem instance details, such as the underlying reward model r⋆. This structure-invariant
statistical efficiency allows the method to achieve asymptotically efficient estimates without requiring
explicit knowledge of the model structure.

We further derive a general lemma describing how µ affect the covariance in Appendix B. This result
provides broader insights into what constitutes good preference data in RLHF.

5 PILAF ALGORITHM

We now demonstrate that the T-PILAF sampling scheme defined in Equation (6a) and (6b) can be
naturally extended into an efficient empirical algorithm (PILAF).

The first challenge in implementing these definitions lies in calculating the normalizing factors Z+
θ (x)

and Z−
θ (x), which can be computationally expensive for LLMs. To address this, we simplify the

process by replacing them with 1.3 Consequently, the sampling process becomes straightforward:
with probability 1/2, we sample using πθ, and otherwise, we sample using π+

θ and π−
θ .

The second challenge lies in sampling a response y⃗ from πθ(y⃗ | x) exp
{
± rθ(x, y⃗)

}
in an autore-

gressive way for next-token generation. We argue that the policy π+
θ (and π−

θ ) can be approximated
in a token-wise manner:

π+
θ (y⃗ | x) ≈ π+

θ (y1 | x)π+
θ (y2 | x, y1) · · · π+

θ (yt | x, y1:t−1) · · · π+
θ (yT | x, y1:T−1),

3When the regularization coefficient β is sufficiently small, the term exp{rθ(x, y⃗)} in equation equation 6a
stays close to 1 and has only a minor effect. Consequently, the partition function Z+

θ (x) is approximately 1. A
similar reasoning applies to Z−

θ (x).
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Table 1: A cost summary of PILAF and sampling methods from related works. Best-of-N method in Xiong
et al. (2024) uses the oracle reward to score all candidate responses, then selects the highest- and lowest-scoring
ones—instead of providing a preference label for only two responses. We restrict the oracle to providing only
preference labels. Thus, we create a Best-of-N variant that uses the DPO internal reward for selection and then
applies preference labeling, with an annotation cost of 2. We compare with this variant in the experiment.

METHOD y⃗a y⃗b SAMPLING COST ANNOTATION COST

Vanilla (RAFAILOV ET AL., 2023) πθ πθ 2 2
Best-of-N (XIONG ET AL., 2024), N=8 BEST OF πθ WORST OF πθ 8 8*
Best-of-N (WITH DPO REWARD), N=8 BEST OF πθ WORST OF πθ 8 2
Hybrid (XIE ET AL., 2024) πθ πref 2 2

PILAF (OURS) π+
θ /πθ π−

θ /πθ 3 2

where π+
θ (yt | x, y1:t−1) = 1

Z(x,y1:t−1)
πθ(yt | x, y1:t−1)

( πθ(yt|x,y1:t−1)
πref (yt|x,y1:t−1)

)β
, with Z(x, y1:t−1)

being a partition function. The substitution of rθ uses the correspondence between the reward model
rθ and the policy πθ in Equation (5), under the assumption that this correspondence holds for all
truncations y1:t−1. It gives us a direct per-token prediction rule:

π+
θ (· | x, y1:t−1) = softmax

({
(1 + β)hθ − β href

}
(x, y1:t−1)

)
.

Here hθ and href are the logits of the policies πθ and πref , respectively. β is the regularization
coefficient from the objective function J(π) in Equation (6). Responses are then generated using
standard decoding techniques, such as greedy decoding or nucleus sampling. Similarly, π−

θ follows

π−
θ (· | x, y1:t−1) = softmax

({
(1− β)hθ + β href

}
(x, y1:t−1)

)
.

For a detailed, step-by-step proof, see Proposition 1 in Liu et al. (2024b).

We formalize our final algorithm in Algorithm 1. Vanilla DPO (Rafailov et al., 2023; Guo et al., 2024)
employs a basic generation approach, sampling y⃗a

i , y⃗
b
i ∼ πθ at Step 3. In contrast, instead of only

sampling from πθ, our sampling scheme interpolates and extrapolates the logits hθ and href with
coefficient β, enabling exploration of a wider response space to align learning from human preference
with value optimization. The β here is the same parameter that controls the KL regularization in
Equation (4), as set by the problem.

Algorithm 1 DPO with PILAF (ours).

input Prompt Dataset Dρ, preference oracle O, πθ,πref .
1: for step t = 1, ..., T do
2: Sample nt prompts {xi}nt

i=1 from Dρ.
3: With probability 1/2, sample y⃗a

i , y⃗
b
i ∼ πθ; with prob-

ability 1/2, sample y⃗a
i ∼ π+

θ and y⃗b
i ∼ π−

θ .
4: Query O to label (xi, y⃗

a
i , y⃗

b
i ) into (xi, y⃗

w
i , y⃗

ℓ
i).

5: Update πθt with DPO loss using {(xi, y⃗
w
i , y⃗

ℓ
i)}

nt
i=1.

6: end for

Cost analysis. We summarize sam-
pling and annotation costs per prefer-
ence pair for PILAF and related sam-
pling schemes in Table 1. In Vanilla
sampling (from πθ), two generations
and two annotations are required for
human preference labeling, same to
PILAF when the pair is sampled from
πθ, which happens half the time. With
50% probability, PILAF uses π+

θ and
π−
θ to generate, requiring two forward passes with πθ and πref to generate one sample. Thus, on

average, a preference pair sampled with PILAF requires a sampling cost of 3 forward passes (1.5
time the cost of Vanilla) with the same annotation cost. To compare, Xiong et al. (2024); Dong et al.
(2024) perform Best-of-N sampling with N = 8, which generates and annotates all 8 responses,
selecting the best and worst of them. Xie et al. (2024) use a Hybrid method that generates with πθ

and πref , thus matching the sampling and annotation costs of the Vanilla method. We empirically
compare PILAF with these methods in the next section.

6 EXPERIMENTS

In this section, we empirically evaluate PILAF in both an iterative DPO setting (Section 6.1, following
Xiong et al. (2024); Dong et al. (2024)) and an online DPO setting (Section 6.2, following Guo et al.
(2024)) where the model undergoes multiple rounds of refinement through active data collection. Our
findings indicate that, without requiring any hyper-parameter tuning, our sampling scheme stabilizes
training, achieves higher reward scores, and maintains lower KL divergence from the reference model.

General Setup. We align the Llama-3.1-8B base model (Dubey et al., 2024) in terms of helpfulness
and harmlessness using the HH-RLHF dataset (Bai et al., 2022), a widely-used benchmark dataset
for alignment. It consists of 161k prompts in the training set. For response preference labeling, we
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use a well-trained reward model to simulate human preferences by assigning preference to pairs of
responses under the BT assumption in Equation (1). Specifically, we employ the Skywork-Reward-8B
model (Liu et al., 2024a), a top-performing 8B model on RewardBench (Lambert et al., 2024), as our
oracle O. During training, interaction with this reward model is limited to providing two responses
for comparison. We set β = 0.1 in all the experiments.

Supervised Fine-Tuning (SFT). To initialize training, following Rafailov et al. (2023), we first
fine-tune the base model to obtain the SFT model as πref , which we fix as the reference model in all
the experiments. We use the originally preferred responses from the HH-RLHF dataset as the SFT
dataset and perform full-parameter tuning.

Evaluation. We present our results using the reward-KL curve, following Gao et al. (2023), with the
reward evaluated by the oracle reward model O. To monitor the impact of our sampling scheme on
the optimization trajectory, we evaluate the model every 50 gradient steps during training. We use the
entire testset of HH-RLHF (8.55K samples) to evaluate.

Baselines. We compare our sampling method against existing methods in Table 1. Since we treat
the oracle O as a proxy for human labelers that can only provide pairwise preferences, all baselines
are constrained to query the oracle with exactly two samples at a time. We thus adapt a Best-of-N
variant that deploys the internal DPO reward to select the top and bottom candidates, which are then
presented to the oracle for preference labeling, as listed in Table 1. We compare PILAF against the
baselines: Vanilla Sampling, Best-of-N Sampling (with DPO reward), and Hybrid Sampling combined
with a modified DPO loss (Xie et al., 2024).
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Figure 2: Reward-KL curve for Iterative DPO.
All runs start from the same model obtained at the
end of the first iteration via Vanilla Sampling. Each
dot represents an evaluation performed every 50
training steps.

Full experimental details can be found in Appendix F.

6.1 ITERATIVE DPO

Implementation. We first consider the iterative DPO
framework (Xiong et al., 2024; Dong et al., 2024),
in which preference data is collected in successive
iterations rather than as a single fixed dataset. At the
start of each iteration, a large dataset of responses is
sampled using the current model, annotated for prefer-
ences, and then used to train the current model. Con-
cretely, we set nt = |Dρ| in Algorithm 1, meaning
that all prompts are used to generate new responses
at each iteration. During the first iteration, when πref

and πθ are identical, PILAF reduces to Vanilla Sam-
pling. Hence, we choose to focus our comparison on
the second iteration. For consistency, we initialize all runs with the same policy model obtained at
the end of the first iteration via Vanilla Sampling.

Table 2: Results of Iterative DPO. We report the
average reward, KL divergence from the reference
model, and objective J on the test set. Higher
reward and J are better, while lower KL divergence
is better. We use boldface to indicate the best result
and underline to denote the second-best result.

METHOD REWARD (↑) KL (↓) J (↑)

Vanilla -10.16 35.20 -13.68
Best-of-N -10.13 32.38 -13.37
Hybrid -10.51 22.86 -12.80

PILAF -9.80 25.01 -12.30

Results. Figure 2 presents the reward-KL curve for
iterative DPO. PILAF significantly outperforms all
the other methods: it achieves the end-point rewards
of the baselines already around halfway through train-
ing, with around 40% less training time. This reduc-
tion directly translates to savings in both annotation
and computational costs. We summarize the final
performance in Table 2. PILAF produces a final pol-
icy with a high reward value and a modestly small
KL divergence from the reference model, thereby
achieving the highest overall objective J .

6.2 ONLINE DPO

Implementation. We further evaluate our sampling
method in the online DPO setting (Guo et al., 2024), where new responses are generated and labeled
at every training step, and these preference data are immediately used to update πθ. This setting
corresponds to the case where nt (in Algorithm 1) is set to the training batch size, resulting in the most
annotation-intensive and most actively on-policy alignment. By collecting and utilizing preference
data on the fly for each batch, the policy is continuously refined using on-policy feedback throughout
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the entire training process. Similar to Iterative DPO, we initialize all training runs with the same πθ

and focus on comparing the subsequent optimization. Further details are in Appendix F.
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Figure 3: Reward-KL curve for Online DPO.
Each dot represents an evaluation every 50 training
steps.

Results. Figure 3 demonstrates the effectiveness of
PILAF in the pure online setting, and we summarize
the final performance in Table 3. Compared with
Vanilla and Hybrid Sampling, PILAF achieves a sig-
nificantly better Reward-KL trade-off curve, attaining
higher reward with lower KL. Although Vanilla even-
tually achieves roughly the same reward value as
PILAF, it comes at the cost of a substantially higher
KL. When compared with Best-of-N, PILAF traces a
similar Reward–KL trajectory but ends with a higher
reward and a better final objective after the same num-
ber of iterations, translating to lower sample complex-
ity and reduced annotation and computational cost.

Table 3: Results of Online DPO. We report the
average reward, KL divergence from the reference
model, and objective J on the testset.

METHOD REWARD (↑) KL (↓) J (↑)

Vanilla -4.96 21.50 -7.11
Best-of-N -5.54 12.35 -6.77
Hybrid -6.42 16.46 -8.96

PILAF -4.88 15.42 -6.42

Robustness Analysis. Having established the effec-
tiveness of PILAF, we further evaluate its robustness
by testing whether it improves optimization and sta-
tistical convergence under challenging conditions, as
predicted from our statistical theory in Section 4.2.
Specifically, we replace the initial model with one
that has overfit on a fixed off-policy dataset. This
setup allows us to examine how different methods
handle optimization starting from a poor initial point.

