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Abstract
We study contextual bandits with general con-
straints, where a learner observes contexts and
aims to maximize cumulative rewards while sat-
isfying a wide range of general constraints. We
introduce the Optimistic3 framework, a novel
learning and decision-making approach that in-
tegrates optimistic design into parameter learn-
ing, primal decision, and dual violation adapta-
tion (i.e., triple-optimism), combined with an ef-
ficient primal-dual architecture. Optimistic3

achieves Õ(
√
T ) regret and constraint violation

for contextual bandits with general constraints.
This framework not only outperforms the state-
of-the-art results that achieve Õ(T

3
4 ) guaran-

tees when Slater’s condition does not hold but
also improves on previous results that achieve
Õ(

√
T/δ) when Slater’s condition holds (δ de-

notes the Slater’s condition parameter), offering a
O(1/δ) improvement. Note this improvement is
significant because δ can be arbitrarily small when
constraints are particularly challenging. More-
over, we show that Optimistic3 can be ex-
tended to classical multi-armed bandits with both
stochastic and adversarial constraints, recovering
the best-of-both-worlds guarantee established in
the state-of-the-art works, but with significantly
less computational overhead.

1. Introduction
We study contextual bandits with general constraints, a
broad online learning framework that boosts a wide range
of applications (e.g., online recommendation (Balakrishnan
et al., 2018; Yang et al., 2020), resource-constrained health-
care (Tewari & Murphy, 2017; Tomkins et al., 2021)). In
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each round t, the learner observes a context xt ∈ X , se-
lects an action at ∈ A, and then receives the corresponding
noisy reward rt(xt, at) and cost ct(xt, at). The goal is to
maximize the cumulative reward while ensuring the con-
straints are satisfied. Our framework addresses a general
setting where the cost functions belong to general func-
tion classes and can take both positive and negative values.
This flexibility allows the model to represent a wide variety
of constraints, such as knapsack constraints (Badanidiyuru
et al., 2014; 2018; Agrawal & Devanur, 2016; Immorlica
et al., 2022), where the cost is positive and the interaction
stops once the resource is depleted, replenishable Knapsacks
constraints (Kumar & Kleinberg, 2022; Bernasconi et al.,
2024a;b), where resources may restore; fairness constraints
(Li et al., 2019; Chen et al., 2020; Claure et al., 2020; Sinha,
2024), ensuring equitable outcomes of the decision.

The most closely related literature on contextual bandits
with general constraints is (Slivkins et al., 2023; Guo &
Liu, 2024). In (Slivkins et al., 2023), the authors proposed
the LagrangeCBwLC algorithm to establish the first opti-
mal Õ(

√
T/δ) bounds for both regret and constraint vio-

lation. Their results rely on two key assumptions: (1) the
existence of Slater’s condition, which guarantees a strictly
feasible solution, and (2) prior knowledge of Slater’s con-
stant δ, which quantifies the strictness of the constraints.
These results were later refined by (Guo & Liu, 2024), who
achieved Õ(T

3
4 ) regret and violation bounds without re-

quiring Slater’s condition. When Slater’s condition holds,
their δ-agnostic algorithm achieves Õ(

√
T/δ2) regret and

violation, exhibiting a 1/δ worse dependency compared to
the full-knowledge algorithm in (Slivkins et al., 2023). The
elimination of prior δ-knowledge represents a significant
advancement, as obtaining such information is often im-
practical in real-world applications. However, the Õ(T

3
4 )

regret and violation bounds in (Guo & Liu, 2024) without
Slater’s condition remain substantially weaker than the opti-
mal Õ(

√
T/δ) bound. For the setting where constraints are

tight (i.e., δ −→ 0), even the Õ(
√
T/δ) guarantee becomes

problematic, incurring a critical limitation both in theory and
practice. A recent work by (Bernasconi et al., 2024a) shows
that Õ(

√
T ) regret and violation bounds are achievable for

classical multi-armed bandits with constraints without re-
quiring Slater’s condition. However, their approach cannot
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be extended to contextual bandits with general constraints
and relies on computationally intensive safe decision set
construction. This raises a natural and open question:

Is there an efficient algorithm for contextual bandits with
general constraints that can achieve the optimal Õ(

√
T )

regret and violation without the Slater’s condition?

In this paper, we provide a positive answer to this question,
and make the following technical contributions: First, we
introduce Optimistic3, a framework that incorporates a
triple-optimistic design: optimistic estimates, optimistic pri-
mal decisions, and optimistic dual updates. The key to these
improvements lies in our optimistic dual design. The opti-
mistic dual update is able to more precisely and smoothly
predict the expected violation, thus preventing overly ag-
gressive decisions. The optimism in the dual design makes
Optimistic3 more adaptive to the constraints, enabling
it to timely switch to conservative decisions when overcon-
sumed costs are detected. Second, we establish the first
optimal Õ(

√
T ) regret and violation bound in the absence

of Slater’s condition. This not only significantly improves
the state-of-the-art Õ(T

3
4 ) guarantee, but also surpasses the

previous best Õ(
√
T/δ) bound with a 1/δ improvement.

The Õ(
√
T/δ) guarantees require both Slater’s condition

and its prior knowledge of Slater’s constant. A detailed com-
parison has been shown in Table 1. Our results can be easily
applied to specific types of constraints, including knapsack
constraints and fairness constraints. Third, we extend our
results into multi-armed bandits with both stochastic and
adversarial constraints, and prove the best-of-two-worlds
guarantee, covering the state-of-the-art results with greater
computational efficiency.

2. Related Works
Contextual bandits extend the multi-armed bandit (MAB)
framework by incorporating contextual information avail-
able at the time of decision-making. In (Dudik et al., 2011;
Agarwal et al., 2014), contextual bandits with classification
oracles were explored, where the algorithms assume access
to cost-sensitive classification oracles. To enhance computa-
tional efficiency, contextual bandits with regression oracles
were studied in (Foster et al., 2018; Foster & Rakhlin, 2020;
Simchi-Levi & Xu, 2022), enabling more computationally
efficient designs and making the approach applicable to a
wider range of real-world problems, especially in scenarios
where accessing classification oracles may not be feasible.

Contextual bandits with constraints by introducing addi-
tional costs, requiring the learner to maximize cumulative
reward while satisfying constraints. Initial research focused
on knapsack constraints (Badanidiyuru et al., 2014; Agrawal
& Devanur, 2014; Wu et al., 2015; Agrawal & Devanur,
2016; Badanidiyuru et al., 2018; Sivakumar et al., 2022;

Chzhen et al., 2024; Guo & Liu, 2025), where the inter-
action terminates upon any constraint violates. For linear
function classes, (Agrawal & Devanur, 2016) established
the optimal theoretical guarantee of Õ((1 + ν∗

b )
√
T ) was

achieved by (Agrawal & Devanur, 2016) for the linear func-
tion class. This result was subsequently extended to general
function classes by (Han et al., 2023; Slivkins & Foster,
2022) through the introduction of regression oracles for joint
reward and cost estimation. A shared assumption across
these works is the existence of a null action, which ensures
Slater’s condition holds.

Fairness constraints have also been extensively studied in
the bandit problem. One prominent notion of fairness in
multi-armed bandits is the requirement that similar indi-
viduals and/or groups are treated similarly, as discussed
in (Dwork et al., 2012; Joseph et al., 2016; Chzhen et al.,
2024). Another widely explored fairness constraint ensures
that each arm receives a minimum fraction of pulls, prevent-
ing any arm from being disproportionately neglected (Li
et al., 2019; Chen et al., 2020; Claure et al., 2020; Sinha,
2024). There are also studies on group fairness (Chohlas-
Wood et al., 2024; Chzhen et al., 2024), where fairness is
defined by minimizing the difference in average spending
across different groups. These studies design algorithms
for specific constraints that incorporate fairness into the
decision-making process.

In (Slivkins et al., 2023), a generalization is considered
where the constraint should be satisfied in the long term,
the cost can be both negative and positive, and the perfor-
mance of the algorithm is evaluated through both regret
and cumulative violation. They provide the first Õ(

√
T/δ)

regret and violation guarantee, which, however, relies on the
assumption that Slater’s condition holds and prior knowl-
edge about it is available. The first theoretical guarantee
without Slater’s condition is provided by (Guo & Liu, 2024),
where they establish Õ(T

3
4 ) regret and violation. When

the Slater’s condition holds, they also achieve Õ(
√
T/δ2)

regret and violation but do not require prior knowledge of
the Slater parameter δ. In the non-context bandit problem,
Õ(T

3
4 ) regret and violation is also proved in (Sinha, 2024)

without the Slater condition. The optimal Õ(
√
T ) guarantee

without Slater’s condition in non-context bandits with con-
straints is provided by (Bernasconi et al., 2024a), however,
their algorithm requires constructing a safe decision set for
every round, suffering from high computational overhead,
especially when the constraints are general and complicated.
It remains open whether Õ(

√
T ) regret and violation can

be achieved with an efficient algorithm for contextual ban-
dits with general constraints without Slater’s condition, as
addressed in this paper. A related line of work (Moradipari
et al., 2021; Amani et al., 2019; Khezeli & Bitar, 2020;
Pacchiano et al., 2024; Gangrade et al., 2024; Chen et al.,
2022a; Gangrade & Saligrama, 2025) studies stage-wise
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Reference
Regret/Violation

(General constraint)
Regret

(Knapsack constraint)
Slater’s condition free/
Slater constant agnostic

Optimistic3 Õ(
√
T ), Õ(

√
T ) O

(
(1 + ν∗

b )
√
T
)

✓, ✓

(Slivkins et al., 2023) Õ(
√
T
δ ), Õ(

√
T
δ ) O

(
(1 + ν∗

b )
√
T
)

✗, ✗

(Guo & Liu, 2024)
Õ(T

3
4 ), Õ(T

3
4 ) × ✓, ✓

Õ(
√
T

δ2 ), Õ(
√
T

δ2 ) O
(
(1 + ν∗

b2 )
√
T
)

✗, ✓

(Chzhen et al., 2024) × O
(
(1 + ν∗

δb )
√
T
)

✗, ✗

(Guo & Liu, 2025) × O
(
(1 + ν∗

δb )
√
T
)

✗, ✓

Table 1. Comparison with related works. Optimistic3 achieves an optimal theoretical guarantee for general constraints without
requiring the Slater’s condition, significantly improving upon the Õ(T

3
4 ) bound in (Guo & Liu, 2024). Even when the Slater’s condition

holds, our results outperform those in (Guo & Liu, 2024; Slivkins & Foster, 2022) by getting rid of the dependency on δ. Notably, our
guarantees for general constraints also recover the state-of-the-art results in (Chzhen et al., 2024; Guo & Liu, 2025), which focus on the
knapsack constraints. While (Guo & Liu, 2025) further relaxes the requirement of knowing the Slater’s constant assumed in (Chzhen
et al., 2024), it still depends on the Slater’s condition, whereas our approach does not.

constraints, enforcing safety with high probability at each
step. However, these methods rely on an initially known
feasible action or the construction of a safe region in every
round.