In Figure 4, we compare the performance of PILAF
and Vanilla Sampling when both are initialized from an overfitted policy. We observe that Vanilla
Sampling rapidly increases its KL divergence from the reference model while its reward improvement
diminishes over time. In contrast, PILAF undergoes an early training phase with fluctuating KL
values but ultimately attains a policy with higher reward and substantially lower KL divergence. We
hypothesize that PILAF’s interpolation-based exploration design enables it to escape the suboptimal
region of the loss landscape in which Vanilla remains. These results underscore PILAF’s effectiveness
in more robustly optimizing overfitted (or even adversarially initialized) policies.

7 CONCLUSION
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Figure 4: Online DPO with an overfitted ini-
tial policy. Each dot represents an evaluation per-
formed every 50 training steps. Color saturation
indicates the training step, with darker colors rep-
resenting later steps.

In this paper, we introduced Policy-Interpolated
Learning for Aligned Feedback (PILAF), a novel
sampling method designed to enhance response sam-
pling for preference labeling. Theoretical analysis
highlights PILAF’s superiority from both optimiza-
tion and statistical perspectives, demonstrating its
ability to stabilize training, accelerate convergence,
and reduce variance. The method is straightforward
to implement and requires no additional hyperparam-
eter tuning. We empirically validated its performance
in both iterative DPO and online DPO settings, where
it consistently outperformed existing approaches. To
achieve the same level of performance, PILAF con-
sistently requires lower annotation costs, which can
be substantial when annotations require experts in
knowledge-intensive domains.

In future work, we hope to extend PILAF to other paradigms, such as KTO (Ethayarajh et al., 2024)
and IPO (Azar et al., 2024). Due to resource constraints, our evaluations were conducted using
8B models and a reward model to simulate human feedback. Future studies involving larger-scale
experiments and real human labeling would further generalize our findings.

Overall, this work takes an important step toward improving preference data curation in RLHF
pipelines, laying the groundwork for more effective methods in alignment.
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Społeczna (Social Space), 23(1):293–312, 2023.

Chris Yuhao Liu, Liang Zeng, Jiacai Liu, Rui Yan, Jujie He, Chaojie Wang, Shuicheng Yan, Yang
Liu, and Yahui Zhou. Skywork-reward: Bag of tricks for reward modeling in llms. arXiv preprint
arXiv:2410.18451, 2024a.

Tianlin Liu, Shangmin Guo, Leonardo Bianco, Daniele Calandriello, Quentin Berthet, Felipe Llinares,
Jessica Hoffmann, Lucas Dixon, Michal Valko, and Mathieu Blondel. Decoding-time realignment
of language models. arXiv preprint arXiv:2402.02992, 2024b.

Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, Mohammad Saleh, Peter J Liu, and Jialu
Liu. Statistical rejection sampling improves preference optimization. In The Twelfth International
Conference on Learning Representations, 2024c.

Zichen Liu, Changyu Chen, Chao Du, Wee Sun Lee, and Min Lin. Sample-efficient alignment for
llms. arXiv preprint arXiv:2411.01493, 2024d.

Viraj Mehta, Vikramjeet Das, Ojash Neopane, Yijia Dai, Ilija Bogunovic, Jeff Schneider, and Willie
Neiswanger. Sample efficient reinforcement learning from human feedback via active exploration.
arXiv preprint arXiv:2312.00267, 2023.

William Muldrew, Peter Hayes, Mingtian Zhang, and David Barber. Active preference learning for
large language models. In Forty-first International Conference on Machine Learning, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2023.

Antoine Scheid, Etienne Boursier, Alain Durmus, Michael I Jordan, Pierre Ménard, Eric Moulines,
and Michal Valko. Optimal design for reward modeling in rlhf. arXiv preprint arXiv:2410.17055,
2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ruizhe Shi, Runlong Zhou, and Simon S Du. The crucial role of samplers in online direct preference
optimization. arXiv preprint arXiv:2409.19605, 2024.

11

https://huggingface.co/spaces/allenai/reward-bench
https://huggingface.co/spaces/allenai/reward-bench
https://arxiv.org/abs/2305.20050


Published as a conference paper at ICLR 2025

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International conference on machine learning, pp.
387–395. Pmlr, 2014.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. Advances in neural information processing
systems, 12, 1999.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Tengyang Xie, Dylan J Foster, Akshay Krishnamurthy, Corby Rosset, Ahmed Awadallah, and
Alexander Rakhlin. Exploratory preference optimization: Harnessing implicit q*-approximation
for sample-efficient rlhf. arXiv preprint arXiv:2405.21046, 2024.

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang.
Iterative preference learning from human feedback: Bridging theory and practice for rlhf under
kl-constraint. In Forty-first International Conference on Machine Learning, 2024.

Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan, Lingfeng Shen, Benjamin Van Durme, Kenton
Murray, and Young Jin Kim. Contrastive preference optimization: Pushing the boundaries of llm
performance in machine translation. In Forty-first International Conference on Machine Learning,
2024.

Jing Xu, Andrew Lee, Sainbayar Sukhbaatar, and Jason Weston. Some things are more cringe than
others: Preference optimization with the pairwise cringe loss. arXiv preprint arXiv:2312.16682,
2023.

Zhenrui Yue, Honglei Zhuang, Aijun Bai, Kai Hui, Rolf Jagerman, Hansi Zeng, Zhen Qin, Dong
Wang, Xuanhui Wang, and Michael Bendersky. Inference scaling for long-context retrieval
augmented generation. arXiv preprint arXiv:2410.04343, 2024.

Shenao Zhang, Donghan Yu, Hiteshi Sharma, Han Zhong, Zhihan Liu, Ziyi Yang, Shuohang Wang,
Hany Hassan, and Zhaoran Wang. Self-exploring language models: Active preference elicitation
for online alignment. arXiv preprint arXiv:2405.19332, 2024.

12



Published as a conference paper at ICLR 2025

CONTENTS

A. Additional Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

B. Additional Statistical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

C. Proof of Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

C.1. Optimization Considerations: Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

C.1.1. Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

C.1.2. Derivation of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

C.1.3. Proof of Claim equation 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

C.2. Statistical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

C.2.1. Proof of Lemma B.1 (Theorem C.4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

C.2.2. Proof of Theorem 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

C.2.3. Proof of Theorem 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

D. Proof of Auxiliary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

D.1. Proof of Auxiliary Results for Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

D.1.1. Gradients of Policy πθ and Reward rθ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

D.1.2. Proof of Lemma C.2, Explicit Form of Gradient ∇θ J(πθ) . . . . . . . . . . . . . . . . . . . . . . 22

D.1.3. Proof of Lemma C.3, Explicit Form of Gradient ∇θ L(θ) . . . . . . . . . . . . . . . . . . . . . . . . 24

D.2. Proof of Auxiliary Results for Theorem 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

D.2.1. Proof of Condition equation 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

D.2.2. Proof of Lemma C.5, Explicit Form of Hessian ∇2
θ L(θ⋆) . . . . . . . . . . . . . . . . . . . . . . . . 27

D.2.3. Proof of Lemma C.6, Asymptotic Distribution of Graident ∇θ L̂(θ⋆) . . . . . . . . . . . . . 27

D.3. Proof of Auxiliary Results for Theorem 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

D.3.1. Proof of Equation equation 9 from Theorem 4.3, Explicit Form of Hessian ∇2
θ J(π

⋆) 28

D.3.2. Proof of the Asymptotic Distribution in Equation equation 32 . . . . . . . . . . . . . . . . . . . . 29

D.3.3. Proof of the Tail Bound in Equation equation 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

E. Supporting Theorem: Master Theorem for Z-Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

F. Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

G. Extension to Proximal Policy Optimization (PPO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

A ADDITIONAL LITERATURE REVIEW

RLHF. RLHF has emerged as a cornerstone methodology for aligning large language models with
human values and preferences (Achiam et al., 2023). Early systems (Ouyang et al., 2022) turn
human preference data into reward modeling to optimize model behavior accordingly. DPO has been
proposed as a more efficient approach that directly trains LLMs on preference data. As LLMs evolve
during training, continuing training on pre-generated preference data becomes suboptimal due to the
distribution shift. Empirically, RLHF is applied iteratively—generating on-policy data at successive
stages to enhance alignment and performance (Touvron et al., 2023; Bai et al., 2022). Similarly,
researchers have introduced iterative DPO (Xiong et al., 2024; Xu et al., 2023) and online DPO (Guo
et al., 2024) to fully leverage online preference labeling. Ultimately, the quality of preference data
play a critical role in determining the effectiveness of the alignment.
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Sampling in Frontier LLMs. Technical reports of Frontier LLMs briefly mention sampling tech-
niques. For instance, Claude (Bai et al., 2022) utilizes models from different training steps to generate
responses, while Llama-2 (Touvron et al., 2023) further use different temperatures for sampling.
However, no further details are provided, leaving the development of a principled method an open
challenge.

Data Selection. There is a line of research aimed at improving sample efficiency for preference
labeling by selecting question and response pairs. Scheid et al. (2024) conceptualize this as a regret
minimization problem, leveraging methods from linear dueling bandits. Das et al. (2024); Mehta
et al. (2023); Muldrew et al. (2024); Ji et al. (2024) draw insights from active learning, using various
uncertainty estimators to guide selection by prioritizing sample pairs with maximum uncertainty.
These approaches focus directly on a dataset of questions and responses and are orthogonal to our
work.

Other Changes in Response Sampling. Several works also modify the sampling design directly
(Liu et al., 2024c; Dong et al., 2023), but with the goal of improving policy network optimization
based on a reward model, rather than enhancing the reward modeling itself. Liu et al. (2024c) employ
rejection sampling to approximate the response distribution induced by the reward model, thereby
improving optimization. However, this approach requires access to the reward model and incurs
higher computational and labeling costs. Similarly, Dong et al. (2023) use best-of-N sampling with
the reward model to generate high-quality data for supervised fine-tuning (SFT). We consider these
approaches orthogonal to our work.

Additionally, Cen et al. (2024) introduce a bonus term in the policy learning phase of online RLHF to
promote exploration in response sampling, which aligns with the optimism principle.

B ADDITIONAL STATISTICAL RESULTS

In addition to our analysis of T-PILAF in Section 3, here we present a generalized version of
Theorem 4.2 that applies to any response sampling distribution µ. While not directly tied to the
main focus of this work, this broader result may be of independent interest to readers. The proof of
Lemma B.1 is provided in Appendix C.2.1.

Lemma B.1. For a general sampling distribution µ, the statement in Theorem 4.2 remains valid with
the matrix Σ⋆ redefined as

Σ⋆ : = Ex∼ρ,(y⃗a, y⃗b)∼µ(·|x)

[
w(x) ·Var

(
1{y⃗a = y⃗w}

∣∣ x, y⃗a, y⃗b
)
· g g⊤

]
, (11)

where the expectation is taken over the distribution

µ(y⃗a, y⃗b | x) := 1

2

{
µ(y⃗a, y⃗b | x) + µ(y⃗b, y⃗a | x)

}
. (12a)

The variance term is specified as

Var
(
1{y⃗a = y⃗w} | x, y⃗a, y⃗b

)
= σ

(
r⋆(x, y⃗a)− r⋆(x, y⃗b)

)
σ
(
r⋆(x, y⃗b)− r⋆(x, y⃗a)

)
(12b)

and the gradient difference g is defined as

g : = ∇θ r
⋆(x, y⃗a)−∇θ r

⋆(x, y⃗b) . (12c)

The general form of the matrix Σ⋆ offers valuable insights for designing a sampling scheme. To
ensure Σ⋆ is well-conditioned (less singular), we must balance two key factors when selecting
responses y⃗a and y⃗b:

Large variance: The variance in definition equation 12b should be maximized. This occurs when
r⋆(x, y⃗a) ≈ r⋆(x, y⃗b). Intuitively, preference feedback is most informative when annotators
compare responses of similar quality.

Large gradient difference: The gradient difference g from definition equation 12c should also be
large. This requires responses with significantly different gradients. Only then can the
comparison provide a clear and meaningful direction for model training.

14
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C PROOF OF MAIN RESULTS

This section provides the proofs of the main results from Section 4, covering both optimization
and statistical aspects. In Appendix C.1, we prove Theorem 4.1, which establishes the gradient
alignment property. For the statistical results, Appendix C.2 begins with the proofs of Lemma B.1
and Theorem 4.2, which derive the asymptotic distribution of the estimated parameter θ̂, and concludes
with the proof of Theorem 4.3, analyzing the asymptotic behavior of the value gap J(π⋆)− J(π̂).

C.1 OPTIMIZATION CONSIDERATIONS: PROOF OF THEOREM 4.1

We begin by presenting a rigorous restatement of Theorem 4.1, formally detailed in Theorem C.1
below.

Theorem C.1 (Gradient structure in DPO training). Consider the expected loss function L(θ) during
the DPO training phase. Using data collected from our poposed response sampling scheme µ, the
gradient of L(θ) satisfies

∇θ L(θ) = − β

Zθ

∇θ J(πθ) + T2 ,

where the constant Zθ is defined in equation equation 7, and the term T2 represents a second-order
error.

To control term T2, assume the following uniform bounds:

(i) ∥r⋆∥∞ ≤ R.

(ii) For any policy πθ ∈ Π, the induced reward rθ satisfies ∥rθ∥∞ ≤ R and
supx,y⃗∥∇θ rθ(x, y⃗)∥2 ≤ G.

Under these conditions, T2 is bounded as

∥T2∥2 ≤ C · Ex∼ρ, y⃗a,y⃗b∼πθ(·|x)

[{(
r⋆(x, y⃗a)− r⋆(x, y⃗b)

)
−

(
rθ(x, y⃗

a)− rθ(x, y⃗
b)
)}2

]
,

where the constant C is given by C = 0.1 (1 + e2R)G
/
Zθ.

The proof of Theorem C.1 is structured into three sections. In Appendix C.1.1, we lay the foundation
by presenting the key components, including the explicit expressions for the gradients ∇θ J(πθ) and
∇θ L(θ), as well as for the sampling density µ. Then Appendix C.1.2 establishes the connection
between ∇θ J(πθ) and ∇θ L(θ) by leveraging these results, completing the proof of Theorem 4.1.
Finally, in Appendix C.1.3, we provide a detailed derivation of the form of density function µ.

C.1.1 BUILDING BLOCKS

To establish Theorem 4.1, which uncovers the relationship between the gradients of the expected value
J(πθ) and the negative log-likelihood function L(θ), the first step is to derive explicit expressions
for the gradients of both functions. The results are presented in Lemmas C.2 and C.3, with detailed
proofs provided in Appendices D.1.2 and D.1.3, respectively.

Lemma C.2 (Gradient of value J(πθ)). For any πθ in the parameterized policy class Π, the gradient
of the expected value J(πθ) satisfies

∇θ J(πθ) =
1

2β
Ex∼ρ; y⃗a,y⃗b∼πθ(·|x)

[{(
r⋆(x, y⃗a)− r⋆(x, y⃗b)

)
−

(
rθ(x, y⃗

a)− rθ(x, y⃗
b)
)}

·
{
∇θ rθ(x, y⃗

a)−∇θ rθ(x, y⃗
b)
}]

. (13)

Lemma C.3 (Gradient of the loss function L(θ)). For any πθ in the parameterized policy class Π
and any sampling distribution µ of the responses, the gradient of the negative log-likelihood function

15
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L(θ) is given by

∇θ L(θ) = −Ex∼ρ; (y⃗a, y⃗b)∼µ(·|x)

[
w(x)·

{
σ
(
r⋆(x, y⃗a)−r⋆(x, y⃗b)

)
−σ

(
rθ(x, y⃗

a)−rθ(x, y⃗
b)
)}

·
{
∇θ rθ(x, y⃗

a)−∇θ rθ(x, y⃗
b)
}]

, (14a)

where the average density µ is defined as

µ(y⃗a, y⃗b | x) :=
1

2

{
µ(y⃗a, y⃗b | x) + µ(y⃗b, y⃗a | x)

}
(14b)

as previously introduced in Equation (12a).

In Lemma C.3, we observe that the gradient ∇θ L(θ) is expressed as an expectation over the
probability distribution µ. By applying the sampling scheme outlined in Section 3, we can derive a
more detailed representation of ∇θ L(θ). This refined form will reveal its close relationship to the
gradient ∇θ J(πθ) given in expression equation 13.

Before moving forward, it is crucial for us to first derive the explicit form of µ. Specifically, we claim
that the distribution µ satisfies the following property

µ(y⃗a, y⃗b | x)
πθ(y⃗a | x)πθ(y⃗b | x)

=
1

2 {1 + Z+
θ (x)Z−

θ (x)}
· 1

σ′
(
rθ(x, y⃗a)− rθ(x, y⃗b)

) , (15)

where σ′ denotes the derivative of the sigmoid function σ, given by

σ′(z) =
1

(1 + exp(−z))(1 + exp(z))
= σ(z)σ(−z) for any z ∈ R . (16)

With these key components in place, we are now prepared to prove Theorem 4.1.

C.1.2 DERIVATION OF THEOREM 4.1

With the tools provided by Lemmas C.2 and C.3 and the sampling density expression in equation 15,
we are now ready to prove Theorem 4.1.

We begin by applying Lemma C.3 and reformulating equation equation 14a as

∇θ L(θ) = −Ex∼ρ; y⃗a, y⃗b∼πθ(·|x)

[
w(x) · µ(y⃗a, y⃗b | x)

πθ(y⃗a | x)πθ(y⃗b | x)

·
{
σ
(
r⋆(x, y⃗a)− r⋆(x, y⃗b)

)
− σ

(
rθ(x, y⃗

a)− rθ(x, y⃗
b)
)}

·
{
∇θ rθ(x, y⃗

a)−∇θ rθ(x, y⃗
b)
}]

. (17)

Substituting the density ratio from equation equation 15 into expression equation 17 and incorporating
the weight function w(x) defined in equation equation 7, we obtain

∇θ L(θ) = − 1

2Zθ

Ex∼ρ; y⃗a, y⃗b∼πθ(·|x)

[
σ
(
r⋆(x, y⃗a)− r⋆(x, y⃗b)

)
− σ

(
rθ(x, y⃗

a)− rθ(x, y⃗
b)
)

σ′
(
rθ(x, y⃗a)− rθ(x, y⃗b)

)
·
{
∇θ rθ(x, y⃗

a)−∇θ rθ(x, y⃗
b)
}]

.

(18)

Using the intuition that the first-order Taylor expansion
σ(z⋆)− σ(z)

σ′(z)
= (z⋆ − z) +O

(
(z⋆ − z)2

)
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is valid when z → z⋆, with z⋆ : = r⋆(x, y⃗a) − r⋆(x, y⃗b) and z : = rθ(x, y⃗
a) − rθ(x, y⃗

b), we find
that

σ
(
r⋆(x, y⃗a)− r⋆(x, y⃗b)

)
− σ

(
rθ(x, y⃗

a)− rθ(x, y⃗
b)
)

σ′
(
rθ(x, y⃗a)− rθ(x, y⃗b)

)
=

{(
r⋆(x, y⃗a)− r⋆(x, y⃗b)

)
−
(
rθ(x, y⃗

a)− rθ(x, y⃗
b)
)}

+ second-order term.

Reformulating equation equation 18 in this context, we rewrite it as

∇θ L(ϕ) = − 1

2Zθ

E x∼ρ;

y⃗a,y⃗b∼πθ(·|x)

[{(
r⋆(x, y⃗a)− r⋆(x, y⃗b)

)
−

(
rθ(x, y⃗

a)− rθ(x, y⃗
b)
)}

·
{
∇θ rθ(x, y⃗

a)−∇θ rθ(x, y⃗
b)
}]

+ T2 ,

(19)

where T2 represents the second-order residual term related to the estimation error rθ − r⋆. By
applying Lemma C.2, we observe that the primary term in equation equation 19 aligns with the
direction of ∇θ J(πθ), resulting in

∇θ L(ϕ) = − β

Zθ

∇θ J(πθ) + T2 . (20)

Next, we proceed to control the second-order term T2. The conditions
∥r⋆∥∞, ∥rθ∥∞ ≤ R and sup(x,y⃗)∈X×Y∥∇θ rθ(x, y⃗)∥2 ≤ G,

lead to the bound ∣∣∣ σ(z⋆)− σ(z)

σ′(z)
− (z⋆ − z)

∣∣∣ ≤ 0.1 (1 + e2R) · (z⋆ − z)2 ,

which in turn implies

∥T2∥2 ≤ 0.1 (1 + e2R)G

Zθ

Ex∼ρ; y⃗a,y⃗b∼πθ(·|x) (21)[{(
r⋆(x, y⃗a)− r⋆(x, y⃗b)

)
−
(
rθ(x, y⃗

a)− rθ(x, y⃗
b)
)}2

]
. (22)

Finally, combining equation equation 21 with equation equation 20, we conclude the proof of
Theorem 4.1.

C.1.3 PROOF OF CLAIM EQUATION 15

The remaining step in the proof of Theorem 4.1 is to verify the expression for the density ratio in
equation equation 15.

Based on the sampling scheme described in Section 3, we find that the sampling distribution for the
response satisfies

µ
(
y⃗a, y⃗b

∣∣ x) = {1− p0(x)} · πθ(y⃗
a | x)πθ(y⃗

b | x) + p0(x) · π+
θ (y⃗

a | x)π−
θ (y⃗

b | x) , (23)

where the probability p0(x) is defined as

p0(x) = Z+
θ (x)Z−

θ (x)/{1 + Z+
θ (x)Z−

θ (x)}
and the policies π+

θ and π−
θ are specified in equations equation 6a and equation 6b, respectively. This

allows us to simplify equation equation 23 to

µ
(
y⃗a, y⃗b

∣∣ x) =
πθ(y⃗

a | x)πθ(y⃗
b | x)

1 + Z+
θ (x)Z−

θ (x)

{
1 + exp

{
rθ(x, y⃗

a)− rθ(x, y⃗
b)
}}

.
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Similarly, we derive an expression for µ(y⃗b, y⃗a | x). By averaging the two expressions, for µ(y⃗a, y⃗b |
x) and µ(y⃗b, y⃗a | x), we obtain

µ(y⃗a, y⃗b | x)
πθ(y⃗a | x)πθ(y⃗b | x)

=
πθ(y⃗

a | x)πθ(y⃗
b | x)

2 {1 + Z+
θ (x)Z−

θ (x)}

{
2 + exp

{
rθ(x, y⃗

a)− rθ(x, y⃗
b)
}
+ exp

{
rθ(x, y⃗

b)− rθ(x, y⃗
a)
}}

.

Rewriting this expression using the formula for σ′ in equation equation 16, we arrive at{
1 + Z+

θ (x)Z−
θ (x)

}
· µ(y⃗a, y⃗b | x)
πθ(y⃗a | x)πθ(y⃗b | x)

=
1

2

{
1 + exp

{
rθ(x, y⃗

b)− rθ(x, y⃗
a)
}}{

1 + exp
{
rθ(x, y⃗

a)− rθ(x, y⃗
b)
}}

=
1

2σ′
(
rθ(x, y⃗a)− rθ(x, y⃗b)

) .
Finally, rearranging terms, we recover equation equation 15, completing this part of the proof.

C.2 STATISTICAL CONSIDERATIONS

In this section, we present the proofs for Theorems 4.2 and 4.3 and Lemma B.1 from Section 4.2.
We start with the proof of Lemma B.1 in Appendix C.2.1, with a rigorous restatement provided in
Theorem C.4 below.