3. Stochastic Constrained Contextual Bandits
In this section, we introduce the problem formulation and
performance metric for stochastic constrained contextual
bandits with general constraints.

Stochastic Constrained Contextual Bandits: We study
stochastic constrained contextual bandits denoted by
{X ,A,F ,G}, where X is the context set, A is the ac-
tion set (a finite set), F is the reward function class, G
is the cost function class. At period t, the learner observes
a context xt randomly generated from the context set X
according to a known probability law P(·). The learner
takes an action at ∈ A, and then receives a random reward
rt(xt, at) ∈ [0, 1] and a random cost ct(xt, at) ∈ [−1, 1].
Note that we consider a single constraint for ease of expo-
sition, and our results are readily generalized to multiple
constraints. We study a stochastic environment where the
arrival of contexts is i.i.d; the observations for rewards and
costs are drawn from unknown i.i.d. distributions. We fur-
ther assume a key general realizability condition for the
reward and cost functions (Slivkins et al., 2023; Han et al.,
2023; Guo & Liu, 2024; Chzhen et al., 2024).
Assumption 3.1. There exists functions f ∈ F and
g ∈ G such that f(x, a) = E [rt(x, a)|x] and g(x, a) =
E [ct(x, a)|x] ,∀x ∈ X , a ∈ A.

We define a policy π : X → ∆(A), which maps a context
to a probability simplex over action set A. Let f(x) (rt(x))
and g(x) (ct(x)) denote the reward vectors and the cost
vectors, respectively, over the action set A given the context

x. The goal of the learner is to design a policy to optimize
the cumulative rewards while satisfying the constraints

max
π

T∑
t=1

rt(xt, at) (1)

s.t.
T∑

t=1

ct(xt, at) ≤ 0 (2)

The problem formulation in (1)–(2) is general enough to
model different types of constraints, including the most
common knapsack and fairness constraints:

• (Replenishable) Knapsack constraints (Han et al., 2023;
Slivkins et al., 2023; Chzhen et al., 2024; Bernasconi
et al., 2024b): Define ct(x, a) := wt(x, a) − b and the
constraint in (2) represents

∑T
t=1 w(xt, at) ≤ B, where

B is the initial budget and b = B/T is the average budget
(per round). For the most classical bandit with knapsack,
the cost function wt(x, a) is non-negative, and the inter-
action would stop once the budget is exhausted. When
the knapsack is replenishable, the cost wt(x, a) could be
both positive and negative, where a negative cost implies
restoring a positive amount to the budget. The interaction
would continue until the end of the time horizon T.

• (Min-selection) Fairness constraints (Li et al., 2019; Chen
et al., 2020; Claure et al., 2020; Sinha, 2024): Define
ct(x, a) := λi − I{a = i} for arm i and the constraint in
(2) represents λi ≤

∑T
t=1 I{at = i}/T, which means the

learner has to choose arm i at least λi faction of times,
i.e., guarantee minimum selection fairness for arm i.

• (Group) Fairness constraints (Chohlas-Wood et al.,
2024; Chzhen et al., 2024): Define ct,+(x, a) :=
wt(x, a)I{gr(x) = i} − γiwt(x, a), and ct,− :=
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γiwt(x, a) − wt(x, a)I{gr(x) = i} for group i, where
gr(x) ∈ [I] denotes the group index, and γi is the ex-
pected proportion for group i. This constraint reduces
disparities in average spending among groups, thereby
mitigating equity issues.

Regret: To define regret, we first introduce the underlying
offline problem of (1)–(2):

max
π

E [⟨π, f(x)⟩] s.t. E [⟨π,g(x)⟩] ≤ 0. (3)

Note the optimal value of this offline problem serves as an
upper bound to the optimal value of (2), which has been
proved in (Devanur et al., 2011; Agrawal & Devanur, 2016;
Badanidiyuru et al., 2018). Let π∗ be the solution to this
offline problem and we define ν∗ := E [⟨π∗, f(x)⟩] as the
optimal value. For any sequence of action {at}t, the corre-
sponding (pseudo) regret against this baseline is

R(T ) := Tν∗ − E

[
T∑

t=1

rt(xt, at)

]
. (4)

Constraint Violation: The constraint violation is straight-
forward to be defined as

V(T ) := E

[
T∑

t=1

ct(xt, at)

]
. (5)

Note in the classical contextual bandit with knapsacks,
V(T ) ≡ 0 due to the “hard stopping” when the budget
is exhausted.

Assumption 3.2. There exist online learning oracles {O}r,c
such that the reward and cost estimators f̂t(x, a) and
ǧt(x, a) satisfy the following conditions with a high proba-
bility at least 1− p:

E =

{
0 ≤ f̂t(x, a)− f(x, a) ≤ 2εt(x, a, p)

0 ≤ g(x, a)− ǧt(x, a) ≤ 2εt(x, a, p)

}
,

where p = 1/T 2, and we have
∑T

t=1 ∥εt(x, a, p)∥2 =
O(log(max(|F|, |G|)/p)).

The above assumption defines two online regression oracles
and their performance, which is common in contextual ban-
dits with constraints (Foster et al., 2018; Han et al., 2023;
Slivkins et al., 2023; Guo & Liu, 2024; Chzhen et al., 2024;
Guo & Liu, 2025). For the (non-context) multi-armed ban-
dits problem, standard UCB (LCB) estimation satisfies the
constraint. If the reward and cost functions belong to the
generalized linear class, the online least-square estimate
oracles satisfy the assumption. When the reward and cost
functions are in general class, the weighted online regres-
sion estimators still satisfy the assumption, and εt(x, a, p)
can be calculated efficiently via a binary search method

(Foster et al., 2018). Based on online learning oracles, we
have optimistic learning for rewards and costs.

For completeness, we introduce a key assumption, Slater’s
condition, used in the existing literature, and note our work
does not make this assumption.

Assumption 3.3 (Slater’s condition). There exists a positive
constant δ such that a feasible solution π0 to the optimiza-
tion problem (3) satisfies E[⟨π0,g(x)⟩] ≤ −δ.

This assumption guarantees the existence of a strictly feasi-
ble solution, commonly used in constrained bandit literature
(Slivkins et al., 2023; Chzhen et al., 2024; Guo & Liu, 2024;
2025). In contrast, our algorithm eliminates this require-
ment entirely, and our guarantees are independent of the
Slater parameter δ, which may be arbitrarily small in tightly
constrained scenarios.

4. Triple-optimistic framework for contextual
bandits with constraints

In this section, we introduce Optimistic3 learning and
decision framework for contextual bandits with general con-
straints. This framework incorporates a triple optimistic
design in parameter learning, primal decision, and dual vi-
olation update to achieve optimal theoretical guarantees.

Optimistic3 learning and decision framework

Initialization: Q1 = 0, α ≥ 2, uniform policy π0, and KL
divergence D(·||·).
For t = 1, · · · , T,

• Optimistic Learning: Observe the context xt, con-
struct UCB and LCB estimators for rewards f̂t(xt, a)
and costs ǧt(xt, a) from the learning oracles {O}r,c.

• Optimistic Decision: Construct the optimistic surro-
gate function for any a ∈ A that

L̂(xt, a) = f̂t(xt, a)−Qtǧt(xt, a). (6)

Find the optimal policy πt for probabilistic exploration:

πt = argmax
π

⟨π, L̂(xt)⟩ − αD(π||πt−1). (7)

Sample an action at ∼ πt.

• Observe Feedback: Observe noisy reward rt(xt, at)
and cost ct(xt, at).

• Optimistic Dual Update: Update the optimistic dual
variable Qt+1 as follows:

Qt+1 = (Qt − Ex[⟨πt−1, ǧt−1(x)⟩ − 2⟨πt, ǧt(x)⟩])+
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Optimistic3 framework is rooted in efficient primal-
dual decision-making, leveraging the power of optimism to
smoothly control exploration-exploitation tradeoffs under
general constraints. It contains the key components:

Optimistic Parameter Learning: Optimistic3 incor-
porates standard learning oracles for reward and cost func-
tions as in (Slivkins et al., 2023; Chzhen et al., 2024; Guo
& Liu, 2024). Specifically, the algorithm leverages online
regression oracles that collect historical observations of the
noisy reward rt(xt, at) and cost ct(xt, at). Using these
collected samples, the algorithm constructs optimistic esti-
mates of the reward and cost for the next round based on the
given context, which is achieved through the UCB estimator
for rewards and the LCB estimator for costs.

Optimistic Primal Decision/Exploration: Upon the op-
timistic estimators for reward and cost, the framework
first constructs an optimistic surrogate function L̂(xt, a).
We then introduce KL divergence as a regularization term
to translate the surrogate function into action probabil-
ity, which ensures probabilistic, smooth and efficient ex-
ploration. This design differs from the “greedy” deci-
sion in (Chzhen et al., 2024; Guo & Liu, 2025) and
inverse-gap weighting exploration strategy in (Slivkins et al.,
2023; Guo & Liu, 2024). Besides, the decision in (7)
is very efficient because it is based on online mirror de-
scent and has a closed-form Exp3 update, i.e., πt(a) =

πt−1(a)e
1
α L̂t(xt,a)/

∑
a′ πt−1(a

′)e
1
α L̂t(xt,a

′).

Optimistic Violation Adaptation: Once the policy πt has
been determined, Optimistic3 then conduct optimistic
dual update on Qt, which is the key design to provide im-
proved guarantee. Unlike the traditional dual updates

Qt+1 = (Qt + ⟨πt, ǧt(xt)⟩)+, or (Qt + ct(xt, at))
+,

which can be interpreted as a standard gradient ascent step
on the dual variable, we introduce an additional correction
term: Ex[⟨πt, ǧt(x)⟩]− Ex[⟨πt−1, ǧt−1(x)⟩], which serves
as the “momentum” to smooth the update and accelerate
convergence. The expectation Ex denotes expectation over
the context variable (drawn from the known context distri-
bution P(·)). The optimistic dual gradient ascent mitigates
fluctuations in the dual variable and smooths out abrupt
changes in constraint violations across rounds. Interestingly,
this optimistic design enables Optimistic3 to achieve
the minimal violation even without Slater’s condition. The
current update requires knowledge of context distribution.
When the context distribution is unknown, one can first esti-
mate its empirical distribution and use it in the update. This
would not degrade the theoretical analysis when the context
distribution satisfies a certain smooth property, as suggested
in (Li & Stoltz, 2022; Chen et al., 2022b).