Theorem C.4. Assume the reward model r⋆ in the BT model equation 1 satisfies r⋆ = rθ⋆ for some
parameter θ⋆. Assume that θ̂ minimizes the loss function L̂(θ) in the sense that

√
n∇θ L̂(θ̂)

p→ 0

and that θ̂
p→ θ⋆ as the sample size n → ∞. Additionally, suppose the reward function rθ(x, y⃗), its

gradient ∇θ rθ(x, y⃗) and its Hessian ∇2
θ rθ(x, y⃗) are uniformly bounded and Lipchitz continuous

with respect to θ, for all (x, y⃗) ∈ X × Y .

Under these conditions, the estimate θ̂ asymptotically follows a Gaussian distribution
√
n (θ̂ − θ⋆)

d−→ N (0,Ω) as n → ∞ .

We have an estimate of the covariance matrix Ω:

Ω ⪯ ∥w∥∞ ·Σ−1
⋆ .

For a general sampling scheme µ chosen, the matrix Σ⋆ is given by

Σ⋆ : = Ex∼ρ, (y⃗a, y⃗b)∼µ(·|x)

[
w(x) ·Var

(
1{y⃗a = y⃗w}

∣∣ x, y⃗a, y⃗b
)
· g g⊤

]
,

where the expectation is taken over the distribution

µ(y⃗a, y⃗b | x) := 1

2

{
µ(y⃗a, y⃗b | x) + µ(y⃗b, y⃗a | x)

}
.

The variance term is specified as

Var
(
1{y⃗a = y⃗w} | x, y⃗a, y⃗b

)
= σ

(
r⋆(x, y⃗a)− r⋆(x, y⃗b)

)
σ
(
r⋆(x, y⃗b)− r⋆(x, y⃗a)

)
and the gradient difference g is defined as

g : = ∇θ r
⋆(x, y⃗a)−∇θ r

⋆(x, y⃗b) .

Theorem C.4 establishes the asymptotic distribution of the estimated parameter θ̂, which serves as the
foundation for the subsequent results. Next, we show that Theorem 4.2 directly follows as a corollary
of Theorem C.4, with the detailed derivation provided in Appendix C.2.2. Finally, in Appendix C.2.3,
we prove Theorem 4.3, which describes the asymptotic behavior of the value gap J(π⋆)− J(π̂).

C.2.1 PROOF OF LEMMA B.1 (THEOREM C.4)

In this section, we analyze the asymptotic distribution of the estimated parameter θ̂ for a general
sampling distribution µ. The parameter θ̂ is obtained by solving the optimization problem

minimizeθ L̂(θ) := − 1

n

n∑
i=1

w(xi) · log σ
(
rθ
(
xi, y⃗

w
i

)
− rθ

(
xi, y⃗

ℓ
i

))
.
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We assume the optimization is performed to sufficient accuracy such that ∇θ L̂(θ̂) = op
(
n− 1

2

)
.

Under this condition, θ̂ qualifies as a Z-estimator. To study its asymptotic behavior, we use the master
theorem for Z-estimators (Kosorok, 2008), the formal statement of which is provided in Theorem E.1
in Appendix E.

To apply the master theorem, we set Ψ := ∇θ L and Ψn : = ∇θ L̂ and verify the conditions. In
particular, the smoothness condition equation 62 in Theorem E.1 translates to the following equation
in our context:

√
n
{
∇θ L̂(θ̂)−∇θ L(θ̂)

}
−
√
n
{
∇θ L̂(θ⋆)−∇θ L(θ⋆)

}
= op

(
1 +

√
n ∥θ̂ − θ⋆∥2

)
. (25)

This condition follows from the second-order smoothness of the reward function rθ with respect to θ.
A rigorous proof is provided in Appendix D.2.1.

We now provide the explicit form of the derivative Ψ̇θ⋆ = ∇2
θ L(θ⋆), as captured in the following

lemma. The proof of this result can be found in Appendix D.2.2.

Lemma C.5. The Hessian matrix of the population loss L(θ) at θ = θ⋆ is

∇2
θ L(θ⋆) = Σ⋆ , (26)

where the matrix Σ⋆ is defined in equation equation 11.

Next, we analyze the asymptotic behavior of the gradient ∇θ L̂(θ⋆). The proof is deferred to
Appendix D.2.3.

Lemma C.6. The gradient of the empirical loss L̂(θ) at θ = θ⋆ satisfies
√
n
(
∇θ L̂(θ⋆)−∇θ L(θ⋆)

) d−→ N (0, Ω̃) as n → ∞, (27a)

where the covariance matrix Ω̃ ∈ Rd×d is bounded as follows:

Ω̃ ⪯ ∥w∥∞ ·Σ⋆ , (27b)
with Σ⋆ defined in equation equation 11.

Combining these results, and assuming Σ⋆ is nonsingular, the master theorem (Theorem E.1) yields
the asymptotic distribution of θ̂:

√
n
(
θ̂ − θ⋆

) d→ N
(
0,Σ−1

⋆ Ω̃Σ−1
⋆

)
.

Furthermore, from the bound equation 27b, the covariance matrix Ω; : = Σ−1
⋆ Ω̃Σ−1

⋆ satisfies

Ω = Σ−1
⋆ Ω̃Σ−1

⋆ ⪯ ∥w∥∞ ·Σ−1
⋆ .

Therefore, we have established the asymptotic distribution of θ̂, completing the proof of Lemma B.1.

C.2.2 PROOF OF THEOREM 4.2

Theorem 4.2 is a direct corollary of Lemma B.1, using our specific choice of sampling distribution
µ. To establish this, we demonstrate how the general covariance matrix Σ⋆ in equation equation 11
simplifies to the form in equation equation 8 under our proposed sampling scheme.

To establish the result in this section, we impose the following regularity condition: There exists a
constant C ≥ 1 satisfying

Varrθ
(
1{y⃗a = y⃗w}

∣∣ x, y⃗a, y⃗b
)

≤ C ·Varr⋆
(
1{y⃗a = y⃗w}

∣∣ x, y⃗a, y⃗b
)

(28)

for any prompt x ∈ X and responses y⃗a, y⃗b ∈ Y . Here Varrθ
(
1{y⃗a = y⃗w}

∣∣ x, y⃗a, y⃗b
)

denotes the
conditional variance under the BT model equation 1, when the implicit reward function r⋆ is replaced
by rθ. The term Varr⋆

(
1{y⃗a = y⃗w}

∣∣ x, y⃗a, y⃗b
)
≡ Var

(
1{y⃗a = y⃗w}

∣∣ x, y⃗a, y⃗b
)

represents the
conditional variance under the ground-truth BT model, where the reward function is given by r⋆.
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We begin by leveraging the property of the sampling distribution µ from equation equation 15 and
the derivative σ′ of the sigmoid function σ, given in equation equation 16. Specifically, we find that

µ(y⃗a, y⃗b | x)
πθ(y⃗a | x)πθ(y⃗b | x)

=
1

2 {1 + Z+
θ (x)Z−

θ (x)}
· 1

σ
(
rθ(x, y⃗a)− rθ(x, y⃗b)

)
σ
(
rθ(x, y⃗b)− rθ(x, y⃗a)

)
=

1

2 {1 + Z+
θ (x)Z−

θ (x)}
· 1

Varrθ
(
1{y⃗a = y⃗w}

∣∣ x, y⃗a, y⃗b
) .

We then apply condition equation 28 and derive

µ(y⃗a, y⃗b | x)
πθ(y⃗a | x)πθ(y⃗b | x)

≥ C−1

2 {1 + Z+
θ (x)Z−

θ (x)}
· 1

Varr⋆
(
1{y⃗a = y⃗w}

∣∣ x, y⃗a, y⃗b
) . (29)

Next, substituting this result equation 29 into equation equation 11, alongside the weight function
w(x) from equation equation 7, we reform Σ⋆ as

Σ⋆ = Ex∼ρ; y⃗a, y⃗b∼πθ(·|x)

[
µ(y⃗a, y⃗b | x)

πθ(y⃗a | x)πθ(y⃗b | x)
· w(x) ·Var

(
1{y⃗a = y⃗w}

∣∣ x, y⃗a, y⃗b
)
· g g⊤

]
⪰ 1

2C Zθ

Ex∼ρ; y⃗a, y⃗b∼πθ(·|x)
[
g g⊤] . (30)

The conditional expectation of gg⊤ simplifies as

Ey⃗a, y⃗b∼πθ(·|x)
[
gg⊤ ∣∣ x]

= Ey⃗a, y⃗b∼πθ(·|x)

[{
∇θ r

⋆(x, y⃗a)−∇θ r
⋆(x, y⃗b)

}{
∇θ r

⋆(x, y⃗a)−∇θ r
⋆(x, y⃗b)

}⊤
∣∣∣ x]

= 2 · Ey⃗∼πθ(·|x)

[
∇θ r

⋆(x, y⃗)∇θ r
⋆(x, y⃗)⊤

∣∣∣ x]− 2 · Ey⃗∼πθ(·|x)
[
∇θ r

⋆(x, y⃗)
∣∣ x]Ey⃗∼πθ(·|x)

[
∇θ r

⋆(x, y⃗)
∣∣ x]⊤

= 2 · Covy⃗∼πθ(·|x)
[
∇θ r

⋆(x, y⃗)
∣∣ x] .

Substituting this result into equation equation 30, we arrive at the conclusion that

Σ⋆ ⪰ 1

C Zϕ

Ex∼ρ

[
Covy⃗∼π⋆(·|x)

[
∇θ r

⋆(x, y⃗)
∣∣ x]] ,

which matches the simplified form in equation equation 8 as stated in Theorem 4.2.

C.2.3 PROOF OF THEOREM 4.3

Gradient ∇θ J(π
⋆) and Hessian ∇2

θ J(π
⋆): The equality ∇θ J(π

⋆) = 0 follows directly from the
gradient expression equation 39 for ∇θ J(πθ), evaluated at θ = θ⋆ with rθ = r⋆.

The proof of the Hessian result, ∇2
θ J(π

⋆) = −(1/β) ·Σ⋆, involves straightforward but technical
differentiation of equation equation 39. For brevity, we defer this proof to Appendix D.3.1.

Asymptotic Distribution of Value Gap J(π⋆)− J(π̂): To understand the behavior of the value
gap J(π⋆)− J(π̂), we start by applying a Taylor expansion of J(πθ) around θ⋆. This gives

J(π⋆)− J(π̂) = ∇θ J(π
⋆)⊤(θ⋆ − θ̂)− 1

2
(θ⋆ − θ̂)⊤∇2

θ J(π
⋆)(θ⋆ − θ̂) + o

(
∥θ⋆ − θ̂∥22

)
.

By substituting ∇θ J(π
⋆) = 0 (a direct result of the optimality of π⋆), the linear term vanishes.

Introducing the shorthand H : = −∇2
θ J(π

⋆) = (1/β) ·Σ⋆, the expression simplifies to

J(π⋆)− J(π̂) =
1

2
(θ̂ − θ⋆)⊤H (θ̂ − θ⋆) + o

(
∥θ̂ − θ⋆∥22

)
. (31)

When the sample size n is sufficiently large, θ̂ approaches θ⋆, making the higher-order term negligible.
Therefore, the value gap is dominated by the quadratic form.

From Theorem 4.2, we know the parameter estimate θ̂ satisfies
√
n (θ̂ − θ⋆)

d−→ N (0,Ω).
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Substituting this result into the quadratic approximation of the value gap, we find that the scaled
value gap has the asymptotic distribution

n · {J(π⋆)− J(π̂)} d−→ 1

2
z⊤Ω

1
2HΩ

1
2 z = : X where z ∼ N (0, I). (32)

This approximation provides a clear intuition: the value gap is asymptotically driven by a weighted
chi-squared-like term involving the covariance structure Ω and the Hessian-like matrix H .

To rigorously establish this result, we will apply Slutsky’s theorem. The full proof is presented in
Appendix D.3.2.

Bounding the Chi-Square Distribution: To bound the random variable X , we first leverage the
estimate of the covariance matrix Ω provided by Theorem 4.2:

Ω ⪯ C Zθ ∥w∥∞ ·Σ−1
⋆ ,

where the constant C comes from condition equation 28. It follows that the matrix Ω
1
2HΩ

1
2

appearing in equation equation 32 can be bounded as

Ω
1
2HΩ

1
2 ⪯ C ∥w∥∞ ·Σ− 1

2
⋆ HΣ

− 1
2

⋆ = C · Zθ ∥w∥∞
β

· I = C ·
1 + ∥Z+

θ Z−
θ ∥∞

β
· I .