In summary, Optimistic3 presents a novel framework
for algorithm design and theoretical analysis in constrained

contextual bandit problems. The optimistic and smooth
design in primal decisions and dual updates serve as the
cornerstone of this framework. By synergistically integrat-
ing optimistic estimators with dual variable updates, the
optimistic surrogate decision function achieves an elegant
balance between reward maximization and cost constraint
satisfaction. This approach not only attains optimal theo-
retical guarantees without requiring Slater’s condition but
also demonstrates great generality - achieving the best-of-
both-worlds in multi-armed bandit with both stochastic and
adversarial constraints (as shown in Section 7).

5. Theoretical Results
In this section, we present the theoretical performance of
Optimistic3 in contextual bandits with general con-
straints and sketch the proof. We begin by stating the main
results in the following theorem, which offers a positive
answer to the open question posed in the introduction.

Theorem 5.1. For contextual bandits with general con-
straints, Optimistic3 achieves the following regret and
violation:

R(T ) = Õ(
√
T ), V(T ) = Õ(

√
T ).

Remark 5.2. These results demonstrate that Optimistic3

achieves strong regret and violation bounds when Slater’s
condition does not hold. These results improve upon (Guo
& Liu, 2024), which establishes Õ(T

3
4 ) regret and violation

and only improves to Õ(
√
T/δ2) regret and violation when

Slater’s condition holds. While their results focus on the
parameter-agnostic setting, (Slivkins et al., 2023) shows
that even with prior knowledge of the Slater’s condition
parameter, the results can only improve to Õ(

√
T/δ) regret

and violation, still retaining a dependency on δ. In con-
trast, Optimistic3 does not require Slater’s condition
and achieves a clean and elegant Õ(

√
T ) guarantee, elimi-

nating the dependency on δ, which could be small or even
vanish in many real-world applications. These results can be
further extended into knapsack constraints. Our results sig-
nificantly advance the theoretical guarantees for contextual
bandits with general constraints.

5.1. A Unified Bound of “Regret plus Drift”

To prove our main results, we first introduce the following
lemma that provides a unified bound for both regret and drift,
serving as a key step in the proof of Theorem 5.1. We first
define the historical information Ht = {xt, f̂t, ǧt, Qt}. The
expectation in the following lemma denotes the conditional
expectation E[·|Ht] given Ht.

Lemma 5.3. Let πt be the policy returned by (7) in
Optimistic3. Define a shift dual variable qt = Qt −
Ex[⟨πt−1, ǧt−1(x)⟩] and its corresponding drift ∆t =

5



Triple-Optimistic Learning for Stochastic Contextual Bandits with General Constraints

1
2 (q

2
t+1 − q2t ). We have

E[⟨π∗ − πt, f(xt)⟩] + E[∆t]

≤ 2E[∥f(xt)− f̂t(xt)∥] + E

[
T∑

t=1

Qt⟨π∗, ǧt(xt)− g(xt)⟩

]
+ αE[D(π∗||πt−1)−D(π∗||πt)]

+ E[∥ǧt−1(x)− ǧt(x)∥2]

+
1

2
(E [⟨πt, ǧt(x)⟩]2 − E [⟨πt−1, ǧt−1(x)⟩]2)

Remark 5.4. The above lemma provides a unified bound for
both the single-step regret ⟨π∗ − πt, f(xt)⟩ and the single-
step drift ∆t, enabling us to analyze regret and violation
simultaneously. The drift captures the stability of the dual
variable, thereby reflecting the extent to which the total con-
straint is violated. This lemma refines the results of (Guo &
Liu, 2024) by leveraging the power of optimism, allowing
us to eliminate additional trade-off parameters between re-
ward and cost that could affect the efficiency of bounding
the unified terms and necessitate Slater’s condition.

We provide a proof sketch below, with the detailed proof
available in Appendix A.

Proof Sketch: To begin, we first introduce the following
pushback lemma.

Lemma 5.5 (Pushback Property). Let Π be a convex set.
Let function h be convex on Π and πopt ∈ Π be a global
minimum of h(π) + αD(π||πt−1) on Π. For any π ∈ Π,

h(πopt) + αD(πopt||πt−1)

≤h(π) + αD(π||πt−1)− αD(π||πopt)

Pushback lemma is a fundamental result in online opti-
mization (Nemirovski et al., 2009; Yu et al., 2017; Wei
et al., 2020), particularly when working with Bregman di-
vergences (here we specify as KL divergence). This lemma
originates from the strong convexity property and guaran-
tees that the optimization process inherently resists devia-
tions from the optimal solution, with the term αD(π||πopt)
quantifying the magnitude of this “pushback” effect. By
leveraging this property, we can effectively analyze the opti-
mistic decision-making process in (7).

Let h(π) = ⟨πt−1−π, f̂t(xt)⟩+Qt⟨π, ǧt(xt)⟩, according to
the optimistic decision in (7), we have πopt = πt. Therefore,
we can apply Lemma 5.5 to get that for any policy π ∈ Π,

⟨πt−1 − πt, f̂t(xt)⟩+Qt⟨πt, ǧt(xt)⟩+ αD(πt||πt−1)

≤⟨πt−1 − π, f̂t(xt)⟩+Qt⟨π, ǧt(xt)⟩+ αD(π||πt−1)

− αD(π||πt)

Let π = π∗ and add ⟨π∗ − πt−1, f(xt)⟩ on both sides, we

can obtain

⟨π∗ − πt, f(xt)⟩+Qt⟨πt, ǧt(xt)⟩+ αD(πt||πt−1)

≤⟨π∗ − πt, f(xt)− f̂t(xt)⟩+Qt⟨π∗, ǧt(xt)− g(xt)⟩
+Qt⟨π∗,g(xt)⟩+ αD(π∗||πt−1)− αD(π∗||πt). (8)

Recall qt = Qt−Ex[⟨πt−1, ǧt−1(x)⟩] and its corresponding
drift ∆t, the following property holds due to the update rule
of the optimistic dual
Lemma 5.6. Under the Optimistic3 framework, the
following inequality holds for the drift term

Ex[∆t]

≤qtEx[⟨πt, ǧt(x)⟩] + Ex[⟨πt, ǧt(x)⟩]2

=QtEx[⟨πt, ǧt(x)⟩]− Ex[⟨πt−1, ǧt−1(x)⟩]Ex[⟨πt, ǧt(x)⟩]
+ Ex[⟨πt, ǧt(x)⟩]2 (9)

The cross term Ex[⟨πt−1, ǧt−1(x)⟩]Ex[⟨πt, ǧt(x)⟩] is chal-
lenging to analyze directly, so we introduce the following
property to facilitate the analysis:
Lemma 5.7. The following inequality holds for t ∈ [T ],

Ex[⟨πt−1, ǧt−1(x)⟩]Ex[⟨πt, ǧt(x)⟩]

≥Ex[⟨πt, ǧt(x)⟩]2

2
+

Ex[⟨πt−1, ǧt−1(x)⟩]2

2

− Ex[∥ǧt−1(x)− ǧt(x)∥2]− ∥πt − πt−1∥21 (10)

Remark 5.8. Suppose the algorithm is designed without
leveraging any prior knowledge of the context distribution.
In this case, the optimistic dual update takes the form

Qt+1 = (Qt − ⟨πt−1, ǧt−1(xt−1)⟩+ 2⟨πt, ǧt(xt)⟩)+.

As shown in Lemma 5.7, this update introduces the term
∥ǧt−1(xt−1) − ǧt(xt)∥2, which poses significant analyt-
ical challenges, as it reflects the complexity of context-
dependent variations. To circumvent this issue, we have
to adopt the mild assumption that the context distribution
is known and leverage this knowledge in the dual update.
An important direction for future work is to develop tech-
niques that remove the assumption of prior knowledge of
the context distribution.

With the above two lemmas, we can take expectation w.r.t.
xt and substitute (9) and (10) into (8), which gives

⟨π∗ − πt,Ex[f(xt)]⟩+∆t

≤⟨π∗ − πt,Ex[f(xt)− f̂t(xt)]⟩+ Ex[Qt⟨π∗, ǧt(xt)− g(xt)⟩]
+ αD(π∗||πt−1)− αD(π∗||πt) + Ex[∥ǧt−1(x)− ǧt(x)∥2]

+
Ex[⟨πt, ǧt(x)⟩]2 − Ex[⟨πt−1, ǧt−1(x)⟩]2

2

+ ∥πt − πt−1∥21 − αD(πt||πt−1) + Ex[Qt⟨π∗,g(xt)⟩].
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For the last term, we have Ex[Qt⟨π∗,g(xt)⟩] = 0 ac-
cording to the definition of π∗. Then it remains to prove
∥πt−πt−1∥21−αD(πt||πt−1) ≤ 0, for which the following
lemma holds:

Lemma 5.9 (Pinsker’s inequality). Let πt and πt−1 be two
probability distributions over action set A and D(·||·) be
KL Divergence, we have

∥πt−1 − πt∥21 ≤ 2D(πt||πt−1)

Applying Pinsker’s inequality and recalling α ≥ 2, then
we can take the expectation w.r.t. the remaining terms in
Ht to complete the proof. We might also consider alterna-
tive generating functions in the Bregman divergence, which
yield properties similar to Pinsker’s inequality and obtain
the same guarantees as in Theorem 5.1. This might require
selecting an appropriate learning rate α in our algorithm
such that the key Lemma 5.3 holds.

5.2. Regret analysis

To establish the regret bound, we first sum the inequality in
Lemma 5.3 to get

E

[
T∑

t=1

⟨π∗ − πt, f(xt)⟩

]
+ E

[
T∑

t=1

∆t

]

≤E

[
T∑

t=1

∥f(xt)− f̂t(xt)∥+
T∑

t=1

Qt⟨π∗, ǧt(xt)− g(xt)⟩

]

+ E

[
T∑

t=1

α(D(π∗||πt−1)−D(π∗||πt))

]
(11)

+ E

[
T∑

t=1

∥ǧt−1(x)− ǧt(x)∥2
]

(12)

+

T∑
t=1

(
E [⟨πt, ǧt(x)⟩]2

2
− E [⟨πt−1, ǧt−1(x)⟩]2

2

)
(13)

The first two terms denote the learning errors of reward
and cost functions, for which we have the following upper
bound due to our learning oracle assumptions.