Here the last equality uses the definition of the weight function w from equation equation 7. Substi-
tuting this bound into the quadratic form, we derive

X =
1

2
z⊤Ω

1
2HΩ

1
2 z ≤ C ·

1 + ∥Z+
θ Z−

θ ∥∞
2β

· z⊤z ,

where z ∼ N (0, I). Since z⊤z follows a chi-square distribution with d degrees of freedom, X is
stochastically dominated by a rescaled chi-square random variable

C ·
1 + ∥Z+

θ Z−
θ ∥∞

2β
· χ2

d.

Equivalently, we can express this dominance as

lim sup
n→∞

P

{
n {J(π⋆)− J(π̂)} > C ·

1 + ∥Z+
θ Z−

θ ∥∞
2β

· t
}

≤ P
{
χ2
d > t

}
for any t > 0.

(33)

This inequality, given in equation equation 33, corresponds to the first bound in equation equation 10.

The second inequality in equation equation 10 provides a precise tail bound for χ2
d. As its proof

involves more technical details, we defer it to Appendix D.3.3.

D PROOF OF AUXILIARY RESULTS

This section provides proofs of auxiliary results supporting the main theorems and lemmas. In
Appendix D.1, we present the auxiliary results required for Theorem 4.1. Appendix D.2 details the
proofs of supporting results for Theorem 4.2. Finally, in Appendix D.3, we establish the auxiliary
results necessary for Theorem 4.3.

D.1 PROOF OF AUXILIARY RESULTS FOR THEOREM 4.1

In this section, we provide the proofs of several auxiliary results that support the proof of Theorem 4.1.
Specifically, Appendix D.1.1 presents the forms of the gradients of the policy πθ and the reward rθ,
which serve as fundamental building blocks for deriving the lemmas. Appendix D.1.2 analyzes the
gradient of the return function J(πθ), as defined in equation equation 6. Appendix D.1.3 focuses on
deriving expressions for the gradient of the negative log-likelihood function L(θ).

D.1.1 GRADIENTS OF POLICY πθ AND REWARD rθ

In this part, we introduce results for the gradients of policy πθ and reward rθ with respsect to
parameter θ, which lay the foundation of our calculations.
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Lemma D.1 (Gradients of policy πθ and reward function rθ). The gradients of the policy πθ and the
reward function rθ can be expressed in terms of each other as follows

∇θ πθ(dy⃗ | x) = πθ(dy⃗ | x) · 1
β

{
∇θ rθ(x, y⃗)− Ey⃗′∼πθ(·|x)

[
∇θ rθ(x, y⃗

′)
]}

, (34a)

∇θ rθ(x, y⃗) = β · ∇θ πθ(y⃗ | x)
πθ(y⃗ | x)

. (34b)

We now proceed to prove Lemma D.1.

To begin, recall our definition of the reward function rθ as given in equation equation 5. It directly
follows that

∇θ rθ(x, y⃗) = β · ∇θ πθ(y⃗ | x)
πθ(y⃗ | x)

.

This result confirms equation equation 34b as stated in Lemma D.1.

Next, we express the policy πθ(dy⃗ | x) in terms of the reward function rθ(x, y⃗). By reformulating
equation equation 5, we obtain

πθ(dy⃗ | x) =
1

Zθ(x)
πref(dy⃗ | x) exp

{ 1

β
rθ(x, y⃗)

}
, (35a)

where Zθ(x) is the partition function defined as

Zθ(x) =

∫
Y
πref(dy⃗ | x) exp

{ 1

β
rθ(x, y⃗)

}
. (35b)

We then compute the gradient of πθ(dy⃗ | x) with respect to θ. Applying the chain rule, we get

∇θ πθ(dy⃗ | x) =
1

Zθ(x)
πref(dy⃗ | x) exp

{ 1

β
rθ(x, y⃗)

}
· 1
β
∇θ rθ(x, y⃗)

− 1

Z2
θ (x)

πref(dy⃗ | x) exp
{ 1

β
rθ(x, y⃗)

}
· ∇θ Zθ(x) . (36)

We need the gradient of the partition function Zθ(x):

∇θ Zθ(x) =

∫
Y
πref(dy⃗ | x) exp

{ 1

β
rθ(x, y⃗)

}
· 1
β
∇θ rθ(x, y⃗)

= Zθ(x) ·
∫
Y
πθ(dy⃗ | x) · 1

β
∇θ rθ(x, y⃗)

= Zθ(x) ·
1

β
Ey⃗∼πθ(·|x)

[
∇θ rθ(x, y⃗)

]
. (37)

Substituting equation equation 37 back into equation equation 36, we simplify the expression for the
gradient of πθ(dy⃗ | x):

∇θ πθ(dy⃗ | x) =
1

Zθ(x)
πref(dy⃗ | x) exp

{ 1

β
rθ(x, y⃗)

}
· 1
β

{
∇θ rθ(x, y⃗)− Ey⃗′∼πθ(·|x)

[
∇θ rθ(x, y⃗

′)
]}

.

This matches equation equation 34a from Lemma D.1, thereby completing the proof.

D.1.2 PROOF OF LEMMA C.2

Equality equation 13 in Lemma C.2 can be derived as a consequence of a more detailed result. We
state it in Lemma D.2.

Lemma D.2. For a policy πθ, the gradients with respect to the parameter θ of its expected return
Ex∼ρ, y⃗∼πθ(·|x)

[
r⋆(x, y⃗)

]
and its KL divergence from a reference policy DKL(πθ ∥ πref) are given
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by

∇θ Ex∼ρ, y⃗∼πθ(·|x)
[
r⋆(x, y⃗)

]
=

1

β
Ex∼ρ, y⃗∼πθ(·|x)

[
r⋆(x, y⃗)

{
∇θ rθ(x, y⃗)− Ey⃗′∼πθ(·|x)

[
∇θ rθ(x, y⃗

′)
]}]

,

(38a)

∇θ DKL(πθ ∥ πref) =
1

β2
Ex∼ρ, y⃗∼πθ(·|x)

[
rθ(x, y⃗)

{
∇θ rθ(x, y⃗)− Ey⃗′∼πθ(·|x)

[
∇θ rθ(x, y⃗

′)
]}]

.

(38b)

Recall that the scalar value J(πθ) of the policy is defined as

J(πθ) = Ex∼ρ, y⃗∼πθ(·|x)
[
r⋆(x, y⃗)

]
− β DKL(πθ ∥ πref) .

Using Lemma D.2, we derive the gradient of J(πθ) as

∇θ J(πθ) = ∇θ Ex∼ρ, y⃗∼πθ(·|x)
[
r⋆(x, y⃗)

]
− β∇θ DKL(πθ ∥ πref)

=
1

β
Ex∼ρ, y⃗∼πθ(·|x)

[{
r⋆(x, y⃗)− rθ(x, y⃗)

}{
∇θ rθ(x, y⃗)− Ey⃗′∼πθ(·|x)

[
∇θ rθ(x, y⃗

′)
]}]

.

(39)

We rewrite the expression in equation equation 39 in two equivalent forms by exchanging the roles of
y⃗a and y⃗b:

∇θ J(πθ) =
1

β
Ex∼ρ, y⃗a∼πθ(·|x)

[{
r⋆(x, y⃗a)− rθ(x, y⃗

a)
}{

∇θ rθ(x, y⃗
a)− Ey⃗b∼πθ(·|x)

[
∇θ rθ(x, y⃗

b)
]}]

,

(40a)

∇θ J(πθ) =
1

β
Ex∼ρ, y⃗b∼πθ(·|x)

[{
r⋆(x, y⃗b)− rθ(x, y⃗

b)
}{

∇θ rθ(x, y⃗
b)− Ey⃗a∼πθ(·|x)

[
∇θ rθ(x, y⃗

a)
]}]

.

(40b)

By taking the average of the two equivalent formulations above, we obtain equality equation 13 and
complete the proof of Lemma C.2.

We now proceed to prove Lemma D.2, tackling equalities equation 38a and equation 38b one by one.

Proof of Equality equation 38a from Lemma D.2: We begin by expressing the expected return as

Ex∼ρ, y⃗∼πθ(·|x)
[
r⋆(x, y⃗)

]
= Ex∼ρ

[ ∫
Y
r⋆(x, y⃗)πθ(dy⃗ | x)

]
.

Taking the gradient of both sides with respect to θ, we have

∇θ Ex∼ρ, y⃗∼πθ(·|x)
[
r⋆(x, y⃗)

]
= Ex∼ρ

[ ∫
Y
r⋆(x, y⃗)∇θ πθ(dy⃗ | x)

]
. (41)

Using the expression for the policy gradient ∇θ πθ provided in Lemma D.1, the right-hand side of
equation 41 simplifies to

RHS of equation 41 = Ex∼ρ

[ ∫
Y
r⋆(x, y⃗)πθ(dy⃗ | x) · 1

β

{
∇θ rθ(x, y⃗)− Ey⃗′∼πθ(·|x)

[
∇θ rθ(x, y⃗

′)
]}]

=
1

β
Ex∼ρ, y⃗∼πθ(·|x)

[
r⋆(x, y⃗)

{
∇θ rθ(x, y⃗)− Ey⃗′∼πθ(·|x)

[
∇θ rθ(x, y⃗

′)
]}]

.

This completes the verification of equation equation 38a from Lemma C.2.

Proof of Equality equation 38b from Lemma D.2: Recall the definition of the KL divergence

DKL(πθ ∥ πref) = Ex∼ρ

[ ∫
Y
πθ(dy⃗ | x) log

(
πθ(y⃗ | x)
πref(y⃗ | x)

)]
.
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Applying the chain rule, we obtain

∇θ DKL(πθ ∥ πref) = Ex∼ρ

[ ∫
Y
∇θ πθ(dy⃗ | x) log

(
πθ(y⃗ | x)
πref(y⃗ | x)

)]
+ Ex∼ρ

[ ∫
Y
∇θ πθ(dy⃗ | x)

]
.

(42)

Since the policy integrates to 1, i.e.,
∫
Y πθ(dy⃗ | x) = 1, it always holds that∫

Y
∇θ πθ(dy⃗ | x) = ∇θ

∫
Y
πθ(dy⃗ | x) = 0 , (43)

i.e., the second term on the right-hand side of equation 42 is zero. Using the expression equation 35a,
we take the logarithm

log

(
πθ(y⃗ | x)
πref(y⃗ | x)

)
=

1

β
rθ(x, y⃗)− logZθ(x) . (44)

Combining equations equation 43 and equation 44, we get∫
Y
∇θ πθ(dy⃗ | x) log

(
πθ(y⃗ | x)
πref(y⃗ | x)

)
=

1

β

∫
Y
rθ(x, y⃗)∇θ πθ(dy⃗ | x) − logZθ(x)

∫
Y
∇θ πθ(dy⃗ | x)

=
1

β

∫
Y
rθ(x, y⃗)∇θ πθ(dy⃗ | x) . (45)

Now, similar to the proof of equation equation 38a, we derive

RHS of equation 42 =
1

β
Ex∼ρ

[ ∫
Y
rθ(x, y⃗)∇θ πθ(dy⃗ | x)

]
=

1

β2
Ex∼ρ, y⃗∼πθ(·|x)

[
rθ(x, y⃗)

{
∇θ rθ(x, y⃗)− Ey⃗′∼πθ(·|x)

[
∇θ rθ(x, y⃗

′)
]}]

,

which verifies equality equation 38b from Lemma D.2.

D.1.3 PROOF OF LEMMA C.3

In this section, we prove a full version of Lemma C.3 as stated in Lemma D.3 below. Equation equa-
tion 14a from Lemma C.3 follows directly as a straightforward corollary.