E

[
T∑

t=1

∥f(xt)− f̂t(xt)∥

]
= Õ(

√
T ),

E

[
T∑

t=1

Qt⟨π∗, ǧt(xt)− g(xt)⟩

]
= Õ(1),

where the last one holds since we have Q(t) ≤ 2T from the
update rule of the dual variable.

From the telescoping nature of (11) and (13) and the upper

bounds for each component, we can easily derive:

E

[
T∑

t=1

α(D(π∗||πt−1)−D(π∗||πt))

]
= Õ(1),

T∑
t=1

(
E [⟨πt, ǧt(x)⟩]2

2
− E [⟨πt−1, ǧt−1(x)⟩]2

2

)
= O(1),

Finally, for the terms in (12), we have

E

[
T∑

t=1

∥ǧt−1(x)− ǧt(x)∥2
]

≤E

[
T∑

t=1

∥ǧt−1(x)− g(x)∥2
]
+ E

[
T∑

t=1

∥ǧt(x)− g(x)∥2
]

≤2E

[
T∑

t=1

∥εt(x, a, p)∥2
]
= Õ(1),

where the last inequality holds due to the learning oracle
assumption. Combining all these terms, we prove the upper
bound of regret such that R(T ) = Õ(

√
T ). Please refer to

Appendix B.1 for the detailed proof.

5.3. Violation analysis

To establish the cumulative violation guarantee, we first
need to analyze the relationship between violation and dual
variable. According to the update rule of Qt, we have

Qt+1 ≥ Qt − Ex[⟨πt−1, ǧt−1(x)⟩] + 2Ex[⟨πt, ǧt(x)⟩].

Summing the above inequality over T rounds and taking
expectation, we can obtain that:

E

[
T∑

t=1

⟨πt, ǧt(x)⟩

]
≤ QT+1 + 1 ≤ qT+1 + 2.

This demonstrates that the expected estimated cumulative
violation can be upper bounded by the “dual” term qT+1.

Then we can prove the constraint violation through the fol-
lowing decomposition:

V(T ) =E

[
T∑

t=1

⟨πt,g(x)− ǧt(x)⟩

]
+ E

[
T∑

t=1

⟨πt, ǧt(x)⟩

]

≤E

[
T∑

t=1

∥g(x)− ǧt(x)∥

]
+ qT+1 + 2, (14)

where we can complete the proof by analyzing the cumu-
lative learning error and the upper bound of qT . Recall in
Section 5.2, we have proved a unified bound for regret plus
drift, which gives

E

[
T∑

t=1

⟨π∗ − πt, f(xt)⟩

]
+ E

[
T∑

t=1

∆t

]
= Õ(

√
T ),

7



Triple-Optimistic Learning for Stochastic Contextual Bandits with General Constraints

substitute the definition of drift, recall Q1 = 0 and rearrange
the inequality, we can obtain

E
[
q2T+1

2

]
=Õ(

√
T ) + E

[
T∑

t=1

⟨πt − π∗, f(xt)⟩

]
≤Õ(

√
T ) + 2T,

where the last inequality holds due to the bound of the
reward function. Finally, we show that qT+1 = Õ(

√
T ),

we then prove the constraint violation by substituting it into
(14).

6. Optimistic3 for CBwK
This section instantiates Optimistic3 for contextual ban-
dits with knapsack constraints and shows how the theoret-
ical guarantee in Theorem 5.1 can be translated into the
knapsack constraints with “hard-stopping”. Intuitively, the
constraint violation is a proxy for the early stopping and
will be accounted for regret.

For the knapsack constraints, we have ct(xt, at) =

wt(xt, at) − b and
∑T

t=1 wt(xt, at) ≤ B. The regret def-
inition is the same as in (4). To present our results, we
first define the stopping time under our algorithm, where
τ = argmint∈[T ]{t |

∑t
s=1 w(xt, at) ≥ B}. We then de-

couple the regret as follows

R(T ) = E

[
τ∑

t=1

(ν∗ − rt(xt, at))

]
+ (T − τ)ν∗.

The first term represents the “regret before stopping” and
can be bounded using our regret analysis of contextual ban-
dits with general constraints, i.e., R(T ). Specifically, it is
bounded by Õ(

√
τ) = Õ(

√
T ) in Theorem 5.1.

The second term, (T − τ)ν∗ represents the “regret after
stopping,” and its upper bound can be determined by ana-
lyzing the upper bound of the constraint violation. From
the violation bound in Theorem 5.1, we can immediately
have E [

∑τ
t=1(wt(xt, at)− b)] = Õ(

√
T ), in conjunction

with the definition of stopping time, we know τ satis-
fies Õ(

√
T ) + τb ≥ B := Tb, which establish that

T − τ = Õ(
√
T/b) such that

E[(T − τ)ν∗] = Õ

(
ν∗

b

√
T

)
.

These results are summarized in the following theorem, and
its proof can be found in Appendix C.

Theorem 6.1. For contextual bandits with knapsack con-
straints, Optimistic3 achieves the regret that

R(T ) = Õ

(
(1 +

ν∗

b
)
√
T

)
.

The regret bound holds for a universal budget regime where
B = Ω(1) without assuming Slater’s condition or the
information of Slater’s constant. This greatly improves
upon the state-of-the-art in (Chzhen et al., 2024; Guo &
Liu, 2025), where guarantees are limited to a small-budget
regime B = Ω(

√
T ), with (Chzhen et al., 2024) additionally

requiring explicit knowledge of Slater’s condition.

7. Optimistic3 for MAB with Stochastic
and Adversarial Constraints

A very recent paper (Bernasconi et al., 2024a) studied clas-
sical (non-contextual) multi-armed bandits (MAB) with
stochastic and adversarial constraints, which achieve “best-
of-two-worlds” guarantees by constructing the feasible set
through adaptive weighted estimates. Interestingly, they
also establish an optimal Õ(

√
T ) regret guarantee without

Slater’s condition under the stochastic setting. We also il-
lustrate Optimistic3 can be readily generalized to MAB
with both stochastic and adversarial constraints and recover
the “best-of-two-worlds” results with a much less computa-
tional overhead as Optimistic3 has gradient-type deci-
sion while (Bernasconi et al., 2024a) requires solving linear
programming for each round.

In MAB with stochastic and adversarial constraints, at time
t, the learner chooses an arm at ∈ A and receives a re-
ward rt(at) and a cost ct(at). Similar to (Bernasconi et al.,
2024a), we consider the reward to be arbitrary and adver-
sarial. Then the cost functions are the key to dividing this
problem.

Stochastic Setting. The cost at each round is indepen-
dently drawn from an i.i.d. distribution with expected value
c(a) = E[ct(a)],∀a ∈ A, t ∈ [T ]. The baseline is defined
as the best fixed policy that satisfies the constraints in expec-
tation. Consequently, the definitions of regret and constraint
violation remain the same as those in the main text, with the
slight modification that the contexts are omitted.

Adversarial Setting. The cost sequence {ct}t can arbitrary.
As the baseline, we consider the best unconstrained policy:

π∗
adv := argmax

π

T∑
t=1

⟨π, rt⟩.

In this more challenging setting, as a sublinear regret re-
sult is impossible (Immorlica et al., 2022; Castiglioni et al.,
2022), we aim for a less ambitious objective: achieving
a constant competitive ratio with respect to OPTadv =∑T

t=1⟨π∗
adv, rt⟩, the cumulative reward of the unconstrained

optimal policy. Formally, given the competitive ratio β ≤ 1,
we establish the following β-regret as:

β-R(T ) = β OPTadv − E

[
T∑

i=1

rt(at)

]
.

8
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The definition of violation remains unchanged.

In the stochastic setting, (Bernasconi et al., 2024a) also
achieves the optimal Õ(

√
T ) regret and violation with-

out Slater’s condition, a result that is, of course, covered
by our work. In the adversarial setting, their analysis
further requires Slater’s condition to hold, where ρ :=
− infa∈A maxt∈[T ] ct(a) is the Slater constant. They con-
sider the competitive ratio to be β = ρ/(1 + ρ) and achieve
Õ(

√
T ) regret and violation. To achieve these “best-of-two-

worlds” guarantees, they estimate the cost function using
a weighted average of past observations combined with an
optimistic bonus. They adaptively design the weights based
on the current level of constraint violation, allowing the
estimates to accommodate the differing requirements of
stochastic and adversarial constraints. However, the algo-
rithm proposed in Bernasconi et al. (2024a) incurs additional
computational overhead, as it constructs a feasible set using
estimated costs and solves a constrained optimization prob-
lem at each round. Next, we will show that Optimistic3

can recover their performance guarantees while retaining
a gradient-based update scheme to ensure computational
efficiency.

To apply Optimistic3 to this problem, we only need
to modify the optimistic learning components for the re-
ward and constraint functions. Specifically, to handle ad-
versarial rewards, we can use standard EXP3-style esti-
mators. To accommodate both stochastic and adversarial
constraints, we adopt the adaptive weighted estimator pro-
posed in (Bernasconi et al., 2024a). The details of the
Optimistic3 algorithm for MAB with stochastic and
adversarial constraints are provided in the Appendix D. For
this problem, we have the following guarantee:

Theorem 7.1. For MAB with stochastic and adversarial
constraints, Optimistic3 achieves the following results
for stochastic constraints

R(T ) = Õ(
√
T ), V(T ) = Õ(

√
T ),

and for adversarial constraints with β = ρ/(1 + ρ), under
the Slater’s condition, Optimistic3 achieves

β-R(T ) = Õ(
√
T ), V(T ) = Õ(

√
T ).

The above theorem shows that Optimistic3 achieves
optimal Õ(

√
T ) regret and violation in the stochastic set-

ting without assuming Slater’s condition. For adversar-
ial constraints, let β = ρ/(1 + ρ); under the Slater’s
condition, Optimistic3 achieves Õ(

√
T ) β-regret and

violation. These results match the “best-of-both-worlds”
guarantees established in (Bernasconi et al., 2024a), while
Optimistic3 achieves these results with significantly
less computational overhead.

Figure 1. Averaged reward and constraint violation under LOE2D,
LagrangeCBwLC and Optimistic3.

8. Experiments
In this section, we conduct experiments using the large-scale
learning-to-rank dataset Microsoft MSLR-WEB30k (Qin &
Liu, 2013). We adopt a similar general constraint setting
as in (Guo & Liu, 2024), where the reward function r(x, a)
corresponds to the relevance score (normalized to [0, 1])
assigned to the recommended document and the incoming
customer. The cost c(x, a) for each arm is randomly gener-
ated from a uniform distribution over [−0.5, 1] and remains
fixed throughout each trial. We employ gradient-boosted
tree regression and the empirical mean to estimate reward
and cost functions, respectively. Observations of rewards
and costs are perturbed by Gaussian noise N (0, 0.05). The
reported experimental results are averaged over 50 trials,
with a 95% confidence interval. Figure 1 demonstrates
that Optimistic3 outperforms both LOE2D (Guo & Liu,
2024) and LagrangeCBwLC (Slivkins et al., 2023), which
verifies our theoretical results.

9. Conclusion
In this paper, we propose Optimistic3, an efficient and
optimal framework for contextual bandits with general con-
straints. Optimistic3 significantly improves the theoret-
ical guarantees in the setting where Slater’s condition does
not hold. Furthermore, we demonstrate that these results can
be extended to the non-contextual MAB setting, achieving
the best-of-both-worlds guarantee for MAB with stochastic
and adversarial constraints.

9
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A. Proof of the key property in Lemma 5.3
In this section, we provide detailed proof of Lemma 5.3, which provides a unified bound for both regret and violation. We
begin by establishing the following pushback property (for a detailed discussion and analysis, we refer the reader to (Wei
et al., 2020), which provides the first proof of the general pushback lemma).

Lemma A.1 (Restatement of Lemma 5.5). Let X be a convex set. Let function h be convex on Π, and let πopt ∈ Π be a
global minimum of h(π) +D(π||πt−1) on Π. Then, for any π ∈ Π, we have:

h(πopt) + αD(πopt||πt−1) ≤ h(π) + αD(π||πt−1)− αD(π||πopt)

Proof. Due to the definition of πopt, we have

∇h(πopt) + α∇D(πopt||πt−1) = 0,

A standard “three-point” expansion of the second bracket shows

D(π||πt−1)−D(πopt||πt−1) = D(π||πopt) + ⟨∇D(πopt||πt−1), π − πopt⟩,

Recall ∇h(πopt) +∇D(πopt||πt−1) = 0, then we can get

(h(π)− h(πopt)) + α(D(π||πt−1)−D(πopt||πt−1)) =(h(π)− h(πopt)− ⟨∇h(πopt), π − πopt⟩) + αD(π||πopt)

≥αD(π||πopt),

Rearranging the above inequality, we complete the proof.

We consider the case conditioned on the historical information Ht. Then, we can apply the pushback lemma to our decision
process in (7), where h(π) = ⟨πt−1 − π, f̂t(xt)⟩+Qt⟨π, ǧt(xt)⟩, which implies that for any policy π ∈ Π:

⟨πt−1 − πt, f̂t(xt)⟩+Qt⟨πt, ǧt(xt)⟩+ αD(πt||πt−1)

≤⟨πt−1 − π, f̂t(xt)⟩+Qt⟨π, ǧt(xt)⟩+ αD(π||πt−1)− αD(π||πt)

Let π = π∗ and add ⟨π∗ − πt−1, f(xt)⟩ on both sides, we can obtain

⟨π∗ − πt, f(xt)⟩+Qt⟨πt, ǧt(xt)⟩+ αD(πt||πt−1)

≤⟨π∗ − πt, f(xt)− f̂t(xt)⟩+Qt⟨π∗, ǧt(xt)− g(xt)⟩+Qt⟨π∗,g(xt)⟩+ αD(π∗||πt−1)− αD(π∗||πt),

To address the term Qt⟨πt, ǧt(xt)⟩, recall that qt = Qt−Ex[⟨πt−1, ǧt−1(x)⟩], and the corresponding drift is ∆t =
q2t+1

2 − q2t
2 .

For the drift term, the following property holds:

Lemma A.2 (Restatement of Lemma 5.6). Under the Optimistic3 framework, the following inequality holds for the
drift term

Ex[∆t] ≤qtEx[⟨πt, ǧt(x)⟩] + Ex[⟨πt, ǧt(x)⟩]2

=QtEx[⟨πt, ǧt(x)⟩]− Ex[⟨πt−1, ǧt−1(x)⟩]Ex[⟨πt, ǧt(x)⟩]
+ Ex[⟨πt, ǧt(x)⟩]2

Proof. Recall the definition of qt and the optimistic dual update:

Qt+1 = (Qt − Ex[⟨πt−1, ǧt−1(x)⟩] + 2Ex[⟨πt, ǧt(x)⟩])+.

We can derive the update rule of qt+1:

qt+1 + Ex[⟨πt, ǧt(x)⟩] = (qt + 2Ex[⟨πt, ǧt(x)⟩])+

qt+1 = max(−Ex[⟨πt, ǧt(x)⟩], qt + Ex[⟨πt, ǧt(x)⟩]),

13



Triple-Optimistic Learning for Stochastic Contextual Bandits with General Constraints

To facilitate the analysis of qt, we define the following ϕ(πt):

ϕ(πt) =

{
Ex[⟨πt, ǧt(x)⟩], if qt + Ex[⟨πt, ǧt(x)⟩] ≥ −Ex[⟨πt, ǧt(x)⟩]
−qt − Ex[⟨πt, ǧt(x)⟩], else.

Then we can rewrite the update of qt+1 as
qt+1 = qt + ϕ(πt).

Recall the definition of the drift term, we have

∆t =
ϕ(πt)

2

2
+ qtϕ(πt)

=
ϕ(πt)

2

2
+ qtEx[⟨πt, ǧt(x)⟩] + qt(ϕ(πt)− Ex[⟨πt, ǧt(x)⟩])

=
ϕ(πt)

2

2
+ qtEx[⟨πt, ǧt(x)⟩]− (ϕ(πt) + Ex[⟨πt, ǧt(x)⟩])(ϕ(πt)− Ex[⟨πt, ǧt(x)⟩])

=qtEx[⟨πt, ǧt(x)⟩] + Ex[⟨πt, ǧt(x)⟩]2 −
ϕ(πt)

2

2

≤qtEx[⟨πt, ǧt(x)⟩] + Ex[⟨πt, ǧt(x)⟩]2,

where the third equality follows from the fact that qt(ϕ(πt) − Ex[⟨πt, ǧt(x)⟩]) = (ϕ(πt) + Ex[⟨πt, ǧt(x)⟩])(ϕ(πt) −
Ex[⟨πt, ǧt(x)⟩]), which can be proven by considering the cases ϕ(πt) = Ex[⟨πt, ǧt(x)⟩] and ϕ(πt) ̸= Ex[⟨πt, ǧt(x)⟩].
Finally, we substitute qt = Qt − Ex[⟨πt−1, ǧt−1(x)⟩], which completes the proof.

When analyzing the upper bound of the drift term, the cross term Ex[⟨πt−1, ǧt−1(x)⟩]Ex[⟨πt, ǧt(x)⟩] presents significant
analytical challenges. To resolve this, we derive the following lemma.
Lemma A.3 (Restatement of Lemma 5.7). The following inequality holds for t ∈ [T ],

Ex[⟨πt−1, ǧt−1(x)⟩]Ex[⟨πt, ǧt(x)⟩] ≥
Ex[⟨πt, ǧt(x)⟩]2

2
+

Ex[⟨πt−1, ǧt−1(x)⟩]2

2

− Ex[∥ǧt−1(x)− ǧt(x)∥2]− ∥πt − πt−1∥21

Proof.

(Ex[⟨πt, ǧt(x)⟩ − ⟨πt−1, ǧt−1(x)⟩])2 =(Ex[⟨πt, ǧt(x)− ǧt−1(x)⟩] + Ex[⟨ǧt−1, πt − πt−1⟩])2

≤(Ex[∥πt∥∥ǧt(x)− ǧt−1(x)∥] + Ex[∥ǧt−1∥∞∥πt − πt−1∥1])2

≤(Ex[∥ǧt(x)− ǧt−1(x)∥] + Ex[∥ǧt−1∥∞∥πt − πt−1∥1])2

≤2Ex[∥ǧt(x)− ǧt−1(x)∥2] + 2∥πt − πt−1∥21,

where the first inequality comes from Hölder’s inequality, the second and third inequality hold since ∥πt∥ ≤ 1 and
∥ǧt−1∥∞ ≤ 1, the last inequality holds since (a+ b)2 ≤ 2a2 + 2b2 and E[X]2 ≤ E[X2]. Then we can obtain

Ex[⟨πt, ǧt(x)⟩]2

2
+

Ex[⟨πt−1, ǧt−1(x)⟩]2

2
− Ex[⟨πt−1, ǧt−1(x)⟩]Ex[⟨πt, ǧt(x)⟩] ≤ Ex[∥ǧt−1(x)− ǧt(x)∥2] + ∥πt − πt−1∥21.

Rearranging these terms and then we complete the proof.

By combining the two lemmas above with the inequality derived from the pushback property and applying Pinsker’s
inequality—-which states ∥πt−1 − πt∥21 ≤ 2D(πt||πt−1) ≤ αD(πt||πt−1)-—we derive the following bound:

Ex[⟨π∗ − πt, f(xt)⟩|Ht] + Ex[∆t|Ht] ≤Ex[2∥f(xt)− f̂t(xt)∥|Ht] + Ex

[
T∑

t=1

Qt⟨π∗, ǧt(xt)− g(xt)⟩|Ht

]
+ Ex[αD(π∗||πt−1)− αD(π∗||πt)|Ht]

+ Ex[∥ǧt−1(x)− ǧt(x)∥2|Ht]

+
1

2
(E [⟨πt, ǧt(x)⟩|Ht]

2 − E [⟨πt−1, ǧt−1(x)⟩|Ht]
2
),

Taking expectation w.r.t. the historical information Ht, we complete the proof of Lemma 5.3.
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B. Proof of Theorem 5.1
In this section, we prove our main results in Theorem 5.1 by leveraging Lemma 5.3, which establishes a unified bound for
both regret and Lyapunov drift. We first derive the regret bound, followed by the constraint violation analysis.