In Lemma D.3, we consider a general class of distributions parameterized by θ that models the binary
preference Pθ(y⃗

a ≻ y⃗b | x). The negative log-likelihood function is defined as

L(θ) = −Ex∼ρ; (y⃗a,y⃗b)∼µ(·|x)

[
w(x) · logPθ(y⃗

w ≻ y⃗ℓ
∣∣ x)] .

The Bradley-Terry (BT) model described in equation equation 1 and the corresponding loss func-
tion L(θ) in equation equation 47 represent a special case of this general framework.

Lemma D.3 (Gradient of the loss function L(θ), full version). For a general distribution class {Pθ},
the gradient of L(θ) with respect to θ is given by

∇θ L(θ) = −Ex∼ρ; (y⃗a,y⃗b)∼µ(·|x)

[
w(x) ·

{
P
(
y⃗a ≻ y⃗b

∣∣ x)− Pθ

(
y⃗a ≻ y⃗b

∣∣ x)}
· ∇θ Pθ(y⃗

a ≻ y⃗b | x)
Pθ(y⃗a ≻ y⃗b | x)Pθ(y⃗b ≻ y⃗a | x)

]
, (46a)

where µ is the average distribution defined in equation equation 14b. Specifically, for the Bradley-
Terry (BT) model where

Pθ

(
y⃗a ≻ y⃗b

∣∣ x) = σ
(
rθ(x, y⃗

a)− rθ(x, y⃗
b)
)

=

{
1 +

(
(πθ/πref)(y⃗

b | x)
(πθ/πref)(y⃗a | x)

)β}−1

,
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the gradient of L(θ) becomes

∇θ L(θ) = −Ex∼ρ; (y⃗a, y⃗b)∼µ(·|x)

[
w(x)·

{
σ
(
r⋆(x, y⃗a)−r⋆(x, y⃗b)

)
−σ

(
rθ(x, y⃗

a)−rθ(x, y⃗
b)
)}

·
{
∇θ rθ(x, y⃗

a)−∇θ rθ(x, y⃗
b)
}]

. (46b)

For notational simplicity, we focus on the proof for the case where the weight function w(x) = 1.
The results for a general weight function w(x) > 0 can be derived in a similar manner.

Recall that the negative log-likelihood function L(θ) is defined as

L(θ) = E
[
− logPθ

(
y⃗w ≻ y⃗ℓ

∣∣ x)] .
Based on the data generation mechanism, we can expand the expectation in L(θ) as

L(θ) = Ex∼ρ; (y⃗a, y⃗b)∼µ(·|x)

[
P
(
y⃗a ≻ y⃗b

∣∣ x) · {− logPθ

(
y⃗a ≻ y⃗b

∣∣ x)}
+ P

(
y⃗b ≻ y⃗a

∣∣ x) · {− logPθ

(
y⃗b ≻ y⃗a

∣∣ x)}] . (47)

Notice that we can exchange the roles of y⃗a and y⃗b in the expectation above. This means that we can
equivalently express the expectation using the pair (y⃗b, y⃗a) ∼ µ(· | x). This symmetry allows us to
replace µ in equation equation 47 with the average distribution µ as defined in equation equation 14b.

Next, we take the gradient of the loss function L(θ) with respect to the parameter θ and obtain

∇θ L(θ) = Ex∼ρ, (y⃗a, y⃗b)∼µ(·|x)

[
P(y⃗a ≻ y⃗b | x)
Pθ(y⃗a ≻ y⃗b | x)

·
{
−∇θ Pθ(y⃗

a ≻ y⃗b | x)
}

+
P(y⃗b ≻ y⃗a | x)
Pθ(y⃗b ≻ y⃗a | x)

·
{
−∇θ Pθ(y⃗

b ≻ y⃗a | x)
} ]

.

Note that P
(
y⃗b ≻ y⃗a

∣∣ x) = 1− P
(
y⃗a ≻ y⃗b

∣∣ x) and Pθ

(
y⃗b ≻ y⃗a

∣∣ x) = 1− Pθ

(
y⃗a ≻ y⃗b

∣∣ x).
Using this, we can rewrite the gradient as

∇θ L(θ) = Ex∼ρ; (y⃗a, y⃗b)∼µ(·|x)

[{
1− P(y⃗a ≻ y⃗b | x)
1− Pθ(y⃗a ≻ y⃗b | x)

− P(y⃗a ≻ y⃗b | x)
Pθ(y⃗a ≻ y⃗b | x)

}
· ∇θ Pθ

(
y⃗a ≻ y⃗b

∣∣ x)] .
We simplify the expression further to obtain

∇θ L(θ) = Ex∼ρ; (y⃗a, y⃗b)∼µ(·|x)

[{
Pθ

(
y⃗a ≻ y⃗b

∣∣ x)− P(y⃗a ≻ y⃗b
∣∣ x)} · ∇θ Pθ(y⃗

a ≻ y⃗b | x)
Pθ(y⃗a ≻ y⃗b | x)Pθ(y⃗b ≻ y⃗a | x)

]
.

This establishes equation equation 46a from Lemma C.3.

As for the Bradley-Terry (BT) model, we use the equality

σ′(z) =
1

(1 + exp(−z))(1 + exp(z))
= σ(z)σ(−z) for any z ∈ R

to derive the following expression

∇θ Pθ(y⃗
a ≻ y⃗b | x)

Pθ(y⃗a ≻ y⃗b | x)Pθ(y⃗b ≻ y⃗a | x)
= ∇θ rθ(x, y⃗

a)−∇θ rθ(x, y⃗
b) . (48)

By substituting this gradient expression from equation equation 48 into equation equation 46a, we
directly obtain equation equation 46b, thereby completing the proof of Lemma C.3.

D.2 PROOF OF AUXILIARY RESULTS FOR THEOREM 4.2

In this section, we present the detailed proofs of the supporting lemmas used in the proof of Theo-
rem 4.2. We begin in Appendix D.2.1 by establishing condition equation 25, which is crucial for
the valid application of the master theorem for Z-estimators. Following this, in Appendix D.2.2,
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we compute the Hessian matrix ∇2
θ L(θ⋆) explicitly. Finally, in Appendix D.2.3, we derive the

asymptotic distribution of the gradient ∇θ L̂(θ⋆).

D.2.1 PROOF OF CONDITION EQUATION 25

We begin by rewriting the left-hand side of equation equation 25 as follows:

∆ :=
√
n
{
∇θ L̂(θ̂)−∇θ L(θ̂)

}
−
√
n
{
∇θ L̂(θ⋆)−∇θ L(θ⋆)

}
=

√
n
{
∇θ L̂(θ̂)−∇θ L̂(θ⋆)

}
−
√
n
{
∇θ L(θ̂)−∇θ L(θ⋆)

}
. (49)

We then leverage the smoothness properties of the function rθ, which guarantee the following
approximations:

∇θ L̂(θ̂)−∇θ L̂(θ⋆) = ∇2
θ L̂(θ⋆) (θ̂ − θ⋆) + op

(
∥θ̂ − θ⋆∥2

)
, (50a)

∇θ L(θ̂)−∇θ L(θ⋆) = ∇2
θ L(θ⋆) (θ̂ − θ⋆) + op

(
∥θ̂ − θ⋆∥2

)
. (50b)

Assuming these equalities equation 50a and equation 50b hold, we substitute them into equation equa-
tion 49, leading to

∆ =
√
n
{
∇2

θ L̂(θ⋆) (θ̂ − θ⋆) + op(∥θ̂ − θ⋆∥2)
}
−
√
n
{
∇2

θ L(θ⋆) (θ̂ − θ⋆) + op(∥θ̂ − θ⋆∥2)
}

=
√
n
{
∇2

θ L̂(θ⋆)−∇2
θ L(θ⋆)

}
(θ̂ − θ⋆) + op

(
1 +

√
n ∥θ̂ − θ⋆∥2

)
. (51)

Using the law of large numbers, we know that ∇2
θ L̂(θ⋆)

p→ ∇2
θ L(θ⋆), which implies

√
n
{
∇2

θ L̂(θ⋆)−∇2
θ L(θ⋆)

}
(θ̂ − θ⋆) = op

(√
n ∥θ̂ − θ⋆∥2

)
.

Therefore, we conclude that

∆ = op
(
1 +

√
n ∥θ̂ − θ⋆∥2

)
as claimed in equation equation 25.

The only remaining task is to establish the validity of equalities equation 50a and equation 50b.

Proof of Equalities equation 50a and equation 50b: We express the loss function L̂(θ) in the
form

L̂(θ) : =
1

n

n∑
i=1

w(xi) · ℓθ
(
xi, y⃗

w
i , y⃗

ℓ
i

)
,

where the function ℓθ is defined as
ℓθ(x, y⃗1, y⃗2) = − log σ

(
rθ(x, y⃗1)− rθ(x, y⃗2)

)
.

We then calculate the gradient ∇θ ℓθ and ∇2
θ ℓθ as follows:

∇θ ℓθ(x, y⃗1, y⃗2) = σ
(
rθ(x, y⃗2)− rθ(x, y⃗1)

)
·
{
∇θ rθ(x, y⃗2)−∇θ rθ(x, y⃗1)

}
and

∇2
θ ℓθ(x, y⃗1, y⃗2) = σ′(rθ(x, y⃗2)− rθ(x, y⃗1)

)
·
{
∇θ rθ(x, y⃗2)−∇θ rθ(x, y⃗1)

}{
∇θ rθ(x, y⃗2)−∇θ rθ(x, y⃗1)

}⊤

+ σ
(
rθ(x, y⃗2)− rθ(x, y⃗1)

)
·
{
∇2

θ rθ(x, y⃗2)−∇2
θ rθ(x, y⃗1)

}
.

When the reward function rθ(x, y⃗), along with its gradient ∇θ rθ(x, y⃗) and Hessian ∇2
θ rθ(x, y⃗), is

uniformly bounded and Lipschitz continuous with respect to θ for all (x, y⃗) ∈ X × Y , it guarantees
that the Hessian of the loss function, ∇2

θ ℓθ, is also Lipschitz continuous. This holds with some
constant L > 0 across all (x, y⃗) ∈ X × Y , as demonstrated below:∥∥∇2

θ ℓθ(x, y⃗1, y⃗2)−∇2
θ ℓθ⋆(x, y⃗1, y⃗2)

∥∥
2

≤ L · ∥θ − θ⋆∥2 .
From this Lipschitz property, we deduce∥∥∇θ ℓθ(x, y⃗1, y⃗2)−∇θ ℓθ⋆(x, y⃗1, y⃗2)−∇2

θ ℓθ⋆(x, y⃗1, y⃗2) (θ − θ⋆)
∥∥
2

≤ L

2
· ∥θ − θ⋆∥22
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and further derive∥∥∇θ L̂(θ)−∇θ L̂(θ⋆)−∇2
θ L̂(θ⋆) (θ − θ⋆)

∥∥
2

≤ L ∥w∥∞
2

· ∥θ − θ⋆∥22 ,∥∥∇θ L(θ)−∇θ L(θ⋆)−∇2
θ L(θ⋆) (θ − θ⋆)

∥∥
2

≤ L ∥w∥∞
2

· ∥θ − θ⋆∥22 .

Finally, under the condition that θ̂
p→ θ⋆, these results simplify to the expressions given in equa-

tions equation 50a and equation 50b, as previously claimed.

D.2.2 PROOF OF LEMMA C.5, EXPLICIT FORM OF HESSIAN ∇2
θ L(θ⋆)

From equation equation 14a in Lemma C.3, we recall the explicit formula for the gradient ∇θ L(θ).
Taking the derivative of both sides of equation equation 14a, we obtain

∇2
θ L(θ) = Ex∼ρ; (y⃗a, y⃗b)∼µ(·|x)

[
w(x) · σ′(rθ(x, y⃗a)− rθ(x, y⃗

b)
)

·
{
∇θ rθ(x, y⃗

a)−∇θ rθ(x, y⃗
b)
}{

∇θ rθ(x, y⃗
a)−∇θ rθ(x, y⃗

b)
}⊤

]
−Ex∼ρ; (y⃗a, y⃗b)∼µ(·|x)

[
w(x) ·

{
σ
(
r⋆(x, y⃗a)− r⋆(x, y⃗b)

)
− σ

(
rθ(x, y⃗

a)− rθ(x, y⃗
b)
)}

·
{
∇2

θ rθ(x, y⃗
a)−∇2

θ rθ(x, y⃗
b)
}]

.

(52)

When we set θ = θ⋆, it follows that rθ = r⋆. This simplification eliminates the second term in
expression equation 52, reducing the Hessian matrix to

∇2
θ L(θ⋆) = Ex∼ρ; (y⃗a, y⃗b)∼µ(·|x)

[
w(x) · σ′(r⋆(x, y⃗a)− r⋆(x, y⃗b)

)
·
{
∇θ r

⋆(x, y⃗a)−∇θ r
⋆(x, y⃗b)

}{
∇θ r

⋆(x, y⃗a)−∇θ r
⋆(x, y⃗b)

}⊤
]
.

Substituting the derivative σ′ with its explicit form, σ′(z) = σ(z)σ(−z) for any z ∈ R, we refine
the expression to

∇2
θ L(θ⋆) = Σ⋆ ,

where the covariance matrix Σ⋆ is defined in equation equation 11. This completes the proof of
expression equation 26 from Lemma C.5.

D.2.3 PROOF OF LEMMA C.6, ASYMPTOTIC DISTRIBUTION OF GRAIDENT ∇θ L̂(θ⋆)

In this section, we analyze the asymptotic distribution of the gradient ∇θ L̂(θ) at θ = θ⋆, where the
loss function L̂(θ) is defined as

L̂(θ) = − 1

n

n∑
i=1

w(x) · log σ
(
rθ
(
xi, y⃗

w
i

)
− rθ

(
xi, y⃗

ℓ
i

))
.

Using the definition of the sigmoid function σ, we calculate that
(log σ(z))′ = σ′(z)/σ(z) = σ(z)σ(−z)/σ(z) = σ(−z) for any real number z ∈ R.

This allows us to reformulate ∇θ L̂(θ) as the average of n i.i.d. vectors {ui}ni=1:

∇θ L̂(θ) =
1

n

n∑
i=1

ui . (53)

Here each vector ui ∈ Rd is defined as
ui : = w(x) · σ

(
rθ(xi, y⃗

ℓ
i)− rθ(xi, y⃗

w
i )

)
·
{
∇θ rθ(xi, y⃗

ℓ
i)−∇θ rθ(xi, y⃗

w
i )

}
.

At θ = θ⋆, we denote ui as u⋆
i and gi as g⋆

i . Notably, vector ui can be rewritten as

ui = w(x) ·
{
σ
(
rθ(xi, y⃗

a
i )− rθ(xi, y⃗

b
i )
)
− 1{y⃗a

i = y⃗w
i , y⃗

b
i = y⃗ℓ

i}
}
· gi , (54)

27



Published as a conference paper at ICLR 2025

where gi is given by

gi : = ∇θ rθ(xi, y⃗
a
i )−∇θ rθ(xi, y⃗

b
i ) .

From the structure of the BT model, it holds that
E
[
1{y⃗a

i = y⃗w
i , y⃗

b
i = y⃗ℓ

i}
∣∣ xi

]
= σ

(
r⋆(xi, y⃗

a
i )− r⋆(xi, y⃗

b
i )
)
,

which implies E[u⋆
i ] = 0.

To analyze the asymptotic distribution of ∇θ L̂(θ⋆), we apply the central limit theorem (CLT) to its
empirical form given in equation equation 53. By the CLT, we have

√
n
(
∇θ L̂(θ⋆)−∇θ L(θ⋆)

) d−→ N
(
0, Ω̃

)
, n → ∞ , (55)

where the covariance matrix Ω̃ ∈ Rd×d is given by

Ω̃ : = Cov(u⋆
1) = E

[
u⋆
1(u

⋆
1)

⊤] .
Here we have used the property E[u⋆

i ] = 0 in the second equality.

We now compute the explicit form of the covariance matrix Ω̃. Using the definition of ui from
expression equation 54, we find that

Ω̃ = E
[
u⋆
1(u

⋆
1)

⊤]
= Ex∼ρ; (y⃗a,y⃗b)∼µ(·|x)

[
w2(x) ·

{
σ
(
r⋆(x1, y⃗

a
1)− r⋆(x1, y⃗

b
1)
)
− 1{y⃗a

1 = y⃗w
1 , y⃗

b
1 = y⃗ℓ

1}
}2 · g⋆

1(g
⋆
1)

⊤
]
.

(56)

Taking the conditional expectation over the outcomes of winners and losers, and using the relation

E
[{

σ
(
r⋆(x1, y⃗

a
1)− r⋆(x1, y⃗

b
1)
)
− 1{y⃗a

1 = y⃗w
1 , y⃗

b
1 = y⃗ℓ

1}
}2

∣∣∣ x1, y⃗
a
1 , y⃗

b
1

]
= Var

(
1{y⃗a

1 = y⃗w
1 , y⃗

b
1 = y⃗ℓ

1}
∣∣∣ x1, y⃗

a
1 , y⃗

b
1

)
= σ

(
r⋆(xi, y⃗

a
i )− r⋆(xi, y⃗

b
i )
)
σ
(
r⋆(xi, y⃗

b
i )− r⋆(xi, y⃗

a
i )
)
,

we reduce equation equation 56 to

Ω̃ = Ex∼ρ; (y⃗a,y⃗b)∼µ(·|x)

[
w2(x) ·Var

(
1{y⃗a

1 = y⃗w
1 , y⃗

b
1 = y⃗ℓ

1}
∣∣ x1, y⃗

a
1 , y⃗

b
1

)
· g⋆

1(g
⋆
1)

⊤
]
.

Bounding the weight function w(x) by its uniform bound ∥w∥∞, we simplify further:

Ω̃ ⪯ ∥w∥∞ · E
[
w(x) ·Var

(
1{y⃗a

1 = y⃗w
1 , y⃗

b
1 = y⃗ℓ

1}
∣∣ x1, y⃗

a
1 , y⃗

b
1

)
· g⋆

1(g
⋆
1)

⊤
]
.

This ultimately reduces to

Ω̃ ⪯ ∥w∥∞ ·Σ⋆ (57)
where Σ⋆ is defined in equation equation 11.

Finally, by combining equations equation 55 and equation 57, we establish the asymptotic normality
of ∇θ L̂(θ⋆) and complete the proof of Lemma C.6.

D.3 PROOF OF AUXILIARY RESULTS FOR THEOREM 4.3

This section contains the proofs of the auxiliary results supporting Theorem 4.3. In Appendix D.3.1,
we derive the explicit form of the Hessian ∇2

θ J(π
⋆). Appendix D.3.2 rigorously establishes the

asymptotic distribution of the value gap (equation equation 32). Finally, Appendix D.3.3 proves the
tail bound equation 10 on the chi-square distribution χ2

d.

D.3.1 PROOF OF EQUATION EQUATION 9 FROM THEOREM 4.3, EXPLICIT FORM OF HESSIAN
∇2

θ J(π
⋆)

We begin by differentiating expression equation 39 for the gradient ∇θ J(πθ) to obtain the Hessian
matrix ∇2

θ J(πθ). The resulting expression can be written as

∇2
θ J(πθ) = Γ1 + Γ2 + Γ3 ,

28



Published as a conference paper at ICLR 2025

where the terms are defined as follows:

Γ1 : =
1

β
Ex∼ρ

[ ∫
Y

{
r⋆(x, y⃗)− rθ(x, y⃗)

}{
∇θ rθ(x, y⃗)− Ey⃗′∼πθ(·|x)

[
∇θ rθ(x, y⃗

′)
]}

∇θ πθ(dy⃗ | x)⊤
]
,

Γ2 : = − 1

β
Ex∼ρ, y⃗∼πθ(·|x)

[{
∇θ rθ(x, y⃗)− Ey⃗′∼πθ(·|x)

[
∇θ rθ(x, y⃗

′)
]}

∇θ rθ(x, y⃗)
⊤
]
,

Γ3 : =
1

β
Ex∼ρ, y⃗∼πθ(·|x)

[{
r⋆(x, y⃗)− rθ(x, y⃗)

}{
∇2

θ rθ(x, y⃗)−∇θ Ey⃗′∼πθ(·|x)
[
∇θ rθ(x, y⃗

′)
]}]

.

At the point θ = θ⋆, we know that rθ = r⋆. This simplifies the expression significantly:
Γ1 = 0 and Γ3 = 0.

Therefore, only term Γ2 contributes to the Hessian, and it further reduces to

Γ2 = − 1

β
Ex∼ρ, y⃗∼πθ(·|x)

[
∇θ rθ(x, y⃗)∇θ rθ(x, y⃗)

⊤
]

+
1

β
Ex∼ρ

[
Ey⃗′∼πθ(·|x)

[
∇θ rθ(x, y⃗

′)
]
Ey⃗∼πθ(·|x)

[
∇θ rθ(x, y⃗)

]⊤]
= − 1

β
Ex∼ρ

[
Covy⃗∼πθ(·|x)

[
∇θ rθ(x, y⃗)

∣∣ x]] .
From this simplification, we deduce

∇2
θ J(π

⋆) = − 1

β
Ex∼ρ

[
Covy⃗∼π⋆(·|x)

[
∇θ r

⋆(x, y⃗)
∣∣ x]] ,

which establishes equation equation 9 as stated in Theorem 4.3.

D.3.2 PROOF OF THE ASYMPTOTIC DISTRIBUTION IN EQUATION EQUATION 32

The goal of this part is to establish the asymptotic distribution of n{J(π⋆) − J(π̂)}, as stated in
equation equation 32 from Appendix C.2.3. To achieve this, we first recast the value gap into the
product of two terms and then invoke Slutsky’s theorem.

We start by writing

n · {J(π⋆)− J(π̂)} = n · (θ̂ − θ⋆)⊤H (θ̂ − θ⋆)︸ ︷︷ ︸
Un

· J(π⋆)− J(π̂)

(θ̂ − θ⋆)⊤H (θ̂ − θ⋆)︸ ︷︷ ︸
Vn

. (58)

By isolating Un and Vn in this way, we can handle their limiting behaviors separately:

Un
d→ z⊤Ω

1
2HΩ

1
2 z with z ∼ N (0, I), (59a)

Vn
p→ 1

2
. (59b)

If these two results are established, the desired asymptotic distribution of the value gap, as given in
equation equation 32, follows directly from Slutsky’s theorem.

To complete the proof, we proceed to verify equations equation 59a and equation 59b. It is worth
noting that equation equation 59a is a straightforward corollary of Theorem 4.2, so the main task is to
establish the convergence result in equation equation 59b.

Proof of Equation equation 59b: Since Σ⋆ is nonsingular, the matrix H = (Zθ/β) ·Σ⋆ is also
nonsingular. From equation equation 31, we know that for any ε ∈ (0, 1), there exists a threshold
η(ε) > 0 such that whenever ∥θ − θ⋆∥2 ≤ η(ε), the following inequality holds:(1

2
− ε

)
(θ − θ⋆)⊤H (θ − θ⋆) ≤ J(π⋆)− J(πθ) ≤

(1
2
+ ε

)
(θ − θ⋆)⊤H (θ − θ⋆) .

This can be reformulated as ∣∣∣Vn − 1

2

∣∣∣ ≤ ε .
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Next, under the condition that θ̂
p→ θ⋆, for any δ > 0, there exists an integer N(ε, δ) ∈ Z+ such that

for any n ≥ N(ε, δ),

P
{
∥θ̂ − θ⋆∥2 > η(ε)

}
≤ δ .

Therefore, for any n ≥ N(ε, δ), we can conclude

P

{∣∣∣Vn − 1

2

∣∣∣ > ε

}
≤ δ .

In simpler terms, Vn
p→ 1

2 , which establishes equation equation 59b.