B.1. Proof of Regret bound

We begin by summing the inequality in Lemma 5.3 over T to obtain:

E

[
T∑

t=1

⟨π∗ − πt, f(xt)⟩

]
+ E

[
T∑

t=1

∆t

]
≤E

[
2

T∑
t=1

∥f(xt)− f̂t(xt)∥

]

+ E

[
T∑

t=1

Qt⟨π∗, ǧt(xt)− g(xt)⟩

]

+ E

[
T∑

t=1

α(D(π∗||πt−1)−D(π∗||πt))

]

+

T∑
t=1

E
[
∥ǧt−1(x)− ǧt(x)∥2

]
+ E

[
T∑

t=1

(
⟨πt, ǧt(x)⟩2

2
− ⟨πt−1, ǧt−1(x)⟩2

2

)]
,

We analyze these terms one by one. For the first term, based on the learning oracle assumption, we can obtain:

E

[
2

T∑
t=1

∥f(xt)− f̂t(xt)∥

]
≤ 2|A|

T∑
t=1

∥εt(x, a, p)∥ ≤2|A|

√√√√T

T∑
t=1

∥εt(x, a, p)∥2

=2|A|
√
T log(max(|F|, |G|)/p) = Õ(

√
T ),

where the second inequality comes from the Cauchy-Schwarz inequality. For the term E
[∑T

t=1 Qt⟨π∗, ǧt(xt)− g(xt)⟩
]
,

we decompose the expectation using the event E defined in Assumption 3, considering both E and its complement Ē .

E

[
T∑

t=1

Qt⟨π∗, ǧt(xt)− g(xt)⟩

]
=E

[
T∑

t=1

Qt⟨π∗, ǧt(xt)− g(xt)⟩|E

]
+ E

[
T∑

t=1

Qt⟨π∗, ǧt(xt)− g(xt)⟩|Ē

]

≤E

[
T∑

t=1

Qt⟨π∗, ǧt(xt)− g(xt)⟩|Ē

]

≤E

[
T∑

t=1

∥Qt∥∥π∗∥∥ǧt(xt)− g(xt)∥|Ē

]
≤4|A|pT 2,

where the last inequality holds since the event Ē holds with probability p and the facts that ∥Qt∥ ≤ 2T, ∥π∗∥ ≤
1, ∥ǧt(xt)− g(xt)∥ ≤ 2|A|. Then we show that E

[∑T
t=1 Qt⟨π∗, ǧt(xt)− g(xt)⟩

]
= O(1) since p = 1

T 2 .

Next we analyze E
[∑T

t=1 α(D(π∗||πt−1)−D(π∗||πt))
]

and E
[∑T

t=1

(
⟨πt,ǧt(x)⟩2

2 − ⟨πt−1,ǧt−1(x)⟩2
2

)]
. For these two

terms, it’s easy to get that

E

[
T∑

t=1

α(D(π∗||πt−1)−D(π∗||πt))

]
=E[αD(π∗∥π0)]

≤α log(|A|),
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the inequality holds due to the uniform initialization of π0.

T∑
t=1

(
E [⟨πt, ǧt(x)⟩]2

2
− E [⟨πt−1, ǧt−1(x)⟩]2

2

)
=
E [⟨πT , ǧT (x)⟩]2

2

≤1

2
,

where the last inequality holds since ǧT (x, a) ∈ [−1, 1] and πT ∈ Π is the probability distribution. Finally, we have

E

[
T∑

t=1

∥ǧt−1(x)− ǧt(x)∥2
]
≤E

[
T∑

t=1

∥ǧt−1(x)− g(x)∥2
]
+ E

[
T∑

t=1

∥ǧt(x)− g(x)∥2
]

≤2|A|E

[
T∑

t=1

∥εt(x, a, p)∥2
]

≤2|A| log(max(|F|, |G|)/p) = Õ(1),

where the last inequality holds due to our learning oracle assumption. Combining all these terms, then for the regret term,
we have

E

[
T∑

t=1

⟨π∗ − πt, f(xt)⟩

]

≤− E

[
T∑

t=1

∆t

]
+ 2|A|

√
T log(max(|F|, |G|)/p) + 4|A|pT 2 + α log(|A|) + 2|A| log(max(|F|, |G|)/p) + 1

2

=− E
[
q21
2

]
+ 2|A|

√
T log(max(|F|, |G|)/p) + 4|A|pT 2 + α log(|A|) + 2|A| log(max(|F|, |G|)/p) + 1

2

≤2|A|
√
T log(max(|F|, |G|)/p) + 4|A|pT 2 + α log(|A|) + 2|A| log(max(|F|, |G|)/p) + 1

2
= Õ(

√
T ),

where the last inequality holds since the initialization of Q1 and we set Ex[⟨π0, ǧ0(x)⟩] = 0, then we complete the proof of
the regret bound.

B.2. Proof of Violation bound

From the update rule of Qt, we have

E

[
T∑

t=1

⟨πt, ǧt(x)⟩

]
≤ QT+1 + 1 ≤ qT+1 + 2.

Then the cumulative constraint violation can be bounded by

E

[
T∑

t=1

⟨πt,g(x)⟩

]
=E

[
T∑

t=1

⟨πt,g(x)− ǧt(x)⟩

]
+ E

[
T∑

t=1

⟨πt, ǧt(x)⟩

]

≤E

[
T∑

t=1

∥g(x)− ǧt(x)∥

]
+ qT+1 + 2,

Recall that we have already proved a unified upper bound for both regret and violation, which gives

E

[
T∑

t=1

⟨π∗ − πt, f(xt)⟩

]
+ E

[
T∑

t=1

∆t

]
≤ 2|A|

√
T log(max(|F|, |G|)/p) + 4|A|pT 2 + α log(|A|) + 1

2
,
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Rearrange these terms, we have

E

[
T∑

t=1

∆t

]
= E

[
q2T+1

2

]
≤E

[
T∑

t=1

⟨πt − π∗, f(xt)⟩

]
+ 2|A|

√
T log(max(|F|, |G|)/p) + 4|A|pT 2 + α log(|A|) + 1

2

≤2T + 2|A|
√
T log(max(|F|, |G|)/p) + 4|A|pT 2 + α log(|A|) + 1

2
, (15)

where the last inequality holds since f(x, a) ≤ 1. The above results imply that E[q2T+1] = O(T ), which is equivalent to
qT+1 = O(

√
T ). Combining these results, we have

E

[
T∑

t=1

⟨πt,g(x)⟩

]
≤E

[
T∑

t=1

∥g(x)− ǧt(x)∥

]
+ qT+1 + 2

≤

√√√√T

T∑
t=1

∥g(x)− ǧt(x)∥2 + qT+1 + 2

≤

√√√√T |A|
T∑

t=1

∥εt(x, a, p)∥2 + qT+1 + 2

≤
√
T |A| log(max(|F|, |G|)/p) +O(

√
T ),

which completes the proof that V(T ) = Õ(
√
T ).

C. Proof of Theorem 6.1
For the regret analysis in contextual bandits with knapsack constraints, we have established the following decomposition
into “regret before stopping” and “regret after stopping”:

Rb(T ) = τν∗ −
τ∑

t=1

⟨πt, f(xt)⟩+ [T − τ ]ν∗.

We first analyze the regret before stopping, where we can apply Lemma 5.3 and sum over τ to get:

E

[
τ∑

t=1

⟨π∗
b − πt, f(xt)⟩

]
+ E

[
τ∑

t=1

∆t

]
≤E

[
2

τ∑
t=1

∥f(xt)− f̂t(xt)∥

]
+ E

[
τ∑

t=1

∥ǧt−1(x)− ǧt(x)∥2
]

+ E

[
τ∑

t=1

Qt⟨π∗
b , ǧt(xt)− g(xt)⟩

]
+ E

[
τ∑

t=1

α(D(π∗
b ||πt−1)−D(π∗

b ||πt))

]

+

T∑
t=1

(
E [⟨πt, ǧt(x)⟩]2

2
− E [⟨πt−1, ǧt−1(x)⟩]2

2

)
,

First, we can conduct a telescoping sum to get:

E

[
τ∑

t=1

α(D(π∗||πt−1)−D(π∗||πt))

]
= E[αD(π∗∥π1)] ≤ α log(|A|),

T∑
t=1

(
E [⟨πt, ǧt(x)⟩]2

2
− E [⟨πt−1, ǧt−1(x)⟩]2

2

)
=

E [⟨πτ , ǧτ (x)⟩]2

2
≤ 1

2
,

Then the remaining terms can be similarly bounded by the learning oracle error, which gives

E

[
2

τ∑
t=1

∥f(xt)− f̂t(xt)∥

]
≤ E

[
2

T∑
t=1

∥f(xt)− f̂t(xt)∥

]
= Õ(

√
T )
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E

[
τ∑

t=1

∥ǧt−1(x)− ǧt(x)∥2
]
≤ 2|A|E

[
T∑

t=1

∥εt(x, a, p)∥2
]
= Õ(1)

E

[
τ∑

t=1

Qt⟨π∗, ǧt(xt)− g(xt)⟩

]
=E

[
τ∑

t=1

Qt⟨π∗, ǧt(xt)− g(xt)⟩|E

]
+ E

[
τ∑

t=1

Qt⟨π∗, ǧt(xt)− g(xt)⟩|Ē

]

=E

[
τ∑

t=1

Qt⟨π∗, ǧt(xt)− g(xt)⟩|Ē

]

≤E

[
τ∑

t=1

∥Qt∥∥π∗∥∥ǧt(xt)− g(xt)∥|Ē

]
≤4|A|pT 2 = Õ(1),

Combining these terms, we prove an upper bound for regret before stopping:

τν∗ −
τ∑

t=1

⟨πt, f(xt)⟩ = E

[
τ∑

t=1

⟨π∗
b − πt, f(xt)⟩

]
= Õ(

√
T ).

Next, we prove the part of the regret after stopping. From the update rule of Qt, we can immediately obtain the following
inequality:

qτ+1 + τb ≥ E

[
τ∑

t=1

⟨πt, ǧt(x)⟩

]
,

and, using the definition of stopping time, we know that τ satisfies qτ+1+ τb ≥ B := Tb, which leads to the conclusion that

E[(T − τ)ν∗] ≤ ν∗

b
E[qτ+1].

From (15), we can derive that for any t ∈ [T ], we have E[qt] = Õ(
√
T ). Setting t = τ , and combining all these terms, we

complete the proof.