D.3.3 PROOF OF THE TAIL BOUND IN EQUATION EQUATION 10

We now establish the tail bound

P
{
χ2
d > (1 + ε) d

}
≤ exp

{
− d

2

(
ε− log(1 + ε)

)}
, (60)

as stated in equation equation 10.

We first note that the moment-generating function (MGF) of distribution χ2
d is given by

Mχ2
d
(t) = (1− 2t)−

d
2 , for any t < 1

2 .

Using Markov’s inequality, for any t > 0, we have

P
{
χ2
d > (1 + ε) d

}
≤ exp{−t(1 + ε)d} ·Mχ2

d
(t) = exp{−t(1 + ε)d} · (1− 2t)−

d
2 , for any t < 1

2 .

(61)

We optimize the bound by choosing t to minimize the exponent −t(1+ ε)d− d
2 log(1− 2t). Solving

for the optimal t, we obtain

t =
ε

2(1 + ε)
.

Substituting t back into inequality equation 61, the bound simplifies to the desired inequality equa-
tion 60.

E SUPPORTING THEOREM: MASTER THEOREM FOR Z-ESTIMATORS

In this section, we provide a brief introduction to the master theorem for Z-estimators for the
convenience of the readers.

Let the parameter space be Θ, and consider a data-dependent function Ψn : Θ → L, where L is a
metric space with norm ∥ · ∥L. Assume that the parameter estimate θ̂n ∈ Θ satisfies ∥Ψn(θ̂n)∥L

p→ 0,
making θ̂n a Z-estimator. The function Ψn is an estimator of a fixed function Ψ : Θ → L, where
Ψ(θ0) = 0 for some parameter of interest θ0 ∈ Θ.

Theorem E.1 (Theorem 2.11 in Kosorok (2008), master theorem for Z-estimators). Suppose the
following conditions hold:

1. Ψ(θ0) = 0, where θ0 lies in the interior of Θ.

2.
√
nΨn(θ̂n)

p→ 0 and ∥θ̂n − θ0∥
p→ 0 for the sequence of estimators {θ̂n} ⊂ Θ.

3.
√
n(Ψn −Ψ)(θ0)

d→ Z, where Z is a tight4 random variable.

4. The following smoothness condition is satisfied:∥∥√n
(
Ψn(θ̂n)−Ψ(θ̂n)

)
−
√
n
(
Ψn(θ0)−Ψ(θ0)

)∥∥
L

1 +
√
n ∥θ̂n − θ0∥

p→ 0 . (62)

4A random variable Z is tight if, for any ϵ > 0, there exists a compact set K ⊂ R such that P(Z /∈ K) < ϵ.
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Additionally, assume that θ 7→ Ψ(θ) is Fréchet differentiable5 at θ0 with derivative Ψ̇θ0 , and that
Ψ̇θ0 is continuously invertible6. Then∥∥√nΨ̇θ0(θ̂n − θ0) +

√
n(Ψn −Ψ)(θ0)

∥∥
L

p→ 0

and therefore
√
n
(
θ̂n − θ0

) d→ −Ψ̇−1
θ0

Z .

F EXPERIMENTAL DETAILS

We implement our code based on the open-sourced OpenRLHF framework Hu et al. (2024). We will
open-source our code in the camera-ready version.

We use both the helpful and the harmless (HH) sets from HH-RLHF (Bai et al., 2022) without
additional data selection. We adopt the chat template from the Skywork-Reward-8B model (Liu et al.,
2024a) to align with the reward template. This reward model, fine-tuned from Llama-3.1-8B, is used
to simulate human preference labeling and matches our network trained for alignment.

For SFT, we apply full-parameter tuning with Adam for one epoch, using a cosine learning rate sched-
ule, a 3% warmup phase, a learning rate of 5× 10−7, and a batch size of 256. These hyperparameters
are adopted from Hu et al. (2024).

For all the DPO training in both iterative and online settings, we use full-parameter tuning with Adam
but with two epochs. The learning rate, warmup schedules, and batch size are all the same.

During generation, we limit the maximum number of new tokens to 896 and employ top p decoding
with p = 0.95 for all experiments. For Online DPO, we use a sampling temperature of 1.0, following
Guo et al. (2024), while in Iterative DPO, we set the temperature to 0.7 to account for the off-policy
nature of the data, following Dong et al. (2024); Shi et al. (2024).

Prompts are truncated to a maximum length of 512 tokens (truncated from the left if the length
exceeds this limit) for SFT, DPO, and generation tasks. For SFT data, the maximum length is further
restricted to 1024 tokens. When the combined length of the response and the (truncated) prompt
exceeds 1024 tokens, the response is truncated from the right. These truncation practices align with
the standard methodology described by Rafailov et al. (2023). In contrast, for DPO, responses are not
further truncated, as we are already limiting the maximum tokens generated during the generation
process.

When reproducing the Hybrid Sampling baseline (Exploration Preference Optimization, XPO) from
Xie et al. (2024), we use α = 5× 10−6 as suggested in the paper.

We do not include a comparison with Shi et al. (2024) and Liu et al. (2024d) in our experiments. While
Shi et al. (2024) employs a sampling method similar to ours, their approach requires significantly more
hyperparameters to tune, whereas our method involves no hyperparameter tuning. On the other hand,
Liu et al. (2024d) relies on training an ensemble of 20 reward models to approximate the posterior.
Their sampling method requires solving the argmax of these rewards, which is computationally
intractable. As a workaround, they generate 20 samples and select the best one using best-of-N with
N = 20. This approach demands at least six times the computational resources compared to our
method.

F.1 ADDITIONAL RESULTS

We present the full results for Online DPO with the overfitted initial policy, including a scatter plot in
Figure 5 and a summary of the objective values in Table 4.

5Fréchet differentiability: A map ϕ : D→ L is Fréchet differentiable at θ if there exists a continuous, linear
map ϕ′

θ : D → L such that ∥ϕ(θ + hn)− ϕ(θ)− ϕ′
θ(hn)∥L/∥hn∥ → 0 for all sequences {hn} ⊂ D with

∥hn∥ → 0 and θ + hn ∈ Θ for all n ≥ 1.
6Continuous invertibility: A map A : Θ → L is continuously invertible if A is invertible, and there exists a

constant c > 0 such that ∥A(θ1)−A(θ2)∥L ≥ c∥θ1 − θ2∥ for all θ1, θ2 ∈ Θ.
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We observe that Vanilla Sampling rapidly increases its KL divergence from the reference model while
its reward improvement diminishes over time. In contrast, PILAF undergoes an early phase of training
with fluctuating KL values but ultimately achieves a policy with higher reward and substantially
lower KL divergence. We hypothesize that PILAF’s interpolation-based exploration enables it to
escape the suboptimal region of the loss landscape where Vanilla Sampling remains trapped.

Conversely, Hybrid Sampling, despite its explicit exploration design, remains biased by the policy
model and continues to exhibit high KL values. While KL divergence decreases over training,
the reward improvement remains limited. Meanwhile, Best-of-N Sampling introduces an implicit
exploration mechanism through internal DPO, which selects the best and worst responses, leading
to wider coverage than Vanilla Sampling. However, despite achieving a KL divergence similar to
PILAF, it results in a lower reward. These findings highlight the superiority of PILAF sampling,
demonstrating its effectiveness in robustly optimizing an overfitted policy.
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Vanilla
Hybrid
Best-of-N
PILAF

Figure 5: Online DPO with an overfitted initial
policy. Full results of the Figure 4. Each dot rep-
resents an evaluation performed every 50 training
steps. Color saturation indicates the training step,
with darker colors representing later steps.

Table 4: Results of Online DPO with an overfit-
ted initial policy. We report the average reward,
KL divergence from the reference model, and
objective J on the testset.

METHOD REWARD (↑) KL (↓) J (↑)

Vanilla -3.95 39.85 -7.93
Best-of-N -4.49 27.90 -7.28
Hybrid -6.00 18.20 -7.82

PILAF (OURS) -3.54 26.45 -6.19

G EXTENSION TO PROXIMAL POLICY OPTIMIZATION (PPO)

In this section, we briefly explore how the core principles of our PILAF sampling approach can be
extended to PPO-based RLHF methods.

Integrating Response Sampling in InstructGPT: The PPO-based RLHF pipeline used in Instruct-
GPT (Ouyang et al., 2022) consists of three key steps:

(i) Supervised Fine-Tuning (SFT) that produces the reference model πref .
(ii) Reward Modeling (RM) by solving the optimization problem equation 2, yielding an

estimated reward function rθ.
(iii) Reinforcement Learning Fine-Tuning, where the policy πϕ is optimized against the re-

ward model rθ using the Proximal Policy Optimization (PPO) algorithm, following the
optimization scheme equation 4.

The key distinction between the PPO and DPO approaches lies in how the reward model rθ is
represented—explicitly in PPO and implicitly in DPO. In response sampling for data collection, it is
crucial to consider the iterative nature of the InstructGPT pipeline. During each iteration, additional
human-labeled data is collected for reward modeling (step (ii)), and steps (ii) and (iii) are repeatedly
applied to refine the model. Our proposed PILAF algorithm naturally integrates into this pipeline by
improving the data collection process in step (ii), thereby enhancing reward model training and, in
turn, policy optimization.

Extensions of T-PILAF and PILAF: Extending our response sampling methods, PILAF and
T-PILAF, to the PPO setup with an explicit rθ is both natural and straightforward.
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• Within the theoretical framework of T-PILAF, as introduced in Section 3, the only required
modification is replacing πθ with the language model πϕ and redefining the interpolated
and extrapolated policies, π+

ϕ and π−
ϕ , following the same formulation as in equations equa-

tion 6a and equation 6b. Specifically, we define

π+
ϕ (y⃗ | x) := 1

Z+(x)
πϕ(y⃗ | x) exp

{
rθ(x, y⃗)

}
, (63a)

π−
ϕ (y⃗ | x) := 1

Z−(x)
πϕ(y⃗ | x) exp

{
− rθ(x, y⃗)

}
, (63b)

where rθ is now explicitly produced by a reward network, rather than being implicitly
derived from πϕ, as in equation equation 5.

• To extend our empirical PILAF algorithm, as described in Section 5, we propose applying
the same interpolation and extrapolation techniques directly to the logits of the language
models πϕ and πref . In particular, we take

π+
ϕ (· | x, y1:t−1) = softmax

({
(1 + β)hϕ − β href

}
(x, y1:t−1)

)
,

π−
ϕ (· | x, y1:t−1) = softmax

({
(1− β)hϕ + β href

}
(x, y1:t−1)

)
,

where hϕ and href represent the logits of the language models πϕ and πref , respectively.

Adaption of Theoretical Analysis: Our theoretical analyses can be extended to the PPO framework,
assuming that the optimization process equation 4 in step (iii) of InstructGPT is solved exactly. In
this case, the policy satisfies πϕ = πrθ , where

πrθ (y⃗ | x) :=
1

Zθ(x)
πref(y⃗ | x) exp

{ 1

β
rθ(x, y⃗)

}
.

Under this assumption, the output language model πϕ is implicitly a function of the parameter θ.
Building on this, we can adapt our optimization and statistical analyses as follows:

• Optimization Consideration: Using the same argument as in Theorem 4.1, we can prove
that

∇θ L(θ) = −C ′ · ∇θ J(πϕ) + T2 ,

where C ′ > 0 is a universal constant, and T2 represents a second-order approximation error.
In other words, if the policy optimization step is sufficiently accurate for the reward model
rθ, then performing gradient descent on the MLE loss with respect to θ is equivalent to
applying gradient ascent on the oracle objective J , following the steepest direction in the
parameter space of θ.

• Statistical Consideration: Even with the new parameterization, the asymptotic distribution
of θ̂ from Theorem 4.2 remains unchanged. Moreover, the gradient and Hessian of J with
respect to θ retain the same form as in Theorem 4.1. As a result, the statistical analysis
extends naturally to PPO, allowing us to conclude that PILAF also maintains structure-
invariant statistical efficiency for PPO methods.
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