D. Proof of Regret and Violation for MAB with stochastic and adversarial constraints
As discussed above, we have Optimistic3 to be readily applied to MAB with stochastic and adversarial constraints. The
only difference is that we need to plug in dedicated estimators for this setting. In particular, since our target is to handle the
adversarial reward, we use the EXP-3 style estimator for reward

r̂t(a) =
rt(a)

πt(a)
I(a = at). (16)

For the constraints, we use a weighted empirical estimation in (Bernasconi et al., 2024a) such that it can adapt to both
stochastic and adversarial settings. In particular, we design the cost estimator c̄t(a) and the bonus term bt(a) such that čt(a)
satisfies

čt(a) ≤ c̄t(a)− bt(a).

The bonus term is as the classical upper/lower confidence terms bt(a) =
√

γ log T
nt(a)

.

Let Tt,a = {τ ≤ t, at = a} be the set of rounds in which the algorithm plays the action a:

c̄t(a) =
∑

τ∈Tt,a

wτ (a)cτ (a) (17)
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The weights {wτ (a)} need a careful design such that it is good to track the “slow” change in the stochastic setting and the
“fast” change in the adversarial setting. In particular, motivated by online learning, (Bernasconi et al., 2024a) designs the
following weights

wτ (a) = ητ (a)
∏

s>τ, s∈Tt,a

(1− ηs(a)) with ητ (a) =
1 + Γτ

nτ,a
. (18)

where nτ,a is the number of action a taken by the algorithm and Γτ = [
∑τ

s=1 cs(as) − νmax

√
KT ]νmax

√
KT

0 is the
clipped constraint violation to regulate the learning rate. This design is motivated by the online gradient descent to regard
(c̄t(a)− ct(a))

2/2 as the loss function and update as follows

c̄t+1(a) =

{
c̄t(a)− ηt(a)(c̄t(a)− ct(a)), if a = at,

c̄t(a), if a ̸= at.

Intuitively, let ηt(a) = 1
nt(a)

and c̄t(a) =

∑
τ∈Tt,a

cτ (a)

nt(a)
become the empirical mean, which works for the stochastic setting.

To capture the “fast” change of adversarial setting, the violation Γτ is imposed to pay more attention to the recent samples.
Then we can construct an LCB-type estimator as

čt(a) = c̄t(a)− bt(a). (19)

Optimistic3 for MAB with Stochastic and Adversarial Constraints

Initialization: π0, Q1 = 0, α ≥ 2 and the regularization norm D(·||·).

For t = 1, · · · , T − 1,

• Optimistic Learning: in (16) and (19).

• Optimistic Decision: Construct policy πt to minimize the surrogate function:

πt = argmin
π

−⟨π, r̂t⟩+Qt⟨π, čt⟩+ αD(π||πt−1), (20)

Sample action at ∼ πt.

• Observe Feedback: Observe noisy reward rt(at) and cost ct(at).

• Optimistic Dual Update: Update the optimistic dual variable Qt+1 as follows:

Qt+1 = [Qt − ⟨πt−1, čt−1⟩+ 2⟨πt, čt⟩]+ (21)

Lemma D.1. Let πt be the policy decided by (20), define qt = Qt − ⟨πt−1, čt−1⟩ and its corresponding drift ∆t =
1
2 (q

2
t+1 − q2t ). For any feasible policy π, Optimistic3 achieves

E[⟨π − πt−1, rt−1⟩] + E[∆t] ≤ E [Qt⟨π, čt⟩] + αE[D(π||πt−1)−D(π||πt)]

+ E[∥čt−1 − čt∥2] +
1

2
E
[
⟨πt, čt⟩2 − ⟨πt−1, čt−1⟩2

]
+

1

α
E[∥rt−1∥2].

Proof. The proof is almost very similar except we need to pay some attention to the reward part. Note we have rt−1 = E[r̂t].
We have

⟨πt−1 − πt, r̂t⟩+Qt⟨πt, čt⟩+ αD(πt||πt−1)

≤⟨πt−1 − π, r̂t⟩+Qt⟨π, čt⟩+ αD(π||πt−1)− αD(π||πt)
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Take the expectation on both sides of the inequality

E[⟨π − πt−1, rt−1⟩] + E⟨πt−1 − πt, rt−1⟩] + αD(πt||πt−1) + E[Qt⟨πt, čt⟩]
≤E[Qt⟨π, čt⟩] + αE[D(π||πt−1)−D(π||πt)]

Then we leverage the local normal analysis of online mirror descent in (Sun et al., 2017) such that

⟨πt−1 − πt, rt−1⟩+ αD(πt||πt−1) +
1

α
∥rt−1∥2 ≥ 0.

Therefore, we have

E[⟨π − πt−1, rt−1⟩] + E[Qt⟨πt, čt⟩]

≤E[Qt⟨π, čt⟩] + αE[D(π||πt−1)−D(π||πt)] +
1

α
E[∥rt−1∥2].

Following the exact steps to handle the virtual queue and the constraints in Appendix A, we have two key inequalities from
Lemmas 5.6 and 5.7

∆t ≤ qt⟨πt, čt⟩+ ⟨πt, čt−1⟩2

= Qt⟨πt, čt⟩ − ⟨πt−1, čt−1⟩⟨πt, čt⟩+ ⟨πt, čt⟩2.

and

⟨πt−1, čt−1⟩⟨πt, čt⟩ ≥
⟨πt, čt⟩2

2
+

⟨πt−1, čt−1⟩2

2
− ∥čt−1 − čt∥2 − ∥πt − πt−1∥2.

Combine these inequalities, we have

E[⟨π − πt−1, rt−1⟩] + E[∆t] ≤ E [Qt⟨π, čt⟩] + αE[D(π||πt−1)−D(π||πt)]

+ E[∥čt−1 − čt∥2] +
1

2
E
[
⟨πt, čt⟩2 − ⟨πt−1, čt−1⟩2

]
+

1

α
E[∥rt−1∥2].

Lemma D.2. Optimistic3 achieves

E

[
T∑

t=1

∥čt−1 − čt∥2
]
≤ 16 + 16νmax

√
KT + 2γ log2 T.

Proof. Let’s focus on the difference of čt−1(a)− čt(a) when a = at (otherwise the difference is zero)

(čt−1(a)− čt(a))
2 ≤ 2(c̄t−1(a)− c̄t(a))

2 + 2(bt−1(a)− bt(a))
2, (22)

where

(c̄t−1(a)− c̄t(a))
2 = η2t−1(a)(c̄t−1(a)− ct−1(a))

2 ≤ 4(1 + Γt−1)
2

n2
t−1(a)

,

(bt−1(a)− bt(a))
2 = γ log T

(
1√

nt−1(a)
− 1√

nt(a)

)2

≤ γ log T

nt−1(a)
.

Note
∑

a nt(a) = t. This implies that

E

[
T∑

t=1

∥čt−1 − čt∥2
]
≤ E

[
T∑

t=1

16 + 16Γ2
t−1

n2
t−1(at)

+

T∑
t=1

2γ log T

nt−1(at)

]

≤ E

[
T∑

t=1

16 + 16Γ2
t−1

n2
t−1(at)

]
+ 2γ log2 T

≤ 16 + 16νmax

√
KT + 2γ log2 T
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where the first inequality holds because of (a+ b)2 ≤ 2(a2 + b2); the second inequality holds because the upper bound
will be attained when nt(a) = ⌊t/K⌋,∀a ∈ [K] at time t; the last inequality holds similarly due to the definition of
Γτ = [

∑τ
s=1 cs(as)− νmax

√
KT ]νmax

√
KT

0 and when nt(a) = ⌊t/K⌋,∀a ∈ [K] at time t. Specifically, we use

T∑
t=1

Γ2
t−1

n2
t−1(at)

≤
T∑

t=1

([t− νmax

√
KT ]νmax

√
KT

0 )2

t2

=

⌊νmax

√
KT⌋∑

t=1

([t− νmax

√
KT ]νmax

√
KT

0 )2

t2
+

T∑
t=⌊νmax

√
KT⌋+1

([t− νmax

√
KT ]νmax

√
KT

0 )2

t2

=

T∑
t=⌊νmax

√
KT⌋+1

([t− νmax

√
KT ]νmax

√
KT

0 )2

t2

≤
T∑

t=⌊νmax

√
KT⌋+1

ν2maxKT

t2

≤ ν2maxKT

νmax

√
KT

= νmax

√
KT

Based on Lemmas D.1 and D.2, we have

E[⟨π − πt−1, rt−1⟩] + E[∆t] ≤ E [Qt⟨π, čt⟩] + αE[D(π||πt−1)−D(π||πt)] +
1

2
E
[
⟨πt, čt⟩2 − ⟨πt−1, čt−1⟩2

]
+

1

α
E[∥rt−1∥2] + 16 + 16νmax

√
KT + 2γ log2 T. (23)

The inequality in (23) is the key and unified result to establish both sublinear regret and violation for MAB with stochastic
constraint and β-regret for MAB with adversarial constraint. As discussed before, we need to impose different baselines for
stochastic and adversarial settings.

Recall the offline problem for MAB

max
π

E

[
T∑

t=1

⟨π, rt⟩

]
(24)

s.t. E

[
T∑

t=1

⟨π, ct⟩

]
≤ 0. (25)

We just need to impose different baselines for these two settings. Intuitively, for the stochastic constraint, we can compare
it with the optimal offline policy π∗ to (24)–(25); for the adversarial constraint, we only compare with a weak β–optimal
offline policy β–π∗.

D.1. Optimistic3 for MAB with Stochastic Constraint

When the constraints are stochastic, i.e., E[ct] = c,∀t ∈ [T ], the offline problem is equivalent to

max
π

E[
T∑

t=1

⟨π, rt⟩] (26)

s.t. E[⟨π, c⟩] ≤ 0. (27)

Based on the key inequality (23), we let π = π∗ be the optimal offline policy to (26)–(27). Therefore, we have the key term
to be non-positive

QtE [⟨π∗, čt⟩|Ht] ≤ QtE [⟨π∗, c⟩|Ht] = 0.
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Therefore, we have

E[⟨π∗ − πt−1, rt−1⟩] + E[∆t] ≤ αE[D(π∗||πt−1)−D(π∗||πt)] +
1

2
E
[
⟨πt, čt⟩2 − ⟨πt−1, čt−1⟩2

]
+

1

α
E[∥rt−1∥2] + 16 + 16νmax

√
KT + 2γ log2 T.

This implies

E[
T∑

t=1

⟨π∗ − πt, rt⟩] +
1

2
E[q2T+1] ≤ αE[D(π∗||π0)] +

TK

α
+

1

2
E
[
⟨πT , čT+1⟩2

]
+ 16 + 16νmax

√
KT + 2γ log2 T

≤ α logK +
TK

α
+ 17 + 16νmax

√
KT + 2γ log2 T.

Recall α =
√
TK/ logK, we eventually have

E[
T∑

t=1

⟨π∗ − πt, rt⟩] +
1

2
E[q2T+1] ≤ 2

√
TK logK + 17 + 16νmax

√
KT + 2γ log2 T. (28)

D.1.1. REGRET ANALYSIS

From (28), we directly have

R(T ) ≤
√
TK logK + 17 + 16νmax

√
KT + 2γ log2 T.

D.1.2. VIOLATION ANALYSIS

From (28), we have

E[q2T+1] ≤ 2T + 2(2
√
TK logK + 17 + 16νmax

√
KT + 2γ log2 T ).

This implies that

E[qT+1] ≤ 2
√
T + 2

√√
TK logK + 17 + 16νmax

√
KT + 2γ log2 T .

According to the definition of qt = Qt − ⟨πt−1, čt−1⟩ and the update of Qt in (21), we have

T∑
t=1

⟨πt, čt⟩ ≤ QT+1 + 2 ≤ 3 + 2
√
T + 2

√√
TK logK + 17 + 16νmax

√
KT + 2γ log2 T

Now, we proceed to bound the constraint violation, where with high probability,

T∑
t=1

⟨πt, c⟩ =
T∑

t=1

⟨πt, c− čt⟩+
T∑

t=1

⟨πt, čt⟩

=

T∑
t=1

⟨πt, c− c̄t⟩+
T∑

t=1

⟨πt,bt⟩+
T∑

t=1

⟨πt, čt⟩

≤ 3

T∑
t=1

⟨πt,bt⟩+
T∑

t=1

⟨πt, čt⟩

≤ 6
√
T log T + 3 + 2

√
T + 2

√√
TK logK + 17 + 16νmax

√
KT + 2γ log2 T ,

where the first inequality holds from Bernasconi et al. (2024a, Lemma 6.2) that the gap between the empirical mean and
(17) is also bounded by bt(a), and the last inequality holds due to the definition of bt(a) and the upper bound of estimated
violation. Then we proved V(T ) = E

[∑T
t=1⟨πt, c⟩

]
= Õ(

√
T ).
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D.2. Optimistic3 for MAB with Adversarial Constraint

When the constraints are adversarial, we can only impose a weak baseline that mixes between the unconstrained optimal
policy π∗

adv and a null policy πnull that minimizes the costs by ignoring the rewards. The trade-off is controlled by a
competitive ratio β, then the mixed policy is πmix = β · π∗

adv + (1− β) · πnull. As in the setting of stochastic constraints,
we study the key term QtE [⟨πmix, čt⟩|Ht] and hope to find a mixed policy such that it is non-positive.

According to the definition of čt = c̄t − bt, we have

E [⟨πmix, čt⟩|Ht] ≤ E [⟨πmix, c̄t⟩|Ht] .

Let’s study the key term of ⟨πmix, c̄t⟩ as follows

⟨πmix, c̄t⟩ =
∑
a

πmix(a)
∑

τ∈Tt,a

wτ (a)cτ (a)

= β
∑
a

π∗
adv(a)

∑
τ∈Tt,a

wτ (a)cτ (a) + (1− β)
∑
a

πnull(a)
∑

τ∈Tt,a

wτ (a)cτ (a)

≤ β
∑
a

π∗
adv(a)

∑
τ∈Tt,a

wτ (a) + (1− β)(−ρ)
∑

τ∈Tt,a

wτ (a)

= β + (1− β)(−ρ) (29)

where the third inequality holds because cτ (a) ≤ 1,∀a, τ and cτ (anull) = c(anull) = −ρ. the last equality holds because∑
τ∈Tt,a

wτ (a) = 1; Finally, recall the definition for competitive ratio β = ρ/(1 + ρ) such that ⟨πmix, c̄t⟩ ≤ 0.

Therefore, we have

E

[
T∑

t=1

⟨πmix − πt, rt⟩

]
+

1

2
E
[
q2T+1

]
≤ 2
√
TK logK + 17 + 16νmax

√
KT + 2γ log2 T. (30)

D.2.1. REGRET ANALYSIS

Obviously, we have E[
∑T

t=1⟨πmix, rt⟩] ≥ E[
∑T

t=1⟨
ρ

1+ρπ
∗
adv, rt⟩], Then we can prove the regret directly from (30),

β-R(T ) = E

[
T∑

t=1

⟨ ρ

1 + ρ
π∗
adv − πt, rt⟩

]
≤
√

TK logK + 17 + 16νmax

√
KT + 2γ log2 T.

D.2.2. VIOLATION ANALYSIS

From (30), we have

E[q2T+1] ≤ 2T + 2(2
√
TK logK + 17 + 16νmax

√
KT + 2γ log2 T ).

This implies that

E[qT+1] ≤ 2
√
T + 2

√√
TK logK + 17 + 16νmax

√
KT + 2γ log2 T .

According to the definition of qt = Qt − ⟨πt−1, čt−1⟩ and the update of Qt in (21), we have

E

[
T∑

t=1

⟨πt, čt⟩

]
≤ E [QT+1] + 2 ≤ 3 + 2

√
T + 2

√√
TK logK + 17 + 16νmax

√
KT + 2γ log2 T

Now, we proceed to bound the constraint violation

V(T ) = E

[
T∑

t=1

⟨πt, ct⟩

]
= E

[
T∑

t=1

⟨πt, ct − čt⟩+
T∑

t=1

⟨πt, čt⟩

]

= E

[
T∑

t=1

⟨πt, ct − c̄t⟩+
T∑

t=1

⟨πt,bt⟩+
T∑

t=1

⟨πt, čt⟩

]
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Note bt(a) = 3
√

log T
nt(a)

, we have

E

[
T∑

t=1

⟨πt,bt⟩

]
≤ 3
√

T log T ,

where the second inequality holds because the upper bound will be attained when nt(a) = ⌊t/K⌋,∀a ∈ [K] at time t.
Therefore, we have

V(T ) ≤ E

[
T∑

t=1

⟨πt, ct − c̄t⟩

]
+ 3 + 5

√
T log T + 2

√√
TK logK + 17 + 16νmax

√
KT + 2γ log2 T

Let’s focus on the key term
∑T

t=1⟨πt, ct − čt⟩. Here recall an important corollary in Bernasconi et al. (2024a, Corollary
5.7), from the fact that the learning ηt(a) rates are non-increasing, which gives

E

[
T∑

t=1

⟨πt, ct − c̄t⟩

]
= E

∑
a

∑
t∈TT,a

c̄t+1(a)− c̄t(a)

ηt(a)

 ≤
∑
a

1

ηT (a)
,

where ηt(a) = (1 + Γt)/nt,a and Γt = [
∑t

s=1 cs(as) − νmax

√
KT ]νmax

√
KT

0 . We provide a simplified proof in the
following. Fix action a and let k = |TT,a| be the number of times action is played before time horizon T . Define t(j) be the
rounds in which action a is played the j-th time. We can obtain:∑

t∈TT,a

c̄t+1(a)− c̄t(a)

ηt(a)

=
∑

j∈[k−1]

1

ηt(j)(a)
(c̄t(j+1)(a)− c̄t(j)(a)) +

1

ηt(k)(a)
(c̄t(k)+1(a)− c̄t(k)(a))

≤
∑

j∈[k−1]

(
1

ηt(j+1)(a)
c̄t(j+1)(a)−

1

ηt(j)(a)
c̄t(j)(a)

)
+

1

ηt(k)(a)
(c̄t(k)+1(a)− c̄t(k)(a)) (31)

=
1

ητ(k)(a)
c̄t(k)+1(a)−

1

ητ(1)(a)
c̄t(1)(a)

≤ 1

ητ(k)(a)
c̄t(k)+1(a) ≤

1

ηT (a)
.

The above proof requires that the costs (or the estimated ones) are non-negative in the adversarial setting. Specifically, the
key inequality (31) requires not only that the learning rate sequence ηt(a) be non-increasing, but also that c̄t(a) ≥ 0 for all t.

Combining these facts, we have

V(T ) ≤ KT

1 + ΓT
+ 3 + 5

√
T log T + 2

√√
TK logK + 17 + 16νmax

√
KT + 2γ log2 T

Now, if V(T ) ≥ 2νmax

√
KT log T , we have ΓT = νmax

√
KT log T such that

V(T ) ≤ KT

2νmax

√
KT log T

+ 3 + 5
√
T log T + 2

√√
TK logK + 17 + 16νmax

√
KT + 2γ log2 T

≤ 3νmax

√
KT log T .

Therefore, it concludes the proof of violation of adversarial constraints.

E. Additional experiment on BwK with stochastic and adversarial constraints
We evaluate our approach through numerical experiments on non-contextual multi-armed bandits across both stochastic
and adversarial environments. We consider |A| = 10 arms and the time horizon T = 10000. All results are obtained by
averaging over 50 trials and reported with a 95% confidence interval.
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• In the stochastic setting, each arm’s mean reward r(a) = µa is drawn from the uniform distribution of [0, 1] while
mean constraint c(a) = λa is drawn from the uniform distribution of [−0.5, 1]. Observations of rewards and costs are
perturbed by Gaussian noise N (0, 0.05).

• In the adversarial setting, rewards and constraints adopt time-varying dynamics: rt(a) = µa + α1
a sin(ω

1
at) and

ct(a) = λa + α2
a sin(ω

2
at), where µa, λa match the stochastic setting, amplitude and frequencies α1

a, α
2
a, ω

1
a, ω

2
a ∼

Uniform[0, 0.2]. Observations of rewards and costs are perturbed by Gaussian noise N (0, 0.05).

Figures 2 demonstrates that Optimistic3 outperforms all baseline algorithm, which justify our theoretical guarantees.
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(a) Averaged reward under stochastic setting
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(b) Averaged constraint violation under stochastic setting
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(c) Averaged reward under adversarial setting
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(d) Averaged constraint violation under adversarial setting

Figure 2. Averaged reward and constraint violation under LOE2D (Guo & Liu, 2024), LagrangeCBwLC (Slivkins et al., 2023), Beyond
Primal-Dual (Bernasconi et al., 2024a) and Optimistic3.

25


